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An expansion is derived for the density of the ®rst time a Brownian path crosses a perturbed linear

boundary á� å f (t). When the perturbation f (t) is a ®nite mixture of negative exponentials of either

sign the expansion is shown to converge for all values of the perturbation parameter å. Numerical

examples suggest that the technique works well for a wider choice of f (t), including cases where f (t)

is periodic.
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1. Introduction

Apart from the classical case of a linear boundary, the density of the ®rst crossing time of a

Brownian path is known exactly for only a few boundaries such as the square root and the

parabolic, and each of these involves considerable computation. Recently a straightforward

approximate method applicable to any boundary has become available which in most cases

approximates the density with high accuracy (Daniels 1996; Lo et al. in preparation), so that

from a practical point of view the problem can be regarded as essentially solved. However, it

is still of interest to discover new boundaries for which a theoretical solution for the density

is easily available. One approach is to consider perturbations of a linear boundary. A recent

interesting paper by Hobson et al. (1999) addresses this problem for the distribution function

of the ®rst crossing time. In the present paper we adopt an entirely different approach to

derive expansions for the density function which works well in practice even for periodic

perturbations.

In general such expansions can be regarded as asymptotic, though the range of validity of

the perturbation parameter å is usually dif®cult to establish. In the special case where the

perturbation is a ®nite mixture of negative exponentials with positive or negative weights,

we show that the expansion converges for all values of å.

2. The perturbation expansion

Suppose there is standard Brownian motion W (t) with W (0) � 0 and a one-sided boundary
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î(t) . 0 such that W (t) is certain to cross it eventually. Then the ®rst crossing-time density

g(t) satis®es the Wald identity�1
0

g(t)eèî( t)ÿ1
2
è2 t dt � 1, è > 0: (2:1)

With s � 1
2
è2 it becomes �1

0

g(t)e
����
2s
p

î( t)ÿst dt � 1, s > 0: (2:2)

We consider boundaries of the form

î(t) � á� å f (t) (2:3)

which are perturbations of a horizontal boundary of height á. 0. The solution can be easily

modi®ed to allow for a gradient by the Cameron±Martin±Girsanov device. For such a

boundary (2.2) can be rearranged as�1
0

g(t)eå
����
2s
p

f ( t)ÿst dt � eÿá
����
2s
p
: (2:4)

It is assumed that f (t) and its derivatives are continuous, f 9(0) is ®nite and j f (t)j is bounded.

Following the usual perturbation routine, g(t) is taken to be expandable in the form

g(t) � g0(t)� åg1(t)� å2 g2(t) � � � � :

When t is small the boundary is approximately î(t) � a� bt, where a � á� å f (0), b �
å f 9(0), so that g(t) � a expfÿ(a� bt)2=2tg=(

������
2ð
p

t3=2). It follows that g(0) � 0, g9(0) � 0,

. . . and hence gr(0) � 0, g9r(0) � 0 . . . for all r. From (2.4),�1
0

(g0(t)� åg1(t)� å2 g2(t) � � � �)f1� å
�����
2s
p

f (t)� 1
2
å2(

�����
2s
p

)2 f 2(t) � � � �geÿst dt � eÿá
����
2s
p
:

(2:5)

The terms g0(t), g1(t), . . . are found sequentially by equating coef®cients of powers of å on

both sides and solving the resulting equations for the Laplace transforms g�0 (s), g�1 (s), . . .
which are then inverted to give the terms of g(t). We shall use the notation g�(s) 5 g(t) to

denote the Laplace transform relation.

The constant term immediately gives g�0 (s) � exp(ÿá �����
2s
p

), which transforms to the

density g0(t) � á exp(ÿá2=2t)=(
������
2ð
p

t3=2) for the horizontal boundary. Writing

g�n,k(s) 5 gn,k(t) � g n(t) f k(t), (2:6)

with g�n,0(s) � g�n (s), we obtain the following equations:
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g�0 (s) � eÿá
����
2s
p

,

g�1 (s)�
�����
2s
p

g�0,1(s) � 0,

g�2 (s)�
�����
2s
p

g�1,1(s)� (
�����
2s
p

)2

2!
g�0,2(s) � 0,

..

.

g�n (s)�
�����
2s
p

g�nÿ1,1(s)� (
�����
2s
p

)2

2!
g�nÿ2,2(s) � � � � � (

�����
2s
p

)n

n!
g�0,n(s) � 0: (2:7)

The inversion of terms like s
1
2
k g�r,k(s) differs according to whether k is even or odd. For

even k � 2 j,

s j g�r,2 j(s) � s jÿ1 gr,2 j(0)� s jÿ2 g9r,2 j(0) � � � � � g
( jÿ1)
r,2 j (0)�

�1
0

g
( j)
r,2 j(t)eÿst dt,

that is,

s j g�r,2 j(s) 5
d j

dt j
fgr(t) f 2 j(t)g, (2:8)

because g r(t) and all its derivatives vanish at t � 0. For odd k � 2 jÿ 1,

s jÿ1=2 g�r,2 jÿ1(s) � sÿ3=2s j�1 g�r,2 jÿ1(s),

and since sÿ3=2 5 2(t=ð)1=2,

s jÿ1=2 g�r,2 jÿ1(s) 5
2���
ð
p

� t

0

d j�1

du j�1
fgr(u) f 2 jÿ1(u)g �����������

t ÿ u
p

du: (2:9)

The terms gn(t) can then be found sequentially by straightforward numerical differentiation

and integration.

The Cameron±Martin±Girsanov factor enables the boundary î(t) to be replaced by

î(t)� ât. The density then becomes

g(tjâ) � g(t) expfÿâî(t)ÿ 1
2
â2 tg:

This automatically allows for the possibility that a Brownian path may no longer be certain to

cross the new boundary.

3. An example

The density g(t) was computed for the boundary î(t) � á� ât � å sin t with á � 2:0,

â � 0:1, å � 0:25. (This example was simulated by Roberts and Shortland (1995) for

comparison with their hazard rate tangent approximation.) Figure 1 shows the results of
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stopping at g1 and g4 respectively, together with the result obtained from 2 3 106

simulations. The density g0(t) for the unperturbed boundary á� ât is also shown for

comparison. The computation was most expeditiously done by alternately using trapezoidal

integration and Lagrange differentiation on a suf®ciently ®ne lattice.

4. Convergence

We now discuss the class of boundaries where f (t) is a mixture of m negative exponentials

each with positive or negative weight. When m is ®nite we show that the perturbation

expansion converges for all å. When m is in®nite a weaker result is obtained.

In the simplest case where f (t) is a constant c, it is obvious that the expansion converges

for all å since g�(s) � expÿ (á� åc)
�����
2s
p

. The next simplest boundary is f (t) �
c exp(ÿët), ë. 0, but since c can be absorbed into å we need only consider f (t) �
exp(ÿët). In that case g�n,k(s) � g�n (s� kë) and equations (2.7) become

Simulated
g0
up to g1
up to g4

0.08
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0.04

0.02

0.0

g
(t

)

t
0 5 10 15 20 25 30

Figure 1. Approximations to the density of ®rst crossing time of Brownian motion for the boundary

î(t) � á� ât � å sin t, with á � 2:0, â � 0:1, å � 0:25. The density for å � 0 is shown for

comparison.
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g�0 (s) � eÿá
����
2s
p

g�1 (s)�
�����
2s
p

g�0 (s� ë) � 0

g�2 (s)�
�����
2s
p

g�1 (s� ë)� (
�����
2s
p

)2

2!
g�0 (s� 2ë) � 0

..

.

g�n (s)�
�����
2s
p

g�nÿ1(s� ë)� (
�����
2s
p

)2

2!
g�nÿ2(s� 2ë) � � � � � (

�����
2s
p

)n

n!
g�0 (s� në) � 0: (4:1)

In the rth equation replace s by s� (nÿ r)ë, r � 0, 1, 2, . . . , n, so that the argument of

g�0 in each equation becomes s� në. On rearranging the terms the equations can then be

put in the form

1 0 0 . . . 0�������������������������������
2(s� (nÿ 1)ë)

p
1 0 . . . 0

[
��������������������������������
2(s� (nÿ 2)ë]2

p
2!

�������������������������������
2(s� (nÿ 2)ë)

p
1 . . . 0

..

.

(
�����
2s
p

)n

n!

(
�����
2s
p

)nÿ1

(nÿ 1)!

(
�����
2s
p

)nÿ2

(nÿ 2)!
. . . 1

2666666666666664

3777777777777775

g�0 (s� në)

g�1 (s� (nÿ 1)ë)

g�2 (s� (nÿ 2)ë)

..

.

g�n (s)

2666666666666664

3777777777777775

�

eÿá
������������
2(s�në)
p

0

0

..

.

0

26666666664

37777777775
, (4:12)

leading to the solution

g�n (s) � (ÿ1)n

�����������������������������
2(s� (nÿ 1)ë

p
1 0 . . . 0

[
�����������������������������
2(s� (nÿ 2)ë

p
]2

2!

�����������������������������
2(s� (nÿ 2)ë

p
1 . . . 0

..

.

(
�����
2s
p

)n

n!

(
�����
2s
p

)nÿ1

(nÿ 1)!

(
�����
2s
p

)nÿ2

(nÿ 2)!
. . .

�����
2s
p

����������������

����������������
eÿá

������������
2(s�në)
p

:

(4:3)
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Determinants of the kind appearing in (4.3) have been discussed in quite a different

context by Daniels (1945; 1963), where their asymptotic properties were investigated. We

recall some of the results which are applicable here. Consider

Bn � n!

bn

b2
n

2!

b3
n

3!
. . .

bnÿ1
n

(nÿ 1)!

bn
n

n!

1 bnÿ1

b2
nÿ1

2!
. . .

bnÿ2
nÿ1

(nÿ 2)!

bnÿ1
nÿ1

(nÿ 1)!

0 1 bnÿ2 . . .
bnÿ3

nÿ2

(nÿ 3)!

bnÿ2
nÿ2

(nÿ 2)!

..

.

0 0 0 . . . 1 b1

����������������������

����������������������

(4:4)

where bn is a descending positive sequence with b0 � 1. It can also be expressed in the form

Bn � n!

�b n

0

dxnÿ1

�b nÿ1

xnÿ1

dxnÿ2 . . .

�b1

x1

dx0: (4:5)

This follows from the fact that the associated Gontcharoff polynomial (Gontcharoff 1937)

B0(x) � 1, Bn(x) � n!

�bn

x

dxnÿ1

�bnÿ1

xnÿ1

dxnÿ2 . . .

�b1

x1

dx0, n > 1 (4:6)

satis®es the equation

dBn(x)

dx
� ÿnBnÿ1(x),

with Bn(0) � Bn, Bn(bn) � 0. Expanding Br(br) in powers of br and solving the resulting

equations for r � 1, 2, . . . , n leads to (4.4).

An obvious upper bound for Bn is obtained when each br is replaced by 1, giving

Bn , 1, which is adequate for our purpose. With a trivial transposition the determinant in

(4.3) has the same form as that in (4.4) and can be expressed as� �������������������
2[s�(nÿ1)ë]
p

0

dxnÿ1

� �������������������
2[s�(nÿ2)ë]
p

xnÿ1

dxnÿ2 . . .

� ����������
2(s�ë)
p

x1

dx0 � (2(s� në))n=2

n!
Bn,

where br �
��������������������������������
1ÿ rë=(s� në)

p
.

We can now examine the convergence of the perturbation expansion when f (t) �
exp(ÿët). Since

jg�n (s)j, [2(s� në)]n=2

n!
eÿá

������������
2(s�në)
p

� hn,

the expansion is dominated by
P

njåjn hn, and when n is large the ratio of the (n� 1)th to the

nth term is approximately
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jåjhn�1=hn �
��������
2ë e

n

r
jåj:

The expansion therefore converges for all å.

The rate of convergence established here is slower than when ë � 0. An asymptotic

expression for Bn when n is large is available and might be expected to improve the upper

bound. In Daniels (1963, Section 4), bn is regarded as the value taken by a continuous

differentiable concave function â(ù) at ù � r=n with â(0) � 1, â(î) � 0. In our case

â(ù) � ������������������������������������
1ÿ nëù=(s� në)

p
, î � 1� s=në, so that â9(î) � ÿ1 and the approximation

reduces to Bn � 1ÿ jâ9(0)j � 1ÿ 1
2
në=(s� në). But this does not improve the rate of

convergence by much.

5. Mixture of exponentials

The same approach can be used when f (t) is a ®nite mixture of m negative exponentials, but

the details are more complicated. For simplicity we ®rst consider the case f (t) �
c1 eÿë1 t � c2 eÿë2 t, 0 , ë1 , ë2. Writing å1 � c1å, å2 � c2å, (2.4) becomes�1

0

g(t)e
����
2s
p

(å1eÿë1 t�å2eÿë2 t)ÿst dt � eÿá
����
2s
p
: (5:1)

It turns out that the right way to proceed is to expand in powers of å1 and å2 preserving the

order of the products, that is, distinguishing between å1å2 and å2å1 and so on. We therefore

expand g in the form

g � g0 � (å1 g1 � å2 g2)� (å1å1 g11 � å1å2 g12 � å2å1 g21 � å2å2 g22)

� (å1å1å1 g111 � å1å1å2 g112 � å1å2å1 g121 � å2å1å1 g211

� å1å2å2 g122 � å2å1å2 g212 � å2å2å1 g221 � å2å2å2 g222) � � � � : (5:2)

Expanding the exponential in the same way, (4.1) becomes�1
0

g0 �
X2

i�1

åi gi �
X2

i�1

X2

j�1

åiå j gij �
X2

i�1

X2

j�1

X2

k�1

åiå jåk gijk � � � �
8<:

9=;
1�

�����
2s
p X2

i�1

åi eÿëi t � (
�����
2s
p

)2

2!

X2

i�1

X2

j�1

åiå j eÿ(ëi�ë j) t

8<:
� (

�����
2s
p

)3

3!

X2

i�1

X2

j�1

X2

k�1

åiå jåk eÿ(ëi�ë j�ë k ) t � � � �
)

eÿst dt � eÿá
����
2s
p

(5:3)

To illustrate the way the coef®cients are determined, consider gijk. The equations arising

from the constant term and the coef®cients of åi, åiå j, åiå jåk are
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g�0 (s) � eÿá
����
2s
p

,

g�i (s)�
�����
2s
p

g�0 (s� ëi) � 0,

g�ij (s)�
�����
2s
p

g�i (s� ë j)� (
�����
2s
p

)2

2!
g�0 (s� ëi � ë j) � 0,

g�ijk(s)�
�����
2s
p

g�ij (s� ëk)� (
�����
2s
p

)2

2!
g�i (s� ë j � ëk)� (

�����
2s
p

)3

3!
g�0 (s� ëi � ë j � ëk) � 0: (5:4)

In each equation add the required quantity to s to make the g�0 term have argument

s� ëi � ë j � ëk . Rearranging the terms as before, we obtain

1 0 0 0�����������������������������
2(s� ë j � ëk)

p
1 0 0

(
�������������������
2(s� ëk)

p
)2

2!

�������������������
2(s� ëk)

p
1 0

(
�����
2s
p

)3

3!

(
�����
2s
p

)2

2!

�����
2s
p

1

266666666664

377777777775

g�0 (s� ëi � ë j � ëk)

g�i (s� ë j � ëk)

g�ij (s� ëk)

g�ijk(s)

266666666664

377777777775

�

eÿá
�����������������������
2(s�ë i�ë j�ë k )
p

0

0

0

266666664

377777775 (5:5)

and hence

g�ijk(s) � ÿ

�����������������������������
2(s� ë j � ëk)

p
1 0

(
�������������������
2(s� ëk)

p
)2

2!

�������������������
2(s� ëk)

p
1

(
�����
2s
p

)3

3!

(
�����
2s
p

)2

2!

�����
2s
p

������������

������������
eÿá

�����������������������
2(s�ëi�ë j�ë k )
p

: (5:6)

Since ë1 < ëi, ë j, ëk < ë2 the previous argument can now be used to give the upper bound

jg�ijk(s)j, [2(s� ëi � ë j � ëk)]3=2

3!
eÿá

�����������������������
2(s�ëi�ë j�ë k )
p

,
[2(s� 3ë2)]3=2

3!
eÿá

�������������
2(s�3ë1)
p

, (5:7)

so that
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����X2

i�1

X2

j�1

X2

k�1

åiå jåk g�ijk
����, [2(s� 3ë2)]3=2

3!
eÿá

�������������
2(s�3ë1)
p

(jå1j � jå2j)3

� [2(s� 3ë2)]3=2

3!
eÿá

�������������
2(s�3ë1)
p

(jc1j � jc2j)3jåj3: (5:8)

In the same way the nth term of the expansion of g can be shown to be dominated by

[2(s� në2)]n=2

n!
eÿá

��������������
2(s�në1)
p

(jc1j � jc2j)njåjn: (5:9)

The ratio of (n� 1)th to nth term is approximately (jc1j � jc2j)jåj
���������������
2ë2 e=n

p
and the series

converges for all å.

The general case of a ®nite number m of negative exponentials is susceptible to the same

analysis. Let

f (t) � c1 exp(ÿë1 t)� c2 exp(ÿë2 t) � � � � � cm exp(ÿëm t),

where 0 , ë1 , ë2 , � � � , ëm. Then in (5.9) ë2 is replaced by ëm, (jc1j � jc2j)n is replaced by

(jc1j � jc2j � � � � � jcmj)n and the same conclusion follows. However, if m is allowed to

become in®nite and ëm !1 the argument breaks down. For example, it cannot be applied to

f (t) � 1=(1� c exp(ÿët)) �P1n�0(ÿc)n exp(ÿnët), 0 , c , 1. In such cases one has to

resort to the fact that x n exp(ÿáx) takes its maximum value (n=á)n eÿn at x � n=á. This

replaces the equivalent of (5.9) by a weaker upper bound

n

á

� �neÿn

n!

X1
r�1

jcrj
 !n

jåjn � 1���������
2ðn
p

P1
r�1jcrjjåj
á

� �n

: (5:10)

The ratio of the (n� 1)th to the nth term tends to (
P1

1 jcrj)jåj=á, and all one can say is that

the expansion certainly converges if jåj,á=
P1

1 jcnj.
Periodic boundaries can be expressed as sums of exponentials with complex ëis. The

coef®cients of the perturbation expansion can be found as sums of terms like (5.6), but the

complex ëis mean that there is no obvious upper bound which can be exploited.
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