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appearing in applications.
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1. Introduction

Let (Ù, F , fF t : t > 0g, P) be a probability space with the ®ltration satisfying the usual

hypotheses. For each j � 1, . . . , n, let fMj(t)g be a real-valued continuous local martingale

adapted to (F t), and fVj(t)g be a continuous (F t)-adapted process, each with paths of

bounded variation on compacts. Let Xi(t), i � 1, 2, be the pathwise unique strong solutions

of the one-dimensional stochastic differential equations (SDEs)

Xi(t) � îi �
Xn

j�1

� t

0

ó j(t, s, Xi(s)) dMj(s)�
Xn

j�1

� t

0

bi
j(t, s, Xi(s)) dVj(s): (1:1)

Such equations are known as stochastic Volterra equations and have been studied by several

authors (see, for example, Berger and Mizel 1980; Cochran et al. 1995; Kolodii 1983; Protter

1985). The existence and uniqueness of solutions of stochastic Volterra equations driven by

right-continuous semimartingales have been established by Protter (1985). A comparison

theorem for solutions of stochastic equations with Volterra-type drifts was proved by Tudor

(1989). We prove a comparison theorem for stochastic equations (1.1) where the diffusion

coef®cient is also of the Volterra type, namely when ó j(t, s, x) assumes the form

H(t)ó j(s, x). It is important to note that a comparison of solutions of stochastic Volterra

equations with general Volterra-type `diffusion' coef®cients is not possible. A counter-

example is given in Tudor (1989). Our result is motivated by typical Volterra models that

arise in practice. The method of proof employed in this paper is the variation of parameters

which is akin to that in Protter (1990) for classical SDEs.
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2. The comparison theorem

We consider the following class of one-dimensional Volterra equations:

X i(t) � îi �
Xn

j�1

H(t)

� t

0

ó j(s, X i(s)) dMj(s)�
Xn

j�1

� t

0

bi
j(t, s, X i(s)) dVj(s), (2:1)

for i � 1, 2. We assume that fH(t)g is a continuous, adapted, positive, strictly decreasing

process. The coef®cients ó j : Ù 3 R� 3 R! R and bi
j : Ù 3 R� 3 R� 3 R! R are

assumed to be jointly continuous for each ®xed ù 2 Ù, and satisfy a global Lipschitz

condition in the space variable: jó j(ù, s, y)ÿ ó j(ù, s, x)j < Ljyÿ xj and jbi
j(ù, t, s, y) ÿ

bi
j(ù, t, s, x)j < Ljyÿ xj. We will suppress the ®rst argument in the coef®cients in the rest of

the paper. The coef®cients ó j(s, x) and bi
j(t, s, x) are F s measurable for each s > 0.

Moreover, we assume that the drift coef®cients bi
j are differentiable in the ®rst variable and

jD1bi
j(t, s, y)ÿ D1bi

j(t, s, x)j < L jyÿ xj, where D1 denotes this ®rst derivative. Then we

can divide (2.1) by H(t), and, letting Yi(t) denote X i(t)=H(t), obtain the following equation

for Yi(t):

Yi(t) � îi

H(t)
�
Xn

j�1

� t

0

ó j(s, Yi(s)H(s)) dMj(s)�
Xn

j�1

� t

0

bi
j(t, s, Yi(s)H(s))

H(t)
dVj(s): (2:2)

Using integration by parts in the third term on the right-hand side, we obtain

Yi(t) � îi

H(t)
�
Xn

j�1

� t

0

ó j(s, Yi(s)H(s)) dMj(s)�
Xn

j�1

� t

0

bi
j(s, s, Yi(s)H(s))

H(s)
dVj(s)

�
Xn

j�1

� t

0

1

H(s)

� s

0

D1bi
j(s, r, H(r)Yi(r)) dVj(r) ds

ÿ
� t

0

1

H2(s)

Xn

j�1

� s

0

bi
j(s, r, H(r)Yi(r)) dVj(r) dH(s): (2:3)

Using the Picard iteration and the Doob inequality, it is a routine matter to establish the

existence of a strong solution and pathwise uniqueness of solutions to (2.3). Hence we obtain

the existence and uniqueness of X i(t). In order to prove a comparison theorem, we need the

following additional hypotheses on the coef®cients.

Hypotheses H. Let bi
j : Ù 3 R� 3 R� 3 R! R be such that, for each ù 2 Ù, i and j,

1. b2
j(s, r, y) > b1

j(s, r, x) for all 0 < r < s and y > x;

2. D1b2
j(s, r, y) > D1b1

j(s, r, x) for all 0 < r < s and y > x, where D1 denotes the ®rst

derivative in the ®rst variable.
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Before we proceed further, the following lemma is needed and is therefore stated without

proof. This is the `variation of parameters' formula in the stochastic set-up. A proof of it

can be found in Protter (1990, pp. 266±267).

Lemma 2.1. Let fMtg be a continuous semimartingale starting at 0, and fAtg be an adapted

continuous process with paths of ®nite variation. If

X t � At �
� t

0

X s dM s

then X t � E (M) tfA0 �
� t

0
E (M)ÿ1

s dAsg, where E (M) t is the stochastic exponential of M

given by eMtÿ1=2hMi t.

Theorem 2.2. Assume Hypotheses H. If Vj are increasing adapted processes for each j, and

î1 < î2, then P(X 1(t) < X 2(t) 8 t 2 R�) � 1.

Proof. Let Yi(t) denote X i(t)=H(t) as before. Let Z t � Y2(t)ÿ Y1(t). From (2.2), Z t solves

the equation

Z t � î2 ÿ î1

H(t)
�
Xn

j�1

� t

0

Zs dNj(s)

�
Xn

j�1

� t

0

1

H(t)
(b2

j(t, s, Y2(s)H(s))ÿ b1
j(t, s, Y1(s)H(s))) dVj(s), (2:4)

where

Nj(t) �
� t

0

ó j(s, Y2(s)H(s))ÿ ó j(s, Y1(s)H(s))

Zs

IfZs 6�0g dMj(s)

are local martingales by the Lipschitz hypothesis on ó j. Let Nt �
Pn

j�1 Nj(t). Let E (N ) t

denote the stochastic exponential of the local martingale N . Using Lemma 2.1, we can write

(2.4) as

Z t � E (N ) t

î2 ÿ î1

H0

ÿ
� t

0

E (N )ÿ1
s

H(s)2
(î2 ÿ î1) dH(s)

"

�
Xn

j�1

� t

0

E (N )ÿ1
s

H(s)
(b2

j(s, s, Y2(s)H(s))ÿ b1
j(s, s, Y1(s)H(s))) dVj(s)

(2:5)

ÿ 1

H(s)

� s

0

(b2
j(s, r, Y2(r)H (r))ÿ b1

j(s, r, Y1(r)H (r))) dVj(r) dH(s)

�
� s

0

(D1b2
j(s, r, Y2(r)H (r))ÿ D1b1

j(s, r, Y1(r)H (r))) dVj(r) ds)

#
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Let Js :� Zs=E (N )s. For any u < s, we can write

b2
j(s, r, Y2(r)H (r))ÿ b1

j(s, r, Y1(r)H (r))

� b2
j(s, r, Jr E (N )r H (r)� Y1(r) H (r))ÿ b1

j(s, r, Y1(r)H (r)): (2:6)

The right-hand side of (2.6) will be denoted by c j(s, r, Jr). Let D1c j denote the ®rst

derivative of c j with respect to the ®rst variable. Equation (2.5) yields

Jt � î2 ÿ î1

H0

�
� t

0

E (N )ÿ1
s

H(s)2
(î2 ÿ î1) d(ÿH(s))

�
Xn

j�1

� t

0

E (N )ÿ1
s

H(s)
c j(s, s, Js) dVj(s)� 1

H(s)

� s

0

c j(s, r, Jr) dVj(r) d(ÿH(s)

� �

�
� s

0

D1c j(s, r, Jr) dVj(r) ds): (2:7)

We have thus written Jt as the solution of a random integral equation with continuous

increasing integrators. The following lemma ®nishes the proof. h

Lemma 2.3. For each i � 1, . . . , N, assume that;

(i) Ai are continuous increasing functions on R�.

(ii) Fi : C[0, 1)! C[0, 1) with jFi(u) t ÿ Fi(v) tj < Ki(T ) sup0<s< tju(s)ÿ v(s)j, for

all t < T ;

(iii) for any given t > 0, u(s) � v(s) 8 0 < s < t implies that Fi(u)(s) �
Fi(v)(s) 80 < s < t, where u, v 2 C[0, 1);

(iv) u(t) � 0) Fi(u) t > 0.

Consider the integral equation

U (t) � î�
XN

i�1

� t

0

Fi(U )s dAi(s),

where î > 0. Then U (t) > 0 for all t.

Proof. Let Uå be the solution of Uå(t) � î�PN
i�1

� t

0
Gi(Uå)s dAi(s), where Gi(u)s �

Fi(u)s � å. Then let ô � infft : Uå(t) , 0g. If ô,1, then by continuity of Uå, Uå(ô) � 0.

By condition (iv), Gi(Uå)ô . 0. Gi(Uå) 2 C[0, 1) so that there exists a ä such that

Gi(Uå) t . 0 for all t 2 [ô, ô� ä]. Therefore Uå(t) > 0 for all t 2 [ô, ô� ä]. This contradicts

the ®niteness of ô. Therefore ô � 1. Thus Uå(t) > 0 for all t > 0. Allowing å to tend to 0,

we obtain Uå ! U uniformly on [0, T ] for any T > 0. Therefore U (t) > 0 for all t. h

Corollary 2.4. Let Vj be increasing adapted processes for each j, and î1 < î2. Let

bi
j(t, s, x) � H(t) f i

j(s, x) for all 0 < s < t, x 2 R, i � 1, 2 and j � 1, . . . , n. If
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f 1
j(s, x) < f 2

j(s, x) for all s > 0, x 2 R, and j � 1, . . . , n, then P(X1(t) <
X 2(t) 8t 2 R�) � 1.

Proof. For the particular form of the drift coef®cients, equation (2.2) becomes

Yi(t) � îi

H(t)
�
Xn

j�1

� t

0

ó j(s, Yi(s)H(s)) dMj(s)�
Xn

j�1

� t

0

f i
j(s, Yi(s)H(s)) dVj(s) (2:8)

This is an SDE driven by continuous processes. The proof of the above comparison theorem

yields the desired conclusion. h

Example. Consider the following linear Volterra equation which arises in applications (for

details, see Berger and Mizel 1980, Example 6B, p. 321; Miller 1971, p. 67):

X i(t) � eÿat

� t

0

easfEi(s)ÿ f (s)X i(s)g dsÿ eÿat

� t

0

easc(s)Xi(s) dW (s), (2:9)

where i � 1, 2. Here a . 0 and Ei, f and c are continuous functions of s. The above

corollary implies that if E2(t) > E1(t) for all t . 0, then X2(t) > X1(t) for all t . 0 almost

surely.

The above conclusion can also be obtained by considering the explicit solution of a linear

stochastic equation. However, if the coef®cients are nonlinear in the above equations,

explicit solutions are seldom found. In addition, if the exponent ÿat is replaced by an

adapted, decreasing and continuous process A(t), our results seem to be the best possible.

Thus far we have assumed the differentiability of the drift coef®cient in the ®rst variable

which allowed us to write the Volterra equation as an SDE with functional coef®cients. A

true Volterra drift is considered in the following theorem.

Hypotheses H9. Let bi
j : Ù 3 R� 3 R� 3 R! R be such that, for each ù 2 Ù, i and j,

1. b2
j(s, r, y) > b1

j(s, r, x) for all 0 < r < s and x < y;

2. b2
j(s9, r, y)ÿ b1

j(s9, r, x) > b2
j(s, r, y)ÿ b1

j(s, r, x) for all 0 < r < s < s9 and x < y.

Theorem 2.5. Assume Hypotheses H9. If Vj are increasing adapted processes for each j, and

î1 < î2, then P(X 1(t) < X 2(t) 8 t 2 R�) � 1.

Proof. Let å. 0 be ®xed. De®ne b
i

j(t, s, x) � (1=å)
� t�å

t
bi

j(u, s, x) du. Then b
i

j and D1b
i

j are

Lipschitz continuous in the space variable x by using the Lipschitz property of bi
j. Therefore,

by the discussion at the beginning of this section,

X i(t) � îi �
Xn

j�1

H(t)

� t

0

ó j(s, X i(s)) dMj(s)�
Xn

j�1

� t

0

b
i

j(t, s, X i(s)) dVj(s) (2:10)

admits a pathwise unique strong solution for i � 1, 2. Hypotheses H9 enable us to apply

Theorem 2.2 to the solutions X i of (2.10), so that P( X 2(t) > X1(t) 8t 2 R�) � 1.
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Note that X i(t) depends on å, and we write it as X
å
i (t) from now on:

E sup
t2[0,T ]

( X
å
i (t)ÿX

å9
i (t))2 < 8CK2

Xn

j�1

E

�T

0

( X
å
i (t)ÿX

å9
i (t))2 dhNji (t)

As ån decreases to 0, E(sup t2[0,T ]jX i(t)ÿ X i(t)j)2 converges to 0 for any ®xed T. Therefore,

there is a subsequence of fång along which the corresponding solutions fX i(t)g converge to

fX i(t)g uniformly on compacts almost surely. Therefore, P(X1(t) < X2(t) 8 t 2 R�) � 1.

h
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