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The principle of tomography is to reconstruct a multidimensional function from observations of its

integrals over hyperplanes. We consider here a model of stochastic tomography where we observe the

Radon transform Rf of the function f with a stochastic error. Then we construct a `data-driven'

estimator which does not depend on any a priori smoothness assumptions on the function f .

Considering pointwise mean-squared error, we prove that it has (up to a log) the same asymptotic

properties as an oracle. We give an example of Sobolev classes of functions where our estimator

converges to f (x) with the optimal rate of convergence up to a log factor.
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1. Introduction

The aim of tomography is to reconstruct an image by use of its integrals over hyperplanes;

see, for example, Herman (1980) and Natterer (1986). This problem appears in different

®elds (such as medical image processing, nuclear medicine and radar theory) and with

various models. The model considered here is the stochastic tomography problem de®ned in

Korostelev and Tsybakov (1991; 1993), where we have n observations containing stochastic

errors. This model corresponds to the case of X-ray tomography, one of the earliest

tomographic techniques. We wish to produce an image of the internal structure of a human

body from observations of integrals over X-ray beams.

Johnstone and Silverman (1990), Korostelev and Tsybakov (1991; 1993), Donoho and

Low (1992) and Donoho (1995) have already described a statistical approach to the

problems of positron emission tomography and X-ray tomography. These papers propose

estimators which attain the optimal rate of convergence for the Sobolev and Besov classes

of functions. However, the de®nition of these estimators requires knowledge of the

smoothness of the function f .

Thus the problem of adaptation arises quite naturally. We wish to de®ne estimators

without any a priori assumptions concerning smoothness properties of the function f . The

problem of minimax adaptive estimation of a nonparametric function has been studied in

different papers; see, for example, Efroimovich and Pinsker (1984), Lepskii (1990), Golubev

and Nussbaum (1992) and Donoho et al. (1995). Here we are interested in spatial

adaptivity, as in Donoho and Johnstone (1994) and Lepski and Spokoiny (1995). The aim of

spatial adaptive methods is to construct `data-driven' estimators that adapt to pointwise
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properties and spatially inhomogeneous smoothness of the function f . For a more general

view and references on spatial adaptation, see Lepski et al. (1997).

The motivation for using spatially adaptive methods in tomography is that the spatial

inhomogeneities in this context seem important. For example, in a medical application of a

scanner, the image f of a human brain will present spatial irregularity. Thus, using spatial

adaptive estimators in the problem of tomography is of real interest. Moreover, tomography

is a good setting for asymptotic results since the number of observations may be large (of

the order of 10 million).

From a mathematical point of view, the construction of estimators by adaptive methods in

the framework of tomography may be viewed as part of a larger problem. Indeed, in the

problem of tomography we are confronted with indirect observations; we observe integrals

of a function f and we want to reconstruct f in the whole space. Such a problem of

reconstruction from indirect observations is called an inverse problem. Inverse problems

appear in ®elds as different as medical image processing and astronomy; for a statistical

overview, see O'Sullivan (1986). Thus, adaptation in inverse problems is different from the

normal run of adaptive results which are concerned with estimation of a nonparametric

regression or a probability density which is directly observed. There are other results for

adaptation in inverse problems; see Efromovich (1997) and Goldenshluger (1999) for the

problem of deconvolution, and Johnstone (1999) for different inverse problems using

wavelet±vaguelette decomposition. One point to note here is that we consider a dif®cult

inverse problem and that the results are obtained in a `regression-type' model and not in an

idealized Gaussian white noise model. Thus, keeping in mind that adaptive procedures are

more convenient in applications, results obtained in a realistic model are clearly of interest.

Lepski et al. (1997) proposed a variable bandwidth kernel estimator for the problem of

estimating a univariate function in a Gaussian white noise. In this spirit, but in a different

context, we de®ne in Section 2 a `data-driven' estimator in the problem of X-ray

tomography. Then, for a very wide class of functions f , we prove in Theorem 1 that there

exists some unknown oracle which attains (up to a log ) the optimal risk. In Theorem 2 we

prove that our `data-driven' estimator mimics the asymptotic properties of the oracle and

thus presents (in some sense) the best possible choice of bandwidth. In Theorem 3, we

study as an example the estimation on the Sobolev classes of functions H(â, C) for

unknown parameters â and C. On these classes, the estimator is proved to be nearly optimal

(up to a log factor). In Section 3 we give the proofs.

2. Model and results

Let f : Rd ! R, f 2 L1(Rd), d > 2. De®ne the Radon transform Rf of f as

Rf (s, u) �
�

w:hw,si�u

f (w) dw, (1)

where u 2 R, s 2 Sdÿ1, Sdÿ1 � fw 2 Rd , jwj � 1g is the unit sphere in Rd , jwj is the

Euclidean norm of w, and h�, �i is the scalar product in Rd . The function Rf (s, u) is de®ned

on the cylinder Z � Sdÿ1 3 R. The Radon transform Rf (s, u) represents the integral of f
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over the hyperplane fw 2 Rd , hw, si � ug. Thus, tomography is a particular inverse problem

where we want to invert the Radon transform. For general properties of the Radon transform,

we refer to Natterer (1986).

Here we only give the following important theorem, which can be found in Natterer

(1986, p. 11).

Lemma 1. (Projection theorem). We have for f 2 L1(Rd) \ L2(Rd), 8s 2 Sdÿ1, and t 2 R,cRf (s, t) � f̂ (ts),

where cRf is the Fourier transform of Rf over the second argument only.

De®ne here the class B(L), L . 0, of functions f : Rd ! R such that

f (w) � 0, jwj. 1,

and

j f (w)j < L, 8w 2 Rd :

For f 2 B(L), the Radon transform Rf is well de®ned.

Consider the statistical model

Yi � Rf (si, ui)� åi, i � 1, . . . , n, (2)

where (si, ui) are independent random variables uniformly distributed on Sdÿ1 3 [ÿ1, 1], åi

are independent and identically distributed (i.i.d.) random variables, åi � N (0, ó 2), with

ó 2 . 0, and (å1, . . . , ån) are independent of ((s1, u1), . . . , (sn, un)). The problem is to

reconstruct f from noisy observations Yi of Rf . This setting models the problem of X-ray

tomography which appears, for example, in medical image processing. This model has been

studied in Korostelev and Tsybakov (1991; 1993) for the case of functions that belong to a

Sobolev ball. Here, we have very weak conditions on f . Indeed, f 2 B(L) is only supposed to

be compactly supported and bounded, and in tomography observed functions are compactly

supported.

Our aim is to construct an estimator which does not depend on any smoothness

assumptions on f . The idea is to de®ne a class of estimators which depend on a bandwidth

parameter ä. 0. Then we de®ne a way to choose ä adaptively.

Let

Kä(u) � 2rd(2ð)ÿd

�1=ä

0

rdÿ1 cos(ur) dr, (3)

where rd is the surface area of the sphere Sdÿ1, ä. 0 is a bandwidth, u 2 R. The Fourier

transform of Kä is

K̂ä(t) �
�

R

Kä(u)eiut du � rd(2ð)1ÿd jtjdÿ1 Iä(t), (4)

where t 2 R and Iä(t) � I(jtj < 1=ä) is the indicator function of the interval jtj < 1=ä. This

function Kä will be used as a kernel of the estimator. One may remark that Kä does not
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satisfy all the standard properties of kernels. In fact, Kä is called a band-limited ®lter; it has

a compactly supported Fourier transform. This ®lter has already been used in the context of

tomography in Natterer (1986) and Korostelev and Tsybakov (1991; 1993). Using Lemma 1,

one may understand that the factor jtjdÿ1 has been chosen in order to give Kä the property of

approximately inverting the Radon transform.

The estimators studied will be of the form

fä(x) � 1

n

Xn

i�1

Kä(hsi, xi ÿ ui)Yi, (5)

for ä. 0. Thus, this `kernel' estimator fä(x) will be able to approximately invert the Radon

transform and to estimate f from observations of Rf .

A natural idea in minimax estimation would be to choose the `optimal' bandwidth in

order to balance the bias term and the stochastic term entering the risk of the estimator

fä(x). This choice would depend on the smoothness of the function f being reconstructed.

In our problem we do not assume any smoothness for the function f . Thus, we wish to

de®ne a `data-driven' method of bandwidth selection and not a selection based on a priori

assumptions on the function f .

Furthermore, in order to adapt to pointwise properties of the function f , this bandwidth

selector will be local. This means that for each point x 2 Rd the selected bandwidth will

possibly be different in order to take into account the spatially inhomogeneous smoothness

of the function f .

Thus, we propose a local bandwidth selector ä(x). We suppose that ä(x) takes its values

in the geometrical grid

Än � fä 2 [äÿn , ä�n ] : ä � aÿ jä�n , j � 0, 1, 2, . . .g, (6)

where a . 1 is a ®xed constant, fä�ng is a sequence such that a log(ä�n n)=n < ä�n < 1 and

äÿn � log(ä�n n)=n. For example, for a � 2 and ä�n � 1, this grid contains the values

(1, 1
2
, 1

4
, . . .). The number of points in the grid is a log of the observations.

We need some de®nitions and properties of the estimators of the form (5). Write

fä(x) � E f fä(x) � 1

2rd

�
Sdÿ1

�1

ÿ1

Kä(hs, xi ÿ u)Rf (s, u) du ds (7)

and

v2(ä) � c� ä
1ÿ2d

n
, (8)

where c� � (ì2
d L2 � ó 2)r2

d(2ð)1ÿ2d=(2d ÿ 1), ìd is the area of the unit ball in Rdÿ1 and E f

(var f ) denotes the mathematical expectation (variance) with respect to the observations if the

true function is f . We have:

Lemma 2. If f 2 B(L) then the variance var f fä(x) of fä(x) satis®es

var f fä(x) < v2(ä),
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where v2(ä) is de®ned in (8).

Proof. By de®nition,

var f fä(x) � var f

1

n

Xn

i�1

Kä(hsi, xi ÿ ui)Yi

 !

� var f

1

n

Xn

i�1

Kä(hsi, xi ÿ ui)Rf (si, ui)

 !
� E f

1

n2

Xn

i�1

K2
ä(hsi, xi ÿ ui)å

2
i

 !
:

The fact that the function f belongs to B(L) implies that jRf (s, u)j < ìd L. Then,

var f fä(x) <
ì2

d L2 � ó 2

n
E f (K2

ä(hsi, xi ÿ ui)) <
ì2

d L2 � ó 2

2n

�
R

K2
ä(u) du:

Using the Parseval equality and (4), we obtain Lemma 2. h

Now de®ne, for ä. ç,

ø(ä, ç) � v(ä)ë(ä)� v(ä, ç)ë(ç): (9)

Here

ë(ä) � max 1, c2 log
ä�n
ä

� �1=2
 !

, (10)

where c2 . 8(2d ÿ 1), and

v2(ä, ç) � ì2
d L2 � ó 2

2n

�
R

(Kä(u)ÿ Kç(u))2 du: (11)

Similarly to Lemma 2,

var f ( fä(x)ÿ fç(x)) < v2(ä, ç): (12)

De®ne, for any ®xed x 2 Rd, the bandwidth

ä(x) � maxfä 2 Än : j fä(x)ÿ fç(x)j < ø(ä, ç), for all ç < ä, ç 2 Äng; (13)

clearly ä(x) is well de®ned. The choice of ä(x) means that we take the largest bandwidth ä
such that the estimators fä(x) and fç(x) are not too different, in some sense, for all ç < ä.

The idea is that there is no point in choosing a ®ner resolution, i.e. a smaller bandwidth, if

we cannot see more speci®c details. Thus, as long as the estimators are `close' we can take a

larger bandwidth. Here `close' roughly means when the difference between the estimators is

smaller than the error in estimation. This idea may be found in Lepskii (1990).

With this choice of bandwidth, instead of the usual deterministic bandwidth, we de®ne

the estimator of f (x):
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f �(x) � fä(x)
(x) � 1

n

Xn

i�1

Kä(x)
(hsi, xi ÿ ui)Yi: (14)

One may remark that this estimator does not belong to the class de®ned in (5), since the

bandwidth ä(x) is not deterministic and depends on the observations. In particular, f �(x) is

not a linear estimator. Furthermore, the estimator f �(x) does not depend on any assumptions

on the smoothness of the unknown function f . Observe that ä(x) is de®ned for each point x

and is not a global bandwidth. In this sense, the choice of ä(x) is said to be spatially

adaptive; it will be a local choice independent of any a priori smoothness.

De®ne

än � än(x, f ) � max ä 2 Än : j fç(x)ÿ f (x)j < v(ä)ë(ä)

2
for all ç 2 Än, ç < ä

� �
: (15)

If the set whose maximum is taken is empty, then we set än � äÿn . In the proof of Theorem 2

we show that, for d . 2 and n large enough, the set is non-empty. If d � 2, the choice äÿn
does not modify the results.

This local bandwidth än clearly depends on the unknown smoothness of f at point

x 2 Rd . Indeed, when the smoothness of f increases, the bias term becomes smaller and

thus än increases. In fact, än is some unknown `ideal' bandwidth such that the bias of the

estimator fç(x) is smaller than the `rate of convergence' v(än)ë(än) for all ç < än.

The idea now is to study the properties of än. Observe that the usual decomposition of

the mean-squared risk gives

E f ( fä(x)ÿ f (x))2 � ( fä(x)ÿ f (x))2 � var f fä(x) < ( fä(x)ÿ f (x))2 � c� ä
1ÿ2d

n
: (16)

The usual way to obtain the optimal rate of convergence is to choose the bandwidth which

balances the two terms of the right-hand side of (16). This trade-off depends on the

smoothness of the function f at point x, which is unknown here. De®ne

rn(x, f ) � inf
äÿn <ä<1

sup
0<ç<ä

( fç(x)ÿ f (x))2 � c�ä1ÿ2d log n

n

( )
,

which is the right-hand term of (16) modi®ed by a log factor. It is known from Lepskii

(1990) and Brown and Low (1996) that in pointwise estimation, one incurs an additional cost

in the form of a logarithmic factor when the smoothness of f is unknown. Then, we have:

Theorem 1. Let ä�n � 1. For any f 2 B(L) we have, as n!1,

E f [( fän
(x)ÿ f (x))2] <

5

4
v(än)ë(än) < C(a)rn(x, f ),

where C(a) is a positive constant depending on a de®ned in (6).

In the setting of a signal observed with additive Gaussian noise, Lepski and Spokoiny

(1997) and Lepski et al. (1997) call the term rn(x, f ) the adaptive rate of convergence. We

can conjecture that in the tomography problem, rn(x, f ) may also be considered as an
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adaptive rate. Hence, Theorem 1 would mean that the `estimator' fän
has a risk bounded by

the best possible risk in the context of adaptive estimation rn(x, f ). Thus, än would realize

(up to a log) the perfect trade-off in the risk, and might be considered as some optimal

choice of bandwidth.

The main problem is that fän
is not an estimator but what is called an oracle, since it

depends on the function f itself.

Our aim is to show that the estimator f �(x) constructed with the bandwidth ä(x) has a

risk bounded by the same value as the risk of the oracle fän
(x).

We obtain the following theorem, which is quite general since the function is only

supposed to be in B(L).

Theorem 2. We have uniformly over f 2 B(L), L . 0 and x 2 Rd,

E f [( f �(x)ÿ f (x))2] < c(a)(v(än)ë(än))2,

and thus, for ä�n � 1, we have

E f [( f �(x)ÿ f (x))2] < c9(a)rn(x, f ),

as n!1, where c(a) and c9(a) are positive constants depending on a de®ned in (6).

Theorem 2 proves that the estimator f �(x) mimics the asymptotic properties of the

oracle. Thus, for each f our estimator has (up to a log term) the same risk as the risk of

the estimator constructed with the bandwidth än which may be considered as optimal.

Furthermore, following Lepskii (1990) and Donoho and Johnstone (1994), we know that in

the standard setting of a signal observed with additive Gaussian noise, the log term in the

rate of convergence is the price paid for pointwise adaptation. Thus, in the setting of

tomography, there is no reason for this log not to disappear.

This is of special interest in applications, since we have constructed an estimator which

is, for each f with minimal assumptions, close to the best possible oracle. Thus the

estimator adapts to a particular function f and not to classes of functions, as usual in

minimax estimation.

We conjectured that the results from direct models could be transposed to the indirect

setting of tomography. This point should have to be proved. However, even if Theorem 2

meant that the estimator is in some sense the `best' possible estimator for a given function

f , we did not know if it is at least a `good' estimator. Indeed, without any assumptions on

f we cannot conclude anything concerning the asymptotic properties of the oracle fän
. In

particular, it is impossible to obtain minimax results on the class B(L), which is too large.

Thus, the evaluation of the estimator f �(x) using a conjecture may be enough, since,

even with a more mathematical result, we could not say that f �(x) is a good estimator.

A more standard way to appreciate the accuracy of the estimator f �(x), is to compare it

with other estimators. We consider as an example the case of functions in some Sobolev

ball. These classes of functions are of interest in the problem of tomography (see Natterer

1980; 1986). One reason for studying Sobolev classes in tomography is that smoothness

conditions in term of Fourier transforms are of natural interest in this problem. However,

other classes of functions need to be studied (Besov classes, analytic functions).
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A function f 2 H(â, C), â. d=2, C . 0, is such that

f (w) � 0, jwj. 1,

and �
Rd

(1� jùj2)âj f̂ (ù)j2 dù < C,

where f̂ is the Fourier transform of f , f̂ (ù) � � Rd f (ù)ei(ù,x) dù. On this class, Korostelev

and Tsybakov (1991; 1993) proved that the optimal rate of convergence for the mean-squared

error is nÿ(2âÿd)=(2â�dÿ1). Here, we have the following result.

Theorem 3. Let L . 0 and let ä�n � 1. Then for any ®xed x 2 Rd, we have, for any â. d=2

and C . 0 unknown,

lim sup
n!1

sup
f 2H(â,C)\B(L)

n

log n

� �(2âÿd)=(2â�dÿ1)

E f [( f �(x)ÿ f (x))2] ,1:

Theorem 3 says that f �(x) has almost the optimal rate of convergence for each â and C.

This means that f �(x) has (up to a log term) the best rate of convergence among all the

estimators. Thus, in the standard case of functions belonging to some Sobolev ball, f �(x) is

almost optimal.

Furthermore, f �(x) does not depend on â and C and it is then more realistic to construct

it in practical cases than classical estimators which need the knowledge of an a priori

smoothness. The only cost incurred is the loss of a logarithmic factor in the rate of

convergence. In the direct case, Tsybakov (1998) proved that for the pointwise risk and the

Sobolev classes, the loss due to adaptation in the rate of convergence is a log term. Once

more, we can conjecture that this log term is also a cost incurred in the tomography

problem. Nevertheless, what is important is that we only lose a log term in the rate of

convergence which will be negligible for applications.

Tomography is a speci®c inverse problem. Thus, it would be natural to extend the

methods described in this paper to other inverse problems, especially all the problems

described in Donoho (1995) ± Abel transforms, integration, etc. This would be of interest

for comparison between `adaptive kernels' and wavelet±vaguelette decomposition methods.

We can say roughly here that in wavelet±vaguelette decomposition we make a projection on

the vaguelette basis and then we obtain the empirical wavelet coef®cient, which is related to

the value w j,k � f2ÿ jä�n (x)ÿ f 2ÿ jÿ1ä�n (x). Thus, when using thresholding, we are making a

comparison between close resolution levels, and then important features may exist at each

level.

3. Proofs

In order to prove Theorem 1 we require the following lemma:

Lemma 3. We have, for all ä,
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fä(x) � (2ð)ÿd

�
Rd

f̂ (ù)Iä(jùj)eÿihù,xi dù:

Proof of Lemma 3. We have that Rf (s, u) � 0 for juj. 1 since f 2 B(L). Thus, using

properties of the inverse Fourier transform, the convolution product and Lemma 1, we obtain

fä(x) � 1

2rd

�
S dÿ1

�
R

Kä(hs, xi ÿ u)Rf (s, u) du ds � (2ð)ÿ1

2rd

�
Sdÿ1

�
R

K̂ä(t)cRf (s, t)eÿi ths,xi dt ds

� (2ð)ÿd

�
S dÿ1

�1
0

tdÿ1 Iä(t) f̂ (ts)eÿih ts,xi dt ds � (2ð)ÿd

�
Rd

f̂ (ù)eÿihù,xi Iä(jùj) dù:

h

Proof of Theorem 1. In order to prove Theorem 1, we need ®rst to prove that än is well

de®ned, i.e. that the maximum in (15) is taken over a non-empty set. Let ä � äÿn . By use of

Lemma 3, we obtain

j fäÿn (x)ÿ f (x)j2 < 2j fäÿn (x)j2 � 2j f (x)j2

< 2(2ð)ÿ2d

�����
Rd

f̂ (ù)I(jùj < 1=äÿn )eÿihù,xi dù

����2 � 2j f (x)j2

< 2(2ð)ÿ2d

�
Rd

j f̂ (ù)j2 dù

�
Rd

I(jùj < 1=äÿn ) dù� 2j f (x)j2:

Since, f 2 B(L), this implies that

j fäÿn (x)ÿ f (x)j2 < c3(äÿn )ÿd ,

where c3 is a positive constant. Using (8) and (10), observe that

v2(äÿn )ë2(äÿn ) � c�c2(äÿn )2ÿ2d :

Thus, for d . 2, for n large enough,

j fäÿn (x)ÿ f (x)j < 1

2
v(äÿn )ë(äÿn ):

Therefore, än is well de®ned in (15) for d . 2 since the set is non-empty.

For d � 2, one may observe that än is not always de®ned. This is of no importance since

( fäÿn (x)ÿ f (x)) and v(äÿn )ë(äÿn ) are of the same order. Thus, we ®x än � äÿn if än is not

de®ned.

Using the standard decomposition of the risk as in (16), the de®nition of än in (15) and

Lemma 2, we obtain

E f ( fän
(x)ÿ f (x))2 � ( fän

(x)ÿ f (x))2 � var f fän
(x) <

v2(än)ë2(än)

4
� v2(än)

<
5

4
v2(än)ë2(än): (17)
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Now, suppose that the in®mum in the de®nition of rn(x, f ) is attained for ä � ä0. If ä0 , aän

then, for C large enough,

Crn(x, f ) > Cc�ä1ÿ2d
n

log n

n
>

5

4
v2(än)ë2(än): (18)

If ä0 > aän then, by use of the de®nition of än in (15), we obtain

sup
0<ç<ä0

( fç(x)ÿ f (x))2 > sup
0<ç<aän

( fç(x)ÿ f (x))2 .
v2(aän)ë2(aän)

4
,

and thus

Crn(x, f ) >
5

4
v2(än)ë2(än): (19)

Using (18) and (19) in (17), we have the result for C large enough. h

Proof of Theorem 2. Decompose the quadratic risk as follows:

E f [( f �(x)ÿ f (x))2] � E f [( f �(x)ÿ f (x))2 I(ä > än)]� E f [( f �(x)ÿ f (x))2 I(ä, än)],

where we have written ä for ä(x). We have two cases to study.

Case 1: fä > äng. Note that ä9 > ä implies that v(ä) > v(ä9) and ë(ä) > ë(ä9). Thus,

ø(ä9, ä) < v(ä)ë(ä)� v(ä9, ä)ë(ä) < 3v(ä)ë(ä):

By the use of (9) and the de®nition of ä in (13), we have

j f �(x)ÿ fän
(x)jI(ä > än) < ø�(än) < 3v(än)ë(än), (20)

where ø�(ä) � supfø(ä9, ä) : ä9 2 Än, ä9 . äg. Thus,

E f [( f �(x)ÿ f (x))2 I(ä > än)]

< 2(E f [( f �(x)ÿ fän
(x))2 I(ä > än)]� E f ( fän

(x)ÿ fän
(x))2 � ( fän

(x)ÿ f (x))2):

Using Lemma 2, (15) and (20), we obtain

E f [( f �(x)ÿ f (x))2 I(ä > än)] < 2 9v2(än)ë2(än)� v2(än)� 1

4
v2(än)ë2(än)

� �
:

Finally,

E f [( f �(x)ÿ f (x))2 I(ä > än)] < c4v2(än)ë2(än), (21)

where c4 is a positive constant.

Case 2: fä, äng. Write

Bn(x, ä, ç) � fj fä(x)ÿ fç(x)j.ø(ä, ç)g,
where ç, ä 2 Än, ä. ç. By the de®nition of ä,

8ä 2 Än, fä � aÿ1äg �
[

ç2Än(ä)

Bn(x, ä, ç),
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where Än(ä) � fç 2 Än, ç, äg. Therefore,

fä, äng �
[

ä2Än(aän)

[
ç2Än(ä)

Bn(x, ä, ç):

Thus,

E f [( f �(x)ÿ f (x))2 I(ä, än)] <
X

ä2Än(aän)

E f [( f aÿ1ä(x)ÿ f (x))2 I(ä � aÿ1ä)]

<
X

ä2Än(aän)

X
ç2Än(ä)

E f [( f aÿ1ä(x)ÿ f (x))2 I(Bn(x, ä, ç))]:

By the de®nition of än in (15), aÿ1ä, än implies that

j f aÿ1ä(x)ÿ f (x)j < 1

2
v(än)ë(än) <

1

2
v(ä)ë(ä):

And, for any ç, ä < än,

j fç(x)ÿ f (x)j < 1

2
v(än)ë(än) <

1

2
v(ä)ë(ä):

This implies that

Bn(x, ä, ç) � fj fä(x)ÿ fç(x)ÿ ( fä(x)ÿ fç(x))� fä(x)ÿ fç(x)ÿ f (x)� f (x)j.ø(ä, ç)g

� v(ä)ë(ä)�
���� 1

n

Xn

i�1

îi

����.ø(ä, ç)

( )
,

where îi � (Kä(hsi, xi ÿ ui)ÿ Kç(hsi, xi ÿ ui))Yi ÿ ( fä(x)ÿ fç(x)). Observe by (12) that the

îi are i.i.d. random variables with zero mean and variance var f î1 < nv2(ä, ç).

Using (9), simplify the previous display to give

Bn(x, ä, ç) �
���� 1

n

Xn

i�1

îi

����. v(ä, ç)ë(ç)

( )
:

Therefore,

E f [( f �(x)ÿ f (x))2 I(ä, än)]

<
X

ä2Än(aän)

X
ç2Än(ä)

E f ( f aÿ1ä(x)ÿ f (x))2 I

���� 1

n

Xn

i�1

îi

����. v(ä, ç)ë(ç)

 !" #
: (22)

Using the Cauchy±Schwarz inequality, we obtain
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E f ( f aÿ1ä(x)ÿ f (x))2 I

���� 1

n

Xn

i�1

îi

����. v(ä, ç)ë(ç)

 !" #

< (E f [( f aÿ1ä(x)ÿ f (x))4])1=2 P f

���� 1

n

Xn

i�1

îi

����. v(ä, ç)ë(ç)

 ! !1=2

: (23)

We have

P f

���� 1

n

Xn

i�1

îi

����. v(ä, ç)ë(ç)

 !
< P f

1

n

Xn

i�1

îi . v(ä, ç)ë(ç)

 !
� P f ÿ 1

n

Xn

i�1

îi . v(ä, ç)ë(ç)

 !
:

(24)

In fact, we only study the ®rst probability on the right-hand side of (24). Using Chebychev's

exponential inequality, we obtain

P f

1

n

Xn

i�1

îi . v(ä, ç)ë(ç)

 !
< E f exp

z

n

Xn

i�1

îi

 !" #
exp(ÿzv(ä, ç)ë(ç)), 8z > 0:

Since the îi are i.i.d., we have

E f exp
z

n

Xn

i�1

îi

 !" #
� E f exp

z

n
î1

� �� �n

:

Now use the conditional expectation. Let (S, U ) be a uniform random variable on Sdÿ1 3
[ÿ1, 1]. Write K

ç
ä � Kä(hS, xi ÿ U )ÿ Kç(hS, xi ÿ U ). We have

E f exp
z

n
î1

� �
j(S, U )

� �
� exp

z

n
(K

ç
äRf (S, U )ÿ fä(x)� fç(x))

� �
E f exp

z

n
K

ç
äå1

� �
j(S, U )

� �
:

Since å1 is a zero-mean Gaussian random variable independent of (S, U ), we ®nally obtain

E f exp
z

n
î1

� �
j(S, U )

� �
� exp

z

n
(K

ç
äRf (S, U )ÿ fä(x)� fç(x))� z2ó 2

2n2
(K

ç
ä)2

� �

< exp(U1 � U2) exp
z2ó 2

2n2
E(K

ç
ä)2

� �
,

where U1 � z=n(K
ç
äRf (S, U )ÿ fä(x)� fç(x)) and U2 � z2ó 2((K

ç
ä)2 ÿ E(K

ç
ä)2)=(2n2),

where E denotes the expectation with respect to the uniform random variable (S, U ).

Observe that EU1 � EU2 � 0, var f U1 < (z2ì2
d L2=2n2)

�
R(Kä(u)ÿ Kç(u))2 du and

var f U2 < z4ó 4 n2v2(ä, ç)=(4n4). Finally, we obtain for z � rë(ç)=v(ä, ç), where r is a

positive constant, since the term U2 is small for n large enough,

E f exp
z

n
î1

� �� �� �n

< exp
r2(2ì2

d L2 � ó 2)ë2(ç)

4nv2(ä, ç)

�
R

(Kä(u)ÿ Kç(u))2 du(1� o(1))

 !
:

Thus, by de®nition of v(ä, ç) in (11), we have, as n!1,
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P f

1

n

Xn

i�1

îi . v(ä, ç)ë(ç)

 !
< exp(((1ÿ k)r2 ÿ r)ë2(ç)�,

where k is a small positive constant. Finally, we can obtain, as n!1,

P f

���� 1

n

Xn

i�1

îi

����. v(ä, ç)ë(ç)

 !
< 2 exp ÿ ë2(ç)

4

� �
< 2 exp ÿ c2

4
log

ä�n
ç

 !
; (25)

if ç is not small enough, then the result may easily be obtained directly from (22) since

ç, ä < än < ä�n .

Now study the ®rst term on the right-hand side of (23),

E f [( f aÿ1ä(x)ÿ f (x))4] < 4E f [( f aÿ1ä(x)ÿ f aÿ1ä(x))4]� 4( f aÿ1ä(x)ÿ f (x))4

< 4E f

1

n

Xn

i�1

Zi

 !4
24 35� v4(än)ë4(än)

4
,

where Zi � f aÿ1ä(x)ÿ f aÿ1ä(x), by the de®nition of än in (15). Observe that the Zi are

centred random variables with var f (Z1) < nv2(aÿ1ä). Thus, as n!1,

E f

1

n

Xn

i�1

Zi

 !4
24 35 <

E f Z4
1

n3
� 3(E f (Z2

1))2

n2
< c95v4(aÿ1ä), (26)

where c95 is a positive constant.

Finally, using (25) and (26) in (22), we obtain

E f [( f �(x)ÿ f (x))2 I(ä, än)] < c5

X
ä2Ä n(aän)

X
ç2Än(ä)

(v4(aÿ1ä)� v4(än)ë4(än))1=2eÿë
2(ç)=8,

where c5 is a positive constant. Using (8), we have v2(aÿ1ä) � a2dÿ1c�ä1ÿ2d=n. And

ç, ä < än implies ë(än) < ë(ç), v(än) , v(aÿ1ä). Assume that c2=8 . 2d ÿ 1. Thus,

E f [( f �(x)ÿ f (x))2 I(ä, än)] < c6

X
ä2Än(aä n)

X
ç2Än(ä)

ä1ÿ2d

n

� �
ë2(ç)

ç

ä�n

� �
c2=8, (27)

where c6 is a positive constant which depends on a. Now we wish to bound the number of

elements of the set Än. If ç � aÿ jä�n 2 Än then j < [log(ä�n n)=log a] � Nn, where [�]
denotes the integer part. Thus, if á. 0 small enough (in fact 2á < c2=8ÿ 2d � 1), then

X
ç2Ä n(ä)

ë2(ç)
ç

ä�n

� �
c2=8 <

ä

ä�n

 !
(c2=8)ÿá X

ç2Än(ä)

c2 log
ä�n
ç

 !
ç

ä�n

� �á

<
ä

ä�n

 !
(c2=8)ÿác2

XNn

j�0

j
1

aá

� � j

log a:
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This series is convergent when a . 1; thereforeX
ç2Än(ä)

ë2(ç)
ç

ä�n

� �
c2=8 < c7

ä

ä�n

 !
(c2=8)ÿá, (28)

where c7 is a positive constant. By using (28) in (27) we obtain,

E f [( f �(x)ÿ f (x))2 I(ä, än)] <
c8ä
�2dÿ1

n

n

X
ä2Ä n(aän)

ä

ä�n

 !
(c2=8)ÿáÿ2d�1,

where c8 is a positive constant. Finally, as the number of elements of the set Än(aän) can be

bounded by Nn and the series converges,

E f [( f �(x)ÿ f (x))2 I(ä, än)] <
c8ä
�2dÿ1

n

n

XNn

j�0

1

aá

� � j

< cv2(än)ë2(än), (29)

where c is a constant large enough which depends on a. The theorem follows from (21) and

(29). h

Proof of Theorem 3. We have, using Lemma 3,

( fç(x)ÿ f (x))2 � (2ð)ÿ2d

�
Rd

f̂ (ù)I jùj. 1

ç

� �
eÿihù,xi dù

� �2

< (2ð)ÿ2d

�
Rd

j f̂ (ù)j 2(çjùj)â
1� (çjùj)â dù

 !2

< 4(2ð)ÿ2dç2â

�
Rd

j f̂ (ù)j2jùj2â dù .

�
Rd

dù

1� (çjùj)â :

Thus, f 2 H(â, C) implies, for all ç,

( fç(x)ÿ f (x))2 < c9ç
2âÿd ,

where c9 is a positive constant. Let ç < r(log n=n)1=(2â�dÿ1), where r. 0 is small enough;

then, as n!1,

( fç(x)ÿ f (x))2 < c9r2âÿd log n

n

� �2âÿd=(2â�dÿ1)

<
r1ÿ2d c�c2

4(2â� d ÿ 1)

log n

n

� �2âÿd=(2â�dÿ1)

:

Thus, for all ç < r(log n=n)1=(2â�dÿ1), where r. 0 is small enough, we have, as n!1,

j fç(x)ÿ f (x)j < 1

2
v r

log n

n

� �1=(2â�dÿ1)
 !

ë r
log n

n

� �1=(2â�dÿ1)
 !

:

Therefore, by the de®nition of än(x, f ) in (15), we have
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än(x, f ) > r
log n

n

� �1=(2â�dÿ1)

:

Finally, we obtain using Theorem 2, as n!1,

E f [( f �(x)ÿ f (x))2] < c10

log n

n

� �2âÿd=(2â�dÿ1)

,

where c10 is a positive constant. h
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