
A large-deviation principle for random

evolution equations

M O H A M E D M E L L O U K

Laboratoire de ProbabiliteÂs (UMR 7599), UniversiteÂ Paris VI, 4 place Jussieu, 75252 Paris,

France. E-mail: mellouk@proba.jussieu.fr

We consider the family of stochastic processes X å � fX å(t), 0 < t < 1g, å. 0, where X å is the

solution of the ItoÃ stochastic differential equation

dX å(t) � ���
å
p

ó (X å(t), Z(t)) dWt � b(X å(t), Y (t)) dt,

whose coef®cients depend on processes Z(t) � fZ(t), t 2 [0, 1]g and Y (t) � fY (t), t 2 [0, 1]g. Using

an extended `contraction principle', we give the large-deviation principle (LDP) of X å as å! 0. This

extends the LDP for a random evolution equation, proved by Yi-Jun Hu, to the case of random diffusion

coef®cients.
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1. Introduction

The validity of the large-deviation principle (LDP) has important applications to various areas

including statistics, especially in statistical tests (see Chernoff 1952), information theory,

communication networks and risk-sensitive control. It also appears in the evaluation of the

free energy in statistical mechanics (see Ruelle 1969) and Varadhan's small time estimates of

the density (see Varadhan 1967). For historical background on the theory of large deviations,

we refer to Deuschel and Stroock (1989) or Dembo and Zeitouni (1993).

Let Ù � C ([0, 1], Rk) denote the space of continuous Rk-valued functions endowed with

the usual topology of uniform convergence and W be a standard Brownian motion on Ù.

Then, for å. 0, let fX åg be the diffusion process solution of the stochastic differential

equation (SDE)

dX å
t � b(X å

t) dt � ���
å
p

ó (X å
t) dWt, 0 < t < 1, X å

0 � x 2 Rd ,

where b, ó satisfy the usual Lipschitz conditions. The large-deviations theory for the law of

X å has been extensively studied, and it is well known that the diffusion trajectories converge

exponentially fast as å! 0 to a deterministic path that minimizes the energy (see Azencott

1980; Freidlin and Wentzell 1984). This can be deduced from Schilder's theorem by means of

an appropriate version of the contraction principle, known as the Freidlin±Wentzell

inequality. The validity of this LDP has been recently extended to a stronger topology on

Ù (see Ben Arous and Ledoux 1994).

For 0 < á, 1
2
, let C á,0([0, 1], Rd) be the separable space of á-HoÈlder continuous
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functions from [0, 1] to Rd . The goal of this paper is to derive an LDP in C á,0([0, 1], Rd)

for the families of laws of the random evolution equations

X å(t) � x� ���
å
p � t

0

ó (X å(s), Z(s)) dWs �
� t

0

b(X å(s), Y (s)) ds, (1:1)

where x 2 Rd , W is a standard Brownian motion, Y is a progressively measurable random

process which satis®es some integrability conditions and Z is a random process such that

topological support of Z is a compact subset of C á,0([0, 1], R l). Furthermore, W is independent

of (Y , Z) and ó , b satisfy some regularity assumptions which we will describe later.

The special case where Z � 0 and ó � Idd3d, has been studied by Bezuidenhout (1987),

who gives an explicit expression for the rate function by means of a modi®cation of the

contraction principle.

For Z � 0 and ó 6� Idd3d, such processes have been studied by many authors, among

them Griego and Hersh (1971) and Heath (1969). The LDP in á-HoÈlder topology, 0 ,á, 1
2
,

is proved by Hu (1997). The argument in that case uses essentially a version of Theorem

4.2.16 of Dembo and Zeitouni (1993) (which is a modi®cation of Azencott's technique).

Here, we prove the LDP for the law of the solutions of (1.1) in the case where Z 6� 0,

ó 6� Idd3d , the support of Z is compact and for a non-bounded drift coef®cient. The

problem becomes more delicate since, unlike in Hu (1997), the dependence of ó upon some

process Z prevents X å from being written as an explicit function of
���
å
p

W , Y and Z. We

circumvent the problem by proving another extension of the contraction principle, which

generalizes that recently shown by PeÂrez-Abreu and Tudor (1994, Theorem 2.1), and used

by these authors to prove an LDP for a class of chaos expansions.

The paper is organized as follows. Preliminary de®nitions and general results on the LDP

are given in Section 1.1. In Section 2 the main result concerning the LDP for the solution

of (1.1) is stated. Section 3 is devoted to a general approximate contraction principle that

meets our needs. In Section 4 we prove that this version of the contraction principle can be

applied in our framework. For a random variable Y , we denote by supp Y the support of the

distribution of Y .

1.1. De®nitions and general results

Let E be a topological space and F its Borel ó-®eld, and let fPå; å. 0g be a family of

probability measures on (E, F ). We begin by giving several de®nitions; for more details, see

Dembo and Zeitouni (1993) or Varadhan (1984).

De®nition 1.1. A function I : E ! [0, 1] is said to be a rate function if it is lower

semicontinuous (lsc). Furthermore, if, for each a ,1, Ãa � fx 2 E; I(x) < ag is compact,

we will say that I is a good rate function.

Unless explicitly stated otherwise, for any subset A of E and any rate function, we set

I(A) � inf
x2A

I(x):
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De®nition 1.2. For some function I, the probabilities fPågå.0 satisfy a large-deviation

principle if the following hold:

(i) I is a good rate function.

(ii) (Lower bound.) For every open subset G of E,

lim inf
å!0

å ln På(G) > ÿI(G):

(iii) (Upper bound.) For every closed subset F of E,

lim sup
å!0

å ln På(F) < ÿI(F):

Let (W � fW (t), t > 0g, Ù, F , F t, P) be d-dimensional standard Brownian motion and

Ù � C ([0, 1], Rd) be the set continuous functions from [0, 1] to Rd equipped with the

usual topology of uniform convergence de®ned by the norm k f k1 � sup0< t<1j f (t)j, and let

H ([0, 1], Rd) be the Cameron±Martin space, that is, the subset of Ù consisting of all

absolutely continuous functions h satisfying h(0) � 0 and
� 1

0
j _h(s)j2 ds) ,1( _h(t) � dh=dt).

For h 2H ([0, 1], Rd) we set khkH � (
� 1

0
j _h(s)j2 ds)1=2.

For 0 ,á, 1
2
, we de®ne the á-HoÈlder space C á([0, 1]; Rd) as the space of continuous

functions f such that

k f ká � sup
f0,j tÿsj<1

j f (t)ÿ f (s)j
jt ÿ sjá ,1:

De®ne the HoÈlderian modulus of continuity of f by

ùá( f , ä) � sup
0,j tÿsj<ä

j f (t)ÿ f (s)j
jt ÿ sjá :

It is well known that C á([0, 1]; Rd) is not separable but its closed subspace, de®ned by

C á,0([0, 1]; Rd) � f f 2 C á([0, 1]; Rd); lim
ä!0

ùá( f , ä) � 0g, (1:2)

is separable. Both C á([0, 1]; Rd) and C á([0, 1]; Rd) are Banach spaces for the norm k:ká
and k:k1 < k:ká. It is well known that P(kWká ,1) � 1 for 0 ,á, 1

2
. We shall need the

following version of the ArzelaÁ ±Ascoli theorem.

Theorem 1.3. A set A � C á,0([0, 1]; Rd) has compact closure in C á,0([0, 1]; Rd) if and

only if the following two conditions hold:

sup
f 2A

k f ká ,1

and

lim
ä#0

sup
f 2A

ùá( f , ä) � 0:

The following LDP proved by Baldi et al. (1992) extends the classical Schilder theorem

(see Schilder 1966; Deuschel and Stroock 1989).
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Theorem 1.4. The probability measures induced by
���
å
p

W on C á,0([0, 1]; Rd), equipped with

the norm k:ká, satisfy the LDP with the good rate function ë(:) de®ned by

ë(h) �
1
2

�1

0

j _h(s)j2 ds, if h 2H ([0, 1], Rd),

�1, otherwise:

8><>: (1:3)

We now state the HoÈlder version of classical exponential inequality for stochastic

integrals, which is crucial in proving the exponential approximation (see, for example,

Stroock 1981, Lemma 8.27).

Lemma 1.5. Let f : [0, 1] 3 Ù! Rl 
 Rd and g : [0, 1] 3 Ù! Rl be bounded fF tg-
progressively measurable functions, and set

U (t) �
� t

0

f (s) dWs �
� t

0

g(s) ds, 0 < t < 1:

De®ne A � sup t,ù tr( f (t, ù) f T(t, ù)) and B � sup t,ùjg(t, ù)j. Then, for every s > 0, T > 0,

0 < á, 1
2

and r . l BT 1ÿá,

P sup
s< t<s�T

jU (t)ÿ U (s)j
jt ÿ sjá > r

 !
< 2l exp ÿ (r ÿ l BT 1ÿá)2

2Al 2T 1ÿ2á

� �
: (1:4)

2. The main result

In this section we give conditions under which the solution of the SDE de®ned by (1.1)

satis®es an LDP in any HoÈlder norm with exponent á, 1
2
.

Let Ù � C ([0, 1], Rk) be the space of trajectories of a standard Rk-valued Brownian

motion (Wt, 0 < t < 1), P the Wiener measure and F the completion of the Borel ó-®eld

of Ù with respect to P. Let Y � fY (t); 0 < t < 1g be a Rm-valued process which is fF tg-
progressively measurable. In order to make explicit the LDP rate function for the law of

(1.1) in the á-HoÈlder topology, we suppose that Y is a random variable with values in

L1=(1ÿá)([0, 1], Rm). Let Z � fZ(t); 0 < t < 1g be an fF tg-progressively measurable

process taking values in R l. We assume that supp Z is a compact subset in

C á,0([0, 1], R l), and that (Y , Z) and W are independent.

From now on, we suppose that the coef®cients ó (:, :) and b(:, :) satisfy the following

hypotheses:

(H0) ó : Rd 3 R l ! Rd 
 Rk and b : Rd 3 Rm ! Rd .

(H1) The function b(x, y) is jointly measurable in (x, y) and there exists a constant

C . 0 such that
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jb(x, y)j < C(1� jxj), 8(x, y) 2 Rd 3 Rm,

jb(x, y)ÿ b(x9, y9)j < C(jxÿ x9j � jyÿ y9j), 8x, x9 2 Rd , 8y, y9 2 Rm:

(H2) The function ó (x, z) is jointly measurable in (x, z) and there exists a constant C . 0

such that

kó (x, z)k < C, 8(x, z) 2 Rd 3 R l,

kó (x, z)ÿ ó (x9, z9)k < C(jxÿ x9j � jzÿ z9j), 8x, x9 2 Rd , 8z, z9 2 R l:

For å. 0, let fX å(t); 0 < t < 1g be the process satisfying the SDE

X å(t) � x� ���
å
p � t

0

ó (X å(s), Z(s)) dWs �
� t

0

b(X å(s), Y (s)) ds, x 2 Rd : (2:1)

The existence of a unique solution of (2.1), which is fF tg-adapted and has á-HoÈlder

continuous sample paths, is ensured by (H0)±(H2) and standard results on existence and

uniqueness of solutions of SDEs with random coef®cients (see, for example, Gihman and

Skorohod 1972, Section 5.5, Theorem 1).

For h 2H ([0, 1], Rd), r 2 L1=(1ÿá)([0, 1], 2 Rm) and u 2 supp Z, let ö(h, r, u)(:) denote

the unique solution of the ordinary differential equation

g(t) � x�
� t

0

ó (g(s), u(s)) _h(s) ds�
� t

0

b(g(s), r(s)) ds, x 2 Rd , t 2 [0, 1]: (2:2)

The existence and uniqueness of the solution (2.2) is a consequence of the Lipschitz

continuity of ó and b and is standard. De®ne ~ë : C á,0([0, 1], Rd)! [0, 1] by

~ë(~h) � inffë(h); h 2H ([0, 1], Rd) : 9(r, u) 2 supp Y 3 supp Z s:t: ö(h, r, u) � ~hg: (2:3)

Since ~ë is not necessarily lsc (see, for example, Bezuidenhout 1987, p. 651), we introduce its

lsc regularization ~ë� de®ned by

~ë�(~h) � lim
a!0

inf
r2Bá(~h,a)

~ë(r), (2:4)

where Bá(~r, a) is the ball of radius a centred at ~r with respect the norm k:ká. The existence

of the limit on the right-hand side of (2.4) is ensured by the fact that infr2Bá(~h,a)
~ë(r) is a

decreasing function of a.

The main result of the paper is the following:

Theorem 2.1. Suppose (H0)±(H2) hold. Then

(i) ~ë� de®ned by (2.4) is a good rate function (with respect the topology of

C á,0([0, 1]; Rd), 0 < á, 1
2

);

(ii) The family På � P � (X å)ÿ1 of the laws of X å de®ned by (2.1) satis®es on

C á,0([0, 1]; Rd) an LDP with good rate function ~ë�.
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Remark 2.2. It is natural to ask what happens if Y and Z also depend on å. This is addressed

by Bezuidenhout (1987, Proposition 2.17) and Dembo and Zeitouni (1993, Exercise 5.6.27).

3. An extension of the contraction principle

One of the basic tools in large-deviation theory is the `contraction principle' (see Deuschel

and Stroock 1989). It enables the new rate function to be computed after the data have been

transformed by a continuous map. Let fPåg be a family of probability measures on a space E

satisfying an LDP with good rate function I , and let F : E ! E9 be continuous. Let

Qå � På � Fÿ1 denote the family of image measures. Then we have the following:

Theorem 3.1. fQåg obeys an LDP with good rate function J, de®ned by

J (y) � inf
fx :F(x)� yg

I(x),

with the usual convention that inf Æ � �1.

Dawson and GaÈrtner (1987), Deuschel and Stroock (1989), Dembo and Zeitouni (1993)

and recently PeÂrez-Abreu and Tudor (1994) have presented various extensions of this

theorem to non-continuous functions.

This section is devoted to proving another contraction principle well suited for our

situation.

Let (EX , d X ), (EY , dY ), (E Z , d Z), (E9, d9) denote Polish spaces and (Ù, F , P) be a

probability space. Suppose that fX å; å. 0g is a family of random variables with values in

EX , Y is a random variable with values in EY , and Z is a random variable with values

in E Z . Given a rate function I on EX and a . 0, set Ãa � fx 2 EX : I(x) < ag and

Ã1 � [aÃa.

Theorem 3.2. Let I be a good rate function on EX , FN , F : Ã1 3 EY 3 E Z ! E9,
X å

N , X å : Ù! E9, be applications such that the following hold:

(a)

(i) For all a . 0 and N > 1, FN jÃa3supp Y 3supp Z is continuous.

(ii) FN jÃa3supp Y3supp Z converges to FjÃa3supp Y3supp Z uniformly as N !1.

(b) For each a . 0 and N > 1, FN (fI < ag3 supp Y 3 supp Z) and F(fI < ag 3
supp Y 3 supp Z) are relatively compact in (E9, d9).

(c) For all N > 1, fX å
N ; å. 0g satis®es an LDP (as å! 0) on E9 with good rate

function

I�N (æ) � lim
r!0

inf
î2B9(æ,r)

IN (î),

where B9(æ, r) denotes the ball of radius r centred at æ in (E9, d9), and

IN (î) � inffI(x); 9(y, z) 2 supp Y 3 supp Z such that FN (x, y, z) � îg: (3:1)
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(d) fX å
Ng are exponentially good approximations of fX åg; that is for every ä. 0,

lim
N

lim sup
å!0

å ln Pfd9(X å
N , X å) . äg � ÿ1:

Then fX å; å. 0g satis®es an LDP on E9 with good rate function

~I�(æ) � lim
r!0

inf
î2B9(æ,r)

~I(î),

where

~I(î) � inffI(x); 9(y, z) 2 supp Y 3 supp Z such that F(x, y, z) � îg:

Proof. Since ~I� is lsc by construction, to prove that it is a good rate function it suf®ces to

prove that f~I < ag is relatively compact in E9 for each a ,1 (see, for example,

Bezuidenhout 1987, Note 4.2). Note that

f~I < ag � fF(x, y, z); x 2 fI < a� 1g, y 2 supp Y , z 2 supp Zg: (3:2)

Indeed, ~I(î) < a implies that, for all ä. 0, there exists (x, y, z) 2 Ã1 3 supp Y 3 supp Z

such that F(x, y, z) � î and I(x) , ~I(î)� ä, so that I(x) , ~I(î)� ä < a� ä. Using (3.2), it

is enough to prove that

K � fF(x, y, z); x 2 fI < ag, y 2 supp Y , z 2 supp Zg
is relatively compact in E9, which holds by assumption (b). The same argument shows that

I�N is also a good rate function.

To prove the large-deviations lower bound, let G be an open subset of E9, such that
~I�(G) ,1; it suf®ces to prove that

lim inf
å!0

å ln P(X å 2 G) > ÿ~I(G): (3:3)

Indeed, if (3.3) is true for each non-empty open set G, then for any æ 2 G, there exists ç. 0

such that B(æ, ç) � G; applying (3.3) with B(æ, ç) instead of G, we obtain

lim inf
å!0

å ln P(X å 2 G) > lim inf
å!0

å ln P(X å 2 B(æ, ç))

> ÿinff~I(î), î 2 B(æ, ç)g:
Now let ç! 0; then

lim inf
å!0

å ln P(X å 2 G) > ÿ~I�(æ) for each æ 2 G,

and therefore

lim inf
å!0

å ln P(X å 2 G) > ÿinff~I�(æ); æ 2 Gg:

For any open set O , de®ne

JN (O ) � inffI(x); x 2 Ã1, 9(y, z) 2 supp Y 3 supp Z s:t: FN (x, y, z) 2 O g,
J (O ) � inffI(x); h 2 Ã1, 9(y, z) 2 supp Y 3 supp Z s:t: F(x, y, z) 2 O g;
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then

lim sup
N

JN (O ) < J (O ): (3:4)

Indeed, if J (O ) � 1 we have nothing to prove; if J (O ) ,1, then, for all ç. 0, there exists

(x0, y0, z0) 2 Ã1 3 supp Y 3 supp Z such that F(x0, y0, z0) 2 O and J < I(x0) , J (O )� ç.

Choose N0 . 0 such that FN (x0, y0, z0) 2 O for N . N0. Hence JN (O ) < I(x0), for N . N0,

and consequently lim supN JN (O ) < I(x0). Letting ä! 0, we obtain (3.4).

We now check (3.3). As usual, we have to prove that if î 2 G and ~I(î) ,1, then

lim inf
å!0

å ln P(X å 2 G) > ÿ~I(î):

Choose ç. 0 such that B(î, 2ç) � G. Note that, for every N > 1 and å. 0,

fX å
N 2 B(î, ç)g � fX å 2 Gg [ fd9(X å

N , X å) > çg:
Hence, the large-deviation lower bounds for fX å

Ng, and the fact that IN > I�N , imply

ÿinffIN (æ); æ 2 B(î, ç)g < lim inf
å!0

å ln P(X å
N 2 B(î, ç))

< lim inf
å!0

å ln[P(X å 2 G)� P(d9(X å
N , X å) > ç)] (3:5)

< max lim inf
å!0

å ln P(X å 2 G), lim sup
å!0

å ln P(d9(X å
N , X å) > ç)

( )
:

Because fX å
Ng are exponentially good approximations of fX åg (hypothesis (d)),

lim inf
å!0

å ln P(X å 2 G) > lim inf
N

ÿinffIN (æ); æ 2 B9(î, ç)gf g: (3:6)

By (3.1) and (3.4), we have

lim inf
N
fÿinffIN (æ); æ 2 B(î, ç)gg � ÿlim sup

N!1
JN (B9(î, ç))

> ÿJ(B9(î, ç)) > ÿ~I(î);

this completes the proof of the large-deviation lower bound.

In order to prove the upper bound, we ®rst show, as in Deuschel and Stroock (1989, p.

38), that, for

l � lim
ä!0

lim inf
N!1

[inffI(x); 9(y, z) 2 supp Y 3 supp Z : d9(FN (x, y, z), A) < äg],

we have

inf
î2A

~I�(î) < l : (3:7)

To this end, suppose that l ,1 and choose (xp, y p, z p) 2 Ãl �1 3 supp Y 3 supp Z and

N ( p)!1 so that, for each p 2 N,

d9(FN( p)(xp, y p, z p), A) <
1

p
, I(xp) < l � 1

p
:
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Furthermore, if we set gp � F(xp, y p, z p), then hypothesis (a) ensures that, for r. 0, there

exists p0 . 0 such that p > p0 implies

d9(gp, A) <
1

p
� r:

Since F(Ãl �1 3 supp Y 3 supp Z) is relatively compact in E9 (hypothesis (b)), we may and

we do assume that xp ! x� 2 Ãl and gp ! g in E9, as p!1.

Clearly g 2 A � A, and since ~I� is lsc,

~I�(A) < ~I�(g) < lim inf
p

~I�(gp) < lim inf
p

~I(gp) < lim inf
p

I(xp) < l :

Observe that, for N > 1 and å. 0,

fX å 2 Ag � fX å
N 2 Aäg [ fd9(X å

N , X å) > äg,
where Aä � fæ : d9(æ, A) < äg is the closed ä-neighbourhood of A. Thus, the large-deviation

upper bound for fX å
Ng (as å! 0) implies that, for every N > 1,

lim sup
å!0

å ln P(X å 2 A) < max lim sup
å!0

å ln P(X å
N 2 Aä), lim sup

å!0

å ln P(d9(X å
N , X å) > ä)

( )

< max ÿ inf
î2Aä

IN (î)

" #
, lim sup

å!0

å ln P(d9(X å
N , X å) > ä)

( )
:

Hence, as fX å
Ng are exponentially good approximations of fX åg (assumption (d )), letting

N !1, we obtain, for every ä. 0,

lim sup
å!0

å ln P(X å 2 A)

< lim sup
N

ÿ inf
î2Aä

IN (î)

( )

� ÿlim inf
N

[inffI(x); 9(y, z) 2 supp Y 3 supp Z : d9(FN (x, y, z), A) < äg]: (3:8)

Letting ä! 0 in (3.8) and using (3.7), we obtain

lim sup
å!0

å ln P(X å 2 A) < ÿinff~I(î); î 2 Ag;

this completes the proof, since ~I? < ~I . h

4. Proof of Theorem 2.1

This section is devoted to proving Theorem 2.1 by means of Theorem 3.2. Throughout the

section, Y � fY (t), 0 < t < 1g and Z � fZ(t), 0 < t < 1g are the processes de®ned in

Section 2.

In order to apply Theorem 3.2, we use the following notation: for 0 < á, 1
2
, set
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(EX , d X ) � (C á,0([0, 1]; Rk), k:ká),

(EY , dY ) � (L1=(1ÿá)([0, 1], Rm), k:k1=L(1ÿá)),

(E Z , d Z) � (C á,0([0, 1]; R l), k:ká),

(E9, d9) � (C á,0([0, 1]; Rd), k:ká)

and the rate function I is equal to ë de®ned by (1.3). In the following, for a ,1, set

Ãa � fë < ag, Ã1 � [aÃa.

For å. 0, N > 1, set tN � [Nt]=N ([y] is the integer part of y). Let X å �
fX å(t), < t < 1g be the solution of (2.1) and X å

N � fX å
N (t), < t < 1g be the solution of

the SDE

dX å
N (t) � ���

å
p

ó (X å
N (tN ), Z(tN )) dWt � b(X å

N (t), Y (t)) dt , X å
N (0) � x: (4:1)

For (r, u) 2 L1=(1ÿá)([0, 1], Rm) 3 C á,0([0, 1], R l) and t 2 [0, 1], if h 2 C á,0([0, 1]; Rd)

then set

FN (h, r, u)(t) � x�
XN

k�1

ó FN (h, r, u)
k ÿ 1

N

� �
, u

k ÿ 1

N

� �� �
h

k

N
^ t

� �
ÿ h

k ÿ 1

N
^ t

� �� �

�
� t

0

b(FN (h, r, u)(s), r(s)) ds, (4:2)

and if h 2H ([0, 1], Rd) then set

F(h, r, u)(t) � x�
� t

0

ó (F(h, r, u)(s), u(s)) _h(s) ds�
� t

0

b(F(h, r, u)(s), r(s)) ds: (4:3)

The existence and uniqueness of the solution of (4.1) follows from hypotheses (H0)±(H2) on

the coef®cients and the theory of ordinary differential equations. Furthermore, the trajectories

of X å and X å
N belong almost surely to C á,0([0, 1]; Rd).

Clearly, the process X å
N de®ned by (4.1) satis®es

X å
N � FN (

���
å
p

W , Y , Z):

In what follows, to prove Theorem 2.1, we will follow step by step the assumptions of

Theorem 3.2.

4.1. Continuity of FN

We prove that FN is continuous from C á,0([0, 1], Rd) 3 L1=(1ÿá)([0, 1], Rm) 3
C á,0([0, 1], R l) to C á,0([0, 1], Rd). Fix N > 1 and let

(h1, r1, u1), (h2, r2, u2) 2 C á,0([0, 1], Rd) 3 L1=(1ÿá)([0, 1], Rm) 3 C á,0([0, 1], R l);

then set

F
(i)
N (:) � FN (hi, ri, ui)(:), i � 1, 2,
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and

ØN (:) � F
(1)
N (:)ÿ F

(2)
N (:):

Lemma 4.1. Given C . 0, we prove the existence of a constant CN . 0 (depending on N and

C) such that, for kh1ká _ kh2ká < C,

kØN (:)ká < CNfkh1 ÿ h2ká � kr1 ÿ r2k1=L(1ÿá) � ku1 ÿ u2k1g: (4:4)

Proof. Clearly, we have

kØN (:)ká < 2 max Ná sup
t2[0,1]

jØN (t)j, max
1<k<N

sup
kÿ1
N

<s, t<
k
N

jØN (t)ÿØN (s)j
jt ÿ sjá

8<:
9=;

0B@
1CA: (4:5)

We at ®rst show that, for kh1k1 _ kh2k1 < C, there exists CN . 0, such that

kØN (:)k1 < CNfkh1 ÿ h2k1 � kr1 ÿ r2k1=L(1ÿá) � ku1 ÿ u2k1g: (4:6)

For t 2 [0, 1], we have

ØN (t) �
XN

k�1

ó F
(1)
N

k ÿ 1

N

� �
, u1

k ÿ 1

N

� �� �
ÿ ó F

(2)
N

k ÿ 1

N

� �
, u2

k ÿ 1

N

� �� �� �

3 h2

k

N
^ t

� �
ÿ h2

k ÿ 1

N
^ t

� �� �
�
XN

k�1

ó F
(1)
N

k ÿ 1

N

� �
, u1

k ÿ 1

N

� �� �

3 h1

k

N
^ t

� �
ÿ h1

k ÿ 1

N
^ t

� �� �
ÿ h2

k

N
^ t

� �
ÿ h2

k ÿ 1

N
^ t

� �� �� �

�
� t

0

fb(F
(1)
N (s), r1(s))ÿ b(F

(2)
N (s), r2(s))g ds:

For 0 < j < N ÿ 1, set I N , j � [ j=N , ( j� 1)=N ]; then, for t 2 I N , j, we have

jØN (t)j <
����ØN

j

N

� ������X3

i�1

jTi(t)j,

where
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T1(t) � ó FN (h1, r1, u1)
j

N

� �
, u1

j

N

� �� �
ÿ ó FN (h2, r2, u2)

j

N

� �
, u2

j

N

� �� �� �

3 h2(t)ÿ h2

j

N

� �� �
,

T2(t) � ó FN (h1, r1, u1)
j

N

� �
, u1

j

N

� �� �
h1(t)ÿ h1

j

N

� �� �
ÿ h2(t)ÿ h2

j

N

� �� �� �
,

T3(t) �
� t

j=N

fb(FN (h1, r1, u1)(s), r1(s))ÿ b(FN (h2, r2, u2)(s), r2(s))g ds:

The Lipschitz condition on ó implies

T1(t) < C

����FN (h1, r1, u1)
j

N

� �
ÿ FN (h2, r2, u2)

j

N

� ������ ����u1

j

N

� �
ÿ u2

j

N

� �����
( )

3

����h2(t)ÿ h2

j

N

� �����
< C .

����ØN

j

N

� ������ ku1 ÿ u2k1
( )

. 2kh2k1:

Since ó is bounded, we have

T2(t) < kók1 . sup
t2 I N , j

jh1(t)ÿ h2(t)j �
����h1

j

N

� �
ÿ h2

j

N

� �����
( )

< C . kh1 ÿ h2k1:
The Lipschitz condition on b implies

T3(t) < Ckr1 ÿ r2k1=L(1ÿá) � C

� t

j=N

sup
j

N
<v<s

fjFN (h1, r1, u1)v ÿ FN (h2, r2, u2)vjg ds:

Gronwall's lemma implies that, for kh1k1 _ kh2k1 < C,

sup
t2 I N , j

jØN (t)j < C

����ØN

j

N

� ������ kh1 ÿ h2k1 � kr1 ÿ r2k1=L(1ÿá) � ku1 ÿ u2k1
" #

; (4:7)

hence, for t � ( j� 1)=N,����ØN

j� 1

N

� ����� < C

����ØN

j

N

� ������ kh1 ÿ h2k1 � kr1 ÿ r2k1=L(1ÿá) � ku1 ÿ u2k1
" #

:

This, in turn, implies that, for kh1k1 _ kh2k1 < C, there exists CN . 0 such that
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sup
0< j<Nÿ1

����ØN

j

N

� ����� < CN [kh1 ÿ h2k1 � kr1 ÿ r2k1=L(1ÿá) � ku1 ÿ u2k1]: (4:8)

Finally, (4.7) and (4.8) yield (4.6).

Hence, using (4.5), we see that to prove (4.4) it suf®ces to check that, for any

k 2 f1, 2, . . . , Ng there exists a constant C . 0, such that

sup
kÿ1
N

<s, t<
k
N

jØN (t)ÿØN (s)j
jt ÿ sjá

< C kh1 ÿ h2ká � kr1 ÿ r2k1=L(1ÿá) � ku1 ÿ u2k1 � sup
t2[0,1]

jØN (t)j
� �

: (4:9)

Indeed, for (k ÿ 1)=N < s , t < k=N,

F
(i)
N (t)ÿ F

(i)
N (s) � ó F

(i)
N

k ÿ 1

N

� �
, ui

k ÿ 1

N

� �� �
[hi(t)ÿ hi(s)]�

� t

s

b(F
(i)
N (v), ri(v)) dv:

Then, using the Lipschitz conditions on ó and b, the boundedness of ó and Cauchy±Schwarz

inequality, it is easy to see that

jØN (t)ÿØN (s)j
<

����ó F
(1)
N

k ÿ 1

N

� �
, u1

k ÿ 1

N

� �� �
[h1(t)ÿ h1(s)]

ÿó F
(2)
N

k ÿ 1

N

� �
, u2

k ÿ 1

N

� �� �
[h2(t)ÿ h2(s)]

����
�
����� t

s

b(F
(1)
N (v), r1(v))ÿ

� t

s

b(F
(2)
N (v), r2(v))

� �
dv

����
<

����ó F
(1)
N

k ÿ 1

N

� �
, u1

k ÿ 1

N

� �� �
f[h1(t)ÿ h1(s)]ÿ [h2(t)ÿ h2(s)]g

����
�
���� ó F

(1)
N

k ÿ 1

N

� �
, u1

k ÿ 1

N

� �� �
ÿ ó F

(2)
N

k ÿ 1

N

� �
, u2

k ÿ 1

N

� �� �� �
[h2(t)ÿ h2(s)]

����
�
����� t

s

f[b(F
(1)
N (v), r1(v))ÿ b(F1

N (v), r2(v))]� [b(F
(1)
N (v), r2(v))ÿ b(F

(2)
N (v), r2(v))]g dv

����
< C

�
j(h1(t)ÿ h2(t))ÿ (h1(s)ÿ h2(s))j:

� ØN

k ÿ 1

N

� �
�
����u1

k ÿ 1

N

� �
ÿ u2

k ÿ 1

N

� �����
 !

jh2(t)ÿ h2(s)j

�
� t

s

(jØN (v)j � jr1(v)ÿ r2(v)j) dv

�
< C

�
j(h1(t)ÿ h2(t))ÿ (h1(s)ÿ h2(s))j � (kØNk1 � ku1 ÿ u2k1)jh2(t)ÿ h2(s)j

� jt ÿ sj . kØNk1 � jt ÿ sjákr1 ÿ r2kLf1=(1ÿá)g
�
:

Therefore, dividing by jt ÿ sjá and using the fact that kh2ká , C, we obtain (4.9). h
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4.2. Uniform convergence of FN to F on Ãa 3 supp Y 3 supp Z

To verify assertion (a)(ii) of Theorem 3.2, we ®rst prove the following:

Lemma 4.2. For any a . 0,

sup
N

sup
khkH <a

sup
(r,u)2supp Y3supp Z

(kFN (h, r, u)(:)k1 _ kF(h, r, u)(:)k1) ,1, (4:10)

and

lim
N!1

sup
khkH <a

sup
(r,u)2supp Y3supp Z

kFN (h, r, u)(:)ÿ F(h, r, u)(:)ká � 0: (4:11)

Proof. The proof of (4.10) is a straightforward application of Gronwall's lemma. We will

check (4.11); for h 2 fkhkH < ag, r 2 supp Y , u 2 supp Z and t 2 [0, 1], we have

F(h, r, u)(t)ÿ F(h, r, u)(tN ) �
� t

t N

[ó (F(h, r, u)(s), u(s)) _hs � b(F(h, r, u)(s), r(s))] ds:

Hence hypotheses (H0)±(H2) on coef®cients together with the Cauchy-Schwarz inequality

and (4.10) yield the existence of a constant C . 0 (depending on kók1 and a) such that

kF(h, r, u)(t)ÿ F(h, r, u)(tN )k < C
1�����
N
p khkH �

� t

t N

(1� jF(h, r, u)(s)j) ds

 !
<

C�����
N
p :

(4:12)

Furthermore, for t 2 [0, 1], using (H0)±(H2) we have

jFN (h, r, u)(t)ÿ F(h, r, u)(t)j

�
����� t

0

fó (F(h, r, u)(s), u(s))ÿ ó (F(h, r, u)(sN ), u(sN ))g _h(s) ds

�
� t

0

fó (F(h, r, u)(sN ), u(sN ))ÿ ó (FN (h, r, u)(sN ), u(sN ))g _h(s) ds

�
� t

0

fb(F(h, r, u)(s), r(s))ÿ b(FN (h, r, u)(s), r(s))g ds

����
< C

� t

0

fjF(h, r, u)(s)ÿ F(h, r, u)(sN )j � ju(s)ÿ u(sN )jgj _hsj ds

�

�
� t

0

jF(h, r, u)(sN )ÿ FN (h, r, u)(sN )j j _hsj ds�
� t

0

jFN (h, r, u)(s)ÿ F(h, r, u)(s)j ds

�
:

(4:13)

By the Cauchy±Schwarz inequality and (4.12), there exists a constant C(a) . 0 such that, for

khkH < a,
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sup
v< t

jF(h, r, u)(v)ÿ FN (h, r, u)(v)j2

< C(a) 1=N � sup
s2[0,1]

ju(s)ÿ u(sN )j2 �
� t

0

sup
v<s

jF(h, r, u)(v)ÿ FN (h, r, u)(v)j2 ds

 !
:

(4:14)

Hence, Gronwall's lemma yields

sup
v< t

jF(h, r, u)(v)ÿ FN (h, r, u)(v)j2 < C(a)
1

N
� sup

s2[0,1]

ju(s)ÿ u(sN )j2
 !

. eC(a): (4:15)

Since supp Z is a compact subset of C á,0([0, 1], R l), Ascoli's theorem implies

lim
N

sup
s2[0,1]

ju(s)ÿ u(sN )j � 0; (4:16)

then (4.16) and (4.15) imply

lim
N!1

sup
khkH <a

sup
(r,u)2supp Y3supp Z

kFN (h, r, u)(:)ÿ F(h, r, u)(:)k1 � 0: (4:17)

On the other hand, it is not dif®cult to see that, for h 2 fkhkH < ag, r 2 supp Y , u 2 supp Z

and s, t 2 [0, 1], there exists a constant C(a) . 0 such that

j[FN (h, r, u)(t)ÿ F(h, r, u)(t)]ÿ [FN (h, r, u)(s)ÿ F(h, r, u)(s)]j
jt ÿ sjá

< C(a)
1�����
N
p � sup

v2[0,1]

ju(v)ÿ u(vN )j
 !

jt ÿ sj1=2ÿá

� C(a)kFN (h, r, u)(:)ÿ F(h, r, u)(:)k1(jt ÿ sj1=2ÿá � jt ÿ sj1ÿá),

which, together with (4.16) and (4.17), concludes the proof of the lemma. h

4.3. Relative compactness

The aim of this subsection is to prove condition (b) of Theorem 3.2, which follows from the

following:

Lemma 4.3. Let ë be the good rate function de®ned by (1.3), 0 ,á, 1
2
, and K be a relatively

compact subset of C á,0([0, 1], Rk). Then, for each N > 1, a . 0, the sets

FN (K 3 supp Y 3 supp Z), FN (fë < ag3 supp Y 3 supp Z) and F(fë < ag3 supp Y 3
supp Z) are relatively compact in C á,0([0, 1], Rd).

Proof. Since K is relatively compact, it is bounded in C á,0([0, 1], Rd). Fix N > 1, for

h 2 K, r 2 supp Y and u 2 supp Z. Then by (4.2) and (H0)±(H2) it is easy to see that there

exists a constant CN . 0 such that
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kFN (h, r, u)(:)ká < CN khká � sup
0<s,t<1

jt ÿ sj(1ÿá)

 !

< CN (khká � 1): (4:18)

On the other hand, for 0 , ä, 1=N and 0 , t ÿ s , ä, there exists 1 < k < N such that

either (k ÿ 1)=N , s , k=N , t , (k � 1)=N or (k ÿ 1)=N < s , t , k=N. The previous

argument implies

ùá(FN (h, r, u), ä) � sup
0,j tÿsj,ä

jFN (h, r, u)(t)ÿ FN (h, r, u)(s)j
jt ÿ sjá

< CN (ùá(h, ä)� ä(1ÿá)): (4:19)

Since h 2 K is relatively compact in C á,0([0, 1], Rk), then (4.18), (4.19) and Ascoli's result

(Theorem 1.3) imply that FN (K 3 supp Y 3 supp Z) is relatively compact in

C á,0([0, 1], Rd). The same arguments prove the relative compactness of F(Ãa 3
supp Y 3 supp Z) in C á,0([0, 1], Rd), since Ãa is a compact subset of C á,0([0, 1], Rk). h

4.4. Large-deviation principle for X å
N (as å! 0)

For N > 1, we prove that the family X å
N � FN (

���
å
p

W , Y , Z) de®ned by (4.1) satis®es on

C á,0([0, 1], Rd) an LDP, and show that the rate function is of the form (3.1). Since FN is

continuous on C á,0([0, 1], Rk) 3 L1=(1ÿá)([0, 1], Rm) 3 C á,0([0, 1], R l), we use a version of

the `contraction principle'. Schilder's theorem implies that
���
å
p

W satis®es an LDP on

C á,0([0, 1], Rk) with rate function ë de®ned by (1.3).

For N > 1, de®ne

ëN ( f ) � inffë(h), h 2H ([0, 1], Rd) : 9r 2 supp Y , 9u 2 supp Z s:t: FN (h, r, u) � f g,
and let ë�N ( f ) be its lsc regularization, i.e., ë�N ( f ) � lima!0 inf g2Bá( f ,a) ëN (g). An argument

similar to that in the proof of Theorem 3.2 shows that ë�N is a good rate function, and we

check that (X å
N ) satis®es an LDP with rate function ë�N .

We ®rst check the large-deviation lower bound.

Lemma 4.4. Let G be an open subset of C á,0([0, 1], Rd); then

lim inf
å!0

å ln PfX å
N 2 Gg > ÿinffë�N ( f ); f 2 Gg:

Proof. Assume G 6� Æ, and let f 2 G be such that ë�N ( f ) ,1; we prove

lim inf
å!0

å ln PfX å
N 2 Gg > ÿë�N ( f ):

By de®nition, given ä, ç. 0, there exist (h, r, u) 2H ([0, 1], Rd) 3 supp Y 3 supp Z such that

kFN (h, r, u)(:)ÿ f (:)ká , ç and ë(h) < ë�N ( f )� ä:
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We can choose ç small enough to ensure Bá( f , 2ç) � G. The continuity of FN (:, r, u) on

C á,0([0, 1], Rk) 3 L1=(1ÿá)([0, 1], Rm) 3 C á,0([0, 1], R l) implies the existence of â. 0 such

that kY ÿ rk1=L(1ÿá) , â=L, kZ ÿ uká , â, k ���
å
p

W ÿ hká , â and

fk ���
å
p

W ÿ hká , âg \ fkYÿ rk1=L(1ÿá) , âg \ fkZÿ uká , âg � fX å
N 2 Gg:

Since (r, u) 2 supp Y 3 supp Z, P(kY ÿ rk1=L(1ÿá) , â, kZ ÿ uk1, â) . 0 and the indepen-

dence of W and (Y , Z) yield

lim inf
å!0

å ln PfX å
N 2 Gg > lim inf

å!0
å ln Pfk ���

å
p

W ÿ hká , âg

> ÿë(h) > ÿë�N ( f )ÿ ä: (4:20)

Letting ä! 0, we conclude the proof. h

We now prove the large-deviation upper bound.

Lemma 4.5. Let A be a closed subset of C á,0([0, 1], Rd); then

lim sup
å!0

å ln PfX å
N 2 Ag < ÿinffë�N ( f ); f 2 Ag:

The proof of Lemma 4.5 is obvious if Y has compact support; in general, this depends on

some technical results.

Lemma 4.6. Let A be a closed subset of C á,0([0, 1], Rd); then

lim sup
å!0

å ln PfX å
N 2 Ag < ÿinffë(h); h 2K (A)g,

where K (A) is the closure in C á,0([0, 1], Rd) of

K (A) � fh 2 C á,0([0, 1], Rd) : 9r 2 supp Y , 9u 2 supp Z s:t: FN (h, r, u) 2 Ag:

Proof. The proof follows immediately from Schilder's theorem and the inclusions

fX å
N 2 Ag � fFN (

���
å
p

W , Y , Z) 2 Ag � f ���
å
p

W 2K (A)g:
h

Proof of Lemma 4.5. Let A be a closed subset A of C á,0([0, 1], Rd); by Lemma 4.6, it

suf®ces to check that

inffë�N ( f ); f 2 Ag < inffë(h); h 2K (A)g: (4:21)

Let h 2K (A); then there exist sequences hn 2K (A), rn 2 supp Y and un 2 supp Z such

that gn � FN (hn, rn, un) 2 A and hn converges to h in C á,0([0, 1], Rd). Since hn is

relatively compact in C á,0([0, 1], Rk) it follows from Lemma 4.3 that gn is also relatively

compact in C á,0([0, 1], Rd); thus (by extracting a subsequence) we may and do assume that

gn converges in C á,0([0, 1], Rd), say to g. Note that gn 2 A and A is closed, so that g 2 A.
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Set ~g n � FN (h, rn, un); (4.4) implies that limnkgn ÿ ~gnká � 0. Finally, for each

h 2K (A), by de®nition of ë�N :

inffë�N ( f ); f 2 Ag < ë�N (g)

< lim inf
n!1 ëN (~gn)

< ë(h),

and (4.21) is proved. h

4.5. Exponential approximations

We ®nally show that fX å
Ng de®ned by (4.1) are exponentially good approximations of fX åg

de®ned by (2.1). Let us at ®rst establish the following approximation.

Lemma 4.7. For any ä. 0,

lim sup
N!1

lim sup
å!0

å ln P sup
t2[0,1]

jX å
N (t)ÿ X å(t)j. ä

Ná

 !
� ÿ1: (4:22)

Proof. Since the drift coef®cient b is not neccessarily bounded, to prove (4.22), let us

introduce some auxilliary results. Let 0 ,á, â, 1
2

and 0 , ã, âÿ á; then, by Theorem

1.4,

lim sup
å!0

å ln P( sup
1<k<N

j ���åp (Wk=N ÿ W(kÿ1)=N j > Nãÿâ� < lim sup
å!0

å ln P(k ���
å
p

Wkâ > Nã)

< ÿinff1
2
khk2

H ; khkâ > Nãg

< ÿ1
2
N2ã: (4:23)

Indeed, if h 2H ([0, 1], Rd) satis®es khkâ > Nã, the Cauchy±Schwarz inequality implies

khkH > Nã.

De®ne the set

Bâ,ã,å � sup
1<k<N

j ���åp (Wk=N ÿ W(kÿ1)=N j < Nãÿâ
� �

\ fk ���
å
p

Wkâ < Nãg; (4:24)

by (4.23),

lim
N!1

lim sup
å!0

å ln P(Bc
â,ã,å) � ÿ1: (4:25)

Furthermore, on the set Bâ,ã,å, by Gronwall's lemma and the assumptions of the coef®cients

ó , b (Section 2), for t 2 [0, 1], we deduce the existence of a constant C . 0 such that
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jX å
N (t)j < C

XN

k�1

���
å
p jWk=N^ t ÿ W(kÿ1)=N^ tj �

� t

0

(1� jX å
N (s)j) ds

( )

< C Nã�1ÿâ �
� t

0

jX å
N (s)j ds

� �
< CNã�1ÿâ: (4:26)

To prove (4.22), set Øå
N (:) � X å

N (:)ÿ X å(:) and tN � [Nt]=N ; then for t 2 [0, 1], Øå
N (t)

satis®es

Øå
N (t) � ���

å
p � t

0

fó (Xå
N (sN ), Z(sN ))ÿ ó (X å(s), Z(s))g dWs

�
� t

0

fb(X å
N (s), Y (s))ÿ b(X å(s), Y (s))g ds: (4:27)

For r. 0, we de®ne

ôrN ,å(ù) � inf t > 0; jX å
N (t, ù)ÿ X å

N (tN , ù)j > r
Ná

� �
^ 1,

èr,ä
N ,å(ù) � inf t > 0; jØå

N (t, ù)j. ä

Ná

� �
^ ôrN ,å(ù)

and

vr
N ,å(t) �

�
Ù

r2

N2á
� jØå

N (t ^ èr,ä
N ,å(ù), ù)j2

� �1=å

dP:

Then clearly

P sup
t2[0,1]

jX å
N (t)ÿ X å(t)j. ä

Ná

 !
< P(ôrN ,å , 1)� P(èr,ä

N ,å , 1): (4:28)

First, we apply Stroock's inequality (1.4) and expression (4.26), together with hypotheses

(H0)±(H2), to obtain the existence of a constant C . 0 such that
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P(ôrN ,å , 1) < P(ôrN ,å , 1, Bâ,ã,å)� P(ôrN ,å , 1, Bc
â,ã,å)

<
XN

k�1

P sup
kÿ1
N

< t<
k
N

����X å
N (t)ÿ X å

N

k ÿ 1

N

� ����� >
r

Ná
, Bâ,ã,å

0B@
1CA� P(Bc

â,ã,å)

< CdN exp ÿ
rÿ CdNã�1ÿâ 1

N

� �1ÿá
 !2

Cåd2
1

N

� �1ÿ2á

8>>>>><>>>>>:

9>>>>>=>>>>>;
� P(Bc

â,ã,å)

< CdN expfÿCN 1ÿ2á=åg � P(Bc
â,ã,å),

since Nã�áÿâ ! 0 as N !1 (ã, âÿ á). Thus, using (4.25), we deduce

lim
N

lim sup
å

å ln P(ôrN ,å , 1) � ÿ1: (4:29)

Since supp Z is a compact subset of C á,0([0, 1], R l), for every r. 0 there exists N0 > 1

such that, for N > N0,

sup
0< t<1

jZ(t)ÿ Z(tN )j < rNÿá: (4:30)

For 0 , å, 1
2
, set rN � r=Ná and f å,r(y) � (r2

N � jyj2)1=å. Then an application of ItoÃ's

formula to f å,r(Øå
N (t)) yields that

f å,r(Øå
N (t ^ èr,ä

N ,å))ÿ
� t^èr,ä

N ,å

0

g
r
å,N (s) dsÿ r2=å

N ,

is a martingale, where, if h:, :i is the inner product in Rd ,

g
r
å,N (t) � 2

å
(r2

N � jØå
N (t)j2)1=åÿ1 . hØå

N (t), b(X å
N (t), Y (t))ÿ b(X å(t), Y (t))

ÿ �i
� 2

å

1

å
ÿ 1

� �
åk ó (X å

N (tN ), Z(tN ))ÿ ó (X å(t), Z(t))
ÿ ��Øå

N (t)k2(r2
N � jØå

N (t)j2)1=åÿ2

� kó (X å
N (tN ), Z(tN ))ÿ ó (X å(t), Z(t))k2(r2

N � jØå
N (t)j2)1=åÿ1:

For 0 < t < ôrN ,å, using (4.30), we have, for N > N0 and 0 , å, 1
2
, that there exists C . 0

such that
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jgr
å,N (t)j < C

2

å
(r2

N � jØå
N (t)j2)1=å jØå

N (t)j
r2

N � jØå
N (t)j2 jX

å
N (t)ÿ X å(t)j

� C

���� 1å ÿ 1

����fr2
N � jZ(tN )ÿ Z(t)j2g jØå

N (t)j2
r2

N � jØå
N (t)j2 (r2

N � jØå
N (t)j2)1=åÿ1

� Cfr2
N � jZ)tN )ÿ Z(t)j2g(r2

N � jØå
N (t)j2)1=åÿ1

< C
1

å
f å,r(Øå

N (t))
jØå

N (t)jrN

r2
N � CjØå

N (t)j2

�
���� 1å ÿ 1

���� r2
N

r2
N � jØå

N (t)j2
jØå

N (t)j2
r2

N � jØå
N (t)j2 f å,r(Øå

N (t))

� C

���� 1å ÿ 1

���� jZ(tN )ÿ Z(t)j2
r2

N � jØå
N (t)j2

jØå
N (t)j2

r2
N � jØå

N (t)j2 f å,r(Øå
N (t))

� C
r2

N � jZ(tN )ÿ Z(t)j2
r2

N � jØå
N (t)j2 f å,r(Øå

N (t))

< C
1

å
� 1

� �
� 1� jZ(tN )ÿ Z(t)j2

r2
N � jØå

N (t)j2
 !( )

f å,r(Øå
N (t))

<
C

å
f å,r(Øå

N (t)):

This, together with Doob's stopping theorem, shows that there exists a constant ~C ,1,

independent of N , å, r and N0, such that, for N > N0,

vr
N ,å(t) < r2=å

N �
~C

å

� t

0

vr
N ,å(s) ds, t 2 [0, 1]

(see, for example, Deuschel and Stroock 1989, p. 30). Therefore, for N > N0,

vr
N ,å(1) < exp

1

å
( ~C � 2 ln rÿ 2á ln N )

� �
:

Since, for all N > 1,

P(èr,ä
N ,å , 1) <

r2 � ä2

N2á

� �ÿ1=å

vr
N ,å(1),

we conclude

lim
r!0

sup
N

lim sup
å!0

å ln P(èr,ä
N ,å , 1) � ÿ1:

This, together with (4.28) and (4.29), implies (4.22). h
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Lemma 4.8. For any ä. 0,

lim sup
N!1

lim sup
å!0

å ln P(kX å
N (t)ÿ X å(t)ká . ä) � ÿ1: (4:31)

Proof. Applying (4.5) to Øå
N (:) � X å

N (:)ÿ X å(:) and Lemma 4.7, we see that it suf®ces to

prove

lim sup
N!1

lim sup
å!0

å ln P max
1<k<N

sup
kÿ1

N
<s, t<

k
N

jØN (t)ÿØN (s)j
jt ÿ sjá

8<:
9=;. ä

0B@
1CA � ÿ1:

Thus, by Lemma 1.5 and an argument similar to that in the proof of the previous lemmas, it

is easy to see that, for 0 ,á, â, 1
2

and 0 , ã, âÿ á,

lim sup
N!1

lim sup
å!0

å ln P max
1<k<N

sup
kÿ1
N

<s, t<
k
N

jØN (t)ÿØN (s)j
jt ÿ sjá

8<:
9=;. ä, Bâ,ã,å

0B@
1CA � ÿ1,

where Bâ,ã,å is de®ned by (4.24); thus (4.25) concludes the proof. h

Acknowledgements

The author would like to thank Professor Annie Millet for having read this paper and having

made a number of very useful suggestions. Thanks are also due to the referees for their

comments.

References

Azencott, R. (1980) Grandes deÂviations et applications. In P.L. Hennequin (ed.), EÂ cole d'EÂ teÂ de

ProbabiliteÂs de Saint-Flour VIII, Lecture Notes in Math. 774, pp. 1±176. Berlin: Springer-Verlag.

Baldi, P., Ben Arous, G. and Kerkyacharian, G. (1992) Large deviation and Strassen law in HoÈlder

norm. Stochastic Process. Appl., 42, 171±180.

Ben Arous, G. and Ledoux, M. (1994) Grandes deÂviations de Freidlin-Wentzell en norme HoÈldeÂrienne.

In J. AzeÂma, P.-A. Meyer and M. Yor (eds), SeÂminaire de ProbabiliteÂs XXVIII, Lecture Notes in

Math. 1583, pp. 293±299. Berlin: Springer-Verlag.

Bezuidenhout, C. (1987) A large deviations principle for small perturbations of random evolution

equations. Ann. Probab., 15, 646±658.

Chernoff, H. (1952) A measure of asymptotic ef®ciency for tests of hypothesis based on the sum of

observations. Ann. Math. Statist., 23, 493±507.

Dawson, D. and GaÈrtner, J. (1987) Large deviations from the McKean±Vlasov limit for weakly

interacting diffusions. Stochastics, 20, 247±308.

Dembo, A. and Zeitouni, O. (1993) Large Deviations Techniques and Applications. Boston: Jones and

Bartlett.

Deuschel, J.D. and Stroock, D.W. (1989) Large Deviations. New York: Academic Press.

998 M. Mellouk



Freidlin, M.I. and Wentzell, A. (1984) Random Perturbations of Dynamical Systems. Berlin: Springer-

Verlag.

Gihman, I.I. and Skorohod, A.V. (1972) Stochastic Differential Equations. Berlin: Springer-Verlag.

Griego, R. and Hersh, J. (1971) Random evolutions, Markov chains and systems of partial differential

equations. Trans. Amer. Math. Soc., 156, 405±418.

Heath, D. (1969) Probabilistic analysis of hyperbolic systems of partial differential equations. Ph.D.

thesis, University of Illinois.

Hu, Y.-J. (1997) A large deviation principle for small perturbations of random evolution equations in

HoÈlder norm, Stochastic Process. Appl., 68, 83±99.

PeÂrez-Abreu, V. and Tudor, C. (1994) Large deviations for a class of chaos expansions. J. Theoret.

Probab., 7, 757±765.

Ruelle, D. (1969) Statistical Mechanics. Rigorous Results. New York: Benjamin.

Schilder, M. (1966) Some asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc., 125,

63±85.

Stroock, D.W. (1981) Some applications of stochastic calculus to partial differential equations, In P.L.

Hennequin (ed.), EÂ cole d'eÂteÂ de probabiliteÂs de Saint Flour XI, Lecture Notes in Math. 976, pp.

267±382. Berlin: Springer-Verlag.

Varadhan, S.R.S. (1967) Diffusion processes in a small time interval. Comm. Pure Appl. Math., 20,

659±685.

Varadhan, S.R.S. (1984) Large Deviations and Applications. Philadelphia: Society of Industrial and

Applied Mathematics.

Received March 1999 and revised October 1999

A large-deviation principle for random evolution equations 999


