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We determine: (a) the joint almost sure asymptotic behaviour of the most visited site and the
maximum local time of a one-dimensional simple random walk or Brownian motion; (b) the maximal
jump size of the most visited site. In so doing, we solve two open problems of Erdds and Révész.
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1. Introduction

Consider a one-dimensional simple symmetric random walk {S,},=¢, starting from Sy = 0.
Let

En,x)=#{0<k<n: S =x}. (1.1)

Thus, &(n, x) records the number of times the random walk visits the site x in the first »
steps. Define

U(n) = {x € Z: &(n, x) = sup &(n, y)}.
z

ye

In words, U(n) is the set of the most visited sites (or favourite sites) of the random walk at
time n. Let

U(n) = . 1.2

(n) max x (1.2)

In Erdés and Révész (1984), U(n) was called the (largest) favourite site of {Sy to<s<n. The

choice of U(n) is irrelevant in the sense that all the results for U(n) stated in this paper
remain true if ‘max’ is replaced, for example, by ‘min’ in (1.2).

The study of asymptotic properties of U(n) and U(n) was initiated by Erdos and Révész

(1984) and Bass and Griffin (1985), and followed by several groups of mathematicians.
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Nevertheless, little is known so far, due mainly to the fact that the process n — U(n) has
some very peculiar asymptotic behaviours. For example, a surprising theorem of Bass and
Griffin (1985) confirms the transience of U(n), in the sense that lim,_..|U(n)| = co almost
surely. However, it is an open problem to determine the rate of escape of U(n). Another
interesting problem is from Erdds and Révész (1984), who conjectured that almost surely
for all sufficiently large n, U(n) contains at most two points.

We are interested in the limsup asymptotics of U(n). First, we recall the law of the
iterated logarithm (LIL) for U(n) which was proved by Erdds and Révész (1984) and Bass
and Griffin (1985), using different methods:

. U(n)
lim su =1a.s., (1.3)
n—‘oop ¢p(n)
where
¢(n) = 2nloglog n)'/? = 2nlog, n)'/2. (1.4)

(However, the problem of characterizing the upper class functions of U(#) via an integral test
in the sense of P. Lévy remains open. For a list of ten other open problems concerning
favourite sites, see Révész 1990, pp. 130-131.)

We also recall the LIL for maximum local time: with

E*(n) = sup &(n, ), (1.5)
we have
*
lilnllsolclp i((:)) =1 as. (1.6)

This was first proved by Kesten (1965), and it was extended to the form of an integral test by
Csaki (1989).

In their proof of (1.3), Erdds and Révész (1984) noticed that, for any & >0, almost surely
there exist infinitely many #n such that simultaneously U(n)= (1 —¢e)¢(n) and
£*(n) = c¢(n), for some positive constant ¢ depending on e. This led them to ask what
can be said about the joint asymptotics of U(n) and E*(n). When U(n) is very close to its
maximum possible value, how large can &*(n) be? This question also appeared later in
Erdos and Révész (1987), and it was also stated as open problem 1 in Révész (1990, p.
130).

If U(n) and E*(n) were asymptotically independent, then one would expect that the limit
set of {(U(n)/p(n), E*(n)/¢(n))} should be {(x, y): x> + y*> < 1}. However, things do not
quite go like this. In this regard, we have the following result:

Theorem 1.1. With probability one, the random sequence

Un) E*(n)
o) o ) | _,
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is relatively compact, and its limit set is identical to the simplex

A={x»):y=0,|x|+y=<1}.

Remark. Our Theorem 1.1 shows that favourite value and favourite site are somewhat
negatively dependent, that is, if the most visited site is small then the time spent in it is large,
and if it is large then the time spent in it is correspondingly smaller.

The second question we are interested in is also due to Erdos and Révész (1984; 1987),
and was stated as open problem 4 in Révész (1990, p. 130): what is the maximal jump size
of U(n)? The jump size of U(n) is defined as U(n+ 1) — U(n) if it does not vanish.
Concerning its large values, they asked whether it is possible to determine the function f(#)
such that limsup,—(U(n + 1) — U(n))/f(n) = 1 almost surely.

In view of (1.3), one might expect U(n + 1) — U(n) to be a constant multiple of ¢(n)
along a random subsequence. What might be somewhat surprising is that it turns out to be
as large as (1 — &)¢(n), for any €>0.

Theorem 1.2. We have

. Umn+1)—U(n)
limsuyp——— =1 as
n—00 @(n)

In the study of favourite sites, it is more frequent to encounter questions than answers,
and this may help explain why there are relatively few known results compared with the
huge literature on random walks. We mention the work of Toth and Werner (1997) who
were interested in favourite edges instead of favourite sites, and of Csaki and Shi (1998)
who studied how close a favourite site can be to the frontier of the range of a random walk.

It will be clear from the proofs in Sections 4 and 5 that both Theorems 1.1 and 1.2 have
their counterparts for Brownian motion, which we state as follows. Similarly to the case of
random walks, we can define the set of favourite sites of Brownian motion as

V() = {x € R: L(¢t, x) = sup L(t, y)},
yeR

where L denotes the local time of a Brownian motion. It is known (Eisenbaum 1989; 1997;
Leuridan 1997) that, with probability one, V() contains at most two points for all #>0.
Without loss of generality, let us choose

V(t) = max x.
( ) xeV(1)

According to Eisenbaum (1989), {V(¢); t>0} is a process with limits on the left almost
surely.

Theorem 1.3. Let L*(f) = sup,er L(t, x). The limit set of {(V(£)/p(t), L*(£)/ (1)} =3 is
almost surely {(x, y): y =0, |x| +y < 1}.
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Theorem 1.4. We have

V(t)y— V(t—
limsupuzlas

t—00 (1)

Let us say a few words about the organization of this paper. Looking at Theorem 1.1,
that {(U(n)/¢(n), E (n)/p(n))},=3 is almost surely relatively compact follows from (1.3)
and (1.6), so we only have to show that its limit set equals .Z. This is done in two steps.
Namely, we prove that, almost surely,

(a) any (x, y) € .7 is a limit point of {(U(n)/p(n), E*(n)/¢(n))}n>3;
(b) all the limit points of {(U(n)/p(n), E*(n)/d(n))},=3 are contained in . 2.

Parts (a) and (b) are proved in Sections 4 and 5 respectively; furthermore, Section 4 contains
the proof of Theorem 1.2. Before that, in Section 2 we present some probability estimates for
multidimensional Brownian motion, which may be of independent interest. These estimates
are applied to Brownian local times in Section 3, and enable us to obtain the key ingredient
in the proofs of the theorems.

We conclude this Introduction with a brief remark on notation. Throughout this paper,
a(x) ~ b(x) (x — xo) denotes lim,_,y a(x)/b(x) =1 for positive a(x) and b(x).

2. Probability estimates for Brownian motion

This section contains some probability estimates for d-dimensional Brownian motion.
Although only the special case d = 2 is needed in the proof of the theorems, we present the
estimates for any dimension d = 1.

In the rest of the section, {B(¢); t = 0} denotes an R?-valued Brownian motion (d = 1)
and

R(t) = ||B(®)], t=0,

is the Euclidean modulus of B. Note that R is a d-dimensional Bessel process. For x = 0, let
P* denote the probability measure under which R starts from x. We assume that under P,
R(0) = 0. Thus P° = P. We also write E* for the expectation with respect to P*.

The square integral of R plays an important role in our approach. We write, for brevity,

X(0) = J;Rz(s)ds, t=0.

We start by recalling two useful results. The first is an intuitively clear comparison
criterion for R. It can easily be proved by applying the diffusion comparison theorem stated
in Revuz and Yor (1999, Theorem IX.3.7) to squared Bessel processes. The second is a
special case of de Bruijn’s exponential-type Tauberian theorem (see Bingham et al. 1987, p.
254).
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Fact 2.1. Let 0 < x < y. The Bessel process {R(t); t = 0} is stochastically smaller under P*
than under P”.

Fact 2.2. Let A be a random variable with P(A = 0) = 1, and let a>0 be a constant. The
following conditions are equivalent:

M= —a, (i)

r—00 r

1
lim — log E(e
\/—

2
limelog P(A <g) = — <. (i)
e—0 4

We now prove a few preliminary estimates.

Lemma 2.3. Fix 6 € (0, 1), t>0 and r>r; >0. Then

(2 + td)?

limelog P(fe < X(1) < &, n < R() <7r) = 8
E—

2.1)

Proof. The conditional Laplace transform of X(#) given (R(0), R(#)) is known (cf. Pitman
and Yor 1982):

EX (-0 Rty — ) At laaypCoy/sinh(20) (_(x2 + 12)(At coth(Af) — 1))’

s1nh(/1t) ](d,z)/z(xy/t) 2t
(2.2)
where /(;_5)>(-) denotes the modified Bessel function of index (d — 2)/2. For convenience,

we recall here the asymptotics of the modified Bessel function (cf. Abramowitz and Stegun
1965, pp. 375 and 377, respectively):

I,(z) ~ (z/2)? /T(p + 1), z—0, (2.3)
Iy(2) ~ & /V2nz, Z — 00. 2.4)

In view of (2.3), we can let x go to 0 in (2.2) to see that

d/2 5 _
Ee®DXO|R(p) = ) = ( ) exp <_y (ltcoglt(lt) 1)>.

sinh(17) 2-5)

Thus,

E(e®/2X0|) < R(1) < r)

7 PR € dy) At \? ( yz(/ltcoth(/lt)—l)>
_L P(r =< R = r) <sinh(/1t)> P\ 21 '

When A — oo, the expression on the right-hand side is exp(—(1 + o(1))(#3 + td)A/2).
Applying de Bruijn’s Tauberian theorem (Fact 2.2) gives that, as ¢ — 0,
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td)?
PX(H<elrn <R <r) = exp( (14 0(1)) (i + ) )
Therefore,
td)?
PX(H<e,r<RH<r= exp< 1+ (l))(r1 + 1) ) (2.6)
Similarly, using (2.5) and Fact 2.2, we have that, for any y >0, when ¢ — 0,
* + ta’)2
P(X (1) <e[R(1) = y) = eXp( (I'+o(1)~——— 2.7
This estimate will be of use later.
The probability expression on the left-hand side of (2.1) can be written as
PX(H<e, n <Rt <r)—PX()<0e, r < R(t)<r).
In view of (2.6), this yields Lemma 2.3. O
Lemma 2.4. For any x>0,
td)?
PXX(1)<e) = exp( 1+ oy + ) ) e — 0. 2.8)

Proof. Recall the probability transition density of R (see Revuz and Yor 1999, Chapter XI):

for y>0,
(d-2)/2 X x2 4+ 2
P*(R(1) € dy) :{@) Ia- 2)/2< y)exp( o 4 )dy. 2.9)

Writing
Fi(e”*/2X(0) = J P*(R(7) € dy)E* (e #/2XO|R(1) = ),
0

and using (2.2)—(2.4) and (2.9), we easily arrive at

2+ td)A
10g [EX(e*(lz/Z)X(f)) — _(1 + 0(1))%’ A — oo.
Lemma 2.4 now follows from an application of Fact 2.2. O

Lemma 2.5. Fix 6 € (0, 1), t>0, v >% and r>r; >0. Assuming
(4 Wd)*0 < ( + td)?, (2.10)

we have

2 4 1)y
lim inf elogP*(0e < X(1) <e, R(py<e') = — S

e—0x€[r,r] 8
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Proof. Recall that R(f) = ||B(#)||. Under P, B can be realized as an R¢-valued Brownian
motion with ||B(0)|| = x. Define Boy(s) = B(s) — (s/#)B(z) (for s € [0, ¢]), which is a
Brownian bridge on [0, #], independent of B(f). Let Ry(s) = ||Bo(s)||. Note that
{Ro(s); s € [0, £]} is a so-called Bessel bridge starting from x (under P¥), ‘conditioned to
hit 0 at time #’, independent of R(?).

By the triangular inequality, |R(s) — Ro(s)| < R(#) for all s € [0, f]. By Minkowski’s
inequality, |v/X(7) — (J, R3(s)ds)"/?| < V/IR(#). Therefore, for any y>0 and ¢ >0,

‘ 1/2
P*(X(1) < q|R(t) = y) = P* ((JORé(S)dS) <\q- \/?y>

=P(/X(1) < Vg~ ViyR(1) = x),

the last equality following from the time inversion: {Ry(¢ — s); s € [0, ¢]} is again a Bessel
bridge, starting from 0, conditioned to hit x at time ¢. Hence, by Fact 2.1, when ¢ is so small

that \/te” </,
inf I]j’x(X(t) g, R(H<e)=P'(X(F) < ¢ R(H)<e")

x€[r,r]

> Pr(R(1) < e")P(X(1) < (Ve — VIe")P|R(H) = r).  (2.11)

By (2.7), when ¢ — 0, the second probability term on the right-hand side of (2.11) is
exp(—(1 + o(1))(r? + td)? /8¢), whereas P"(R(f) < &) is of polynomial order of &” (this is an
immediate consequence of (2.9) and (2.3), or can be better understood using the fact that
R%*(f) under P" has a non-centred chi-square law). Consequently,

2 2
hmlnf 1nf slog PY(X(H) <¢e R(H<E) = —%. (2.12)
xXe }’1 V
On the other hand, by Fact 2.1,
sup PY(X (1)< B¢, R(f)<e”) < P (X(¢) < 0O¢)
x€[r,r]
2
- exp< 1+ (1))(r1 + td) > (2.13)

the last identity following from (2.8). Combining (2.12) with (2.13), and in view of (2.10), we
obtain the lower bound in the lemma.
The upper bound is easy. Indeed, just as for (2.13), we have
inf P*Oe<X()<e RO<H=P'(X(1)<¢

x€[r,r]

b

2
exp( (1 + o1y TE 1D *“”)

as desired. O



958 E. Csaki, P Révesz and Z. Shi

Lemma 2.6. For r >0 and t >0,

2 td 2
limsup sup elogP* (X(t)<e, sup R(s) = r) < —u. (2.14)
-0 xe[0,r] O=s<t 8
Proof. Let
H(r)=inf{t>0: R(t)>r}. (2.15)

For each x € [0, 7], the probability term on the left-hand side of (2.14) is
<P (H(r) =1, X() - X(H(r)) <e) < P"(X(1) <e),
the second inequality following from the strong Markov property. Now (2.14) follows from
Lemma 2.4. U
Lemma 2.7. Let 0 <x; <x <r{ <r¥ and ry <ry,<r} be such that
ry—ri>rf = (2.16)

Then

=0 x€[x1,%] 0ss<t

liminf inf tlog I]j’x< sup R(s) € [r], r;k], R(?) € [r, rz]) = —(r?< —x1)* — (riI< — )%

Proof. We first recall the tail estimate of R, which follows from a well-known tail estimate
for general Gaussian processes (see, for example, Marcus and Shepp 1972): for r >0,

IP’( sup R(s)> r) = exp (((l + o(1)) g) , t— 0. (2.17)

O=s<¢
Now look at the probability

P (R(?) € [r1, 12]) = Jrz[lj”l*(R(t) e dy).

!

From (2.9) and (2.4), it is easily seen that for y and » bounded (from above and below), and
for ¢ € (0, 1],

PRI )2 & o (2 @.19)

dy Vit 2¢

where ¢; >0 is a constant depending only on d and on the bounds for (y, r). Thus, for
t € (0, 1],

P"I(R(1) € [11, r2]) =

an—n) o (_ M) (2.19)

Vit 2¢

On the other hand, under [P”T, R is the modulus of an R?-valued Brownian motion B
with [|B(0)|| = r{. By the triangular inequality,
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P ( sup R(s)> rf) S |]3’< sup R(s)> r;k - rT),

0=s<t¢ O=s<¢

which, according to (2.17), is exp(—(1 + o(1))(r5 — r{)?/2¢), when ¢ goes to 0. This,
together with (2.19) and (2.16), implies that

¥ k (rik — rl)z
P ( sup R(s) < r¥, R(?) € [r1, r2]> = exp (-(1 + 0(1))7t>, (2.20)

O<s<t 2

when ¢ goes to 0.
Recall H(ry) from (2.15). For x € [x|, x2], we have, by the strong Markov property,

[P’"( sup R(s) € [}, 5], R(?) € [, r2]>
0=s<t

PX<H(VT) <1, sup R(s) < ry, R(1) € [, rz])
O=s<¢

0=<s<t—u

= tP*(H(rT)edu)P’?( sup R(s)srj,R(z—u)e[rl,r2]>
0

/2

V

P*(H(r) € du)PrT< sup  R(s) < ry, R(t—u) € [, Vz])
Oss<t—u

0

t/2 (r>1k _ }’1)2

P*(H(r) € du)exp (—(1 + o(1)) t—)

\%

0

the last equality following from (2.20), where o(1) is uniform in x € [x], x;]. Lemma 2.7 will
be proved if we can verify

inf ][PM‘(H(r;k) < 1/2) = exp (—(1 + 0(1))M>, t—0. (2.21)

x€[x1,%2 t

To this end, observe that, for x € [x;, x;],

P*(H(r}) < t/2) = P*(R(t/2)> 1) = JTPX(R(1/2) € dy).

ry

By (2.18), there exists a constant c¢; depending only on (r?k, r}k , X1, X2, d), such that, for all
x € [x1, x2],
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PY(H(r) < 1/2) = J P*(R(t/2) € dy)

Ty

2 ¥ )2

1

2 r _ 2
B%J ’ exp(—i(y txl) )dy

1
X \2
—exp( 4o "),
which yields (2.21) and thus completes the proof of Lemma 2.7. O

Lemma2.8. Let a € (0, 1), b,>b;>06>0, p>1, V>% and 0<c< (p — 1)/b,. Assume

Vb = /b > Vb = /by —o.

Let
Ei(e)=de<X(1+ce) <pe, RA+ce)<e",by < sup R s)< b,
s€la,a+ce]
sup R*(s)=0+ sup R*(s) p.
s€la,a+ce] s€[0,14ce]\[a,a+ce]
Then

@b —0)+dP  5(/Bi — Vb — )
C

liminf € log P(E (¢)) =
e—0 8

Proof. Fix r € (0, v/b; — 0) such that /b, — /b, > +/b; — r. Define

2+ —a)yd

P="2rva @22
Since B € (0, 1) and ¢ <(p — 1)/by, it is possible to choose 0 <Bx < <B* <1 such that
1 —Bsx +byc+ B <p. (2.23)

Let ¥* € (r, /by — 6). We also choose rx € (0, r) so that
Vb1 — e <2(/by — 1), (2.24)
by — re <\/by — /by, (2.25)
(P + (1 — a)d)y* =< (X2 + (1 — a)d)*. (2.26)

ﬁ*
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Consider the measurable events

Ex(e) = {(1 — Ble < X(a) < (1 — Bx)e, sup R(s)<+/b — 0, r < R(a) < r*},

0=s<a

Es(e) = {\/bl < sup R(s)<+Vby, r+ =< R(a+ce) = r},

ass<a+ce

Eq(e) = {ﬁe < X(1 + ce) — X(a+ ce) < e, sup  R(s) < /by — 0, R(1 +ce)< 8”}.

a+cess<l+ce

Observe that on E3(e) we have X(a+ ce) — X(a) € [0, byce]. In view of (2.23), on
E>(e) N E3(e) N E4(e), we have X (1 + ce) € [g, pe]. Thus

E\(e) D Ex(e) N E3(e) N Eae),
By the Markov property,
P(E,(e)) = P(E2(e) N E3(e) N E4(€))

= P(Ex(¢)) inf pi(x, &) inf  pa(y, &), (2.27)
x€[r,r¥] YE[rs,r]
where, for x € [r, ¥*] and y € [rx, 7],

pilx, &) = [P’"(\/bl < sup R(s) < /by, r+ < R(ce) < r>,

O=s=<ce

p(y, &) =P (,38 < X(1 —a)<pB*, sup R(s)<+/b —0, R(l — a)<8”>.

0ss<l—a
We now estimate P(E»(¢)), pi(x, €) and py(y, €), respectively. First, since
P(Ey(e)) = P((1 — Ble < X(a) < (1 — Bx)e, r < R(a) < r*)
— P(X(a) < (1 — Bx)e, sup R(s) = /by — (3>,
O=s=<a
it follows from Lemmas 2.3 and 2.6 that (noting that b; — & > r?)

2 d 2
P(Ex(e)) = exp (—(1 +o(1)) ;(rlfﬁ“*))g> £ — 0. (2.28)

It is easy to treat pi(x, €). Indeed, in view of (2.25), we can apply Lemma 2.7 to see
that, when ¢ — 0,

(Vb — r)* + (Vb — 7*)2)

CcE

inf , pi(x, €) = exp (—(1 + o(1))

xe[r,r*

(2.29)

Finally, we observe that, for all y € [rx, r],
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»(y, €) = i[nf ] PY(Be < X(1 — a) < e, R(1 — a)<¢e")
YELFx,T

—  sup PY(X(1—a)<pB sup R(s)> m)
ye[0,4/b1—0] 0<s<l—a

Recall (2.26). Applying Lemmas 2.5 and 2.6 yields (recalling b; — 0 > r?) that, when & — 0,

P+ - a)d)2>

e (2.30)

YE[ s,

inf P2y, &) = exp (—(1 +o(1))

Assembling (2.27)—(2.30) gives
(P tad? (VB P+ (Vhr— el (P4 (1 - a)d)?

lim iélf elogP(E(¢)) =
E—

8(1 — B+) c 8*
- (r2 + ad)2 5(\/E — r)2 (r2 +(1 - a)d)2
T os1-p e 88 :

where in the last inequality we have used 8* > B> B« and the relation (2.24). In view of
(2.22), we obtain:

@AY S/
C

lim i51f€ logP(E(¢)) = 2

Since r can be as close to /by — O as possible, this completes the proof of Lemma 2.8.
O

Here is the main estimate which will be used in the proof of Theorem 1.1.

Lemma 2.9. Let a € (0, 1), b, >b; >0, p>1, 1/>% and 0<c<(p —1)/b,. Let d € (0, by)
be such that

Vb, — /by > /by — /b — 0.

Then

GRS R VR T Y

liminf ¢ log P(E5(¢)) =
e—0 8

where

Es(e) :{8 < X(1) < pe, R(1)<e", by < sup R%(s) < b,
s€[0,1]

sup  R*(s) =0+ sup Rz(s)}.
]

s€la,a+-ce] s€[0,11\[a,a+ce
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Proof. Let E|(¢) be the measurable event defined in Lemma 2.8. Note that on E;(¢) we have
SUDcfa.a+ce] R2(S) = SUPsepo,i 4] R*(s). By the scaling property,
£ pE v

=X= (1+ce)?’ R(1)<(1 +ce)l/2

P(Ei(e)) =P <m =

by
< sup R*(s) < ——, sup R*(s) = +  su R2(s)> ,
1+ ce 0$s£1 1+ ce selg) 1+ ce se[O,l]I\)I(s)

where I(¢) = [a/(1 + ce), (a + ce)/(1 + ce)]. Applying Lemma 2.8 gives (2.31). O
The proof of Theorem 1.2 requires a few more probability estimates.

Lemma 2.10. For r>0, v >% and t>0,

(12 + td)?

liminf inf elog I]:Dx< sup R(s)>r, X(1)<e, R(t) < g”) = — 2

e—0  x€[0,r] 0=s<t
Proof. Let

pix, &) = I]j’x< sup R(s)>r, X(f)<e, R(t) <e”>.

O=s=<¢
Recall the hitting time H(-) from (2.15). For any x € [0, ] and any u € [0, ¢],

p3(x, &) = PY(H(r) < u, X()<e, R(1) <&")

t
> P’“(H(r) <u, J R*(v)dv<e — r*u, R(t) < e”).

H(r)

By the strong Markov property, this leads to:

pi(x, ) = J:[P’“‘(H(r) € ds)P"(X(1t — s)<e — rPu, R(t — s)<e")

2 v
x r/\t—s €
J PY(H(r) € ds)P"/V <X(1) o YR < m)

) r —s &€ — I"ZM e’
=PU(H(r) < w) inf P IVis (X(1)<W, R(1)<i)

2 v

= PY(H(r) < u)yew \}?f/\/r [P’y<X(1)< , R(1) < \/Z) (2.32)

This holds for all u € [0, {]. We now choose u = ye, for some constant y € (0, »~2) whose
value will be determined later. In view of Fact 2.1, we have
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inf PCH(r) < w)=P(H) < w)

= |]3’< sup R(v)> r)

O<v=<u

2
— exp (—(1 +o(1)) 2r_xs> £ 0, (2.33)

the last equality following from (2.17). On the other hand, Lemma 2.5 readily yields that, for
our choice of u,

g1 & (7 + td)’

r-u

inf P <X(1)< .

yelr/Vir/Vi=u]
Assembling (2.32)—(2.34) gives

o P ()
A Gt 0
llrgglfxér[})fr]ﬁlog p3(x, €) % 30— 1)

for any y € (0, »~2). Picking up y = 2/(37% + td) completes the proof of Lemma 2.10. [

Now we are ready to establish the main probability estimate which will be of use in the
proof of Theorem 1.2.

Lemma 2.11. Fix a € (0, 1), »>0, 6 € (0, 7*/3) and v>1. Let

Eq¢(e) = { sup R()<r, X(1)<e, R(1)<&”, . sup R%(s)> sup R*(s)+ 6}.

o=sv=l s€la,l] s€[0,a]
Then

(30 +dy

lim inf € log P(Es(g)) =
e—0 8

Proof. Let b € (0, 7?/3 —0) and ¢ € (0, 1). Note that

P(E¢(e)) = |]3’< sup R*(s)<b, X(a)<ce, b+ 0< sup R*(s)<r?,

s€[0,a] s€la,1]

X(1) — X(a)< (1 — c)e, R(1) < 5V> .

By the Markov property, this leads to:
P(Es(e)) = pa(e) inf_ ps(x, ), (2.35)
x€[0,v/]

where
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pa(e) =P ( sup R*(s) < b, X(a)< ce) ,
s€[0,a]

ps(x, €) = P* <b +0< sup RYs)<r’, X(1—a)<(l —c)e, R(1 —a)< e").
s€[0,1—a]

By Lemmas 2.3 and 2.6, for any b, € (0, b),

s€[0,a]

b d)?
pa(e) =P (bl < sup R%(s) < b, X(a)< cs> = exp ( 1+ 0(1))(1;:)>,
c
as ¢ goes to 0. Therefore

b+ "d)z), £ — 0. (2.36)

Pi(e) = exp(—(l o) g
ce
On the other hand, observe that

inf_ps(x,e)= inf P sup R2s)>b+0, X1 —a)<(l—c)e, R(1—a)<e"
x€[0,V5] x€[0,v/b+6] s€[0,1—a]

—sup P sup R(s)=r X1 —a)<(1—oc)|.
x€(0,7] s€[0,1—a]

Applying Lemmas 2.10 and 2.6 respectively to the two probability terms on the right-hand
side yields

BB+ +(1 - a)d)2>

inf _ ps(x, €) = exp (—(1 +o(1) 8(1 — o)e

xe[0,V/D]

P+ (1 - a)d)2>

—oxp (—(1 Fo) g

Since 3(b + 6) < r?, this leads to

@Bb+0)+1 - a)d)2> . 237

inf _ ps(x, €) > exp <—(1 +o() 8(1 — o)e

xe[O,\/E

Combining (2.35)—(2.37) yields that

(b+ad?  B(b+0)+ (1 —a)d)?
8¢ 8(1 — ¢) ’

for any ¢ € (0, 1) and b € (0, 7>/3 — 8). Take ¢ = (b + ad)/(4b + 36 + d) and then send b
to 07 to complete the proof of Lemma 2.11. O

lim ié’le log P(Es(e)) = —
e—



966 E. Csaki, P Révesz and Z. Shi
3. Brownian local time
Let {W(?); t =0} be a one-dimensional Brownian motion starting from 0. Let {L(#, x);

t = 0, x € R} denote its jointly continuous local time process, in the sense that, for any Borel
function £ = 0 and ¢t = 0,

t e%¢}

| rovens = reon oo (3.1
0 —00

For brevity, we write
L*(t) = sup L(t, x), t=0.
xeR
For each >0, define
T, =inf{¢r>0: W()>r}, (3.2)

the hitting time associated with W. Here is the key probability estimate in the proof of
Theorem 1.1.

Lemma3.1. Let a € (0, 1), b,>b1 >0, p>1 and 0<c<(p—1)/by. Let 6 € (0, by) be
such that

Vb = /b > Vb = /by —o.

We have

(b =0+ 1 5(/bi = /B =0)
c b

liminf elog P(Fi(¢)) = —
e—0 2

where

Fi(e) = {g =T <pe b = L*(Tl) <b,, sup L(T,,x)>0+ sup L(T}, x)}.
x€[a—ce,a) x¢[a—ce,a)

Proof. The Ray—Knight theorem (Ray 1963; Knight 1963) says that { L(T}, 1 — x); x = 0} is
a continuous inhomogeneous Markov process. More precisely, when x € [0, 1] it is a two-
dimensional squared Bessel process, starting from 0, and when x = 1 it becomes a squared
Bessel process of ‘dimension 0’.

Let {R(?); t = 0} be a two-dimensional Bessel process with R(0) = 0, and {Z(?); t = 0}
a Bessel process of dimension 0, with Z(0) = 1. We assume that R and Z are independent.
As before, we write

X(1) = J; R*(s)ds, t=0.

Observe that T :fgo L(Ty, 1 —x)dx. By the Ray—Knight theorem and the scaling
property for the Bessel process (writing x V y for max(x, y)),
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P(Fi(e) =P <g < X()+ R4(1)JOO Z%(s)ds < pe, by < sup R*(s)V R*(1)sup Z*(s) < bs,
0 =()

0=s=<1 K

sup R*(s)>0+ sup R%*(s)V R*(1)sup 22(s)>,
s€J(e) s€[0,11\J () s=0

where J(¢) =[1 —a, 1 —a—+ ce]. Let p; € (1, p) be such that ¢<(p; — 1)/b,. For all
sufficiently small & >0,

P(Fi(e)) = |]3><J;O Z(s)ds < 1, sup Z%(s) < 2)

5=0

0=s=<1

X IP’(R(I)<£V, e< X(1)<pie, by < sup R(s) < by,

sup R*(s)>0+ sup R%(s)|.
seJ(e) s€[0,11\J(¢)

The first probability term on the right-hand side is a positive constant. Lemma 3.1 now
follows from Lemma 2.9. O

In the proof of Theorem 1.2, we need two other probability estimates for Brownian local
time. Their proofs are in the same spirit as the proof of Lemma 3.1, based on the Ray—
Knight theorem and using Lemmas 2.11 and 2.10 respectively in lieu of Lemma 2.9. The
details are omitted.

Lemma 3.2. Let u € (0, 1), 5>0 and 6 € (0, b/3). Then

limiglfelogP<L*(T1)<b, Ty <e, sup L(Ty, x)>sup L(Ty, x) + O g
E—

x€[0,u] xX>u

) _ (30+27

Lemma 3.3. For b >0,

_(3b+2)

im i (1) > <e, i >—1]=
llrgglfelogP<L (T\)>b, T) <e, tel[g’f;l]W(t) 1) 2

4. Theorem 1.2 and part (a) of Theorem 1.1

In this section, we prove Theorem 1.2 and part (a) of Theorem 1.1. Let us first recall the
following strong approximation theorem which holds simultaneously for local time and
random walks.
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Fact4.1. (Révész 1990, pp. 105-107). After possible redefinitions of variables and
processes, there exists a coupling for the simple random walk {Si}i=0 and the Wiener
process {W(t); t = 0}, such that, for all € >0, as n goes to infinity,

sup max |E(k, x) — L(k, x)| = o(n"/**%) as., 4.1

xeZ VSHh=

 max |Sx — W(k)| = @(log n) a.s., 4.2)

where &(n, x) and L(n, x) are defined in (1.1) and (3.1), respectively.

In the proof of Theorem 1.2 and of part (a) of Theorem 1.1, we shall be working in the
probability space such that the coupling for {S,},=0 and W in Fact 4.1 holds.

Proof of Theorem 1.2. Fix k € (0, 1), and define r, = r,(k) = exp(n'**). Let T be the first
hitting time process for W (see (3.2)).
Let u € (0, 0.01) be such that

24 2(1 — u))? 1+2
M+49u< + K. 4.3)
4 1+x
Define
W) = W(t+T,,) — ra tel0, Ty, —T]

By the strong Markov property, these are independent Brownian pieces. We can define
T(r") =inf{t>0: W"(t)>r}, 0<r < r,,| — r, the first hitting time process for ", and
also {L"(¢t,x); 0 <t < T(rz)ﬂ—w x € R}, the local time of W™,

Consider the following measurable events:

(1421072,

_ (n) (1)
Ay = {sup L(")(Tufu)r,,ﬂr x) <uryii, T(lﬂl)r”+1 < 3108 s,

xeR

2
(1) (1) U Tnt1

x€[0,ur,+) X>ur, 3

Ay, = {SUP(L(”)(T(;ZLQ’ x) — L(n)<TE?)—u)rn+1’ x)) =2ur,1,

xeR

™ _

Futl—Tn (I=u)ru

1 + 2K)ur? .
M, inf WO > = 2u)rps ¢
2logy rupr T <i=7l?

(=w)ryy 1= "n

By the strong Markov property, {41, 42.,}s>3 are mutually independent events. In
particular,
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P(A1,n 0 Az,n) = P(A10)P(A2,0). (4.4)
Since {W"(¢), t € [0, T,,., — T,,]} is again a Brownian motion,

(1+21)r7

P4 = P sup L(T— ,x) < s Ta—wyr,,, < )
(41,n) (xeg Tawrya> ) < Uty Tamurn <3702

2
u-r 1
sup  L(T(_uyr,,y» X)> SUD L(Tuu),m,xw—"*)

x€[0,ur,41] X>UF 3
u 1+ 2k
=P L(Ty, x)< T < ,
(iﬁﬁ )= 20— loga o

2
sup L(Th, x)> sup L(Ty, x)+ “7)
x€[0,u/(1-w)] x>uf(1—u) 3(1 —u)

the second equality following from the scaling property. Applying Lemma 3.2 gives that,
when 7 goes to infinity,

(u? +2(1 — u))?
P(A41,,) = exp <(1 + 0(1))W logs 7uy1 ) 4.5)
Similarly,
P(AZ,n)
1+ 2K)ur? :
=P sup L(Tur,,_lfr,n X) = 2u”'n+1> Tur,,+1*rn <w’ inf W(t) > —UIp41-
xeR 2logy rap1 0St=<Tu,i-m
2 1+2 2
_ P(sup LTy, x) = Uty T (1+ K);"’nﬂ ’
xeR Urpy1 — Ty 2(urps1 — ¥p) 10g2 gl
inf  W(r)> &)
0<r<Tj Urppl — Fy
142
= P(sup LTy, x) =4 T) <—— = inf W()>—1),
xeR 2ulogy rpyp O0stsTy

the last inequality following from the fact that wr,.; — r, € [ur,.1/2, ur,.1] for all
sufficiently large #. In the light of Lemma 3.3, this implies

49u
P(A2,,) = exp ((1 + 0(1))H—2,< log, Fn+1>~ (4.6)

In view of (4.3)-(4.6), we have > ,P(4;,N A4,,) = co. By the Borel-Cantelli lemma,
P(A1, N Az, infinitely often (i.0.)) = 1.
Now let us see what happens on A4;, N A, ,. First, we have, on 4, N 43 .,
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() < (1 4+ 2x)(1 + u)r%lJrl .

e 2logs rat1 “-7
By definition, for r € (0, r,.; — r,] and x € R,
T =Thpy, = Tp, (4.8)
LT, x) = L(Tyy s X + 1) — L(T,,, X+ 7). (4.9)
Writing
sp =1 —wWryp1 + 1w € (Fay Frt1),
Pn = Urni1 + Iy € (T, Sn),
we obtain, on A, N Az,
sup(L(Ts,, y) — L(T},, ) <urpii, (4.10)

yeR

uzr,,
sup (L(Ty,, y) = L(Ty,. ) > sup (LT, ¥) = LTy, ) + =, (4.11)

YE[ru, Pa] V> Pa 3
sup(L(T', ., ¥) — L(Ts,, ¥)) = 2ury1, (4.12)
yeR
. infT W(H)> (1 —2u)rp + ry. (4.13)
w<t<Tr, .,

On the other hand, by (4.7) and (4.8), we have, on 4, N 43 ,,

(14 2x)(1 + u)r%l+1 .

T
2 10g2 Fu+1

-7, <

n

(4.14)

Fptl

Since P(4;,N Ay, i.0.) =1, we know that there are almost surely infinitely many n
satisfying (4.10)—(4.14). We shall now only be considering these infinitely many n.

Since » — T, is a subordinator of index %, we have (Fristedt 1974): for any € € (0, 0.01),
almost surely for large 7,

T, < r*te. (4.15)

Let & be the local time of the random walk {Sj}=o satisfying (4.1) and (4.2). In view of
(4.1), almost surely for large n, (4.10) implies (recalling 5*(n) from (1.5))

E' (T ) < urner + T+ E (T, ) + T/,
which, in light of (4.15) and (1.6), yields
E(T, D) < (1 + ey,
whereas (4.12) implies

g*(l_Tr)H»lJ) = (2 - g)urn+l~
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By the definition of favourite sites, these two estimates imply that, U(|7,,,,]), the favourite
site at time |7, |, must be visited by the random walk during (|7, |, [ Tr,,,]], ie.,

u(7T,.D==5, for some j = j,(0) € (| Ts,], | T+, /1 (4.16)
On the other hand, (4.13) and (4.2) together confirm that
Si> (1= 2uwr,, forall i € [|Ts,], [ T),., /] (4.17)

Now consider (4.11). Again, by means of (4.1), (4.15) and (1.6), it follows from (4.11)
that

max E(LTans y) > max E(LTS;zJa y) + (% - €)u2rn+1,
YELrn, pul V> Pn

which, by definition, implies U(| Ty, |) < pn. Since p, < (1 — 2u)r,;1, comparing this with
(4.16) and (4.17), we conclude that there exists a random integer m = m,(w) € [| T, |,
| T}, |1 such that U(m) = U(|T,]) and that U(m + 1) > (1 — 2u)r,4,. For this m,

Um+1) = U(m)> (1 = 2u)rnps — po = (1 = 4u)rps, (4.18)

and, of course, m € [T,, — 1, T}, ].
To complete the proof of Theorem 1.2, it suffices to note that, by (4.14) and (4.15),
Ty < (1431)(1 4+ u)r?,, /21og, ryy1, which implies

Faoy > 2T, logy T, = 2mlogy m '
(1 4+ 41)(1 4 u) (1 +41)(1 + w)

Going back to (4.18), we see that

[ omi
Ulm+1) — Um)> (1 — 4u) %.

We have therefore proved that

lim su U(n+l)fU(n)> 1 —4u as
ol T nlomn VA FAa0( T 0)

Since both u and x can be as close to 0 as possible, this yields the lower bound in Theorem
1.2.

The upper bound is trivial. Indeed, U(n + 1) — U(n) < maXp<j<, Sp — Ming<y<, Sk, and
the upper bound immediately follows from the usual LIL for the range of random walk (see
Révész 1990, p. 44). O

Proof of part (a) of Theorem I.1. Again, let us fix x € (0, 1), and define r, = exp(n'**).
Recall T from (3.2). Let a € (0, 1) and »>0.

Let p>1, b*>b and 0<c< (p— 1)/b*. We can choose o € (0, b) such that
Vb* —\/b>+/b—b— 0 and such that
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(b—5+1)2+5(\/‘15—\/b—5)2
2 c

(b+1)
—

<(1+x) (4.19)

Fix y >0 and let

cyr,
1, = [ar,,— Vrn arn},

logy 7,

yr pyr. x %
A, = <T,, < = br, < L°(T,) < b"ry, supL(T,,, x) >0r, +sup L(T,,, X) ».
logs 7, logs 7, xel, X1,

By scaling, Lemma 3.1 and (4.19), for all sufficiently large n,

(b + 1) log, r,,>

P(4,) = exp <—(l + K) 2

Therefore, as long as y = (1 + k)*(b + 1)*/2, we have Y_,P(4,) = co. Rigorously speaking,
we cannot directly apply the Borel-Cantelli lemma here, since the events (4,) are not
independent. However, as in the proof of Theorem 1.2, we can consider the independent
Brownian pieces W™ and construct events which are based on W, and use the same
argument to get rid of the dependence difficulty. We choose to omit tedious discussions which
are much like those in the proof of Theorem 1.2, and claim that P(4, i.0.) = 1. Therefore,
almost surely there exist infinitely many » such that simultaneously

2
‘yrn

2
fog < PP br, < L*(T,n) < b*r,, sup L(T,,, x) > Or, + sup L(T,,, x).
082 I'y

= 9
10g2 ¥ xel, x¢ 1,

T'n

Applying Fact 4.1 implies that, infinitely often,

2
o < PV b, = BT, )= (4 06 e U € L

logy 7, " logy r,,°

When yr?/logy 1, < T,, < pyr?/logy r,, we have (recalling ¢ from (1.4))

(14 o(1))b

—=—9(T},
V2py

e, = (L o(1)p*
! V2y
(1 + o(1))a (1 + o(1))a
1, —(T,), ——————¢(T, ) |.
“ { V2py PTr) V2y » ")]
Thus, for any k € (0, 1), b*>5>0, p>1and y = (1 + k)*(b + 1)?/2, with probability one,
the random sequence {(U(n)/¢(n), E*(n)/p(n))} =3 visits

l:(lK)a (1+;<)a] y [(1@217 (1+K)2b*‘|
V20y T V2y V2o T 2y

br, =

)!

¢(T},),
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infinitely often. Take y = (1 + k)*(b + 1)?/2. Since (x, b*, p) can be as close to (0, b, 1) as
possible, we conclude that (a/(b+1), b/(b+ 1)) is almost surely a limit point of
{(U(n)/p(n), E(n)/p(n))},=3. For any x>0 and y>0 with x+ y<1, we can choose
a € (0, 1) and b >0 such that (x, y) = (a/(b+ 1), b/(b + 1)). Thus (x, y) is a limit point of
{(U(n)/¢(n), E*(n)/¢(n))}n=3. Of course, the positivity of x is irrelevant, since when x <0,
we can consider {—S,},=¢ instead of {S,},=0.

As a consequence, any (x, y) € .7 is almost surely a limit point of {(U(n)/¢(n),
E*(n)/ ¢(n))}n=3. We can interchange the order of ‘any (x, y) € .2’ and ‘almost surely’ by
considering the points in .2 whose coordinates are rationals. O

5. Proof of part (b) of Theorem 1.1

Part (b) of Theorem 1.1 is a consequence of the following:

Theorem 5.1. For any a € (0, 1),

limsup sup
n—oo  x=ap(n) ¢(n)

More precisely, part (b) of Theorem 1.1 follows from the upper bound in Theorem 5.1.
In view of (4.1), we can equivalently state Theorem 5.1 as follows.

Theorem 5.2. Let {L(z,x); t =0,x € R} be a Brownian local time process, and let
a€(0,1). Then

L(t
limsup sup (3 _ l1—aas.

=00 x=ap(1) ¢(1)

The main ingredient in the proof of Theorem 5.2 is the following tail estimate:

Lemma 5.3. For a>0 and b>0,

1
lim logP( sup L(t, x)>bp(r) | = —(a + b)*.
MM og 7 08 <x>a£<,>( )= b( )) (a+D)

The proof of Theorem 5.2 relies on Lemma 5.3 and the Borel-Cantelli lemma, along the
same lines as in Section 4. No new ingredient is needed. So we feel free to omit the details.
The rest of the section is devoted to the proof of Lemma 5.3.

Proof of Lemma 5.3. Let T be the first hitting time process of the Brownian motion whose
local time is L; see (3.2). By the strong Markov property, for any ¥ >0 and v >0,



974 E. Csdki, P Révész and Z. Shi
I]j’(sup L(t, x)>u> = J P(T, € ds)lP(supL(tf s, x)>U)
x=u x=0

JI uds ex ( uz)ﬂj’ sup L(1, x) > v
= xX)>—|.
V2ms3 P 2s (x?g ’ Vit— S)

It is known (see Kesten 1965; Csaki 1989) that

2
P(sup L(1, x) >l) = exp (—(1 + 0(1))12), A — 0.
x=0

Therefore,
"ag(t)ds (ag(2))? (bo(1 ))2
P sup L(t, x)>bo(t :Jiex 77(1+ 1)
(909?(0 P 0 V2ns3 P 2s ol )2(t s)
This completes the proof of Lemma 5.3 by means of an elementary argument in the spirit of
Laplace’s method (see, for example, Widder 1941). O
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