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We describe a general method for deriving estimators of the parameter of a statistical model, with

particular relevance to highly structured stochastic systems such as spatial random processes and

`graphical' conditional independence models. The method is based on representing the stochastic

model X as the equilibrium distribution of an auxiliary Markov process Y � (Yt, t . 0) where the

discrete or continuous `time' index t is to be understood as a ®ctional extra dimension added to the

original setting. The parameter estimate è̂ is obtained by equating to zero the generator of Y applied

to a suitable statistic and evaluated at the data x. This produces an unbiased estimating equation for è.

Natural special cases include maximum likelihood, the method of moments, the reduced sample

estimator in survival analysis, the maximum pseudolikelihood estimator for random ®elds and for

point processes, the Takacs±Fiksel method for point processes, `variational' estimators for random

®elds and multivariate distributions, and many standard estimators in stochastic geometry. The

approach has some af®nity with the Stein±Chen method for distributional approximation.
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1. Introduction

This paper describes a general method of deriving parameter estimators for statistical models.

It has particular relevance to highly structured stochastic models, such as spatial processes

and graphical dependence models, where there is considerable interest in ®nding alternatives

to maximum likelihood. In such contexts the likelihood is usually not known analytically, the

maximum likelihood estimator may not be optimal, and sampling distributions and moments

are often unknown.

For discrete Gibbs random ®elds, Besag (1975) proposed inference based on

pseudolikelihood, a product of certain conditional likelihoods, which can be motivated by

the dependence structure of the model. The pseudolikelihood approach was extended to

spatial point processes by Besag (1977) and Jensen and Mùller (1991), and a limit theorem

relating these two cases was found in Besag et al. (1982). Takacs (1983; 1986) and Fiksel

(1984; 1988) developed a completely different rationale for parameter estimation in point

processes, based on equating unbiased estimators of the left- and right-hand sides of an

identity (Nguyen and Zessin 1976) for the expectation of an arbitrary functional h of the
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process. It has been shown (Diggle et al. 1994; Jensen and Mùller 1991) that the Takacs±

Fiksel method coincides with maximum pseudolikelihood for a large class of Gibbs point

process models with the appropriate choice of h. For real-valued Gibbs random ®elds,

Almeida and Gidas (1993) recently proposed a new class of estimators based on variational

methods.

In all of the above-mentioned problems, it is natural and convenient to express the

random process of interest, X , as the equilibrium distribution of an associated Markov

process Y � (Yt, t . 0) in discrete or continuous time. For example, the Poisson distribution

is the equilibrium measure of a birth-and-death process on the non-negative integers. Under

suitable conditions, a discrete random ®eld is the equilibrium distribution of an associated

Gibbs sampler (Geman and Geman 1984; Geman 1990); a ®nite spatial point process is the

equilibrium distribution of a certain spatial birth-and-death process (Preston 1975; Mùller

1989). Note that the `time' index t is not part of the original formulation of the model, and

may or may not have a simple interpretation in the context where the model is applied.

A standard result of Markov process theory asserts that if X is drawn from the

equilibrium distribution of Y, then

E[(AS)(X )] � 0 (1)

for essentially all statistics S(X ), where A is the generator of Y. For example, if Y is a

Markov chain on a ®nite state space X with time-homogeneous transition probabilities

p(x, y), its generator A is the operator de®ned on all functions S : X ! R by

AS(x) �
X
y2X

p(x, y)[S(y)ÿ S(x)] (2)

for all x 2 X . Equation (1) is then straightforward.

In this paper we propose estimating the parameter è of a given stochastic model as

follows. For each è, represent the distribution of X under è as the equilibrium distribution

of some Y(è) � (Y
(è)
t ). Let Aè be the generator of Y(è). Choose a statistic S � S(X ). Given

the observed data x, estimate è as the solution è̂T of

(AèS)(x) � 0: (3)

By (1), this is an unbiased estimating equation for è.

The method can be applied in considerable generality and includes the method of

moments and the maximum likelihood estimating equations as special cases arising from

different choices of Y. In this paper we apply the method to discrete random ®elds, spatial

point processes, censored data, and the `dead leaves model' from stochastic geometry. For

discrete Markov random ®elds, if Y is the Gibbs sampler then we obtain the maximum

pseudolikelihood estimator. For Markov point processes, if Y is the standard Gibbs sampler

spatial birth-and-death process, then we obtain the Takacs±Fiksel method. For real-valued

Markov random ®elds on a ®nite graph, if Y is a Langevin diffusion we obtain one of the

Almeida±Gidas variational estimators. For random right-censored lifetime data, if Y is a

chain which at each step randomly selects one of the observations and replaces it by a

random sample from the true lifetime distribution F, we obtain the reduced-sample
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estimator of F. In each example, other choices of Y produce alternative estimators which

may also be of interest.

In point process applications, this approach provides an independent explanation for the

agreement between the Takacs±Fiksel and pseudolikelihood methods. It also appears to

remove some of the arbitrariness encountered in the Takacs±Fiksel method, since the

estimators usually favoured in applications are obtained by applying our method to the

canonical suf®cient statistic.

Regarding the statistical performance of these estimators, such as their consistency,

asymptotic normality, and ef®ciency, unfortunately little can be said at this level of

generality. It is also unclear how to select Y and S to obtain an optimal estimator è̂T. We

investigate one very speci®c example.

The time-invariance approach can perhaps best be regarded as a useful way of generating

a variety of candidate estimators for further study. In many applications the maximum

likelihood estimator is intractable or requires unacceptably complex computation. An

advantage of the time-invariance approach is that the computational complexity of the

estimator is controlled by the choice of A. For example, if Y is a pure jump process then

the estimating function will be a sum or integral of terms of the form S(y)ÿ S(x) for all

possible jumps x ? y. This may also be interpreted as a choice about the extent to which

`global' information should be incorporated in the estimating equation, echoing the

arguments of Besag (1986). Another rationale for making particular choices of Y and S is

to regard the equation A � 0 as a ®rst-order approximation to e tA ÿ I � 0, whose limit as

t!1 is the maximum likelihood normal equation.

The identity (1) is fundamental to the Stein±Chen method of distributional approximation

(see for example Arratia et al. 1990; Barbour 1997; Barbour et al. 1992; Stein, 1986).

Further remarks about this connection are made in the Discussion.

In the next section we give a general statement of the method, followed in Section 3 by

two simple examples. Section 4 investigates the case of discrete (Markov) random ®elds and

Section 5 ®nite (Markov) point processes. Section 6 discusses variational estimators. An

application to survival analysis is described in Section 7. An example from stochastic

geometry, the dead leaves model, is examined in Section 8. Section 9 discusses performance

issues such as consistency and asymptotic normality, and Section 10 the selection of an

optimal estimating equation, although little can be said about these issues at this level of

generality. We conclude in Section 11 with a discussion of problems with the method and

possibilities for further development.

2. General statement of method

Consider a parametric statistical model given by a family of probability distributions

fPè : è 2 Èg on a sample space X with arbitrary parameter space È. We assume X is a

locally compact metric space. Typically, but not always, È and X are subsets of Rn and

fPè : è 2 Èg is an exponential family. The aim is to estimate the unknown parameter è from

a single observation x drawn from Pè.

Our proposal is to ®nd a time-homogeneous Markov process Y(è) � (Y
(è)
t , t . 0), in
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discrete or continuous time, with states in X , for which Pè is an equilibrium distribution

(for each è 2 È). Note again that Y(è) is a mathematical ®ction here; we do not need to

simulate it, nor do we require any sample path properties.

Let Aè be the generator of Y(è), an operator on functions h : X ! Rk de®ned brie¯y

as follows. In discrete time, set

(Aèh)(x) � E[h(Yn�1)ÿ h(Yn)jYn � x]

� E[h(Yn�1)jYn � x]ÿ h(x) (4)

for x 2 X , where n is arbitrary and h must be integrable with respect to Pè for all è 2 È. In

continuous time,

(Aèh)(x) � d

dt

����
t�0

E[h(Yt)jY0 � x] (5)

� lim
t#0

E[h(Yt)jY0 � x]ÿ h(x)

t
(6)

where the domain DAè of the generator consists of all bounded continuous h : X ! Rk

such that the limit (6) exists in the sense of uniform convergence, and the limit Aèh is

bounded and continuous. See, for example, Karlin and Taylor (1981, p. 294) or Ethier and

Kurtz (1986, pp. 9, 239). (It may be necessary to extend the domain in some cases, for

example, to include all functions h which are L p integrable with respect to Pè for all è, for

some p . 1.)

For example, if Y(è) is a continuous-time, pure jump process with transition kernel kè
then (Ethier and Kurtz 1986, pp. 162, 376; Kallenberg 1997, p. 314)

(Aè f )(x) �
�

X
[ f (y)ÿ f (x)]kè(x, dy): (7)

De®nition 1. Choose a statistic S : X ! R belonging to the domain of Aè for all è 2 È.

Given observation of the data x, estimate è by the solution è̂T of

(AèS)(x) � 0, (8)

provided this exists and is unique. We call (8) the time-invariance estimating equation and è̂T

the time-invariance estimator of è. Note that these depend on the choice of S and Y.

Some examples are described below.

Lemma 1. The equilibrium distribution Pè and the generator Aè satisfy

Eè(AèS)(X ) � 0 (9)

where X has distribution Pè. Thus (8) is an unbiased estimating equation (MacLeish and

Small 1988).

The proof is standard, but included for clarity.
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Proof. In the discrete case the result is trivial. In the continuous case, let (T
(è)
t , t > 0) be the

transition semigroup of Y,

(T
(è)
t S)(x) � Eè[S(Yt)jY0 � x] (10)

for t > 0 and x 2 X . Let X have distribution Pè; then since Pè is an equilibrium distribution

of Y(è) we have

EèS(X ) � Eè(T
(è)
t S)(X ): (11)

Now (Ethier and Kurtz 1986, pp. 9, 239)

Eè(AèS)(X ) �
�

X
(AèS)(x)dPè(x)

�
�

X
lim
t#0

(T
(è)
t S)(x)ÿ S(x)

t
dPè(x)

� lim
t#0

1

t

�
X

[(T
(è)
t S)(x)ÿ S(x)] dPè(x)

since the convergence in (6) is uniform. But by (11), the integral in the last expression is zero

for all t, so we obtain the result. h

The estimator è̂T depends on the choice of Y and of S. It is, however, invariant under

random (data-dependent) time changes of Y. The estimator need not be a function of the

statistic S chosen, and, in particular, need not be a function of the suf®cient statistic even if

S is suf®cient.

3. Simple examples

Two simple examples will be given to clarify the idea.

3.1. Poisson distribution

Suppose the data consist of a single observation x of an integer random variable X with the

Poisson(ë) distribution, ë. 0 unknown. Thus X � N0 � f0, 1, 2, . . .g and È � (0, 1).

The Poisson distribution can be represented in various ways as the equilibrium

distribution of a birth-and-death process (Yt) on the non-negative integers. Consider the

standard immigration±death process on N0 in continuous time, with transition rates

r(x, x� 1) � ë

r(x, xÿ 1) � x (x > 1)

and r(x, y) � 0 otherwise. This satis®es the detailed balance condition
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p(x)r(x, y) � p(y)r(y, x), 8x, y, (12)

where p(x) � eÿëëx=x!, so that (Kelly 1979, Theorem 1.3) the process Y has unique

equilibrium distribution ( p(x), x 2 N0). Its in®nitesimal generator is, from (7),

(AëS)(x) � ë[S(x� 1)ÿ S(x)]� x[S(xÿ 1)ÿ S(x)]

(interpreting the second term as 0 when x � 0), de®ned for any S : N0 ! R. Choose

S(x) � x; then

(AëS)(x) � ëÿ x:

Setting this to zero, the time-invariance estimator of ë is

ë̂T � x,

which is also the maximum likelihood and method-of-moments estimator.

3.2. Method of moments

Let X , È and fPè : è 2 X g be arbitrary. Let Y (è)
n , n � 1, 2, . . . , be independent and

identically distributed samples from the distribution Pè. For an arbitrary statistic S with ®nite

expectation under Pè for all è 2 È, the generator is well de®ned and equals

(AèS)(x) � Eè[S(X )]ÿ S(x):

Hence the time-invariance estimator è̂T is the solution of

EèS(X ) � S(x),

that is, the time-invariance approach yields the method of moments.

4. Discrete Markov random ®elds

In this section we study discrete random ®elds X � (X i, i 2 G) where the set of `sites' G is

an arbitrary ®nite set and the site `labels' X i take values in an arbitrary ®nite set L. The

sample space X is the ®nite set LG of all functions from G to L. Let ðè be the distribution

of X,

PfX � xg � ðè(x), x 2 X , (13)

and assume ðè(x) . 0 for all x 2 X , è 2 È. Of particular interest are one-parameter Gibbs

models (see, for example, Georgii 1988; Guyon 1996; Ripley 1989) of the form

ðâ(x) � 1

Z(â)
expfÿâV (x)g, x 2 X , (14)

where â 2 [0, 1) is the parameter, V : X ! [0, 1) is the potential function, and Z(â) the

normalizing constant. Maximum likelihood for Gibbs models typically requires numerical

computation of Z(â) because this is not known analytically.
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4.1. Maximum pseudolikelihood estimator

Besag (1975) de®ned the pseudolikelihood of a discrete random ®eld by

PL(è; x) �
Y
i2G

PèfX i � xijX Gni � xGnig (15)

where X B � (X i, i 2 B) denotes the restriction of X to B � G. The maximum pseudolikeli-

hood estimator of è is the value è̂MPL maximizing PL(è; x).

For a general random ®eld (13) we have

PL(è; x) �
Y
i2G

ðè(x)P
a2Lðè(Fa

i x)
(16)

where Fa
i : X ! X is the operator that resets the value at site i 2 G to be a 2 L: if

Fa
i x � y then yj � xj for all j 6� i and yi � a.

In a one-parameter Gibbs model (14),

@

@â
log PL(â; x) �

X
i2G

ÿV (x)ÿ
P

a2L(ÿV (Fa
i x))eÿâV (F a

i x)P
a2LeÿâV (F a

i x)

" #

�
X
i2G

P
a2LeÿâV (F a

i x)[V (Fa
i x)ÿ V (x)]P

a2LeÿâV (F a
i x)

so that if PL(â; x) attains its maximum at a zero of the derivative, the maximum

pseudolikelihood estimator satis®esX
i2G

X
a2L

V (Fa
i x)PâfX i � ajX Gni � xGnig � jGj V (x),

that is, the maximum pseudolikelihood estimating equations for a one-parameter Gibbs model

are

1

jGj
X
i2G

Eâ[V (X )jX Gni � xGni] � V (x): (17)

See Guyon (1996) for further information.

4.2. Time-invariance estimator

Let Y � (Y
(è)
t , t . 0) be the discrete-time Gibbs sampler for the random ®eld distribution ðè.

Thus Y has states in X and each transition alters a single site only. The transition

probabilities are

p(x, Fa
i x) � ðè(Fa

i x)P
b2Lðè(Fb

i x)
� PèfX i � ajX Gni � xGnig, a 6� xi,

and p(x, y) � 0 otherwise. The process is in detailed balance (12) with ðè by Bayes's
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theorem, regardless of the form of ðè, provided ðè(:) . 0. Hence ðè is an equilibrium

distribution.

The generator of Y is, from (2),

(AS)(x) �
X
i2G

X
a2L

p(x, Fa
i x)[S(Fa

i x)ÿ S(x)]

�
X
i2G

1P
b2Lðè(Fb

i x)

X
a2L

ðè(Fa
i x)[S(Fa

i x)ÿ S(x)]

�
X
i2G

P
a2Lðè(Fa

i x)S(Fa
i x)P

a2Lðè(Fa
i x)

ÿ S(x)

" #

�
X
i2G

(Eè[S(X )jX Gni � xGni]ÿ S(x)):

Hence the time-invariance estimator è̂T is the solution of

1

jGj
X
i2G

Eè[S(X )jX Gni � xGni] � S(x): (18)

This coincides with the normal equations for the maximum pseudolikelihood estimator (17)

for a one-parameter Gibbs process (14), if we choose S � V . More generally the following

result holds.

Proposition 1. Let X be a random ®eld on a ®nite set of sites G, with strictly positive

distribution ðè, è 2 È. Suppose the distribution is an exponential family with canonical

parameter è and canonical suf®cient statistic V. Let Y(è) be the associated Gibbs sampler.

Then the time-invariance estimating equation for è derived from Y and V coincides with the

maximum pseudolikelihood normal equations for è.

Other choices of Y lead to different estimators which may be of interest. For the one-

parameter Gibbs model, consider the continuous-time pure jump Markov process on X
with transition rates

r(x, Fa
i x) � eÿâV (F a

i x), if a 6� xi;

this is clearly in detailed balance (12) with the distribution (14). The associated estimator of

â is the solution of X
i2G

X
a 6�xi

eâV (F a
i x)[V (x)ÿ V (Fa

i x)] � 0,

or equivalently X
i2G

X
a6�xi

eÿâ(V (x)ÿV (F a
i x))[V (x)ÿ V (Fa

i x)] � 0: (19)
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The author does not know whether (19) has been studied in the literature.

It is also possible to derive `coding' estimators (Besag 1974, 1986) by modifying Y.

5. Finite point processes

Let X be a ®nite simple point process (Daley and Vere-Jones 1988) in a compact region

W � Rd . A realization of X can be regarded as an unordered set x � fx1, . . . , xng of points

xi 2 W , where n > 0. Let X denote the space of all possible realizations ± that is, the

exponential space (Carter and Prenter 1972). Assume X has probability density fè with

respect to the unit-rate Poisson process on W, with fè(x) . 0 for all x 2 X , è 2 È, where the

parameter space È is arbitrary.

As a concrete example we consider the Strauss process (Kelly and Ripley 1976), which

has density

fè(x) � 1

Z(è)
ân(x)ãs(x): (20)

Here è � (log â, logã), with â. 0 and 0 < ã < 1, are the parameters; r . 0 is a ®xed

distance called the range of interaction; n(x) denotes the number of points in x, and s(x) the

number of pairs of r-close points, given by

s(x) � #f(i, j) : xi, xj 2 x, kxi ÿ xjk < rg:
Again, maximum likelihood estimation of è requires numerical computation of Z(è), for

example by numerical integration (Ogata and Tanemura 1981).

5.1. Pseudolikelihood approach

Besag (1977), Besag et al. (1982) and Jensen and Mùller (1991) extended the de®nition of

pseudolikelihood to ®nite point processes. Assume X has a Papangelou conditional intensity

ëè(u, x), u 2 W , x 2 X (Kallenberg 1983; Nguyen and Zessin 1976). This is the Radon±

Nikodym derivative de®ned essentially uniquely by

E
Xn(X )

i�1

g(xi, Xnfxig) � E

�
W

ëè(u, X )g(u, Xnfug) du (21)

for all bounded non-negative measurable functions g : Rd 3 X ! R. Intuitively ëè(u, x) du

is the conditional probability that X will contain a point at u given that the rest of the

con®guration is Xnfug � xnfug. This is the continuous analogue of the single-site

conditional probabilities PfX i � ajX Gni � xGnig for a discrete random ®eld. Under

integrability conditions on fè we have

ëè(u, x) � fè(x [ fug)
fè(x)

when u =2 x, and
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ëè(xi, x) � fè(x)

fè(xnfxig)

for xi 2 x. The pseudolikelihood is de®ned by

PL(è; x) �
Yn(x)

i�1

ëè(xi, x)

" #
exp ÿ

�
W

ëè(u, x) du

� �
(22)

provided the integral exists almost surely. If È � R then, assuming differentiability,

@

@è
log PL(è; x) �

Xn

i�1

@

@è
ëè(xi, x)

ëè(xi, x)
ÿ
�

W

@

@è
ëè(u, x) du: (23)

The maximum pseudolikelihood estimator is the root of this expression, if the maximum is

achieved at a zero of the partial derivative.

Example. For the Strauss process (20), the conditional intensity is

ëè(u; x) � âã t(u,xnfug), u =2 x,

where

t(u, x) � s(x [ fug)ÿ s(x)

� #fi : kuÿ xik < rg (24)

is the number of points of the realization x within a distance r of the point u 2 Rk . The

pseudolikelihood is

PL(â, ã, r; x) � ân(x)ã2s(x) exp ÿâ
�

W

ã t(u,x) du

� �
,

where we have used the fact that

Xn(x)

i�1

t(xi, xnfxig) � 2s(x): (25)

The stationary point of PL(:; x) for the Strauss process (20) is the solution of

â

�
W

ã t(u,x) du � n(x) (26)

â

�
W

t(u, x)ã t(u,x) du � 2s(x): (27)
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5.2. Takacs±Fiksel approach

Takacs (1983; 1986) and Fiksel (1984, 1988) proposed estimating è, given data x inside a

window W, by solving for è inX
xi2B

h(xi, xnfxig) �
�

B

ëè(u, x)h(u, x) du (28)

which is an unbiased estimating equation by virtue of (21) for any Borel set B � W and

integrable function h : W 3 X ! R�.

In fact Takacs and Fiksel consider the case where X is a partial observation X � X 0 \ W

of a stationary point process X0 in Rd with conditional intensity ëè(:, :) which is

equivariant under translation,

ëè(u, x) � ëè(0, Tÿux),

where Tÿux � fx1 ÿ u, . . . , xn ÿ ug is the con®guration obtained by shifting x by the vector

ÿu. The estimating equation (28) then reduces toX
xi2B

h(Tÿxi
xnfxig) �

�
B

ëè(0, Tÿux)h(Tÿux) du, (29)

where h : X ! R is any bounded non-negative measurable function for which the

expectation of the left-hand side exists.

Here ëè(:, :) refers to the conditional intensity of the stationary process X 0. Hence B

should be a subset of W chosen so that the conditional intensity is `observable',

ëè(u, x) � ëè(u, x \ W ) for all u 2 B. For example, for the Strauss process (20) with

interaction radius r, B is typically taken to be the set of all u 2 W such that the ball of

radius r centred on u is wholly contained in W, so that t(u, x) � t(u, x \ W ) is observable.

It is more usual, but equivalent, to regard (29) as arising from the Nguyen±Zessin

identity (Nguyen and Zessin 1976) for a stationary point process

ëE!0[h(X )] � E[ëè(0, X )h(X )], (30)

where ë is the (constant) intensity of X0 and E!0 denotes expectation with respect to the Palm

distribution of X at 0.

Example. For the Strauss process (20), a ®nite point process in the window W, equation (28)

becomes

Xn(x)

i�1

h(xi, xnfxig) �
�

W

âã t(u,x) h(u, x) du; (31)

this coincides with the pseudolikelihood normal equations (26) and (27) if we choose h � 1

and h(u, x) � t(u, x), respectively. That is, the Takacs±Fiksel method produces the maximum

pseudolikelihood normal equations.

A similar result is obtained when X is a partially observed stationary Strauss process.
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The connection between the Takacs±Fiksel and pseudolikelihood approaches was found by

Diggle et al. (1994).

5.3. Time-invariance estimator

Under suitable conditions a ®nite point process can be represented as the equilibrium

distribution of a spatial birth-and-death process (see Geyer 1999; Geyer and Mùller 1994;

Mùller 1989; 1999; Preston 1975). This is a continuous-time pure jump Markov process (Yt)

whose states are ®nite point patterns x 2 X , with the only instantaneous transitions being

`births' x ? x [ fug in which a new point u 2 W is added to the existing con®guration x,

and `deaths' x ? xnfxig where one of the existing points xi 2 x is deleted. Suppose births

occur at rate bè(x, u) du and deaths at rate dè(x, xi). Under suitable non-explosion conditions

(see, for example, Preston 1975; Baddeley and Mùller 1989; Mùller 1989) this process exists

and is in detailed balance with fè:

fè(x)bè(x, u) � fè(x [ fug)dè(x [ fug, u) (32)

for all u 2 W , x 2 X , and Y has equilibrium density fè.

The in®nitesimal generator of Y is

(AèS)(x) �
�

W

bè(x, u)[S(x [ fug)ÿ S(x)] du�
Xn(x)

i�1

dè(x, xi)[S(xnfxig)ÿ S(x)] (33)

de®ned for all bounded Borel functions S : X ! R. The domain of the generator may be

extended to functions S which are merely L2 integrable with respect to fè.

Consider the standard `constant death rate' process with

bè(x, u) � fè(x [ fug)
fè(x)

� ëè(u, x)),

dè(x, xi) � 1, (34)

in which births occur at a rate bè(x, :) depending on the current con®guration, and points

have independent exponential (mean 1) lifetimes before deletion. This satis®es (32). The

time-invariance estimating equations are, from (7),Xn(x)

i�1

[S(x)ÿ S(xnfxig)] �
�

W

ëè(u, x)[S(x [ fug)ÿ S(x)] du: (35)

For example, for the ®nite Strauss process (20), let S be the canonical suf®cient statistic

S(x) � (n(x), s(x))T . Then we have

S(x [ fug)ÿ S(x) � 1

t(u, x)

� �
,

so (35) reduces to (26)±(27), that is to say, the time-invariance estimator coincides with the

Takacs±Fiksel and maximum pseudolikelihood estimators in this case. More generally, we

have the following result.
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Proposition 2. Let X be a ®nite point process on a bounded domain W with strictly positive

probability density fè. Let Y(è) be the associated spatial birth-and-death process with

constant death rate (34).

(a) The time-invariance estimator derived from Y and any statistic h is the Takacs±Fiksel

estimator derived from h as in (29).

(b) Assume the density fè forms an exponential family with canonical parameter è and

canonical suf®cient statistic V, and that È contains a neighbourhood of 0. Then the

time-invariance estimating equation derived from Y and the statistic S � V is the

maximum pseudolikelihood normal equation for è.

Again we have other interesting alternative estimators. Consider the spatial birth-and-

death process with constant birth rate and variable death rate:

bè(x, u) � 1,

dè(x, xi) � 1

ëè(xi; x)
: (36)

This has in®nitesimal generator, from (7), given by

(Aèh)(x) �
�

W

[h(x [ fug)ÿ h(x)] du�
Xn(x)

i�1

h(xnxi)ÿ h(x)

ëè(xi, x)
,

so that, for the Strauss process (20), the time-invariance estimator è̂T � (log â̂T , log ã̂T ) is the

solution of

0 � (Aèn)(x) � jW j ÿ âÿ1
Xn(x)

i�1

ãÿ t(xi,xnxi),

0 � (Aès)(x) �
Xn(x)

i�1

jB(xi, r) \ W j ÿ âÿ1
Xn(x)

i�1

t(xi, xnxi)=ã
ÿ t(xi ,xnxi),

that is, (â̂T , ã̂T ) is the solution ofPn(x)
i�1 t(xi, xnxi)ãÿ t(xi ,xnxi)Pn(x)

i�1 ã
ÿ t(xi ,xnxi)

�
Pn(x)

i�1 jB(xi, r) \ W j
jW j , (37)

â � 1

jW j
Xn(x)

i�1

ãÿ t(xi,xnxi): (38)

6. Variational estimators

Let X � (X1, . . . , Xn) be a random element of Rn whose distribution has an exponential

family density
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ðè(x) � 1

Z(è)
exp(ÿèU (x))

for x 2 Rn, where U : Rn ! R is a C2 function and è 2 R the parameter.

An approach developed by Almeida and Gidas (1993, (1.1)±(1.4)) is to ®nd a vector-

valued statistic W : Rn ! Rn solving the `variational equation'�
Rn

= . [W (x)ðè(x)] dx � 0: (39)

Here = . f (x) �Pi@ f i=@xi for a function f : Rn ! Rn, writing f (x) � ( f 1(x), . . . , f n(x))

and x � (x1, . . . , xn).

Equation (39) implies

èEè[W (X ) . =U (X )] � Eè[= . W (X )]: (40)

Almeida and Gidas then propose to estimate è by replacing the expectations on the left and

right of (40) by empirical estimates, and solving for è. In fact Almeida and Gidas consider a

generalization to vector-valued è which we will not explore here.

A special case of (39) considered in Almeida and Gidas (1993) concerns

W (x) � =U (x)

when the estimating equation becomes

èk=U (x)k2 � ÄU (x), (41)

where Ä f �Pn
i�1@

2 f i=@x2
i .

To compare this with the time-invariance approach, let (Yt) be an Rn-valued continuous-

time Markov process satisfying the stochastic differential equation (Ethier and Kurtz 1986,

p. 366)

d Yt � ÿ1
2
è=U (Yt) dt � dW t,

where Wt is Rn-valued Brownian motion. This is `Langevin dynamics' which has

equilibrium distribution ðè (see Karlin and Taylor 1981, pp. 220±221). The in®nitesimal

generator is

Aè � ÿ 1

2
è
Xn

i�1

@U

@xi

@

@xi

� 1

2

Xn

i�1

@2

@x2
i

:

Applying the time-invariance method to the suf®cient statistic U (x), we obtain that è̂T is the

solution of

0 �AèU (x) � ÿ 1

2
è
Xn

i�1

@U

@xi

� �2

� 1

2

Xn

i�1

@2U

@x2
i

,

which is equivalent to (41).

Hence the time-invariance estimator coincides with the variational estimator in this

special case.
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7. Survival analysis and censoring

The time-invariance approach often yields sensible estimators even when the observations are

censored or there are missing data.

Consider the simplest model of independent random censoring, where the `true' lifetimes

T1, . . . , Tn of n individuals are independent and identically distributed with unknown

distribution function F which is to be estimated. The lifetimes are right-censored by

censoring times C1, . . . , Cn which are independent and identically distributed with

distribution function G, and independent of the true lifetimes. We observe only the

truncated lifetimes

~Ti � min(Ti, Ci)

and the censoring times Ci. The data consist of a vector

x � f(~t1, c1), . . . , (~tn, cn)g
in the sample space X � Qn, where Q � f(s, c) 2 R2

� : s < cg.
Suppose we wish to estimate F(r) for a ®xed r . 0. Choose the statistic S : X ! R to

be

S(x) � 1

n
#fi : ~ti < rg,

the value at r of the empirical distribution of the observed lifetimes. This is a severely biased

estimator of F(r).

For any distribution function F, let Y F be the discrete time Markov process on X under

which, when the current state is x � f(~t1, c1), . . . , (~tn, cn)g, the next state is determined by

choosing an index i 2 f1, 2, . . . , ng with equal probability, and replacing the entry ~ti in x

by the value ~T 9i � min(T 9i, ci), where T 9i is drawn according to the distribution F

independently of x. The corresponding censoring time ci is not changed. Thus the process

Y F is reducible. Clearly the distribution of X � f( ~T1, C1), . . . , ( ~Tn, Cn)g under F, for any

G, is an equilibrium distribution of Y F . The generator of Y F is

AF S(x) � 1

n

Xn

i�1

1

n
[1f~ti < rg ÿ PF( ~T 9i < r)]

� 1

n2

Xn

i�1

1f~ti < rg ÿ
Xn

i�1

1fci < rg ÿ
Xn

i�1

1fci . rgPF(Ti < r)

" #

� 1

n2

Xn

i�1

1f~ti < r, ci . rg ÿ F(r)
Xn

i�1

1fci . rg
" #

,

so that a time-invariance estimator of F(r) is

F̂T (r) � #fi : ~ti < r, ci . rg
#fi : ci . rg :
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This is known as the reduced-sample estimator of F ± see Gill (1994); Andersen et al.

(1993). It is pointwise unbiased, although it is not the most ef®cient estimator in this context.

Interestingly, the time-invariance approach has automatically converted a biased estimator

into a sensible unbiased estimator, in the presence of censoring.

8. Dead leaves model

The dead leaves model (see, for example, Serra 1982, pp. 508±511, 560; Hall 1988, pp. 295±

296) is a random partition of Rd which is effectively de®ned as the time-equilibrium

distribution of a space-time process.

Consider a homogeneous Poisson process of points (xi, ti) in Rd 3 R with intensity ë,
and an independent sequence of independent and identically distributed random compact

sets (`leaves') Li in Rd . Intuitively the leaves `fall' at times ti onto Rd at the locations xi so

that each new arrival obscures any earlier leaves which it may overlap. Figure 1 shows a

typical realization of the dead leaves model when the leaves Li are circular discs with

random radii.

Let Ki � Li � xi be the translation of Li by the vector xi. At time t 2 R de®ne Yt to be

the random partition (Matheron 1969, pp. 35±39) of Rd consisting of all non-empty sets of

the form

Ci � Kin
[

t> t j> t i

K j (42)

for i such that ti < t. That is, Ci is that part of leaf Ki which has not been covered by leaves

K j that arrived later than Ki but before the current time t.

Figure 1. A typical realization of the dead leaves model with circular `leaves'.
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Clearly Yt is stationary in time and space. The distribution of Yt at any time t is the

dead leaves model. It is of interest to estimate the distribution of the leaf size and shape L

from observation of the dead leaves model inside a bounded compact window W � Rd.

The in®nitesimal generator of (Yt) is

(ALS)(x) � ëE

�
Rd

[S(x _ (L� y))ÿ S(x)] dy (43)

where x _ K denotes the result of superimposing a new compact set K on the existing

partition x. The domain of AL contains all measurable non-negative functionals S for which

the right-hand side of (43) is absolutely convergent.

The integral in (43) can be evaluated in special cases using results from integral

geometry (SantaloÂ 1976). Fix d � 2, and assume that L has ®nite expected area EjLj and

that the boundary @L is almost surely recti®able with ®nite expected length El (@L).

For a realization of the partition x, let @x � [Ci2x@Ci denote the union of all `visible

leaf boundaries'. For the functional

S1(x) � l (W \ @x)

we have, for K � L� y,

S1(x _ K)ÿ S1(x) � l (W \ @K)ÿ l (K \ @x) almost surely,

and a standard translational integral formula (SantaloÂ 1976; Weil 1989; 1990) gives�
R2

l (W \ @(L� y)) dy � l (@L)jW j,
�

R2

l ((L� y) \ @x \ W ) dy � l (@x \ W )jLj:

We obtain

(ALS1)(x) � ëjW jEl (@L)ÿ ël (@x \ W )EjLj (44)

so that the time-invariance estimating equation derived from S1 is

El (@L)

EjLj �
l (@x \ W )

jW j : (45)

Secondly, assume the distribution of L is isotropic (rotation-invariant). Then (43) can be

rewritten

(ALS)(x) � ë

2ð
E

�
EM(2)

[S(x _ gL)ÿ S(x)] dk(g), (46)

where EM(2) is the group of Euclidean motions in R2 (generated by rotations and

translations) and k is the standard kinematic measure on EM(2) (SantaloÂ 1976, Chapter 6).

For a partition x, let v(x) � [Ci2xvCi
be the set of all `visible vertices', where, for a cell

Ci as at (42),
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vCi
�
[
t> t j

@Ki \ @K jn
[

t> t k >minf t i , t jg
int K k

0@ 1A:
The latter is almost surely ®nite under the assumptions stated on L. Consider the functional

S2(x) � #(W \ v(x)),

where # denotes cardinality, that is, S2(x) is the number of visible vertices of x in W. Then

S2(x _ K)ÿ S2(x) � #(@K \ @x \ W )ÿ#(K \ v(x) \ W ) almost surely:

PoincareÂ's formula (SantaloÂ 1976, (7.11), p. 111) and other identities (SantaloÂ 1976, Exercise

1, pp. 104±105) give�
EM(2)

#(@(gL) \ @x \ W ) dk(g) � 4l (@L)l (@x \ W ),

�
EM(2)

#(gL \ v(x) \ W ) dk(g) � 2ðjLj#(v(x) \ W ):

Hence

(ALS2)(x) � 4ël (@x \ W )El (@L)ÿ 2ðë#(v(x) \ W )EjLj
and the time-invariance estimating equation derived from S2 is

El (@L)

EjLj �
2

ð

#(v(x) \ W )

l (@x \ W )
: (47)

9. Performance

So far we have avoided important questions of statistical performance of the estimators, such

as consistency, asymptotic normality, and ef®ciency. Unfortunately, little can be said about

these issues at this level of generality, for several reasons.

Firstly, our general framework does not include a limiting regime relevant to the original

setting. Note especially that the `time' index t of the Markov process (Yt) is usually not

related to the original problem. Rather, the limit behaviour of the estimator would be

studied by considering a sequence of probability distributions P
(n)
è on sample spaces X (n),

n � 1, 2, . . . , for a ®xed parameter space È, with n being a measure of sample size. A

corresponding sequence of time-invariance estimators è̂(n)
T of è would be derived from

processes Y(n) and statistics S(n) on X (n). The limit behaviour as n!1 depends on the

structure of the speci®c problem, and is not related (in general) to the behaviour of

trajectories of Y(n) with respect to the `®ctional' time index t.

Secondly, especially in spatial problems, there may be several alternative limiting

regimes, giving rise to different limit behaviour (Ripley 1988; Baddeley and Gill 1997;

Stein 1995). Thirdly, under a particular limiting regime, consistency and asymptotic

normality may hold only under regularity conditions speci®c to the context.
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Important examples are the limit behaviour of the maximum pseudolikelihood estimator

for a Markov random ®eld (Section 4.1) and for a point process (Section 5.1). The

generators of the pure jump processes Y (Sections 4 and 5) take the form of sums or

integrals over W � Rd ; cf. (2) and (7). Hence in the Taylor expansion

ÿAè0
S(x) �Aè̂T

S(x)ÿAè0
S(x) � D(x, è0)(è̂T ÿ è0)� Rè0

(x, è̂T ) (48)

both Aè0
S(x) and its derivative D(x, è0) � @=@èAè0

S(x) are the partial sums or integrals of

random ®elds on Rd . One might try to prove consistency and asymptotic normality of è̂T by

applying limit theorems for integrals of random ®elds. However, there are dif®culties in

verifying standard mixing conditions. Indeed, the random ®eld or point process X may exhibit

long-range dependence.

For the case of discrete Markov random ®elds, suppose we have models X G de®ned on

each ®nite subset G � Rd and consider the limit as G % Rd . There need not exist a unique

random ®eld X on Rd obtained in the limit, in the sense that the conditional distributions of

X on each G agree with those of X G (see Georgii 1988, Section 6.2). There may be more

than one random ®eld satisfying these consistency relations (`phase transition') and there

may be non-stationary solutions (`symmetry breakdown'). Statistical problems are discussed

by Guyon (1996). Comets (1992) has proved strong consistency of è̂MPL even in the case of

symmetry breakdown, using a large-deviations result. Comets and JanzÏura (1998) derive an

asymptotic normality result for è̂MPL without needing asymptotic behaviour of the sample

covariance. However, ef®ciency can only be studied properly under regularity conditions

which imply uniqueness (and ergodicity) of the stationary random ®eld X on Rd . This is

investigated by JanzÏura (1997).

Similarly, for the case of point processes, there may be phase transition and symmetry

breakdown. The best available results on consistency and asymptotic normality of maximum

pseudolikelihood estimators (Jensen and Mùller 1991, Theorem 3.1; Jensen and KuÈnsch

1994) make very restrictive assumptions on the interaction potentials.

A martingale approach can be used in at least one case. Kessler and Sùrensen (1999) and

Hansen and Scheinkman (1995) study diffusions X in one-dimensional time and derive

estimating equations from the generator of the process X itself, rather than from the

generator of an associated process Y indexed by another time dimension. The limiting

behaviour of such estimators can be investigated using martingale limit theorems. Optimal

estimating equations based on discrete-time samples of the diffusion are determined by

spectral properties of the generator of the diffusion.

10. Optimality

We need a way to identify an optimal estimator amongst the wide variety of time-invariance

estimators obtained under different choices of the process Y and statistic S. We consider two

different approaches, based on the theory of estimating equations (Section 10.1) and on

Markov process theory (Section 10.2), respectively.
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10.1. Optimal estimating functions

10.1.1. Theory

First we recall some elements of the Godambe±Heyde theory of optimality for estimating

functions; see the surveys by Godambe and Kale (1991) and MacLeish and Small (1988).

Assume È � Rm and consider an estimating equation g(x, è) � 0, where g : X 3 È! Rm

is called the estimating function. De®ne the standardized version of g by

gs(x, è) � Eè
@

@è
g(X , è)

� �� �ÿ1

g(x, è):

Assume g(X , è) is square-integrable for all è and almost surely differentiable with respect to

è, and that E@ g(X , è)=@è exists and is non-singular for all è. Let M(gs, è) denote the

variance±covariance matrix of gs(X , è). De®ne g� to be optimal in some class of functions

G if one of the following equivalent conditions holds: (a) M(gs, è)ÿ M(g�s , è) is non-

negative de®nite for all g 2 G and all è 2 È; (b) trace(M(g�s , è)) is minimal over all g 2 G
for each è; (c) det(M(g�s , è)) is minimal over all g 2 G for each è. If G is suf®ciently

large, then under mild conditions, the score function g(x, è) � @ log L=@è is optimal.

10.1.2. Example

Here we develop one example of the optimal estimating functions approach, for the case of

point processes. Adopt the notation of Section 5.3. Thus Y is a spatial birth-and-death

process with birth rates bè(x, u) and death rates dè(x, xi). The in®nitesimal generator AèS(x)

was obtained in (33). The derivative of (33) with respect to è is

@

@è
(AèS(x)) �

�
W

äS(u, x)
@

@è
bè(x, u) duÿ

Xn(x)

i�1

äS(xi, xnxi)
@

@è
dè(x, xi), (49)

where äS(u, x) :� S(x [ fug)ÿ S(x).

It is of interest to compare the ef®ciencies of time-invariance estimators derived under

the constant death rate process dè � 1, bè(x, u) � ëè(u, x) and under the constant birth rate

process bè � 1, dè(x, xi) � 1=ëè(xi, x). As we saw in Section 5.3, the former yields the

maximum pseudolikelihood estimator, while the latter is an interesting alternative.

Assume the model is an exponential family so that ëè(u, x) � exp(èTäV (u, x)), with è
interpreted as a column vector and V (x) as a row vector; and assume V is translation-

invariant. Then for the constant death rate case,

@

@è
ëè(u, x) � ëè(u, x)äV (u, x)

so that

Eè
@

@è
(AèS(x))

� �
� Eè

�
W

äS(u, X )äV (u, x)ëè(u, X ) du

� �
:

Ignoring edge effects, the Nguyen±Zessin formula (30) yields
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Eè
@

@è
(AèS(x))

� �
� ëèjW jE!0

è [äS(0, X )äV (0, X )],

where ëè is the intensity of the process and again E!0
è denotes expectation with respect to the

reduced Palm distribution of X at an arbitrary point 0. Hence the normalized version of the

estimating function derived from the constant death rate process is (ignoring edge effects)

gs(x, è) � 1

ëèjW j E
!0
è [äS(0, X )äV (0, X )]]ÿ1

�
W

äS(u, x)ëè(u, x) duÿ
Xn(x)

i�1

äS(xi, xnxi)

( )
:

(50)

For the constant birth rate case, on the other hand, the expectation of (49) becomes

@

@è
(AèS(x)) � Eè

Xn(x)

i�1

äS(xi, Xnxi)äV (xi, Xnxi)

ëè(xi, xnxi)

" #
;

applying the Nguyen±Zessin formula in the reverse direction gives that the normalized

estimating function is (ignoring edge effects)

gs(x, è) � 1

jW j [Eè[äS(0, X )äV (0, X )]]ÿ1

�
W

äS(u, x) duÿ
Xn(x)

i�1

äS(xi, xnxi)

ëè(xi, xnxi)

( )
: (51)

We now need to compare the variance±covariance matrices of (50) and (51). There are very

few instances where these can be evaluated. As an example, let X be the ®nite Strauss

process (20) which has è � (log â, log ã) 2 R 3 (ÿ1, 0] and äV (u, x) � t(u, x) as de®ned

in (24). Choose S(x) � V (x)T. Then (50) becomes

gs(x, è) � 1

ëèjW j E!0
è

1 t(0, X )

t(0, X ) t(0, X )2

 !" #ÿ1 �
Wâã t(u,x) duÿ n(x)�

Wâã t(u,x) t(u, x) duÿ 2s(x)

 !
, (52)

while (51) becomes

gs(x, è) � 1

jW j Eè

1 t(0, X )

t(0, X ) t(0, X )2

 !" #ÿ1 jW j ÿ âÿ1
Pn(x)

i�1 ã
ÿ t(xi,xnxi)�

W t(u, x) duÿ âÿ1
Pn(x)

i�1 t(xi, xnxi)ãÿ t(xi ,xnxi)

 !
:

(53)

The variance±covariance matrices of (52) and (53) can be expressed as a sum of double

integrals over W of expectations of functionals t(u, x)a t(v, x)b with respect to the two-point

reduced Palm distributions of the Strauss process. The expressions seem to be intractable;

however, they would be amenable to Monte Carlo integration.

However, the special case ã � 1 is tractable. In that case X is a Poisson process of

intensity â. By Slivnyak's theorem (Daley and Vere-Jones 1988) the reduced Palm

distribution P!0
è is identical to the ordinary distribution Pè. We also have ëè � â. Thus the

normalized estimating functions (52) and (53) in fact coincide when ã � 1, at the value
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1

âjW j
1 âðr2

âðr2 âðr2 � â2ð2 r4

 !ÿ1 âjW j ÿ n(x)

âðr2 n(x)ÿ 2s(x)

0@ 1A: (54)

(Here we use the approximation
�

W t(u, x) du � � R2 t(u, x) du � ðr2 n(x) which again ignores

edge effects.) Hence the two estimators of the Strauss process parameter è, obtained from the

constant death rate and constant birth rate processes, are equally ef®cient under the Poisson

process.

10.2. Rationale for choice of Y and S

Here we outline another rationale for making particular choices of the process Y and statistic

S. Consider the transition semigroup Tt de®ned in (10). In discrete time we have

AS(x) � T1S(x)ÿ S(x) or simply A � T1 ÿ I. Hence

Tn � (A � I)n �
Xn

k�1

n

k

� �
A k , (55)

where the exponents denote n-fold composition. In continuous time, under suitable conditions

on Y and on S, the transition operator can be expressed as

TtS(x) � (e tA S)(x), (56)

where the exponential is interpreted as an operator power series (Kallenberg 1997, p. 314). In

either case, if the distribution of Yt converges weakly as t!1 to the distribution of X from

any initial state, and additionally S(Yt) converges to ES(X ) in L p for p . 1, then

lim
t!1 TtS(x) � ES(X ):

Now assume that the distribution Pè of X under è forms an exponential family with canonical

parameter è and canonical suf®cient statistic V. The maximum likelihood normal equations

V (x) � EèV (X ) (57)

may then equivalently be rewritten

lim
t!1(e tAè ÿ I)V (x) � 0 (58)

for the continuous-time case, and similarly for discrete time. In either case, taking only the

®rst term in the expansion of the series on the left would yield

lim
t!1 tAèV (x) � 0,

which is equivalent to the time-invariance estimating equation (8) applied to the canonical

suf®cient statistic V. Thus, the latter equation can be regarded as a ®rst-order approximation

to the maximum likelihood normal equation.

If our aim is to approximate the maximum likelihood estimator as well as possible, we

may argue that it is desirable to take S � V and to choose a process Y which is rapidly

mixing, so that the series in (55) or (56) converges rapidly.
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11. Discussion

11.1. Arbitrary choice

The time-invariance estimator è̂T depends on arbitrary choices, namely on the choice of

stochastic evolution Y and on the statistic S to which the in®nitesimal generator is applied.

We see this as an advantage in complex models where the maximum likelihood estimator is

not necessarily optimal and it is of interest to generate a variety of estimators for practical

evaluation.

Consider, for example, the problem of estimating è. 0 from n > 2 independent and

identically distributed observations from the uniform distribution on [0, è]. Let Y(è) be the

process in which, after an exponential waiting time with mean 1, one of the data x1, . . . , xn

is chosen at random with equal probability and replaced by a random value uniformly

distributed in [0, è]. If S(x) �Pixi the time-invariance estimator is è̂T � 2�x, the method-

of-moments estimator. However, if S(x) � maxixi we obtain a more interesting expression,

è̂T � x[n] � nÿ1=2(x2
[n] ÿ x2

[nÿ1])
1=2,

where x[1] <. . .< x[n] are the order statistics.

For Markov random ®elds, Besag (1986) argued that the choice between likelihood and

pseudolikelihood depends on whether it is desired to exploit `global' or `local' spatial

information. The same remark could be applied to the choice of Y here.

11.2. Other potential applications and extensions

Other potential applications of the method include classical statistical distributions for which

a simple characterization exists; non-Markov random ®elds arising as the equilibrium

distributions of interacting particle systems; and hidden Markov models.

The functional S may be assumed to depend on è as well as x. If S : X 3 È! R is

such that for each è 2 È, Sè :� S(:, è) is in the domain of Aè, then Eè(AèSè)

(X ) � EèAèS(X , è) � 0 where X has distribution Pè. For example, if fPèg has likelihood

function L(x; è), choose S(x, è) � log L(x; è), and let Y be a sequence of independent and

identically distributed realizations of X; then the time-invariance estimator satis®es the

maximum likelihood normal equations.

11.3. Invariance

Estimators may also be required to be invariant under a group of transformations on X .

Suppose T : X ! X is any map. If the statistic S : X ! R is T-invariant in the sense that

S(T (x)) � S(x) for all x 2 X , and if Y(è) is T-equivariant in the sense that

PfYt 2 AjY0 � xg � PfYt 2 T (A)jY0 � t(x)g, then we have (AèS)(T (x)) � (Aè(S � T ))(x)

so that (AèS)(T (x)) � (AèS)(x), meaning that the estimating equation derived from S and Y

is T-invariant; in particular, the time-invariance estimator è̂T is T-invariant.
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11.4. Connection with Stein's method

The identity E[(AS)(X )] � 0 is fundamental to the Stein±Chen method of distributional

approximation (see, for example, Arratia et al. 1990; Barbour 1997; Barbour et al. 1992;

Stein 1986). Here X has a speci®ed `target' distribution P, and A is the in®nitesimal

generator of a Markov process Yt which has equilibrium distribution P. If X 9 is another

random variable with distribution P9, the discrepancy between P9 and P can be controlled by

®nding an upper bound on jE[(AS)(X 9)]j for all S in a certain class of functionals.

While the af®nity with the time-invariance estimator is clear, it is not so clear to the

author whether any properties of the time-invariance estimator can be deduced using the

Stein±Chen method. One may speculate that weak consistency of è̂T could be proved if the

class of functionals S for which a bound on jE[(AS)(X 9)]j is available includes appropriate

statistics.
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