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Let ô and H be respectively the ladder time and ladder height processes associated with a given LeÂvy

process X . We give an identity in law between (ô, H) and (X , H�), H� being the right-continuous

inverse of the process H . This allows us to obtain a relationship between the entrance law of X and

the entrance law of the excursion measure away from 0 of the re¯ected process (X t ÿ
inf s< t X s, t > 0). In the stable case, some explicit calculations are provided. These results also lead

to an explicit form of the entrance law of the LeÂvy process conditioned to stay positive.
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1. Introduction

Let X be a real-valued LeÂvy process starting from 0 such that 0 is regular for both (ÿ1, 0)

and (0, 1). The associated past maximum process X is de®ned, for a ®xed t > 0, by

X t � sups< t X s. It is well known that the re¯ected process X ÿ X is strongly Markovian. So

we can construct its local time at 0, which we denote by L, in the usual sense (see Bertoin

1996, Chapter IV). The right-continuous inverse of L , which we denote by ô, is usually called

the ladder time process, and the corresponding height H �def
X ô is called the ladder height

process. The ladder processes (ô, H) and (ô̂, Ĥ), associated with X and its dual process

X̂ �def ÿX , are bivariate subordinators whose respective laws entirely characterize the law of

X . It is normal practice to express the law of functionals of X in terms of the ladder process'

characteristic exponents. Indeed, it is easier to deal with subordinators rather than with the

LeÂvy process itself and that is an important reason for the study of ladder processes.

This paper is organized as follows. Our ®rst purpose is to reinforce the relationships

recalled in Section 2 between the law of X and the law of the ladder processes. More

precisely, in Section 3, we give a disintegration formula of the identity

1

t
P(X t 2 dx) �

�1
0

du

u
P(ôu 2 dt, X ôu

2 dx), t . 0, (1:1)

discovered, for continuous time, by Bertoin and Doney (1997). For the stable case, some

more explicit relations are stated in Corollaries 2 and 3. Section 4 is devoted to other similar

identities, and we provide some simple applications of the fundamental identity. In Section 5
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we show how identity (3.1) can be applied to derive the entrance law of the re¯ected

process's excursion measure away from 0. In particular, we provide a description of the

density between this entrance law and the entrance law of X on (0, 1). This result leads to

an explicit formula for the entrance law of the LeÂvy process conditioned to stay positive

which is closely related to the excursion measure away from 0 of the re¯ected process. Note

that most of results of this paper have already appeared in Alili and Chaumont (1999).

2. Fluctuation theory in continuous time

We start by recalling the fundamental results of ¯uctuation theory that will be needed in later

results. Roughly speaking, ¯uctuation theory is the study of the process (X t, X t, Gt), t > 0,

where Gt stands for the last time before t at which the past maximum was reached, that is,

Gt � supfs < t : Xs � X sg. This theory ®rst appeared for random walks in the late 1950s

and 1960s, (see, for example, Spitzer 1956; Feller 1971; Wendel 1960; Port 1963, and was

then developed for continuous time by Rogozin (1966), (see also Fristedt 1974). The

following fundamental result from ¯uctuation theory speci®es the joint double Laplace

transform of G and X taken at an independent exponential time. It is due to Spitzer (1956)

for random walks, and to Rogozin (1966) for LeÂvy processes. We also refer to Wendel (1960)

and Greenwood and J.W. Pitman (1980), where an elegant proof based on excursion theory is

provided.

Theorem 1 (Spitzer and Rogozin). Let e be an exponential random variable with

parameter ë. 0, independent of X . Then the following assertions hold:

(i) The couples (Ge, X e) and (eÿ Ge, X e ÿ X e) are independent, and both variables X e

and X e ÿ X e have in®nitely divisible laws.

(ii) For any á, â > 0,

E[exp(ÿáGe ÿ âX e)] � exp

�1
0

dt

�
[0,1)

(eÿá tÿâx ÿ 1)tÿ1eÿë t P(X t 2 dx)

� �
, (2:1)

and

E[exp(ÿá(eÿ Ge)ÿ â(X e ÿ X e))] � exp

�1
0

dt

�
(ÿ1,0)

(eÿá t�âx ÿ 1)tÿ1eÿë t P(X t 2 dx)

� �
:

(2:2)

Denote by ø the characteristic exponent of X , which is given by

E[eixX t ] � eÿ tø(x), x 2 R,

and let us introduce the characteristic functions of X e and ÿ(X e ÿ X e), denoted respectively

by j�ë and jÿë . The so-called Wiener±Hopf factorization identity is the decomposition

ë

ë� ø
� j�ë j

ÿ
ë , (2:3)
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which is a straightforward consequence of Theorem 1(i). Another motivation of ¯uctuation

theory, closely related to the process (G, X ), is the study of the law of ladder process

associated with X . It was proved by Fristedt (1974) that the process (ô, H) is a bivariate

subordinator. So we have

E[exp(ÿáô t ÿ âH t)] � eÿ tk(á,â), á, â > 0, (2:4)

where k(�, �) is the corresponding characteristic exponent. This is speci®ed in the following:

Theorem 2 (Fristedt). For every á, â > 0,

k(á, â) � k exp

�1
0

dt

�
[0,1)

(eÿ t ÿ eÿá tÿâx)tÿ1 P(X t 2 dx)

� �
, (2:5)

where k is a constant which only depends on the normalization of the local time L.

Now, as a consequence of (2.1) and (2.5), the processes (ô, H) and (G, X ) are related by

the formula:

E[exp(ÿáGe ÿ âX e)] � k(ë, 0)

k(á� ë, â)
: (2:6)

Denote by k̂ the characteristic exponent associated with the ladder process of the dual LeÂvy

process ÿX . Then from (2.5) we see that

k(á, 0)k̂(á, 0) � k k̂ exp

�1
0

(eÿ t ÿ eÿá t)tÿ1dt

� �
� k9á, (2:7)

where k9 and k̂ are positive reals. Now, by gathering (2.3), (2.6) and (2.7) we see that the law

of X is characterized by those of the ladder heights H and Ĥ . More precisely, we have

k9ø(x) � k(0, ÿix)k̂(0, ix), x 2 R: (2:8)

For updated proofs of the Spitzer±Rogozin theorem, Fristedt's theorem, and the above other

¯uctuation identities above, see Bertoin (1996, Chapter VI) and the references therein.

3. The fundamental identity.

For a ®xed x . 0, we denote by ó x the time the LeÂvy process X ®rst hits (x, 1), that is,

ó x � infft : X t . xg. It is known ± see, for instance, the proof of Theorem VI.19 in Bertoin

(1996, p. 175) ± that the process (Ló x
, x > 0) is the right-continuous inverse of (Hu, u > 0).

This shows up in the following theorem, which is a re®nement of (1.1).
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Theorem 3. On (0, 1)3, we have the following identity between measures:

tÿ1 P(X t 2 dx, Ló x
2 du)dt � uÿ1 P(ôu 2 dt, Hu 2 dx)du: (3:1)

Proof. This mimics the analytical proof of Theorem 1 in Alili and Doney (1999). In order to

simplify the notation, we set

Iâ(á, u) � E[ôueÿáôuÿâHu ]:

To start with, we differentiate (2.5) with respect to á in order to obtain

Iâ(á, u) � ÿu
@

@á
k(á, â)

� �
E eÿáôuÿâHu
� �

(3:2)

� ÿu
@

@u
E[eÿáôuÿâHu ]

� ��1
0

dt eÿá tE[eÿâX t1fX t . 0g] (3:3)

� ÿu
@

@u
E

�1
0

dt exp(ÿá(t � ôu)ÿ â( ~X t � Hu))1f ~X t . 0g

� �
, (3:4)

where ~X is an auxiliary independent copy of the LeÂvy process X . We then perform the

change of variables s � t � ôu and apply Fubini's theorem to obtain

Iâ(á, u) � ÿu
@

@u

�1
0

dseÿásE[eÿâ( ~X sÿôu�Hu)1f ~X sÿôu . 0,ôu <sg]

� ÿu
@

@u

�1
0

dseÿásE[eÿâX s1fX s . Hu,ôu <sg],

where the latter equality is obtained by the strong Markov property. We now condition on X s

and use the fact that (Ló x
, x > 0) is the right-continuous inverse of (Hu, u > 0). By replacing

the event fXs . Hug by fLó X s
. u, X s > 0g, we ®nally ®nd that

Iâ(á, u) � ÿu
@

@u

�1
0

dseÿás

�
(0,1)

eÿâz P(X s 2 dz, Ló (X s) . u, Xs > 0)

and the result follows by the injectivity of the double Laplace transform (in á and â). h

Remark 1. The dif®culty in using the path transform method of Alili and Doney (1999) and

Marchal (2000) relies on the fact that for LeÂvy processes there are unaccountably many

ladder indices. It would be interesting to ®nd a path-transformation proof of Theorem 3,

following these authors.

The following result is an equivalent form of Theorem 3. Here we express the Laplace

transform of the process ((Ló (X t), X t), t > 0) in terms of the Laplace exponent of (ô, H).

This then leads to an expression of the conditional law of Ló (X e) given X e � x, where e is

an independent exponential time.
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Theorem 4. Let e be an independent exponential time with parameter ë and á, â > 0. Then

we have

E[exp(ÿáLó (X e) ÿ âX e)jX e > 0] � k(ë, 0)

@

@ë
k(ë, 0)

@

@ë
k(ë, â)

á� k(ë, â)
: (3:5)

Consequently, conditionally on X e > 0, the variable Ló (X e) is exponentially distributed with

parameter k(ë, 0). Moreover, the law of X e conditionally on X e > 0 and Ló (X e) � x is given

by

E[eÿâX e jX e > 0, Ló (X e) � x] �
@

@ë
k(ë, â)

@

@ë
k(ë, 0)

eÿ(k(ë,â)ÿk(ë,0))x, â > 0:

Proof. Theorem 3 implies that

E[exp(ÿáLó (X e) ÿ âX e)1fX e>0g] � ë

�1
0

�1
0

tdtuÿ1dueÿë tÿáuE[ôu 2 dt, eÿâHu ]

� ë

�1
0

uÿ1eÿáuE[ôueÿëôuÿâHu ]du:

Differentiating with respect to á, it follows that

E[Ló (X e) exp(ÿáLó (X e) ÿ âX e)1fX e>0g] � ë

�1
0

du eÿáuE[ôu eÿëôuÿâHu ]

� ÿë @
@ë

�1
0

du eÿáuE[eÿëôuÿâHu ]

� (á� k(ë, â))ÿ2ë
@

@ë
k(ë, â):

We conclude by integrating with respect to á. The second statement of the theorem is a

straight consequence of Theorem 4, and the last one follows from

�1
0

eÿ(á�k(ë,0))xE[eÿâX e jX e > 0, Ló (X e) � x]dx � 1

@

@ë
k(ë, 0)

@

@ë
k(ë, â)

á� k(ë, â)
: h

When X has no negative jumps, X is a continuous increasing additive functional of the

re¯ected process X ÿ X . Moreover, the set of its increase times corresponds to the zero set

of X ÿ X , which means that X is a local time at zero of X ÿ X . Since the local time is
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unique up to a multiplicative constant, we can ®x its normalization such that L � X . Then

the variable Ló (X e) involved in the above theorem is almost surely equal X e. On the other

hand, it is known that X e is exponentially distributed with parameter k(ë, 0); see, for

instance, Corollary VII.2 in Bertoin (1996, p. 190). We then obtain from Theorem 4 that

P(X e 2 dx) � P(X e 2 dxjX e > 0), x > 0, (3:6)

each member being exponentially distributed with parameter k(ë, 0). In the general case, it is

not dif®cult to check that for every t . 0 the equalities Ló (X t)
� LGt

� Lt hold almost surely.

Moreover, it is well known from excursion theory that Le is exponentially distributed with

parameter k(ë, 0). Consequently, identity (3.6) might be generalized as follows:

Corollary 1. Let e be as in Theorem 4. Then

P(Ló (X e) 2 dx) � P(Ló (X e) 2 dxjX e > 0), x > 0: (3:7)

Note also that the identities (3.6) and (3.7) hold at ®xed time whenever P(X t > 0) does not

depend on t. Identity (3.6) was proved in the stable case by Skorohod (1971); see also

Bingham (1975).

4. The stable case

In this section we suppose that X is a stable LeÂvy process with index á 2 (0, 2]; that is, for

every s . 0, X satis®es the scaling property

(X t, t > 0) �d (sÿ1 X sá t, t > 0):

We then see that the ladder process (ô, H) is stable with index (r, ár). More precisely, from

Theorem 2, we easily deduce that

(ô t, H t, t > 0) �d (sÿ1=rôst, sÿ1=ár Hst, t > 0),

where r is given by r � P(X1 > 0). This allows us to translate Theorem 3 into the following

identity in law:

Corollary 2. The couple (Ló (X1), X1) conditionally on X 1 > 0 and (ôÿr1 , ôÿ1=á
1 H1) are

identically distributed.

Note that by the scaling property of X , the bivariate process (Ló (X t), X t, t > 0) is also stable

with index (rÿ1, á). Therefore, the above corollary can be extended to any ®xed time t > 0.
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Proof. On the one hand, we have for every ë. 0, and è, â > 0,�1
0

eÿëuE[exp(ÿèôu ÿ âHu)]du �
�1

0

eÿëuE[exp(ÿèu1=rô1 ÿ âu1=ár H1)]du

� r
�1

0

eÿè tE
t

ô1

� �r

exp ÿë t

ô1

� �r

ÿâ t

ô1

� �1=á

H1

 !" #
dt

t
,

where the ®rst equality comes from the scaling property, and the second from the change of

variables u � (t=ô1)r. On the other hand, by applying Theorem 3, we see that�1
0

eÿëuE[exp ÿ èôu ÿ âHu] du �
�1

0

eÿè tE[Ló (X t) exp(ÿëLó (X t) ÿ âX t)1fX t . 0g]
dt

t
:

Integrating these identities with respect to ë and using the scaling property of the process

(Ló (X t), X t, t > 0) we obtain

r
�1

0

eÿè tE exp ÿë t

ô1

� �r

ÿ â
t

ô1

� �1=á

H1

 !" #
dt

t

�
�1

0

eÿè tE[exp(ÿëtrLó (X1) ÿ ât1=áX 1)1fX1 . 0g]
dt

t

� r
�1

0

eÿè tE[exp(ÿëtrLó (X1) ÿ ât1=áX 1)jX1 > 0]
dt

t
,

which is the required result. h

As well as for random walks, the renewal measure associated with the ladder process

(ô, H) plays an important role in the study of the Martin boundaries associated with a

killed LeÂvy process; see Alili and Doney, (2000) for a recent study of the discrete setting.

In the following some results will be expressed in terms of this measure on R� 3 R� for

which we recall the de®nition:

g(dt, dx) �
�1

0

P(ôu 2 dt, Hu 2 dx)du: (4:8)

Differentiating (4.8) and following the same reasoning as in the proof of the fundamental

identity (Theorem 3), we obtain the following convolution equation which will be useful

later:

xg(dt, dx) � dt

� t

u�0

�x

z�0

xÿ z

t ÿ u
Pz(X tÿu 2 dx)g(du, dz), x . 0: (4:9)

We refer to Theorem 1 in Alili and Doney (1999) for a discrete-time version of this identity.

Recall that Gt, de®ned in Section 2, is the last time at which X reaches its absolute

maximum before t. It is well known (see Theorem VI.3.13 in Bertoin 1996) that the law of

tÿ1Gt is the generalized arcsine law with parameter r:

A new ¯uctuation identity for LeÂvy processes 563



P(tÿ1Gt 2 ds) � sin rð
ð

srÿ1(1ÿ s)ÿrds, 0 , s , 1:

Let P(X t 2 dxjGt � s) be a regular version, in s, of the conditional law of X t given Gt. The

law of the couple (X t, Gt) can be characterized in terms of g in the following way.

Corollary 3. For every s and t such that 0 , s , t and x . 0, the following identities between

measures hold:

Ã(1ÿ r)srP(X t 2 dxjGt � s)ds � E[Ló (X s), Xs 2 dx]ds (4:10)

� sg(ds, dx): (4:11)

We emphasize that the left-hand side does not depend on t.

Proof. Starting from (2.6), we see that for all positive reals, ã, â and ë,�1
0

eÿë tE[exp(ãGt ÿ âX t)]dt

� ëÿ1k(ë, 0)

�1
0

E[exp(ÿ(ã� ë)ôu ÿ âHu)]du

� Ã(1ÿ r)ÿ1E

�1
0

�1
0

xÿr exp(ÿë(x� ôu))exp(ÿãôu ÿ âHu)du dx

� �

� Ã(1ÿ r)ÿ1E

�1
0

�1
ôu

eÿë t(t ÿ ôu)ÿr exp(ÿãôu ÿ âHu)du dx

� �
,

where the last equality is obtained by performing the change of variable t � x� ôu. Inverting

the Laplace transform in ë and using the scaling property of (ô, H), we obtain

E[exp(ÿãGt ÿ âX t)]

� Ã(1ÿ r)ÿ1

�1
0

E[(t ÿ ôu)ÿr exp(ÿãôu ÿ âHu)1fôu< tg]du

� Ã(1ÿ r)ÿ1

�1
0

E[(t ÿ u1=rô1)ÿr exp(ÿãu1=rô1 ÿ âu1=ár H1)1fu1=rô1< tg]du:

By the change of variables u1=rô1 � z, we have

E[exp(ÿãGt ÿ âX t)] � rÃ(1ÿ r)ÿ1

� t

0

zrÿ1(t ÿ z)ÿr eÿãzE ôÿr1 exp ÿâ z

ô1

� �1=á

H1

 !" #
dz,

which shows that

E[eÿâS t jGt � z] � rÃ(1ÿ r)ÿ1E ôÿr1 exp ÿâ z

ô1

� �1=á

H1

 !" #
:
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We then obtain the result by using Corollary 2. h

We point out that Corollary 3 provides a better understanding of the exit law of the so-

called stable meander for which we recall the de®nition. Let gt be the ®rst time before t at

which X reaches its past overall minimum,

gt �def
inffu : X u � X tg,

where X t �def
inf u< t X u. The meander m of length s, with s , t, is a process de®ned on the

time interval [0, s] with the same law as the process f(X ÿ X ) g t�u, 0 < u < t ÿ gtg
conditionally on t ÿ gt � s. We refer to Chaumont (1997) for a more complete de®nition and

study of this process. Note that from the time reversal property of LeÂvy processes (see

Lemma 2 in Bertoin 1996, Section II.1), we have

P(X t 2 dxjGt � s) � P((X ÿ X ) t 2 dx j g t � s):

We may now reformulate the identities (4.10) and (4.11) in terms of the meander's exit law.

Corollary 4. With the above notation, the exit law of the stable meander m, with length s, is

speci®ed by

P(ms 2 dx)ds � Ã(1ÿ r)ÿ1s1ÿr g(ds, dx): (4:12)

5. Application to the excursion measure of the re¯ected process

Consider the process X re¯ected by its past minimum, which is X ÿ X , where

X t �def
inf s< t X s, for each t > 0. Note that X ÿ X � �̂

X ÿ X̂ , where X̂ � ÿX , so by duality

this process enjoys all the properties of X ÿ X , described in the Introduction. In particular, it

is strongly Markovian and, under our hypothesis, 0 is regular for itself. It then makes sense to

introduce the ItoÃ measure n of its excursions away from 0. In this section we are interested in

the description of the entrance law under n. This measure ful®ls the strong Markov property

in a sense which is made precise in (5.3). So, the law of the excursion process (et) t>0 under n

is entirely determined by both its semigroup and its entrance law. The semigroup under n is

well known and is de®ned as follows. For ®xed positive reals x and t, we denote by p0
t (x, dy),

y > 0, the semigroup of the process X killed when it hits the negative half-line (ÿ1, 0).

That is, for any bounded or non-negative Borel function f ,

Ex[ f (X t)1f t , ôg] �def
�1

0

f (y) p0
t (x, dy), (5:1)

where ô �def
infft : X t , 0g. The semigroup p0

t (x, dy) is the same as that of the excursion

process (et) t>0 under n. The entrance law, (qt(dx)) t . 0, x . 0, under n is de®ned, for any

bounded measurable function f , by

n( f (et), t , æ) �
�1

0

f (x)qt(dx), (5:2)
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where æ is the lifetime of the generic excursion. With this notation, the measure n can be

described as follows: for every 0 , t1 , . . . , tn ,1 and bounded Borel functions

f 1, . . . , f n,

n( f 1(et1
)) . . . f n(et n

)1f t n , æg)

�
�

R n

f1(x1) . . . f n(xn)qt1
(dx1) p0

t2ÿ t1
(x1, dx2) . . . p0

t nÿ t nÿ1
(xnÿ1, dxn):

(5:3)

For a complete description of n, it remains to note that under this measure, the generic

excursion starts from 0 at time t � 0.

In general, the entrance law (qt) t . 0 under n is much less known than the semigroup

( p0
t ) t>0 described above. However, when X has no positive jumps, we know from Bertoin

(1996, Section VII.3) that

qt(dx) � ktÿ1xpt(dx), x . 0, (5:4)

where ( pt) t . 0 is the entrance law of X and k is a constant independent of t and x. In the

following proposition, we show how the results of Section 3 allows us to extend relation (5.4)

to all LeÂvy processes considered here.

Theorem 5. For every t . 0, we have

qt(dx) dt � k 0tÿ1E[Ló x
, X t 2 dx]dt, x . 0,

� kg(dt, dx),
(5:5)

where k 0 is a constant independent of t and x, and g is the renewal measure de®ned in (4.8).

Proof. From the exit formula of excursion theory, (see Bertoin 1996, Section IV.4), we

obtain

n

�æ
0

eÿá tÿâe t dt

� �
� k̂(á, 0)E

�1
0

eÿá tÿâ(XÿX ) t dt

� �
:

Applying the Spitzer±Rogozin identity (Theorem 1), we see that

n

�æ
0

eÿá tÿâe t dt

� �
� k̂(á, 0)

á
exp

�1
0

dt

�1
0

(eÿâx ÿ 1)
eÿá t

t
P(X t 2 dx)

� �
: (5:6)

On the other hand, from Fristedt's identity (Theorem 2) and (2.7), we obtain�1
0

�1
0

eÿá tÿâx

�1
0

P(ôu 2 dt, X ôu
2 dx)du � (k(á, â))ÿ1

� kÿ1 exp

�1
0

dt

�1
0

(eÿá tÿâx ÿ eÿ t)
1

t
P(X t 2 dx)

� �

� k9ÿ1 k̂(á, 0)

á
exp

�1
0

dt

�1
0

(eÿâx ÿ 1)
eÿá t

t
P(X t 2 dx)

� �
: (5:7)
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From (5.6) and (5.7) and using Theorem 3, we ®naly obtain

n(et 2 dx, , t , æ)dt � k 0

�1
0

P(ôu 2 dt, X ôu
2 dx)du (5:8)

� k 0

t
E[Ló x

, X t 2 dx]dt: h

The above result is also motivated by the connection between qt and the entrance law of

the LeÂvy process conditioned to stay positive, which we now introduce. To this end, we ®rst

make two additional assumptions. Suppose that, for each t . 0, the semigroup Pt, de®ned

for every bounded Borel function f by

Pt f (x) � Ex[ f (X t)] � E[ f (X t � x)], x 2 R, (5:9)

satis®es the strong Feller property. This property is equivalent to the absolute continuity of

the law of X t with respect to the Lebesgue measure for any ®xed t . 0; see, for instance,

Bertoin (1996). We also suppose that

lim
t!1 X t � �1:

Under these additional hypothesis we can introduce the LeÂvy process conditioned to stay

positive X ",x, x . 0, as follows (for more details, see Chaumont 1996). Denote by L̂ the local

time at 0 of the process X ÿ X ; and for any positive x, let ó̂ x be the ®rst entrance time in

(x, 1), by X̂ � ÿX, that is, ó̂ x � infft : X̂ t . xg. Now the function ĥ de®ned by

ĥ(x) �def
E[L̂ó̂ x

], x . 0, (5:10)

is a positive harmonic function for the semigroup p0
t (x, dy) and X ",x, x . 0, is the h-process

in Doob's sense de®ned with respect to ĥ and p0
t (x, y). More formally, if p

"
t (x, y), x, y . 0,

denotes the semigroup of the process X ",x, x . 0, then we have

p"t (x, dy) � ĥ(y)

ĥ(x)
p0

t (x, dy), t, x, y . 0: (5:11)

Obviously, for every x . 0, X ",x is a positive strong Markov process starting from x.

Moreover, it can easily be proved that lim t!1X
",x
t � �1 almost surely. In the Brownian

case, note that the latter process corresponds to the three-dimensional Bessel process.

Following Chaumont (1996), it is possible to construct a process X ",0, starting from 0, whose

semigroup in (0, 1) is precisely p
"
t (x, dy). It has been shown that, in some cases, the family

of processes X ",x, x . 0, converges weakly towards the law of X ",0; see, for instance,

Chaumont (1996). From Theorem 3 in Chaumont (1996), the entrance law p
"
t (dy) of X ",0 is

related to qt(dy) as follows:

p"t (dy) � ĥ(y)qt(dy): (5:12)

So from Theorem 5 and the above identity, we obtain:
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Proposition 1. For every positive t and x,

p"t (x) � k 0tÿ1 ĥ(x)E[Ló x
, X t 2 dx], (5:13)

where k 0 is a constant independent of x and t.

We conclude this paper by stating an open problem. A natural problem is to calculate the

conditional expectation

E[Ló x
jX t � x] (5:14)

which has appeared throughout this paper. This is actually equivalent to expressing the

renewal measure g(ds, dx) in terms of the entrance law of X , and it allows us to express

explicitly the Wiener±Hopf factors speci®ed in (2.3). Theoretically, from Theorem 4, we

should be able to answer this question by inverting the Laplace transform of (3.5) in ë and â.

In the case where X has no positive jumps, since Ló x
is deterministic, as we have already

observed, the above conditional expectation is identically equal to x. This example incites us

to formulate the following:

Problem. Identify the class of LeÂvy processes for which the conditional expectation (5.14)

above does not depend on t. The latter expression is then obviously equal to the harmonic

function h(x) �def
E[Ló x

].

We have checked that this property fails in the case of the symmetric Cauchy process.

To see this, recall that the semigroup of X is then given by Px(X t 2 dy) �
pt(x, dy) � ðÿ1 t((xÿ y)2 � t2)ÿ1 dy, x, y 2 R, t > 0, and the corresponding renewal

function is, up to a constant, given by h(x) � x1=2. Under the above hypothesis and from

Corollary 3, the renewal measure g would be g(dt, dx) � x1=2ðÿ1(x2 � t2)ÿ1 dt dx. From

(4.9) we would have

x3=2

x2 � t2
� ðÿ1

�x

0

dz

� t

0

du
xÿ z

t ÿ u

t ÿ u

(xÿ z)2 � (t ÿ u)2

���
z
p

z2 � u2
: (5:15)

But one can easily check that

x3=2

x2 � t2
� ðÿ1

�x

0

dz

�
R

du
xÿ z

t ÿ u

t ÿ u

(xÿ z)2 � (t ÿ u)2

���
z
p

z2 � u2
:

So equation (5.15) fails.
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