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We consider the estimation of the parameters in a semi-parametric model for life-history data from

historical demography. The data consist of a sequence of times of life events that is either ended by a

time of death or right-censored by an unobserved time of migration. We derive the properties of the

maximum likelihood estimators of the parameters and prove their asymptotic ef®ciency. Estimating the

migration distribution turns out to be an inverse problem, whereas the other parameters are regular.

The proof is based on a uniform rate of convergence of the Grenander estimator of a monotone

density and bounds on the number and spacings of its support points.
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Introduction

To estimate life length and mobility in England from the sixteenth to the eighteenth century

historical demographers use data from parish registers. Dates of baptisms (births), marriages

and burials (deaths) were routinely recorded in parish registers, but in many parishes the

registers are incomplete or individuals who are listed cannot be identi®ed. Due to mobility,

data concerning one person may be scattered over several registers and, despite much effort,

it is not always possible to link the records. As a consequence, the times of death of

approximately 40% of all people are missing. In these cases we observe the time of birth and

possibly the times of a sequence of life events: marriage, births and deaths of children, death

of husband and remarriage. The main reason why a time of death is missing is thought to be

emigration to another parish. Unfortunately, the time of emigration is not observed, so that

the sequence of life events is right-censored at an unobserved censoring time. See Wrigley

and Scho®eld (1983) and Wrigley et al. (1997) for extensive discussions of data of this type.

Since the censoring time is unobserved, the data cannot be handled by standard

techniques for censored survival data. For this reason Gill (1997) introduces a `passive

registration' type of censoring. In this model the observations are derived from three

independent processes. The ®rst is the time of death T , the second the time of censoring C

and the third is the process R0 � 0, R1, R2, . . . of `registration events'. The observations

concerning one person consist of

Ä � 1fT < Cg, ÄT , R1, R2, . . . , RN ,

where
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N � maxfn > 0 : Rn < T ^ Cg:

Note that we never observe the `time of migration' C and observe the `time of death' T only

if death takes place before migration. Gill (1997) assumes that the registration events

R1, R2, . . . are the events of a Poisson process with known intensity and studies the

asymptotic properties of the maximum likelihood estimators of the distributions F and G of

T and C, respectively, under the assumption that these distributions are completely unknown.

In this paper we drop the assumption of a known rate and study the maximum likelihood

estimator of the rate è, F and G jointly. In the course of our proofs we establish a number of

results on the Grenander estimator of a monotone density that are of independent interest.

For ease of notation, de®ne T� to be the last moment at which a person is seen to be

alive, i.e.

T� � T if Ä � 1,

RN , if Ä � 0:

�
It is convenient to reparametrize the model in terms of è and the subdistribution functions

F�0,è(t) � Pè,F,G(T� < t, Ä � 0),

F�1 (t) � PF,G(T� < t, Ä � 1):

(Both F�0,è and F�1 depend on F and G, but we do not let this show up in the notation.)

Straightforward calculations, for instance using properties of the Poisson process, show that

the density for a single observation X � (Ä, ÄT , R1, . . . , RN ) can be written in the form

ÄèN eÿèT� f �1 (T�)� (1ÿ Ä)1fN . 0gèNÿ1eÿèT� f �0,è(T�)� (1ÿ Ä)1fN � 0gF�0,èf0g:

Here f �0,è and f �1 are densities of the respective subdistribution functions and F�0,èf0g
denotes a point mass at zero. It is shown below that F�0,è is absolutely continuous on (0, 1)

and its (Lebesgue) density f �0,è can be taken to be left-continuous; we shall use this version to

de®ne a likelihood. If we write F�0,èf0g as f �0,è(0), then f �0,è is a density relative to the sum

of the Dirac measure at 0 and Lebesgue measure on (0, 1) and the preceding display can be

abbreviated to

èNÿ1fÄ�0,T�.0geÿèT� f �1 (T�)Ä f �0,è(T�)1ÿÄ: (1:1)

The density f �1 will be seen to be arbitrary; to de®ne a likelihood we shall replace the term

f 1(T�) by the point mass F�1 fTg and thus create a mixed empirical and ordinary likelihood.

Throughout we assume that the total set of observations is a random sample X1, . . . , X n

from the distribution of X and de®ne the total likelihood as the product over the observations

of the likelihoods for the n individuals.

In the expression (1.1) for the likelihood the original parameters are hidden in the

distributions F�0,è and F�1 , but they can be recovered by explicit formulae. First, we de®ne

the subdistribution functions
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F0(t) � PF,G(T ^ C < t, Ä � 0) �
�

[0, t]

(1ÿ F)(s) dG(s),

F1(t) � PF,G(T ^ C < t, Ä � 1) �
�

[0, t]

(1ÿ G)(sÿ) dF(s):

It is known (see Gill 1994) that the pair (F0, F1) ranges over all pairs of defective

distribution functions on [0, 1) that add up to a distribution function as (F, G) ranges over

all pairs of distribution functions on [0, 1] such that at least one of F and G concentrate on

(0, 1). Furthermore, there exists a one-to-one relationship between the restrictions of the pair

(F, G) and the pair (F0, F1) to the interval where 1ÿ F and 1ÿ G are positive. In fact, the

preceding display can be explicitly inverted through the product integrals (see Gill 1994)

1ÿ F(t) �
Y

0<s< t

(1ÿËFfsg)eÿËc
F ( t), dËF � dF1

1ÿ F0ÿ ÿ F1ÿ
,

1ÿ G(t) �
Y

0<s< t

(1ÿËGfsg)eÿËc
G( t), dËG � d F0

1ÿ F1 ÿ F0ÿ
,

(1:2)

where the superscript c denotes the continuous part and a minus sign denotes a left-

continuous version. Thus (è, F, G) can be recovered from (è, F0, F1). Second, the triples

(è, F�0,è, F�1 ) and (è, F0, F1) possess the relationships (for t . 0)

F0(t) � F�0,è(t)ÿ 1

è
f �0,è(t�), F1 � F�1 : (1:3)

Here the second relation is obvious and the ®rst relation follows from the following lemma,

adapted from Gill (1997), which also characterizes the possible values of the new parameter

F�0,è.

The lemma concerns the distribution of T� given that Ä � 0. If Ä � 0, then T� � RN is

the last event before T ^ C � C of a Poisson process that is started independently of (T , C)

at zero. Thus T� is conditionally distributed as max(0, C ÿ E) for a variable E that is

independent of C and has an exponential distribution with rate è. Given Ä � 0, the variable

C � T ^ C has distribution function ~F0 � F0=F0(1).

Lemma 1.1. Let ~F�0,è be the distribution of max(0, C ÿ E), where C is a random variable

with a distribution function ~F0 on [0, 1] and E is independent of C and has an exponential

distribution with rate è. Then ~F�0,è has an atom ~F�0,èf0g at zero, and is absolutely continuous

on (0, 1) with a density ~f �0,è that can be chosen such that the function t 7! eÿè t f �0,è(t) is

non-increasing, left-continuous and such that ~f �0,è(0�) < è ~F�0,èf0g. Conversely, any

distribution ~F�0,è on [0, 1] with these properties can be uniquely represented as the

distribution of max(0, C ÿ E) for C and E as given, where ~F0 can be recovered as
~F0(t) � ~F�0,è(t)ÿ èÿ1 ~f �0,è(t�). Finally, we have ~f �0,è(0�) � è ~F�0,èf0g if and only if
~F0f0g � 0.

Up to the (unknown) constant F0(1) � P(Ä � 0), the preceding lemma gives the set of

possible distributions F�0,è over which we must maximize the likelihood. By the preceding
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discussion, the parameters F�1 � F1 and F�0,è are connected only through the requirement

that the total masses F1(1) and F�0,è(1) add up to 1, but otherwise vary independently,

where F�1 � F1 can be any subdistribution function on [0, 1].

To carry out the maximization it is convenient to rewrite the likelihood a second time.

De®ne the subdistribution function

H0,è(t) � Pè,F,G(eèT� < t, Ä � 0):

The corresponding subdistribution has an atom H0,èf1g � F�0,èf0g at 1 and a density h0,è on

(1, 1) such that

t 7! h0,è(eè t) � 1

è
eÿè t f �0,è(t) �

�
[ t,1)

eÿsè dF0(s) (1:4)

is non-increasing and such that H0,èf1g > h0,è(1�), in view of the preceding lemma (with

equality if and only if F0f0g � 0). The ®rst is equivalent to h0,è : (1, 1) 7! R being non-

increasing. If we write the point mass at 1 as h0,è(1), then the two requirements can be

described together by saying that h0,è : [1, 1) 7! R is non-increasing, and the likelihood can

be rewritten in the form

l(è, F, G)(X ) � èN eÿèT�ÄF�1 fT�gÄh0,è(eèT�)1ÿÄ: (1:5)

The following lemma, slightly adapted from Gill (1997), shows how to compute the

maximum likelihood estimators of F�1 and h0,è, if è is known.

Lemma 1.2. If è. 0 is known, then the maximum likelihood estimator for F1 is given by

F̂1(t) � 1

n

Xn

i�1

1fTi < t, Äi � 1g:

Furthermore, the maximum likelihood estimator for h0,è is the left derivative of the least

concave majorant of the subdistribution function

H0,è(t) :� 1

n

Xn

i�1

1feèT�i < t, Äi � 0g:

Proof. The parameters F1 and h0,è are only connected through the requirement that

F1(1)� H0,è(1) � 1. We can release this connection by introducing an additional

parameter p � F1(1) and replacing F1 and H0,è in the likelihood by p ~F1 and

(1ÿ p) ~H0,è, where ~F1 and ~H0,è range independently over parameter sets as before but are

also restricted to be distribution functions. This yields the likelihoodYn

i�1

èNi eÿèTiÄi ~F1fTigÄi pÄi (1ÿ p)1ÿÄ i ~h0,è(eèT�i )1ÿÄi :

Maximizing this over p readily yields p̂ � nÿ1
Pn

i�1Äi as the maximum likelihood estimator.

Furthermore, maximizing over ~F1 yields
Pn

i�11fTi < t, Äi � 1g=Pn
i�11fÄi � 1g. The ®rst

assertion of the lemma is now immediate.
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To prove the second assertion, we can identify ~H0,è with the absolutely continuous

distribution on (0, 1) that is identical to ~H0,è on (1, 1) and has a density that is

identically equal to ~H0,èf1g on (0, 1]. (Thus we spread the point mass at 1 uniformly over

the interval (0, 1).) Then the functions t! ~h0,è(t) range exactly over all non-increasing

probability densities on (0, 1) that are constant on (0, 1]. With Y1, . . . , Yk denoting the

values eèT�i for which Äi � 0, the maximization of the likelihood over ~h0,è is precisely the

maximization of
Q

i h(Yi) over the set of all monotone densities h on (0, 1) that are

constant on (0, 1]. Since Yi > 1 for every i, the requirement that h be constant on (0, 1] is

not operational and hence the maximization yields the Grenander estimator. This is the left

derivative of the least concave majorant of the empirical distribution function H0,è=(1ÿ p̂)

of Y1, . . . , Yk . (See Robertson et al. 1988; Groeneboom and Lopuhaa 1993; or van der

Vaart 1998, Section 24.4.) h

The maximum likelihood estimators for the pair (H0,è, F1), can be transformed into

maximum likelihood estimators for (F, G), as explained previously, for every ®xed è. To

®nd the true maximum likelihood estimators we form the pro®le likelihood for è by

reinserting the maximum likelihood estimators for (H0,è, F1) for known è, maximize this

over è by a grid search or a Newton algorithm, and ®nally reinsert the maximum likelihood

estimator for è. We have implemented this procedure on computer and show a picture of

the pro®le log-likelihood function in Figure 1.

Instead of the maximum likelihood estimator, there is a different, simpler estimator of è,

namely

è̂n,c :�

Xn

i�1

(Ni ÿ 1fT�i . 0, Äi � 0g)
Xn

i�1

T�i
: (1:6)

This is the conditional maximum likelihood estimator of è based on the total number of

registration events in the interval [0, T�) given T� (and T�. 0). We show below that this is

also the solution of the `ef®cient score equation', from which it readily follows that this

estimator is asymptotically ef®cient. An alternative to using the maximum likelihood

estimator for the full parameter (è, F, G) would be to use the ad hoc estimator for è and

then the estimators for F and G resulting from the preceding lemma.

The main results of this paper are the asymptotic distributions of the maximum

likelihood estimators for è, F and G. The maximum likelihood estimators for è and F

converge at rate
���
n
p

to Gaussian distributions and are ef®cient in the semi-parametric sense.

A slight modi®cation of the maximum likelihood estimator for G converges at rate nÿ1=3 to

a non-Gaussian limit.

In our proofs of these results we use properties of the Grenander estimator, or rather of

the modi®cation of this estimator described in Lemma 1.2. In Section 8 we show, inter alia,

that the uniform rate of the Grenander estimator is of order (n=log n)ÿ1=3 and that the

spacings between these support points are of order (n=log n)ÿ1=3.

The model as discussed in this paper can be viewed as a ®rst attempt to tackle the
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historical life-length data mentioned above. The model has the bene®t of being

mathematically tractable, albeit that the analysis is already involved. A number of changes

may help to make the model more realistic for this particular data set. For instance, it

appears realistic to make the censoring time (interpreted as a time of moving) dependent on

certain events in the registration process (such as marriage). Furthermore, the Poisson

character of the registration process may not be fully realistic. Alternative models, still with

a similar structure to the model in this paper, are studied by Jonker (2000), who also

discusses the implementation of estimating procedures for these models and proves their

consistency.

The remainder of the paper is organized as follows. In Section 2 we establish the

consistency of the maximum likelihood estimator by Wald's method. This is standard, but a

necessary step in the proof of the main results. In Section 3 we derive the tangent space of

the model and compute the ef®cient score function for è. The form of the latter score

function is an important motivation for the proof of the asymptotic normality of the

maximum likelihood estimator for è, given in Section 4. Next, Sections 5 and 6 contain the

results concerning the estimation of F and G, respectively. The details of the proofs of

these results are given in Sections 9 and 10. Finally, Sections 7 and 8 are appendices which

contain further details, and the results on the Grenander estimator mentioned previously.
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Figure 1. Pro®le log-likelihood for the estimation of è based on a sample of size 5000. The true

value of è is 0.1.
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Throughout the paper we assume that the true distributions F and G are continuous and

are supported inside a bounded subinterval of [0, 1).

2. Consistency

In this section we show that the maximum likelihood estimators for è, F and G are consistent

on the intervals where they are identi®able. This is important as a ®rst step in the derivation

of the asymptotic distributions. The proof is an application of the method of Wald (1949),

after ®rst eliminating F1 from the likelihood.

Theorem 2.1. For every ô. 0 such that (1ÿ F)(ô)(1ÿ G)(ô) . 0, the maximum likelihood

estimators satisfy (è̂, F̂, Ĝ)!P (è, F, G) for the product of the Euclidean distance and twice

the uniform distance on [0, ô].

Proof. As in the proof of Lemma 1.2, the likelihood for one observation can be written in the

form

l(è, p, ~F0, ~F1)(X ) � èN eÿèT�Ä ~F1fTgÄ pÄ(1ÿ p)1ÿÄ
�

[RN ,1)

eÿès d ~F0(s)

 !1ÿÄ
:

The maximum likelihood estimator for ~F1 was explicitly found in Lemma 1.2 and is seen to

be uniformly consistent by the Glivenko±Cantelli theorem. Thus we can drop the

corresponding term and study the likelihood as a function of (è, p, ~F0) only. To prove

consistency we apply Wald's general consistency theorem (see Wald 1949; or van der Vaart

1998, Section 5.2.1). This has three main conditions: continuity of the likelihood in the

parameters; integrability of the (local) suprema of the log-likelihood ratios; and identi®ability.

Wald's method works best if the parameter set is compact. We choose the parameter sets

for è, p, and ~F0 respectively equal to [0, 1], [0, 1], and the set of distribution functions on

[0, ô0] equipped with the topology of weak convergence. Here ô0 is an upper bound on the

support of RN . Then it is necessary to extend the de®nition of the likelihood to the case

where è 2 f0, 1g, which we perform by continuity (ignoring the case where (T�, Ä) �
(0, 1), which has probability zero):

l(0, p, ~F0)(X ) �
0 if N . 0,

pÄ(1ÿ p)1ÿÄ
�

[0,1)

d ~F0(s)1ÿÄ if N � 0,

8><>:
l(1, p, ~F0)(X ) � 0:

Then the map (è, p, ~F0) 7! l(è, p, ~F0)(X ) is continuous at every (è, p, ~F0) such that RN is a

continuity point of ~F0 or RN � 0. Since the distribution of RN has at most a point mass at

zero, this means at every (è, p, ~F0) for almost all X .

The log-likelihood is bounded above by
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log sup
è

èN eÿèRN � N log N ÿ N log RN ÿ N

(with 0 log 0 � 0). This is integrable. Furthermore, the log-likelihood at the true parameters

(è0, p0, ~F00) is bounded below by

N log è0 ÿ è0TÄ� Ä log p0 � (1ÿ Ä)log(1ÿ p0)� (1ÿ Ä)log(eÿè0ô0
ÿ
1ÿ ~F00(RN ))

�
:

Here, given Ä � 0, the variable RN is distributed as max(C ÿ E, 0) for C and E as in Lemma

1.1 and hence is stochastically bounded above by C. Thus

E
ÿ
log(1ÿ ~F00(RN ))jÄ � 0

�
> E log(1ÿ ~F00(C)) �

�1

0

log u du .ÿ1:

Together with the preceding displays, this proves that the supremum of the log-likelihood

ratio is integrable above.

The parameters è and p can be seen to be identi®able from the existence of the

consistent estimators
P

(Ni ÿ 1fÄi � 0, T�i . 0g)=PT�i and nÿ1
P

Äi. The parameter ~F0 is

identi®able on its support from the term (1ÿ Ä)
�

[RN ,1)e
ÿès d ~F0(s) in the likelihood, since

conditionally on Ä � 0 the variable RN is continuously distributed on its support with a

positive density.

Thus we have proved consistency of the maximum likelihood estimator of the parameter

(è, p, ~F0, ~F1), relative to the topology introduced previously. Because the distribution

function ~F0 is continuous, the weak topology can be replaced by the uniform topology. This

translates into consistency of the estimators for F and G by continuity of the map

( p, ~F0, ~F1) 7! (F, G), at least when these distribution functions are restricted to the interval

[0, ô]. h

3. Tangent sets and ef®cient scores

General de®nitions of tangent spaces (not completely in agreement) are given in Pfanzagl

(1982), Bickel et al. (1993) and van der Vaart (1998). A tangent space is essentially the

(closed) linear span of all score functions of the model. In the present case it is convenient to

parametrize the model by (è, p, ~F0, ~F1), where p � F1(1) and ~F0 and ~F1 are the probability

distributions obtained by renormalizing ~F0 and ~F1, and write the density of one observation

in the form

l(è, p, ~F0, ~F1)(X ) � èNÿ1fÄ�0,T�. 0geÿèT� ~f 1(T )Ä pÄ(1ÿ p)1ÿÄ ~f �0,è(T�)1ÿÄ:

Here ~f �0,è(0) � ~F�0,èf0g and ~f �0,è depends on both è and ~F0, even though this is not apparent

from the notation. We compute score functions for the various parameters separately.

The score function for è takes the form

_lè, p, ~F0, ~F1
(X ) � N ÿ 1fÄ � 0, T�. 0g

è
ÿ T� � (1ÿ Ä)

@

@è
~f �0,è(T�)

~f �0,è(T�) :

8 M.A. Jonker and A.W. van der Vaart



Similarly, the score function for p is given by

_kè, p, ~F0, ~F1
(X ) � Ä

p
ÿ 1ÿ Ä

1ÿ p
� Äÿ p

p(1ÿ p)
:

The distribution ~F1 is completely unknown and is included in the likelihood through the

multiplicative factor ~f 1(T )Ä. For a bounded, measurable function a such that ~F1a � 0, the

de®nition d ~F1s(t) � (1� sa(t))d ~F1(t) de®nes a probability distribution for every s that is

suf®ciently close to 0. Inserting this `path' in the likelihood and differentiating at s � 0

yields the score function

Aè, p, ~F0, F̂1
a(X ) � Äa(T ):

This set of functions forms a linear space if a ranges over a linear space. Since the operator

Aè, p, ~F0, ~F1
: L2( ~F1) 7! L2(Pè, p, ~F0, ~F1

) is continuous, the closed linear span of all score functions

will contain all measurable functions of this type such that ~F1a � 0 and ~F1a2 ,1.

Computing score functions for ~F0 is more involved. This parameter is hidden in the

distribution ~F�0,è, which is characterized in Lemma 1.1. Suppose that b : [0, 1) 7! R is a

bounded, non-increasing function that is caglad on (0, 1) such that ~F�0,èb � 0, and set

gs(t) � ~f �0,è(t)(1� sb(t)),

where we interpret gs(0) as a point mass at 0. Then gs is non-negative for suf®ciently small

jsj, and for s > 0 the function t 7! eÿè t gs(t) is non-increasing on (0, 1) and satis®es

ègs(0) > gs(0�). Therefore, by Lemma 1.1, Gs is a distribution that can be written in the

form of a distribution ~F�0,è for some ~F0 (for every ®xed è). If we insert this distribution in the

log-likelihood and differentiate (from the right) with respect to s at s � 0, then we ®nd the

score function

Bè, p, ~F0, ~F1
b(X ) � (1ÿ Ä)b(T�):

Even though this may not be a score function for a two-sided (`regular') submodel, we

consider this function as a member of the tangent set (thus deviating from the basic de®nition

of Bickel et al. 1993). The linear span of the tangent set will contain all functions

(1ÿ Ä)b(T�) such that F�0,èb � 0 and such that b is bounded, caglad and of bounded

variation. Since the operator Bè, p, ~F0, ~F1
: L2( ~F�0,è) 7! L2(Pè, p, ~F0, ~F1

) is continuous, the closure of

the linear span contains all measurable functions (1ÿ Ä)b(T�) such that ~F�0,èb � 0 and
~F�0,èb2 ,1. These observations readily yield the following lemma.

Lemma 3.1. The ef®cient score function for è is given by

~lè, p, ~F0, ~F1
(X ) � N ÿ 1fÄ � 0, T�. 0g

è
ÿ T�:

Proof. For the function ~lè, p, ~F0, ~F1
as de®ned by the preceding display, the difference

_lè, p, ~F0, ~F1
ÿ ~lè, p, ~F0, ~F1

has the form (1ÿ Ä)b(T�) for some function b and hence is a score

function for ~F0
, provided that it is square-integrable. The latter can be veri®ed. It suf®ces to

show that ~lè, p, ~F0, ~F1
is orthogonal to the set of scores for p, ~F0 and ~F1.
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Given T� and Ä � 1, the variable N is Poisson distributed with mean èT�. Furthermore,

given T�, T�. 0 and Ä � 0, the variable N ÿ 1 is Poisson distributed with mean èT�. It

follows that

E
N ÿ 1fÄ � 0, T�. 0g

è
ÿ T�jT�, Ä

� �
� èT�

è
ÿ T� � 0:

This proves that ~lè, p, ~F0, ~F1
is orthogonal to all functions of (T�, Ä). h

It is interesting that the ef®cient score function for è does not depend on the nuisance

parameters p, ~F0, ~F1. This unusual situation makes it possible to use the `ef®cient score

equation'

Xn

i�1

~lè, p, ~F0, ~F1
(X i) � 0

to de®ne an estimator for è. This yields the conditional likelihood estimator given by (1.6).

The fact that this estimator solves the ef®cient score equation suggests that it is

asymptotically ef®cient in the semi-parametric sense. This is indeed the case, as can be

proved by analysing its asymptotic properties directly with the help of the delta method, or by

general arguments based on linearizing the ef®cient score equation (cf. van der Vaart 1996; or

1998, Section 25.8).

4. Asymptotic normality of
����
n
p

(è̂nÿè)

In this section we prove the asymptotic normality of the maximum likelihood estimator è̂n for

è by showing that it is asymptotically equivalent to the ad hoc estimator (1.6). We assume

that there exists an interval [0, ô0] on which F has a positive, continuous density and

G(ô0) , 1 and such that the measure with density (1ÿ G)dF gives zero mass to (ô0, 1). One

possible case of interest in which this is true is when F has a continuous, positive density on

a support [0, ô0] and G(ô0) , 1, indicating that a positive fraction of people is not censored

(i.e. does not move).

Theorem 4.1. Suppose that the true values of F and G satisfy the stated conditions. Then���
n
p

(è̂n ÿ è̂n,c)!P 0. Consequently, the sequence
���
n
p

(è̂n ÿ è) is asymptotically normal with

mean zero and variance the inverse of the ef®cient Fisher information for è.

Proof. The maximum likelihood estimator maximizes the pro®le log-likelihood function,

obtained by maximizing the log-likelihood over all parameters (F0, F1), for ®xed è. The term

involving F1 does not depend on è and hence can be dropped from the pro®le likelihood. By

Lemma 1.2 and expression (1.5) for the likelihood, the remaining part of the pro®le log-

likelihood can be written in the form
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Xn

i�1

((Ni ÿ 1fÄi � 0, T�i . 0g)log èÿ èT�i )�
Xn

i�1

(1ÿ Äi)log(è1fT�i . 0geèT�i ĥ0,è(eèT�i )),

where Ĥ0,è is the left derivative of the least concave majorant of the function H0,è given in

Lemma 1.2. Since è̂ maximizes this expression, it is a zero of its derivative, if this exists at

è̂. Its existence is proved in Lemma 4.2. Setting the derivative of the ®rst term to zero yields

the ef®cient score equation, which is solved by è̂n,c given by (1.6). We shall show that the

derivative of the second term is asymptotically negligible. If we denote the derivative of this

term by Dn(è), then it follows that

è̂ �

Xn

i�1

(Ni ÿ 1fÄi � 0, T�i . 0g)
Xn

i�1

T�i ÿ Dn(è̂)

: (4:1)

The theorem is proved once it is shown that Dn(è̂) � oP(
���
n
p

).

To simplify notation, we write the formulae as if Ä1 � � � � � Än � 0 and T�1 < T�2 <
. . . < T�n . Since the subdistribution function H0,è is continuous on (1, 1) with an atom at

1, the values eèT�i will almost surely be tied at 1 only. The least concave majorant Ĥ0,è of

H0,è is piecewise linear and changes direction only at points where Ĥ0,è and H0,è are equal.

The point 1 may or may not be one of these points. De®ne Aè �
fi : H0,è(eèT�i ) � Ĥ0,è(eèT�i ), T�i�1 . 0g as the set of indices of the points eèT�i where

Ĥ0,è and H0,è coincide, where in the case Ĥ0,è(1) � H0,è(1) only the largest index of the

T�i that are tied at zero is included. Furthermore, de®ne ki,è � minf j 2 Aè : j . ig for

i , n; this is the index of the smallest point eèT�j larger than eèT�i where Ĥ0,è and H0,è

coincide. (This minimum always exists, since n 2 Aè.) For i � 0, the number

k0,è � minf j : j 2 Aèg is the index j 2 Aè of the smallest point eèT�j where Ĥ0,è and

H0,è coincide. (This point may be 1 or bigger than 1; in the ®rst case it is the largest index

of the points tied at 1.) The slope of the least concave majorant at eèT�j is constant for

i , j < ki,è for every i 2 Aè and easily computed as the quotient of the increase in H0,è

over the interval (exp(èT�i ), exp(èT�k i,è
)] and the length of this interval. The second term of

the pro®le likelihood can be rewritten as

#fi : T�i . 0glog è�
Xk0,è

j�1

log
k0,è

n

eèT�j

e
èT�

k0,è

 !
�
X
i2Aè
i, n

Xk i,è

j�i�1

log
ki,è ÿ i

n

eèT�j

e
èT�

k i,è ÿ eèT�i

 !
:

If we perturb è̂ slightly then the points eè̂T�i change location slightly and the graph of the

empirical subdistribution function H0,è̂ is deformed slightly as well. The graph of the concave

majorant Ĥ0,è̂ is obtained by linearly connecting the points (eè̂T�i , H0,è̂(eè̂T�i )) for i 2 Aè̂. If

we perturb è̂ slightly into è9, then H0,è9(e
è9T�i ) � H0,è̂(eè̂T�i ) for every i, because the points

eèT�i do not change order if è moves from è̂ to è9. Suppose that the slope of Ĥ0,è̂ decreases

strictly at every point eè̂T�i at which Ĥ0,è̂ and H0,è̂ coincide (i.e. for every i 2 Aè̂). Then the

graph obtained by connecting the points (eè9T�i , H0,è̂(eè̂T�i )) linearly is concave and a majorant

of H0,è9, provided è9 is suf®ciently close to è̂, and hence is equal to the least concave
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majorant Ĥ0,è9. This shows that in this case the set Aè9 coincides with Aè̂. The other case is

that the slope of the concave majorant Ĥ0,è̂ does not decrease strictly at every point eè̂T�i at

which Ĥ0,è̂ and H0,è̂ coincide. Then three or more points eè̂T�i are on a straight line. If we

perturb è̂ slightly and make it smaller, then Aè may change, but if we make è̂ bigger, then Aè

does not change when è moves from è̂ to è9. By Lemma 4.2 below, the pro®le likelihood is

differentiable at è̂. In view of the preceding observations, if we compute its derivative from

the right at è̂, then we may set Aè in the preceding display equal to Â :� Aè̂ and hence set

ki,è equal to k̂ i :� k
i,è̂. This derivative is equal to

#fi : T�i . 0g
è̂

�
Xk̂0

j�1

(T�j ÿ T �̂
k0

)ÿ
X
i2 Â
i , n

Xk̂ i

j�i�1

(T �̂
k i
ÿ T�j )e

è̂(T �̂
k i
ÿT�j ) ÿ (T�i ÿ T�j )eè̂(T�i ÿT�j )

e
è̂(T �̂

k i
ÿT�j ) ÿ eè̂(T�i ÿT�j )

:

Using Taylor type arguments we can see that there exist a neighbourhood of 0 and a constant

C such that, for every u and v in the neighbourhood,

vev ÿ ueu

ev ÿ eu
ÿ 1ÿ u� v

2

���� ���� < C(u2 � v2):

We use this with v � è̂(T �̂
k i
ÿ T�i ) and u � è̂(T�i ÿ T�j ) to expand the third term. By

Corollary 8.3 and the fact that the logarithm is Lipschitz on [1, 1), maxijT �̂k i
ÿ T�i j �

oP(nÿ1=4). Since there are at most nÿ k̂0 < n terms in the double sum, the derivative is up to

a term of order oP(
���
n
p

) asymptotically equivalent to

#fi : T�i . 0g 1

è̂
�
Xk̂0

j�1

(T�j ÿ T �̂
k0

)ÿ
X
i2 Â
i, n

Xk̂ i

j�i�1

1

è̂
� 1

2
(T �̂

k i
� T�i )ÿ T�j

� �

� 1

è̂
( k̂0 ÿ ẑÿ ẑT �̂

k0
è̂)�

Xk̂0

j�ẑ�1

(T�j ÿ T �̂
k0

)ÿ
X
i2 Â
i, n

Xk̂ i

j�i�1

1
2
(T �̂

k i
� T�i )ÿ T�j

� �
,

(4:2)

where ẑ is the number of T�i tied at 0. We can conclude the proof by showing that this

expression is oP(
���
n
p

). By Corollaries 8.3 and 8.4 the sum in the second term has of the order

of OP(n2=3(log n)1=3) terms of maximal order OP(nÿ1=3(log n)1=3), and hence it is certainly of

order oP(
���
n
p

). We consider the ®rst and third terms separately.

Under some conditions, the third term of the right-hand side of (4.2) can be shown to be

oP(
���
n
p

) as a consequence of Corollary 8.3 without using the exact de®nitions of the k̂ i, but

we shall give a proof based on Lemma 7.2. In any case the cancellation of positive and

negative terms in the sum is essential. Let Si � eè̂T�i . Then it suf®ces to prove the

analogous property for the Si instead of the T�i , because the difference between
1
2
(Si � Sk̂ i

)ÿ Sj and its linearization in 1
2
(T�i � T �̂

k i
)ÿ T�j is of order OP(nÿ2=3(log n)2=3),

uniformly in i and j, by Corollary 8.3. Because Ĥ0,è is linear between Si and Sk̂ i
with slope

(( k̂ i ÿ i)=n)=(Sk̂ i
ÿ Si), we have
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Xk̂ i

j�i�1

(1
2
(Si � Sk̂ i

)ÿ Sj) � n(Sk̂ i
ÿ Si)

1

k̂ i ÿ i

Xk̂ i

j�i�1

( Ĥ0,è̂(1
2
(Si � Sk̂ i

))ÿ Ĥ0,è̂(Sj))

� n(Sk̂ i
ÿ Si)

1

k̂ i ÿ i

Xk̂ i

j�i�1

(H0,è̂(1
2
(Si � Sk̂ i

))ÿH0,è̂(Sj))� oP

1���
n
p
� �24 35,

uniformly in i, by Lemma 7.2. The average in the square brackets can be computed explicitly

and, with li and ui being the number of indices i , j < k̂ i such that 1
2
(Si � Sk̂ i

) . Sj or
1
2
(Si � Sk̂ i

) , Sj, respectively, is equal to

1

2n
(li ÿ ui)

k̂ i ÿ i� 1

k̂ i ÿ i
� (H0,è̂ ÿ Ĥ0,è̂)(1

2
(Si � Sk̂ i

))
k̂ i ÿ i� 1

k̂ i ÿ i
,

where the equality follows from drawing a picture of H0,è̂ and Ĥ0,è̂. This is oP(nÿ1=2)

uniformly in i, by Lemma 7.2. We conclude that

X
i2 Â
i , n

Xk̂ i

j�i�1

(1
2
(Si � Sk̂ i

)ÿ Sj)

�������
������� <

X
i2 Â
i, n

���
n
p

(Sk̂ i
ÿ Si)oP(1):

This is of the desired order, because the sum telescopes out to the (®nite) length of the

support.

Finally, we consider the ®rst term on the right-hand side of (4.2). By the de®nition of the

concave majorant and Taylor's theorem, we have

ne
è̂T �̂

k0 ( Ĥ0,è̂(1)ÿH0,è̂(1)) � n
k̂0

n
ÿ ẑ

n
e
è̂T �̂

k0

� �
� k̂0 ÿ ẑÿ ẑè̂T �̂

k0
� oP(

���
n
p

),

since (T �̂
k0

)2 is of order oP(nÿ1=2) by Corollary 8.3. If the left-hand side of this display is of

order oP(
���
n
p

), then it follows that the ®rst term of the right of (4.2) is of order oP(
���
n
p

) as

well, and the proof is complete. The left-hand side is of order oP(
���
n
p

) if the second assertion

of Lemma 7.2 is true. To be able to apply this assertion we must ®rst show that���
n
p

(è̂ÿ è) > OP(1). By the de®nition of Ĥ0,è̂ the left-hand side of the preceding display is

certainly non-negative, whence we have proved that Dn(è̂) > ÿoP(
���
n
p

) (where the minus is

super¯uous but aids the interpretation). In view of (4.1), it follows that è̂ > è̂n,c�
oP(nÿ1=2) > è� OP(nÿ1=2). The proof is complete. h

Lemma 4.2. The pro®le likelihood function is differentiable at the maximum likelihood

estimator è̂.

Proof. The pro®le log-likelihood function is proportional to the function

è 7!
Xn

i�1

(Ni log èÿ ÄiT
�
i è)�

Xn

i�1

((1ÿ Äi)log ĥ0,è(eèT�i )):

The ®rst part is continuously differentiable. The second part is both left- and right-
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differentiable and is strictly convex. In particular, its left derivative is strictly smaller than its

right derivative whenever the two derivatives are not equal.

Let f 1 and f2 be the two parts of the pro®le log-likelihood function. Since the maximum

likelihood estimator è̂ maximizes the pro®le log-likelihood, we have

f 91(è̂ÿ)� f 92(è̂ÿ) > 0 > f 91(è̂�)� f 92(è̂�):

By continuity of f 91 it follows that f 92(è̂ÿ) > f 92(è̂�). Combined with the preceding

paragraph, this implies that f 92(è̂ÿ) � f 92(è̂�). h

5. Estimation of ËF and F

In this section we prove the asymptotic normality of the maximum likelihood estimators of

ËF and F. The arguments are much like those in Gill (1997), except that we must deal with

an additional parameter è. A realization of the maximum likelihood estimator of F can be

seen in Figure 2.
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Figure 2. A realization of the maximum likelihood estimator of F based on 250 observations (step

function) and the true distribution function, the exponential distribution with intensity 0.1 (dotted line).
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In analogy with the notation H0,è, let H1,è(t) � Pè,F,G(eèT� < t, Ä � 1). The maximum

likelihood estimator of this parameter, for ®xed è, is the empirical subdistribution function

H1,è of the variables eèTi with Äi � 1.

The cumulative hazard function ËF can be expressed in the distributions H0,è and H1,è

as

ËF(t) �
�

[1,eè t]

dH1,è

1ÿ H1,èÿ ÿ H0,èÿ � idh0,èÿ
,

where id(y) is the identify function y 7! y and h0,èÿ � h0,è on (1, 1), but h0,è(1ÿ) is

de®ned to be 0. (Together with our earlier conventions, this means that the values h0,è(1ÿ),

h0,è(1) � H0,èf1g and h0,è(1�) may all be different for a general parameter in the model,

even though we shall assume that h0,è(1�) � h0,è(1) for the true value of h0,è.) The

maximum likelihood estimator Ë̂F is obtained by replacing the parameter (è, H0,è, H1,è,

h0,è) by its maximum likelihood estimator (è̂, Ĥ0,è̂, Ĥ1,è̂, ĥ0,è̂). We consider estimating ËF

on an interval [0, ô] such that ((1ÿ F)(1ÿ G))(ô) . 0.

Theorem 5.1. Let the conditions of Theorem 4.1 hold. Then the sequences of processes���
n
p

(Ë̂F ÿËF) and
���
n
p

(F̂ ÿ F) converge in distribution to tight Gaussian limits in l1[0, ô]

for every ô, ô0.

We obtain the asymptotic distribution of Ë̂F and F̂ essentially by the delta method, but

need to work hard to handle the term ĥ0,è̂. Unlike the estimators è̂, Ĥ0,è̂, Ĥ1,è̂, this

estimator does not converge at rate
���
n
p

, but at rate n1=3 and only in a pointwise sense. For

that reason the
���
n
p

rates of Ë̂F and F̂ are not at all obvious, and necessitate a long proof.

This proof is contained in Section 9.

6. Estimation of ËG and G

The cumulative hazard function ËG can be expressed in H0,è and H1,è as

ËG(t) � ÿ
�

[1,eè t]

id dh0,è

1ÿ H0,èÿ ÿ H1,è � idh0,èÿ
:

Here ÿd h0,è(1) is de®ned as H0,è(1)ÿ h0,è(1�) � h0,è(1)ÿ h0,è(1�), the downward jump of

h0,è at 1, and h0,è(1ÿ) � 0. The maximum likelihood estimator Ë̂G is obtained by replacing

(è, H0,è, H1,è) by its maximum likelihood estimator. Unlike Ë̂F , the estimator Ë̂G is

dominated by the estimator ĥ0,è̂ and its rate of convergence is slower than nÿ1=2. The

following theorem gives the rate for the uniform norm.

Theorem 6.1. Let the conditions of Theorem 4.1 hold and suppose that F is twice

differentiable with bounded second derivative and that G has a bounded density on [0, ô0].

The sequences kË̂G ÿËGk1 and kĜ ÿ Gk1 are OP((n=log n)ÿ1=3), if k:k1 is the uniform

norm on the interval [0, ô], for every ô, ô0.
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The discussion ahead suggests that this uniform rate of convergence is sharp, but also

that the sequence Ë̂G(t)ÿËG(t) converges at rate OP(nÿ1=3) for every ®xed t. Our

derivation of the latter result is incomplete. Furthermore, even if the sequence

n1=3(Ë̂G ÿËG)(t) converges in distribution, it is not clear that the sequence (Ĝ ÿ G)(t)

also converges at the rate OP(nÿ1=3), because the transition from hazard function to survival

function appears to require some uniformity if the functions involved possess jumps. Claims

to this effect, made in passing by Gill (1997), appear to be without proof at this time.

The problems encountered here appear to be caused by the jumps in the maximum

likelihood estimator ĥ0,è̂ and may be real. We can remedy this by using a smoothed version

of ĥ0,è̂ instead. For continuous approximations ~h0,è to ĥ0,è, consider the estimators

~ËG(t) � ÿ
�

[1,eè̂ t]

id d ~h0,è̂

1ÿ Ĥ0,è̂ÿ ÿ Ĥ1,è̂ � id ~h0,è̂ÿ
:

We can construct the modi®cations ~h0,è in many ways, the simplest perhaps being kernel

smoothing. Here we send the bandwidth to zero faster than nÿ1=3 and use a special kernel to

ensure that ~h0,è is supported on [1, 1), as is Ĥ0,è. For instance,

~h0,è(t) � ĥ0,è � U [ÿan, an](t), t . 1� an,

ĥ0,è � U [1ÿ t, an](t), 1 < t < 1� an,

(
where U [a, b] is the uniform measure on [a, b]. We let ~H0,è(t) � Ĥ0,è(1)� � t

0
~h0,è(s) ds.

Theorem 6.2. Let the conditions of Theorem 6.1 hold and suppose that an � o(nÿ1=3). Then,

for every ®xed t , ô0, the sequence n1=3( ~ËG ÿËG)(t) converges in distribution to

ÿ41=3eè t g1=3(t)

�
[ t,1)

eÿsè(1ÿ F)(s)dG(s)1=3

(1ÿ F)2=3(t)(1ÿ G)(t)
argmax

h2R

fZ(h)ÿ h2g,

for Z a standard Brownian motion. Consequently, the sequence n1=3( ~G ÿ G)(t) converges in

distribution as well.

The proofs of Theorems 6.1 and 6.2 are contained in Section 10. A realization of the

maximum likelihood estimator of G can be seen in Figure 3.

7. Asymptotics for Ĥ0,è̂ and Ĥ1,è̂.

In this section we prove the asymptotic normality of the maximum likelihood estimators of

the subdistribution functions H0,è and H1,è. Let k:k[a,b] denote the supremum norm on [a, b].

Lemma 7.1. The sequence of processes
���
n
p

(H0, ~è(t)ÿ H0,è(tè=
~è), H1, ~è(t)ÿ H1,è(tè=

~è)) con-

verges for any sequence ~è!P è in distribution in l1[1, ó ] 3 l1[1, ó ] to a Gaussian process

with continuous sample paths.
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Proof. The subdistribution functions Hä, ~è(t) can be written as F�ä (log t=~è) for the

subdistribution functions F�ä (t) � nÿ1
Pn

i�11fT�i < t, Äi � äg. The empirical processes���
n
p

(F�ä ÿ F�ä,è) converge in the space l1[0, 1] to tight Gaussian processes with uniformly

continuous sample paths. The lemma now follows by Lemma 9.1. h

In the following lemma we show the asymptotic equivalence of the empirical distribution

and its least concave majorant. For the ordinary empirical distribution this is a well-known

property of the Grenander estimator. See, for example, Robertson et al. (1988). Gill (1997)

extends this to the least concave majorant of an arbitrary discrete estimator of a concave

distribution function and also considers the special situation of distribution functions

starting with a point mass at 1 needed in this paper. We further extend his result to

randomly placed `observations' e
~èT�i .

Lemma 7.2. If H0,è is continuous and strictly concave on its support [1, ó0] and ~è!P è, then���
n
p kH0, ~è ÿ Ĥ0, ~èk[ó̂ 1,ó ]!P 0 for every ó . 1, where ó̂1 is the smallest t > 1 where t 7!
Ĥ0,~è(t) changes direction. If

���
n
p

(~èÿ è) > OP(1) and H0,è is continuously differentiable, then

we also have that
���
n
p kH0, ~è ÿ Ĥ0, ~èk[1,ó ]!P 0 for every ó . 1.
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Figure 3. A realization of the maximum likelihood estimator of G based on 250 observations (step

function) and the true distribution function, the exponential distribution with rate 0.1 (dotted line).
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Proof. Let Ĥ0, ~è be the smallest function that is zero on [0, 1], strictly positive and concave on

(1, 1) and majorizes the function H0, ~è :� H0, ~è ÿH0, ~è(1). Then Ĥ0, ~è � Ĥ0, ~è ÿH0, ~è(1) on [ó̂1,

1), and hence it suf®ces to show that
���
n
p k Ĥ0, ~è ÿH0, ~èk[ó̂ 1,ó ]! 0 in probability for every ó . 1.

We can do this by adapting the proof of Theorem 1 in the Appendix of Gill (1997). An

inessential difference from the situation covered by Gill's Theorem 1 is that our empirical

distribution H0, ~è and concave majorant start at 1. This can be accommodated by simply

shifting the axis. A more important difference is that we shall centre H0, ~è(t) (i.e. Gill's Fn)

at the random distribution function H ~è(t) :� H0,è(tè=
~è)ÿH0,è(1) rather than at a ®xed

distribution (as Gill's F). With this centring we do have that
���
n
p

(H0, ~è ÿ H ~è) converges in

distribution on compacta in [1, 1] to a Gaussian process with continuous sample paths,

whenever ~è!P è (i.e. Gill's assumption of convergence of
���
n
p

(Fn ÿ F)). If we now pass to

an almost sure representation of the weakly converging sequence (
���
n
p

(H0, ~è ÿ H ~è), ~è) in

l1[1, ó ] 3 R, then we are almost back in Gill's situation, except for the fact that Gill's F

becomes a sequence depending on n in our situation. It can now be seen that Gill's proof

remains valid and gives the desired result, where we use the fact that H ~è ! Hè uniformly

on compacta, whence H ~è will be a (strictly) concave function eventually.

To prove the second assertion of the lemma, we ®rst assume that
���
n
p

(~èÿ è) � OP(1).

Then the sequence of processes
���
n
p

(H0, ~è ÿ H0,è) converges in l1[1, ó ], by the preceding

lemma and the delta method applied to the differentiable map è 7! H0,è. At least this is

true along subsequences along which
���
n
p

(H0, ~è(t)ÿ H0,è(tè=
~è)) and

���
n
p

(~èÿ è) converge

jointly in distribution. We can now apply Gill's Theorem 2 directly to obtain the desired

result.

Finally, we extend this to sequences ~è that satisfy only
���
n
p

(~èÿ è) > ~h for some
~h � OP(1). We have the inequality, for è1 < è2,

0 < sup
1< t<ó è2

( Ĥ0,è2
ÿH0,è2

)(t) < sup
1< t<ó è1

( Ĥ0,è1
ÿH0,è1

)(t): (7:1)

To see that this is valid, note that s 7! Ĥ0,è1
(sè1=è2 ) is a concave function (for è1 < è2) and a

majorant of the function s 7! H0,è1
(sè1=è2 ) � H0,è2

(s). Thus it is bounded below by the least

concave majorant s 7! Ĥ0,è2
(s).

We apply this with è2 � ~è and è1 � è� ~h=
���
n
p

. Then the right-hand side converges to

zero in probability by the preceding argument and the left-hand side is the variable of

interest. h

We do not know if the second assertion of the preceding lemma is true for arbitrary

estimators ~è. It appears to be not unlikely that slowly converging sequences ~è may displace

the `observations' e
~èT�i too much to maintain good behaviour close to the point 1.

The preceding lemmas have been used in the proof of asymptotic normality of the

maximum likelihood estimator è̂. Once this is known, we can summarize the results

concerning estimating H0,è and H1,è as follows.

Theorem 7.3. Suppose that H0,è is continuous and strictly concave on its support [1, ó0],

that H0,è and H1,è are continuously differentiable on the interval [1, ó ] and that the
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sequence
���
n
p

(~èÿ è) is asymptotically normal and asymptotically linear. Then the processes���
n
p

(~èÿ è, Ĥ0, ~è ÿ H0,è, H1, ~è ÿ H1,è) converge in distribution to a tight Gaussian process in

the space R 3 l1[1, ó ] 3 l1[1, ó ].

Proof. By the preceding lemma the limit behaviour of Ĥ0, ~è is the same as that of H0, ~è. We

can decompose

���
n
p

(Hä, ~è ÿ Hä,è)(t) � ���
n
p

(F�ä ÿ F�ä,è)
log t

~è

� �
� ���

n
p

F�ä,è

log t

~è

� �
ÿ F�ä,è

log t

è

� � !
:

The second term can be linearized in
���
n
p

(~èÿ è) by the delta method. The ®rst term can be

handled by Lemma 9.1, after ®rst noting that the empirical processes
���
n
p

(F�ä ÿ F�ä,è)

converge in the space l1[0, 1] to tight Gaussian processes with uniformly continuous

sample paths. These two sequences also converge jointly and jointly with the sequence���
n
p

(~èÿ è), as the marginals are asymptotically linear and satisfy the multivariate central

limit theorem. h

8. Asymptotics for ĥ0,è̂

In this section we establish a uniform rate of convergence for the maximum likelihood

estimator of the density h0,è and give its pointwise distribution. These results are needed in

the proofs in the preceding sections, but are also of independent interest, because ĥ0,è is

essentially the Grenander estimator.

In the following theorem we take ó to be equal to the end-point of the subdistribution

H0,è, i.e. the maximum of the support points of the conditional distribution of eèT�i given

Äi � 0 under the true parameter (è, F, G).

Theorem 8.1. Suppose that h0,è is continuously differentiable on the interval (1, ó ) with h90,è

bounded away from 0 ( from above) and ÿ1 and let ~è be consistent for è. Then for every

xn !1 and än � nÿ1=3(log n)1=3,

sup
1�xnän< t , ó ~è=è

jĥ0, ~è(t)ÿ h0,è(tè=
~è)tè=

~èÿ1(è=~è)j � OP(nÿ1=3(log n)1=3):

If
���
n
p

(~èÿ è) � OP(1), then this is also true for the supremum computed over 1 < t , ó
~è=è.

Proof. To simplify notation, let Hç(s) � H0,è(sè=ç) be the subdistribution function of the

variables eçT�i if Äi � 0 (under the true parameter (è, F, G), whence Hç 6� H0,ç except for

ç � è), let hç(s) � h0,è(sè=ç)sè=çÿ1è=ç be the corresponding density, and let Hç(s) � H0,ç(s)

and Gç � ���
n
p

(Hç ÿ Hç) be the corresponding empirical subdistribution function and

empirical process. Furthermore, let ĥç be the left derivative of the least concave majorant

Ĥç of Hç, so that ĥ ~è � ĥ0, ~è.

As in Groeneboom (1985) or van der Vaart and Wellner (1996, Figure 3.1), for every

t 2 (1, ó
~è=è), a, än . 0
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~h ~è(t) . a, argmax
s:s>0

fH ~è(s)ÿ asg. t

, argmax
h:h>ÿäÿ1

n t

fH ~è(t � än h)ÿ a(t � än h)g. 0

, argmax
h:h>ÿäÿ1

n t

fG ~è(t � än h)� ���
n
p

(H ~è(t � än h)ÿ H ~è(t)ÿ aän h)g. 0:

Because H ~è(s) is equal to 0 and H ~è(1), respectively, for s , 1 or s . maxi:Äi�0e
~èTi, we may

actually restrict the ®rst argmax to the domain s > 1 and s < ó
~è=è, i.e. h 2 äÿ1

n (1ÿ t,

ó
~è=è ÿ t). Choose a � h ~è(t)� xän with, for the moment, x . 0 ®xed. By a Taylor expansion,

for some 0 < î < 1, which may depend on (~è, än, h, t), and every t and t � än h in

(1, ó
~è=è),

H ~è(t � än h)ÿ H ~è(t)ÿ aän h � 1
2
h9~è(t � îän h)ä2

n h2 ÿ xä2
n h

< ÿcä2
n h2 ÿ xä2

n h,

> ÿdä2
n h2 ÿ xä2

n h,

(
for certain c, d . 0 independent of än, t and h, and ~è suf®ciently close to è, which will

happen with probability tending to 1, since ~è is consistent. Conclude that we can have

( ĥ ~è ÿ h ~è)(t) . xän only if, for any h0 2 (äÿ1
n (1ÿ t), 0),

sup
h . 0

(G ~è(t � än h)ÿ ���
n
p

ä2
n(ch2 � xh)) > G ~è(t � än h0)ÿ ���

n
p

ä2
n(dh2

0 � xh0):

Choose h0 � ÿx=(2d) and note that ch2 � xh > ch2 for h > 0. Then rearrange to ®nd that

P sup
t2(1�än x=(2d),ó è̂=è)

( ĥ ~è ÿ h ~è)(t) . xän

0@ 1A
< P sup

t2(1,ó ~è=è),h . 0

(G ~è(t � än h)ÿ ���
n
p

ä2
nch2 ÿG ~è(t � än h0)) >

���
n
p

ä2
n

x2

4d

 !

<
X1
j�0

P sup
t2(1,ó

~è=è)
j<h< j�1

(Gè((t � än h)è=
~è)ÿGè((t � än h0)è=

~è)) >
���
n
p

ä2
n cj2 � x2

4d

� �0BB@
1CCA:

Since ~è is consistent, there is no loss of generality in assuming that è=~è is contained in an

arbitrarily small neighbourhood (1=r, r) of 1. Then de®ning the classes of functions

G n, j � f1(( t�än h0)ç,( t�än h)ç] : t 2 (1, ó r), j < h < j� 1, ç 2 (1=r, r)g,
we can, using Markov's inequality, bound the preceding display further by a constant timesX1

j�0

EkGèkG n, j���
n
p

ä2
n( j2 � x2)

: (8:1)

Let & denote inequality up to a constant. For a typical function g 2 G n, j we have
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Hè g2 � Hè((t � än h)ç)ÿ Hè((t � än h0)ç) & än( j� x)(t � än h)çÿ1 & än( j� x)r:

The class G n, j is uniformly bounded and contained in the class f1(a,b] : a , bg, which is

Vapnik±Chervonenkis of index 3. This implies ®rst that EkGèkG n, j
is uniformly bounded, by,

for example, Theorems 2.14.1 and 2.6.4 of van der Vaart and Wellner (1996). Second, for

0 , å, 1, by, for example, Example 2.5.4 in van der Vaart and Wellner (1996) and a simple

argument,

N[ ](å, G n, j, L2(Hè)) &
1

å

� �4

:

Consequently, by Lemma 3.4.2 of van der Vaart and Wellner (1996), there exists a constant C

such that

EkGèkG n, j
& J (C

���������������������
än( j� x)r

p
)� J 2(C

���������������������
än( j� x)r

p
)

än( j� x)r
���
n
p ,

where J (ä) is the entropy-with-bracketing integral, de®ned by

J (ä) �
�ä

0

��������������������������������������������������������
1� log N[ ](å, G n, j, L2(Hè))

p
då:

For ä < 1
2
, we have that J (ä) & ä

���������������
log 1=ä

p
. Conclude that we can bound (8.1) up to a

constant byX1
j�0

1���
n
p

ä2
n( j2 � x2)

J (
���������������������
än( j� x)r

p
)� J2(

���������������������
än( j� x)r

p
)

än( j� x)r
���
n
p

" #
^ 1

 !

&
X1
j�0

( j�x) r&1=än

�������������������������������jlog(än( j� x))jp���
n
p

ä3=2
n ( j� x)2ÿr=2

� jlog(än( j� x))j
nä2

n( j� x)2

 !
�

X1
j�0

( j�x) r*1=än

1���
n
p

ä2
n( j� x)2

:

The last term on the right-hand side can be bounded byX1
j�0

1���
n
p

ä3=2
n ( j� x)2ÿr=2

:

For än � (n=log n)ÿ1=3 all terms converge to 0 as x � xn !1.

This, combined with a similar argument for the lower tail of the distribution of

sup t( ĥ ~è ÿ h ~è)(t), shows that for every å. 0 there exists x such that, for all suf®ciently large

n,

P sup
1�xän< t,ó ~è=è

j ĥ ~è(t)ÿ h ~è(t)j. xän

0@ 1A, å:

This implies the ®rst assertion of the theorem.

Because F0f0g � 0 by assumption, we have hè(1) � Hèf1g � hè(1�) by the last

assertion of Lemma 1.1. Therefore the function h ~è is Lipschitz on the interval [1, 1� xän].
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Combining this with the monotonicity of ĥ ~è, we see that there exists a constant C such that,

for every t 2 [1, 1� xän],

( ĥ ~è ÿ h ~è)(1� änx)ÿ Cänx < ( ĥ ~è ÿ h ~è)(t) < (ĥ ~è ÿ h ~è)(1)� Cänx:

Here, by Lemma 7.2, up to OP(nÿ1=2), the variable ĥ ~è(1) � Ĥ ~è(1) is equal to H ~è(1) �
Hèf1g � hè(1) � h ~è(1)(~è=è). It follows that

sup
1< t,ó ~è=è

j ĥ ~è ÿ h ~èj(t) < sup
1�än x< t,ó ~è=è

j ĥ ~è ÿ h ~èj(t)� Cänx� OP(nÿ1=2 � j~èÿ èj):

We conclude that for every å. 0 there exists x such that the left-hand side is bounded by a

®xed multiple of xän with probability at least 1ÿ å. This proves the theorem. h

The properties of our estimator ĥ0,è are closely related to the properties of the Grenander

estimator of a monotone density. By simplifying the preceding proof it can be shown that

the Grenander estimator ĥ of a monotone density h on (0, 1) satis®es, for every xn !1,

sup
xnän, t,ó

j ĥÿ hj(t) � OP(än),

for än � nÿ1=3(log n)1=3, under the condition that h possesses a derivative that is bounded,

strictly negative and bounded away from zero. The fact that we need to restrict the range of

the uniform norm to t . xnän is consistent with the known fact that the Grenander estimator

is not consistent at 0. In the situation of the present paper, the distribution starts with a point

mass at 1, and a similar problem at the left boundary of the support of h does not occur, as is

argued explicitly at the end of the proof of the last theorem.

In the following corollaries we implicitly assume the same conditions as in the preceding

theorem.

Corollary 8.2. If
���
n
p

(~èÿ è) � OP(1), then

sup
1, t,ó^ó ~è=è

jĥ0, ~è ÿ h0,èj(t) � OP(nÿ1=3(log n)1=3):

Proof. This is a consequence of the preceding theorem and the differentiability of t 7! h0,è(t)

on the interval (1, ó ). h

Corollary 8.3. Let ó̂0 � 1 and let ó̂1 , . . . , ó̂ K n
be the points in [1, ó

~è=è] where the least

concave majorant Ĥ0, ~è changes direction. Then

max
1<i<Kn

ó̂ i ÿ ó̂ iÿ1 � OP(nÿ1=3(log n)1=3):

Proof. We adopt the notation of the preceding proofs. Let xn !1 be arbitrary, let

ó0 � 1� xnän, and let ó1 , . . . , ó Ln
be the points ó̂ i that are contained in (1� xnän, e

~èô].

Then

max
i

(ó̂ i ÿ ó̂ iÿ1) < xnän �max
i

(ó i ÿ ó iÿ1):
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Hence, because xn !1 is arbitrary, it suf®ces to prove the corresponding property of the ó i

instead of the ó̂ i.

If the maximum between the points ó i is larger than än, then there is a subinterval of

(ó0, ó
~è=è) of length at least än on which ĥè̂ is constant. Hence

P max
1<i<Kn

ó i ÿ ó iÿ1 > än

� �
< P 9s, t 2 (ó0, ó

~è=è) : jsÿ tj > än, ĥ ~è(s) � ĥè̂(t)

� �
:

Since h9è(s) is bounded away from zero on (1, ó ), hè is bounded above, and ~è is consistent,

h9~è is bounded away from zero on (1, ó
~è=è) with probability tending to 1. Therefore, there

exists a constant c . 0 such that, with probability tending to 1, jh ~è(s)ÿ h ~è(t)j > cjsÿ tj for

every s, t 2 (1, ó
~è=è). Hence on the event in the right-hand side of the preceding display we

have, with probability tending to 1, that there exist s, t 2 (ó0, ó
~è=è) such that

cän < jh ~è(s)ÿ h ~è(t)j � j ĥè̂(s)ÿ ĥ ~è(t)ÿ (h ~è(s)ÿ h ~è(t))j:
Thus the probability of this event is bounded above by

P 2 sup
ó 0, t,ó ~è=è

j ĥ ~è ÿ h ~èj(t) > cän

0@ 1A:
An application of Theorem 8.1 concludes the proof. h

Corollary 8.4. Let ó̂0 � 1 and let ó̂1 , . . . , ó̂K n
be the points in [1, ó ~q=è] where the least

concave majorant Ĥ0, ~è changes direction, and let mn,i be the number of variables e
~èT�i with

Äi � 0 that fall in (ó̂ iÿ1, ó̂ i]. Then max1<i<Kn
mn,i � OP(n2=3(log n)1=3).

Proof. We adopt the notation used in the proof of the preceding corollary. Let å. 0 be small

and ®x c . supfhç(t) : t 2 (1, ó ç=è], jçÿ èj, åg. By Corollary 8.3, maxi(ó i ÿ ó iÿ1) is

bounded by xnän=c with probability tending to 1, if xn !1. If max1<i<K n
mn,i > nxnän,

then there exists an interval (ó iÿ1, ó i] on which H0, ~è increases by at least xnän. On this

interval ĥ0, ~è is at least xnän=(ó i ÿ ó iÿ1). With probability tending to 1 this is at least c. Since

ĥ0, ~è is uniformly consistent for h0,è on [1� xnän, ó
~è=è]; this can happen only with

probability tending to 0 by the de®nition of c.

This leaves out the intervals (ó̂ iÿ1, ó̂ i] contained in [1, 1� xnän]. However, the number

of e
~èT�i falling in the interval (1, 1� xnän] is of order nH0,è(1, (1� xnän)è=

~è] � OP(nxnän),

which is of the same order as the upper bound over the other intervals if xn is large but

®xed. h

Theorem 8.5. Suppose that h0,è is continuously differentiable in a neighbourhood of t with

h90,è(t) , 0. Then for any random sequences ~t � t � oP(nÿ1=3) and ~è � è� oP(nÿ1=3),

n1=3( ĥ0, ~è(~t )ÿ h0, ~è(t)) ? j4h90,è(t)h0,è(t)j1=3 argmax
h2R

fZ(h)ÿ h2g,

where Z is a standard Brownian motion. Moreover, n1=3( ĥ0, ~è(~t n)ÿ ĥ0, ~è(t))!P 0.

A semi-parametric model for censored and passively registered data 23



Proof. We use the notation of the proof of Theorem 8.1. By the ®rst part of this proof

n1=3( ĥ ~è(~t )ÿ h ~è(~t )) < x, argmax
h:h>ÿäÿ1

n
~t

Zn(h) < 0,

where h 7! Zn(h) is the stochastic process

Zn(h) � n1=6(Gè((~t � än h)è=
~è)ÿGè(~tè=

~è))� n2=3(H ~è(~t � än h)ÿ H ~è(~t )ÿ h ~è(~t )än h)ÿ xh:

By the empirical central limit theorem (see Theorem 2.11.22 in van der Vaart and Wellner

1996), Lemma 9.1, and the twice continuous differentiability of t 7! Hè(t), the sequence Zn

converges for every ®xed M in l1[ÿM , M] to the process����������
hè(t)

p
Z(h)� 1

2
h9è(t)h2 ÿ xh:

We show below that the argmax ĥn of the processes Zn are bounded in probability whenever

the diameters of the ranges of ~t n are of order OP(nÿ1=3). It then follows from the continuous

mapping theorem for the argmax functional (van der Vaart and Wellner 1996, Theorem 3.2.2)

that ĥn ? ĥ, for ĥ the argmax of the process h 7! ����������
hè(t)
p

Z(h)� 1
2
h9è(t)h2 ÿ xh. Using

rescaling properties of Brownian motion, the probability P( ĥ < 0) can be rewritten as (cf. van

der Vaart and Wellner 1996, Problem 3.2.5)

P( ĥ < 0) � P(j4h90,è(t)h0,è(t)j1=3 argmax
h2R

fZ(h)ÿ h2g < x):

Since h ~è(t) � h0,è(tè=
~è)tè=

~èÿ1(è=~è), ~è � è� oP(än) and h0,è is differentiable, this yields the

®rst statement of the theorem.

Actually, our proof shows that the same limit law is obtained for n1=3( ĥ ~è(~t )ÿ h ~è(~t )) for

any sequence ~t n!P t with the special property described above. For sequences ~tn �
t � oP(än) that converge to t fast, we also have that the limit processes Z constructed in

the preceding argument can be coupled and be taken to be equal to the process Z(h)

obtained for ~t n � t. This follows from the fact that in this case, by Lemma 9.1,

sup
jhj<M

n1=6jGè((~t � än h)è=
~è)ÿGè((t � än h)è=

~è)j!P 0:

Thus, for ~t n � t � oP(än), we ®nd

P(n1=3(ĥ ~è(~t )ÿ h ~è(~t )) < x, n1=3( ĥ ~è(t)ÿ h ~è(t)) . x)! P( ĥ < 0, ĥ . 0),

and similarly for the inequalities < and . interchanged. This implies the second statement of

the theorem. (If P(X < x, Y . x) � 0 for every x, then X > Y almost surely.)

Finally, we show that ĥn � OP(1). For this purpose we apply a general theorem on rates

of convergence of M-estimators. Speci®cally, we apply Theorem 5.55 of van der Vaart

(1998) (cf. Theorem 3.2 of Murphy and Van der Vaart 1999), which allows for nuisance

parameters, with the choices ç � (t9, ä, è9) and ç̂ � (~t, än, ~è) and

mh,ç � 1[0,( t9�h)è=è9] ÿ 1[0,( t9)è=è9] ÿ hè9(t9)hÿ xhä:

Then än ĥn maximizes Pn mh,ç̂ for Pn the empirical subdistribution of the points eèT�i with
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Äi � 0. For h suf®ciently close to 0 and ç � (t9, ä, è9) suf®ciently close to ç0 :� (t, 0, è) we

have, by the concavity of t 7! Hè(t), for some constants C, C1, C2 . 0,

Hè(mh,ç ÿ m0,ç) < ÿCh2 � jxhäj < ÿC1 h2 � C2ä
2:

Furthermore, we have Gè(mh,ç ÿ m0,ç) � Gè(1[0,( t9�h)è=è9] ÿ 1[0,( t9)è=è9]) and the functions

1[0,( t9�h)è=è9] ÿ 1[0,( t9)è=è9] satisfy

Hè(1[0,( t9�h)è=è9] ÿ 1[0,( t9)è=è9])
2 < C4jhj:

For jhj, ä, jt9ÿ tj < Mä and jè9ÿ èj < Mä, these functions are indicators of cells with

end-points contained in an interval of length proportional to ä. Therefore,

N[ ](å, f1[0,( t9�h)è9=è] ÿ 1[0,( t9)è9=è] : jhj, ä, jt9ÿ tj < Mä, jè9ÿ èj < Mäg, L2(Hè)) &
ä2

å4
:

It follows by the maximal inequality given by Lemma 3.4.2 of van der Vaart and Wellner

(1996) that

E sup
jhj,ä,j t9ÿ tj<Mä,jè9ÿèj, Mä

jGè(mh,ç ÿ m0,ç)j & J (ä) 1� J (ä)

ä2
���
n
p

� �
,

for

J (ä) �
� ��äp

0

���������������������������������
log 1� ä2

å4

� �� �s
då &

���
ä
p

:

Therefore, by Theorem 5.55 of van der Vaart (1998), the rate of convergence of än ĥn to 0 is

OP(än), provided that än ĥn is, with probability tending to 1, in the neighbourhood of 0 used

in the preceding estimates. The latter, and even that än ĥn!P 0, can be proved by a direct

argument using the Glivenko±Cantelli theorem. h

9. Proof of Theorem 5.1

Let ó be strictly bigger than eèô (for è the true value) and such that

((1ÿ F)(1ÿ G))(log ó=è) . 0. Since è̂ is consistent, we can assume without loss of

generality that eè̂ t < ó with probability 1 for every t < ô. Then Ë̂F and ËF on the interval

[0, ô] depend on the values of (H0,è, H1,è, h0,è) and their estimators on the interval [1, ó ]

only.

It follows from Theorems 4.1 and 7.3 that
���
n
p

(è̂ÿ è, Ĥ0,è̂ ÿ H0,è, Ĥ1,è̂ ÿ H1,è) con-

verges in distribution to a tight Gaussian variable in the space R 3 l1[1, ó ]3 l1[1, ó ], and

it follows from Corollary 8.2 that ĥ0,è̂ ÿ h0,è converges in probability to 0 uniformly on

[1, ó ] (at the rate of almost nÿ1=3).

The maximum likelihood estimator can be written as

Ë̂F(t) � ö( Ĥ0,è̂ ÿ idĥ0,è̂, Ĥ1,è̂)(eè̂ t),

for

A semi-parametric model for censored and passively registered data 25



ö(H0, H1)(t) �
�

[1, t]

dH1

1ÿ H1ÿ ÿ H0ÿ
:

Thus Ë̂F(t) is formed in two steps: ®rst, the composition of the stochastic process

t 7! ö( Ĥ0,è̂ ÿ id ĥ0,è̂, Ĥ1,è̂)(t) indexed by t 2 [1, ó ]; and second, the change of scale t 7! eè̂ t.

We analyse these two steps separately by decomposing

(Ë̂F ÿËF)(t) � (ö( Ĥ0,è̂ ÿ id ĥ0,è̂, Ĥ1,è̂)ÿ ö(H0,è ÿ idh0,è, H1,è))(eè̂ t)

� ö(H0,è ÿ idh0,è, H1,è)(eè̂ t)ÿ ö(H0,è ÿ idh0,è, H1,è)(eè t):
(9:1)

The second term can be linearized in è̂ÿ è by an application of the delta method for

Euclidean variables. The ®rst term concerns the processes t 7! ö( Ĥ0,è̂ ÿ id ĥ0,è̂,

Ĥ1,è̂)ÿ ö(H0,è ÿ idh0,è, H1,è) evaluated on a random time-scale. By the following lemma,

the limit distribution of this term remains the same if the random time is replaced by the

®xed time eè t.

Let S and T be arbitrary sets, and de®ne l1(S) as the Banach space of all bounded

functions z : S 7! R equipped with the uniform norm.

Lemma 9.1. Suppose that Zn are random elements in the space l1(T ) such that Zn ? Z for

a tight, Borel measurable Gaussian process Z. If ĝ n : S 7! T are random maps such that

sups2S dZ( ĝ n(s), g(s))!P 0 for a ®xed map g : S 7! T and d2
Z(t1, t2) the second moment of

Z(t1)ÿ Z(t2), then Zn � ĝ n ÿ Zn � g ? 0 in l1(S).

This lemma is a consequence of the fact that the sample paths of a tight Gaussian

process Z in l1(T ) are automatically uniformly continuous relative to the second-moment

semi-metric dZ . The lemma is a more abstract version of Lemma 3.3.5 in van der Vaart and

Wellner (1996) and can be formally proved along the same lines. Instead of the semi-metric

dZ , we may use any semi-metric d for which T is totally bounded and such that the sample

paths of Z are uniformly continuous relative to d.

We have that sup0< t<ô]jeè̂ t ÿ eè tj!P 0. Thus we handle the ®rst term of (9.1) by proving

the weak convergence of
���
n
p

times the processes ö( Ĥ0,è̂ ÿ idĥ0,è̂, Ĥ1,è̂)ÿ ö(H0,èÿ
idh0,è, H1,è) in l1[1, ó ], and showing that the second-moment metric of the limit process

is continuous relative to the Euclidean distance. To take the special properties of ĥ0,è̂ into

account, we decompose these processes as

ö( Ĥ0,è̂ ÿ idĥ0,è̂, Ĥ1,è̂)ÿ ö(H0,è ÿ idĥ0,è̂, H1,è)

� ö(H0,è ÿ idĥ0,è̂, H1,è)ÿ ö(H0,è ÿ idh0,è, H1,è)
(9:2)

We linearize the two terms separately by an extension of the functional delta method. Let BV

and D be the set of all functions z : [1, ó ] 7! R of bounded variation and the set of functions

that are left- or right-continuous with limits from the left and right everywhere, respectively,

and let BV1 be the unit ball in the ®rst space. We equip D with the uniform norm. The map

ö : D 3 BV1 � D 3 D 7! D is Hadamard differentiable at every point (H0, H1) 2 Dö such

that H0 2 BV if restricted to the domain Dö of points (H0, H1) such that
�

djH1j < 1 and

1ÿ H0(ó )ÿ H1(ó ) . å for some å. 0. This follows with the help of the chain rule and
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standard results (see Gill 1989; or van der Vaart and Wellner 1996) from Hadamard calculus,

since the map can be decomposed as

(H0, H1) 7! 1

1ÿ H0ÿ ÿ H1ÿ
, H1

� �
7!
�

[0,:]

dH1

1ÿ H0ÿ ÿ H1ÿ
:

The function 1ÿ H1,è(y)ÿ H0,è(y)� yh0,è(y�) � 1ÿ F0(log y=è)ÿ F1(log y=è) is boun-

ded away from zero on [1, ó ] by assumption. Since Ĥ0,è̂, Ĥ1,è̂ and ĥ0,è̂ are consistent, the

same is true with probability tending to 1 for the functions obtained by substituting these

estimators. Therefore, the Hadamard differentiability of ö is suf®cient to infer that, for

h � h0,è,

ö( Ĥ0,è̂ ÿ idh, Ĥ1,è̂) ÿ ö(H0,è ÿ idh, H1,è)

� ö9H0,èÿidh, H1,è( Ĥ0,è̂ ÿ H0,è, Ĥ1,è̂ ÿ H1,è)� oP

1���
n
p
� �

,

where ö9H0, H1
is the derivative of ö at (H0, H1). This is not enough to handle the ®rst term

on the right-hand side of (9.2), because there h is taken equal to the random variables ĥ0,è̂.

However, the preceding display remains valid if h is replaced by ĥ0,è̂, where we may evaluate

the derivative on the right-hand side at the uniform limit in probability h0,è of ĥ0,è̂. To see

this, we must make the delta method `locally uniform'.

Suppose that ö : Dö � D1 3 D2 7! D3 is a map de®ned on a subset Dö of a product of

two normed spaces with values in a third normed space. Call ö Hadamard differentiable at

(A, B) locally uniformly in A if for all converging sequences At ! A, at ! a and bt ! b

as t ; 0 such that (At � tat, B� tbt) 2 Dö and (At, B) 2 Dö for every t,

ö(At � tat, B� tbt)ÿ ö(At, B)

t
! ö9A,B(a, b),

for a continuous, linear map ö9A,B : D1 3 D2 7! D3. Then we have the following extension of

the delta method theorem (cf. van der Vaart and Wellner 1996, Section 3.9.1).

Lemma 9.2. Suppose ö : Dö � D1 3 D2 7! D3 is Hadamard differentiable at (A, B) locally

uniformly in A. If (X n, Yn, Ân) are random elements such that (Xn, Yn) 2 Dö and

(Ân, B) 2 Dö and such that
���
n
p

(X n ÿ Ân, Yn ÿ B) converges in distribution in D1 3 D2

to a tight limit (X , Y ) and Ân!P A, then

ö(Xn, Yn)ÿ ö(Ân, B) � ö9A,B(X n ÿ Ân, Yn ÿ B)� oP(nÿ1=2):

Proof. De®ne maps gn by gn(x, y, a) � ���
n
p

(ö(a� nÿ1=2x, B� nÿ1=2 y)ÿ ö(a, B))ÿ
ö9A,B(x, y). Then gn(xn, yn, an)! 0 for all converging sequences xn ! x, yn ! y and

an ! A. Consequently, by the extended continuous mapping theorem (van der Vaart and

Wellner 1996, Theorem 1.11.1) gn(
���
n
p

(Xn ÿ Ân),
���
n
p

(Yn ÿ B), Ân) ? 0. Since convergence

in probability and convergence in distribution to a degenerate limit are the same, this is the

assertion of the lemma. h
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If we establish the Hadamard differentiability, locally uniform in the argument H0, of the

map (H0, H1) 7! ö(H0, H1) as de®ned previously, then the desired linearization result

follows. We can achieve this by the same method as for the proof of ordinary Hadamard

differentiability of ö (cf. Gill 1989; or Lemmas 3.9.25 and 3.9.17 in van der Vaart and

Wellner 1996). Here we may use an appropriate version of the chain rule, which remains

valid under the extension to locally uniform differentiability. The following lemma states

the Hadamard differentiability of the hardest constituent of ö, the Wilcoxon map

(A, B) 7! �
A dB.

Lemma 9.3. The map ö : BV1 3 D � D 3 D 7! D given by ö(A, B) � �
[1,:] A dB (de®ned by

partial integration if necessary) is Hadamard differentiable at every (A, B) 2 BV1 3 BV

locally uniformly in A.

The lemma can be proved by a minor adaptation of Lemma 3.9.17 in van der Vaart and

Wellner (1996).

Along the same lines, we can also introduce the concept of Hadamard differentiability

locally uniform in both A and B. This concept would be close to continuous

differentiability, which is slightly stronger (cf. van der Vaart and Wellner 1996, Lemma

3.9.7). This concept is useful for the analysis of the map (H0, H1) 7! 1=(1ÿ H0 ÿ H1), but

too restrictive in the case of the Wilcoxon map, which is only partially locally uniformly

differentiable.

Thus, the ®rst term on the right-hand side of (9.2) can be linearized in

( Ĥ0,è̂ ÿ H0,è, Ĥ1,è̂ ÿ H1,è), and to ®nd its limit law we may set ĥ0,è̂ equal to its limit h0,è.

The second term on the right of (9.2) can be written ø( ĥ0,è, Ĥ0,è̂)ÿ ø(ĥ0,è, H0,è) for the

map ø de®ned by

ø(h, H) �
�

[1,:]

ÿidh1,è dH

(1ÿ H0,èÿ ÿ H1,èÿ � idhÿ)(1ÿ H0,èÿ ÿ H1,èÿ � idh0,èÿ)
:

(We use here the fact that ( ĥ0,è̂ ÿ h0,è)dH1,è � h1,èd( Ĥ0,è̂ ÿ H0,è).) The map ø is Hadamard

differentiable at (h0,è, H0,è) locally uniformly in its ®rst argument on the appropriate domain.

(Actually, partial differentiability in its second argument, locally uniformly in its ®rst

argument would suf®ce.) Therefore, we can approximate this term by ø9h0,è, H0,è(0,

Ĥ0,è ÿ H0,è).

The linear approximation to
���
n
p

(Ë̂F ÿËF) obtained in this way is asymptotically

Gaussian distributed. By the Hadamard differentiability of the product integral (Gill 1994;

or van der Vaart and Wellner 1996, Lemma 3.9.30), this carries over into convergence in

distribution of
���
n
p

(F̂ ÿ F). Thus we have proved the theorem.

10. Proofs of Theorems 6.1 and 6.2

Because
� jdĥ0,è̂j � OP(1) and the differences between Ĥ0,è̂ and Ĥ1,è̂ and their limits are

OP(nÿ1=2), we have, uniformly in t 2 [0, ô],
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Ë̂G(t) � ÿ
�

[1,eè̂ t]

id d ĥ0,è̂

1ÿ H0,èÿ ÿ H1,è � idĥ0,è̂ÿ
� OP(nÿ1=2):

Changing the integration range in the expression for ËG(t) into the stochastic interval [1, eè̂ t]

makes a difference of OP(nÿ1=2), by the delta method (since we assume that h90,è exists and is

bounded). Therefore, the difference between Ë̂G(t) and ËG(t) is up to OP(nÿ1=2) equal to�
[1,eè̂ t]

ö(id, ĥÿ)dĥÿ �
[1,eè̂ t]

ö(id, h)dh, for

ö(u, v) � ÿu

1ÿ H0,è(uÿ)ÿ H1,è(u)� uv
,

h � h0,è, and ĥ � ĥ0,è̂. It can be decomposed as�
[1,eè̂ t]

(ö(id, ĥÿ)ÿ ö(id, h))dh�
�

[1,eè̂ t]

ö(id, h)d(ĥÿ h)

�
�

[1,eè̂ t]

(ö(id, ĥÿ)ÿ ö(id, h))d( ĥÿ h)� OP(nÿ1=2): (10:1)

All three terms can be bounded by kĥÿ hk1OP(1). Therefore, the ®rst assertion of the ®rst

theorem is an immediate consequence of Corollary 8.2.

The maximum likelihood estimator for G is obtained by applying the product integral to

Ë̂G. Because the product integral is Lipschitz relative to the uniform norm if restricted to a

domain of functions of uniformly bounded variation (see Gill 1994, Sections 2 and 4; or

van der Vaart and Wellner 1996, p. 391), the uniform rate of Ë̂G ÿËG carries over onto

the same uniform rate for Ĝ ÿ G. This proves the second assertion of Theorem 6.1.

By partial integration, the second term of (10.1) can be rewritten as

ö(id, h)(ĥÿ h)

����eè̂ t�

1ÿ
ÿ
�

[1,eè̂ t]

( ĥÿ h)dö(id, h)

� ö(id, h)(ĥÿ h)

����eè̂ t�

1ÿ
ÿ
�

[1,eè̂ t]

d

ds
ö(s, h(s))d( Ĥ ÿ H)(s): (10:2)

The second term on the right of (10.2) is bounded by

2k Ĥ ÿ Hk1
�
jd2=dt2ö(t, h(t))jdt � OP(nÿ1=2),

because we assume that h 00,è exists and is bounded. The ®rst term on the right of (10.2), when

multiplied by n1=3, yields a non-trivial limit distribution by Theorem 8.5, which also shows

that we may replace eè̂ t by eè t.

Because the second-order partial derivative of ö relative to its second argument is

bounded and
�

djhj � dj ĥj � OP(1), the ®rst and third terms of (10.1) change by at most

OP(kĥÿ hk2
1) if we replace the integrands by their linearization ö92(id, h)( ĥÿ ÿ h) in the

second argument. Thus this change is oP(nÿ1=2) by Corollary 8.2. Next the linearization of

the ®rst term can be written
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�
[1,eè̂ t]

ö92(id, h)h9 d( Ĥ ÿ H) � OP(nÿ1=2):

The linearization of the third term contributes�
[1,eè̂ t]

ö92(id, h)(ĥÿ ÿ h)d(ĥÿ h) � 1
2

�
[1,eè̂ t]

ö92(id, h)d(ĥÿ h)2 ÿ 1
2

X
[1,eè̂ t]

ö92(id, h)(Ä ĥ)2:

The absolute value of the ®rst term on the right is bounded by

kĥÿ hk2
1

�
jdö92(id, h)j � oP(nÿ1=2)

and hence is negligible at rate nÿ1=3. However, the second term may contribute to the limit

distribution of (Ë̂G ÿËG)(t). We conjecture that this term is OP(nÿ1=3), in which case the

weak limit of the sequence n1=3(Ë̂G ÿËG)(t) is the same as the weak limit of the sequence

ö(t, h0,è(t))n1=3( ĥ0,è̂ ÿ h0,è)(eè t)ÿ 1
2
n1=3

X
s2[1,eè̂ t]

ö92(s, h0,è(s))(Ä ĥ0,è̂)2(s):

Here we note, by the characterization of ĥ0,è as the slope of Ĥ0,è, that

ĥ0,è̂(1ÿ)ÿ h0,è(1) � Ĥ0,è̂(1)ÿ H0,è(1) � oP(nÿ1=3).

The weak limits of the sequences n1=3( ĥ0,è̂ ÿ h0,è)(eè t) can be shown to be asymptotically

independent for different values of t. This suggests that the processes t 7! n1=3(Ë̂Gÿ ËG)(t)

will at best converge to weak limits in a pointwise sense and not uniformly in their

argument t.

Next consider the proof of Theorem 6.2. For t . 1� an the continuous approximations
~h0,è̂ of ĥ0,è̂ satisfy

~h0,è̂(t)ÿ h0,è(t) � 1
2

�1

ÿ1

(ĥ0,è̂ ÿ h0,è)(t ÿ anu)du� O(a2
n):

By this and a similar argument for the cumulative distribution functions, with k:k[a,b]

denoting the supremum norm on [a, b],

k~h0,è̂ ÿ h0,èk[1�an, tÿan] < kĥ0,è̂ ÿ h0,èk[1, t] � O(a2
n),

k ~H0,è̂ ÿ H0,èk[1�2an, tÿan] < k Ĥ0,è̂ ÿ H0,èk[1, t] � O(a2
n):

This implies that the preceding approximations remain valid if ~h0,è̂ is substituted for ĥ0,è̂,

where now the term involving the jumps Ä~h0,è̂ vanishes, of course. Furthermore, for every

®xed t,

~h0,è̂(eè̂ t)ÿ ĥ0,è(eè t) � 1
2

�1

ÿ1

( ĥ0,è̂(eè̂ t ÿ anu)ÿ ĥ0,è(eè t))du � oP(nÿ1=3),

in view of the second assertion of Theorem 8.5. The ®rst assertion of Theorem 6.2 follows by

Theorem 8.5. The second assertion follows by the delta method and the fact that, since ~ËG is

continuous, 1ÿ ~G(t) � eÿ~ËG( t).
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