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We consider estimators for the change-point in a sequence of independent observations. These are

de®ned as the maximizing points of weighted U -statistic type processes. Our investigations focus on

the behaviour of the estimators in the case of independent and identically distributed random variables

(null hypothesis of no change), but contiguous alternatives in the sense of Oosterhoff and van Zwet

are also taken into account. If the weight functions belong to the Chibisov±O'Reilly class we derive

convergence in distribution, including a special Berry±Esseen result. The limit variable is the almost

sure unique maximizing point of a weighted (standard or re¯ected) Brownian bridge with drift. For

general weight functions the limiting null distribution is analytically not known. However, in the

special case where no weight functions are involved it is known that the maximizer of a standard

Brownian bridge is uniformly distributed on the unit interval. A corresponding result for the re¯ected

Brownian bridge seems to be unknown in the literature. In this paper we ®ll this gap and actually

compute the common density of the maximum and its location for a re¯ected Brownian bridge. From

this one can ®nd the density of the maximizer, which analytically can be expressed in terms of a

series. In a special case even the ®nite sample size distribution of our estimator is established. Besides

distributional results, we also determine the almost sure set of cluster points.

Keywords: Berry±Esseen estimates; change-point estimation; contiguous alternatives; limiting null

distribution; maximizer of weighted Brownian bridges; sets of cluster points

1. Introduction

We consider a triangular array X1n, . . . , X nn, n > 2, of rowwise independent random

elements de®ned on a probability space (Ù, A, P) with values in a measurable space

(X , F ). Suppose that the underlying distribution L (X in) of X in changes at an unknown

point ô � [nè] from í1n to some í2n 6� í1n, where è 2 (0, 1]. Thus it is L (X in) �
1fi<ôgí1n � 1fi . ôgí2n for 1 < i < n and n 2 N. Knowing nothing about í1n and í2n, we wish

to estimate the change-point è. The analysis of change-point estimators in a nonparametric

framework has been of increasing interest in the last decade. A comprehensive review is

given in the monographs of Brodsky and Darkhovsky (1993) and CsoÈrg}o and HorvaÂth (1997).

Commonly, the results for estimators of è are concerned with the case of an actual change

(0 , è, 1), whereas the case of no change (è � 1) has hardly been investigated. Indeed,

hitherto only a few contributions have addressed this problem: see Ferger (1996), Gombay

and HorvaÂth (1996), Hu�skovaÂ (1996) or Lombard and Hart (1994). They prove convergence

in distribution to a non-degenerate limit variable.
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Note that we need to consider double-indexed random variables X in in order to enable

asymptotic investigations in the case of the change-point alternative H1 : è, 1. Since in

statistics the null and alternative hypotheses usually constitute a common model, we prefer

also in the case of no change (null hypothesis H0 : è � 1) to state our results in terms of

arrays. Moreover, it is the nature of some change-point problems which requires an array as

an appropriate stochastic model. By way of illustration, consider the following examples

taken from Bhattacharya and Brockwell (1976) and Bhattacharya and Frierson (1981).

Example 1.1. A machine produces items, and the process continues uninterrupted until a

problem occurs. The machine is assumed to be adjusted at regular intervals. Between two

successive adjustments we therefore take random samples X 1n, . . . , X k n n of size k n 2 N.

Then X in represents the value of the ith observation after the nth adjustment and è � 1

(è, 1) describes a production process which is under control (out of control). Note that due

to the adjustments it is reasonable to assume that (X1n, . . . , X k n n), n 2 N, is a sequence of

independent vectors. In this paper we only consider k n � n, but the extension to the general

case merely requires changes in the notation.

Example 1.2. One observes random variables X1n, . . . , X nn, where X in is the sum of a noise

component Yin and a possible signal ain. Suppose the noises Y1n, . . . , Ynn form a sequence of

independent and identically distributed (i.i.d.) random variables with distribution í and that

ain � 0 for 1 < i < [nè] and ain � rn for [nè] , i < n, where rn ! 0 as n!1. So, up to

time [nè] no signals have been sent, whereas after [nè] we have received faint signals.

In this paper we study the estimators

èn � nÿ1 arg max
1<k,n

w
k

n

� ����� Xn

i�k�1

Xk

j�1

K(X in, X jn)

����
and

è�n � nÿ1 arg max
1<k,n

w
k

n

� � Xn

i�k�1

Xk

j�1

K(X in, X jn),

under the null hypothesis H0 of no change (è � 1). Here w : (0, 1)! (0, 1) is a positive

weight function and K : X 2 ! R is a measurable and antisymmetric mapping (kernel). By

convention arg max t2T f (t) denotes the smallest maximizer of a function f : T ! R, T � R,

with existing max f (t). For asymptotic properties of these estimators under the alternative

0 , è, 1, see Ferger (1994a; 2001).

The paper is organized as follows. In section 2 we prove convergence in distribution of

(èn) and (è�n ) provided w is a Chibisov±O'Reilly function. The distributions of the limit

variables ôw � arg max0,t,1 w(t)jB0(t)j and ô�w � arg max0,t,1 w(t)B0(t), where B0 denotes

a Brownian bridge, are not known for general w. But for the special weight function w � 1

one can identify the limit distributions. Indeed, the maximizer ô�1 � arg max0,t,1 B0(t) of

standard Brownian bridge is known to be uniformly distributed on (0, 1); see Ferger (1995)
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or CsoÈrg}o and HorvaÂth (1997). Unlike the standard case, the distribution of the maximizing

point ô1 � arg max0,t,1jB0(t)j of a re¯ected Brownian bridge seems to be unknown in the

literature. By determining the common density of arg max0,t,1jB0(t)j and max0,t,1jB0(t)j
we ®ll this gap. In particular, the density of ô1 admits an explicit representation in terms of

a series. For general w we at least know that ôw and ô�w are continuous random variables.

For the weight function w(t) � (t(1ÿ t))ÿ1=2, which is extreme in so far as w is not a

Chibisov±O'Reilly function, there is still convergence in distribution, but the limit now is a

Bernoulli(1
2
) variable. Roughly speaking, this means that the estimator also under the null

hypothesis of no change correctly indicates the i.i.d. situation, which can be described

through è � 1 as well as è � 0. This result is actually due to CsoÈrg}o and HorvaÂth (1997)

and Lombard and Hart (1994), but for the sake of completeness a more elaborate proof is

given.

In Section 3 we consider the one-sided estimator è�n pertaining to w � 1. As explained

above, è�n !
L

U (0, 1), which by PoÂlya's theorem is equivalent to

sup
0<x<1

jP(è�n < x)ÿ xj ! 0, n!1: (1:1)

Under a uniform moment condition on K, rates of convergence in (1.1) are established.

In Section 4 we determine the almost sure set of cluster points of the sequences (èn) and

(è�n ). Finally, in Section 5 a necessary and suf®cient condition is presented under which

(a slight modi®cation of) è�n induced by w � 1 is uniformly distributed on the grid

fknÿ1 : 0 < k < nÿ 1g for ®nite sample size n 2 N. Section 6 contains two technical results

which are needed in the proofs.

2. Convergence in distribution

In this section we show that, under the null hypothesis of no change, èn and è�n converge in

distribution to the almost surely (a.s.) unique maximizer of a weighted re¯ected Brownian

bridge and a weighted standard Brownian bridge, respectively. For the general weights under

consideration one can approximate the limit distribution by the Monte Carlo method. In the

special case of no weights (w � 1) it is possible to give explicit analytical expressions.

Our ®rst result deals with the special case í1n � í for all n 2 N; that is, here the

common distribution of X 1n, . . . , X nn may not depend on n. However, if the sample space

X is equal to the real line R, then we can get rid of this restriction as long as í1n is

contiguous to some í in the sense of Oosterhoff and van Zwet (1979).

In the following let W denote the class of continuous functions w : (0, 1)! (0, 1),

which are monotone decreasing in a neighbourhood of zero and monotone increasing in a

neighbourhood of one.

Theorem 2.1. For each n 2 N, let X 1n, . . . , X nn be i.i.d. random elements in (X , F ) with

common distribution í. Assume K is antisymmetric with

Change-point estimators under the null hypothesis 489



�
jKj p dí
 í,1, p . 2, ó 2 �

� �
K(x, y)í(dy)

� �2

í(dx) . 0: (2:1)

If w 2 W satis®es the Chibisov±O'Reilly condition�1

0

(t(1ÿ t))ÿ1 exp(ÿcw(t)ÿ2(t(1ÿ t))ÿ1)dt ,1, 8c . 0, (2:2)

then

èn!L ôw � arg max
0,t,1

w(t)jB0(t)j (2:3)

and

è�n !
L

ô�w � arg max
0,t,1

w(t)B0(t), (2:4)

where B0 denotes a Brownian bridge. The maximizing points ôw and ô�w are a.s. unique.

Proof. Put Sn(t) �Pn
i�[nt]�1

P[nt]
j�1 K(X in, X jn), 0 < t < 1, and

Ãn(t) � ó ÿ1w(t)nÿ3=2Sn(t), 0 , t , 1,

0, t 2 f0, 1g:
�

By (2.1) and (2.2) we can apply Corollary 4.1 of CsoÈrg}o and HorvaÂth (1988), which says that

there exists a sequence (B
(n)
0 ) of Brownian bridges such that

sup
0 , t , 1

w(t)jó ÿ1 nÿ3=2Sn(t)ÿ B
(n)
0 (t)j � oP(1): (2:5)

Since w 2 W meets requirement (2.2), Corollary 1.2 of CsoÈrg}o and HorvaÂth (1993, p. 189)

states that there is an Ù0 2A with P(Ù0) � 1 such that

lim
t!0

w(t)B
(n)
0 (t) � lim

t!1
w(t)B

(n)
0 � 0, 8n 2 N, 8ù 2 Ù0: (2:6)

For those ù 2 Ù0 we de®ne the continuous process

Ã(n)
0 (t) � w(t)B

(n)
0 (t), 0 , t , 1,

0, t 2 f0, 1g:
�

By construction the stochastic processes Ãn and Ã(n)
0 are random elements in the Skorokhod

space D � D[0, 1] endowed with the Skorokhod metric s. According to (2.5),

sup
0< t<1

jÃn(t)ÿ Ã(n)
0 (t)j � sup

0,t,1

jÃn(t)ÿ Ã(n)
0 (t)j � oP(1):

Thus, by Slutsky's theorem, we obtain

Ãn!L Ã(1)
0 as n!1 in D[0, 1]: (2:7)

The mapping øn : D! [0, 1] de®ned by
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øn( f ) � arg max
1<k,nÿ1

f
k

n

� �
, f 2 D,

entails the representations

èn � øn(jÃnj), è�n � øn(Ãn): (2:8)

In view of the extended continuous mapping theorem (Billingsley, 1968, Theorem 5.5) we

wish to extend the `argmax functional' to the space D in a suitable way. Since f 2 D

possibly does not possess a maximizing value, we introduce for all f 2 D the set

S( f ) �
(

0 < u < 1 : f (u) � sup
0<s<1

f (s) or f (uÿ) � sup
0<s<1

f (s)

)
:

By Lemma 6.1, S( f ) is a non-empty, closed set, whence the mapping ø : D! [0, 1] with

ø( f ) � min S( f ), f 2 D,

is well de®ned. Clearly, if f is continuous then S( f ) is the set of maximizers, so that ø( f ) is

the smallest maximizer. In particular, because Ã(1)
0 is a.s. continuous by (2.6), we have

ôw � ø(jÃ(1)
0 j) a:s: and ô�w � ø(Ã(1)

0 ) a:s: (2:9)

To complete the proof, consider

E � f f 2 D : 9( f n) � D, f n !s f , øn( f n) 6! ø( f )g:
By Lemma 6.1, the set Ĉ of continuous functions on [0, 1] with unique maximizers is

contained in the complement of E in D : Ĉ � DnE. Example 2.7 of Ferger (1999) shows that

P(jÃ(1)
0 j 2 Ĉ) � 1 � P(Ã(1)

0 2 Ĉ). Consequently, the extended continuous mapping theorem is

applicable, which by (2.7)±(2.9) gives the desired result. h

Remark 2.2. (i) An essential tool in the above proof is Corollary 4.1 of CsoÈrg}o and HorvaÂth

(1988). However, their results are only formulated for sequences X 1, X 2, . . . of i.i.d. real-

valued random variables rather than for arrays X1n, . . . , X nn, n 2 N, of rowwise i.i.d. X -

valued random elements. But checking the proofs shows that all statements of their Sections

2 and 4 remain valid in the general case.

(ii) If w 2 W is bounded then it suf®ces to require the existence of the second moment

( p � 2) in (2.1). Indeed, then one can apply Theorem 4.1 of CsoÈrg}o and HorvaÂth (1988)

to show that Ãn!L wB0 in D[0, 1]. The rest of the proof remains the same.

(iii) Note that the ®rst part of condition (2.1) is ful®lled for all distributions í whenever

a bounded kernel is chosen. Observe that most frequently K is of the type K(x, y) �
a(x)ÿ a(y) with some mapping a : X ! R. Then ó 2 � varfa(X 11)g and the second part of

(2.1) excludes the degenerate case that our transformed observations a(X in) are all constant

with probability one. Many examples for an appropriate choice of K are given in Ferger

(1994a; 1994c) and Ferger and Stute (1992).

If X � R then the statements of Theorem 2.1 can be extended to arrays, where for all

n 2 R the nth row X 1n, . . . , X nn of the array consists of independent random variables X in
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with distribution function (df ) Fin which may depend on n and even on i. Here we have to

assume that all Fin, 1 < i < n, n 2 N, are absolutely continuous with respect to an arbitrary

df F (Fin � F), and that the densities dFin=dF are determined by

dFin

dF
(Fÿ1(u))

� �1=2

� 1� 1

2
���
n
p g

i

n
, u

� �
� ain, 0 , u , 1, (2:10)

where g 2 L2([0, 1]2) is bounded and�1

0

g(t, u)du � 0, 8t 2 [0, 1]:

Choosing

ain � 1ÿ 1

4n

�1

0

g2 i

n
, u

� �
du

( )1=2

ÿ 1, 1 < i < n,

ensures that dFin=dF is a probability density; moreover, we see that

max
1<i<n

jainj � O(nÿ1):

Using the formula for the change of variable one obtains

Fin(x) � F(x)� 1���
n
p

� F(x)

0

g
i

n
, u

� �
du� O(nÿ1), x 2 R: (2:11)

An important special case is given by g of the type

g(t, u) � h(u), 0 < t, u < 1,

with bounded h 2 L2([0, 1]) satisfying
� 1

0
h(u)du � 0. This corresponds to X1n, . . . , X nn

being i.i.d. with common df Fn determined by

dFn

dF
(Fÿ1(u))

� �1=2

� 1� 1

2
���
n
p h(u)� O(nÿ1), 0 , u , 1, (2:12)

which according to (2.11) entails the representation

Fn(x) � F(x)� 1���
n
p

�F(x)

0

h(u)du� O(nÿ1), x 2 R: (2:13)

Notice that by Theorem 1 of Oosterhoff and van Zwet (1979) the sequence

F1n 
 . . . 
 Fnn is contiguous with respect to F 
 . . . 
 F. The next result extends

Theorem 2.1 to the case of real-valued observations.

Theorem 2.3. (i) For all n 2 N, let X 1n, . . . , X nn be independent real-valued random

variables, where X in have the respective dfs Fin determined by (2.10). Assume that K is

antisymmetric with (2.1) and
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ó 2 �
� �

K(x, y)F(dy)

� �2

F(dx) 2 (0, 1):

If w 2 W satis®es the Chibisov±O'Reilly condition (2.2), then

èn!L ôw,b � arg max
0,t,1

w(t)jó B0(t)� b(t)j (2:14)

and

è�n !
L

ô�w,b � arg max
0,t,1

w(t)[ó B0(t)� b(t)], (2:15)

where

b(t) � G(t)ÿ tG(1), 0 < t < 1,

with

G(t) �
� t

0

�1

0

�1
ÿ1

g(s, u)K(x, Fÿ1(u))F(dx)du ds:

The maximizers ôw,b and ô�w,b are a.s. unique.

(ii) If, in addition, X1n, . . . , X nn are i.i.d. with common df Fn determined by (2.12), then

èn!L ôw, è�n !
L

ô�w : (2:16)

Proof. Using the notation of the above proof, Theorem 3.4(b) of Szyszkowicz (1991) states

that

Ãn!L Ã0 :� w[ó B0 � b] in D[0, 1]:

The same arguments following (2.7) prove (2.14) and (2.15) upon noticing that

P(jÃj 2 Ĉ) � P(Ã0 2 Ĉ) � 1 by Theorems 2.2 and 2.4 of Ferger (1999). As to (2.16), check

that b(t) � 0 for all t 2 [0, 1] if g(t, u) � h(u). h

Theorem 2.3 immediately also gives the asymptotic behaviour of èn and è�n under the

alternative H1 : è, 1 with contiguous distributions. We make this more precise in the

following:

Corollary 2.4. For all n 2 N, let X 1n, . . . , X nn be independent random variables such that,

for some è 2 (0, 1), X in has df F or Fn, respectively, according to i < [nè] or i . [nè]. If Fn

is determined by (2.12), then

èn!L arg max
0 , t , 1

w(t)jó B0(t)� b�(t)j

and
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è�n !
L

arg max
0 , t , 1

w(t)[ó B0(t)� b�(t)],

with

b�(t) � á
(1ÿ è)t, 0 < t < è,

è(1ÿ t), è < t < 1,

�
and

á �
�1

0

�1
ÿ1

h(u)K(Fÿ1(u), x)F(dx)du:

Proof. Apply Theorem 2.3 to g(t, u) � 1f t . ègh(u). h

Note that in the above corollary the post-change df Fn converges to the pre-change df F

with rate nÿ1=2. If this rate in (2.12) is replaced by any slower rate rn ! 0 ± that is, if

rn n1=2 !1 ± then the asymptotic behaviour of èn becomes completely different. Indeed in

this case, Theorem 1.1 of Ferger (1994a) states that under some regularity conditions,

nr2
n(èn ÿ è)!L áÿ2T , (2:17)

provided á 6� 0. Here, the limit variable T is the a.s. unique maximizer of a two-sided

Brownian motion on R with a linear downward drift. This theorem also provides the

Lebesgue density of T . The reader will ®nd further limit theorems of the type (2.17), for

instance, in Antoch and Hu�skovaÂ (1999), Bhattacharya (1987), Bhattacharya and Brockwell

(1976) or DuÈmbgen (1991).

For general weight functions w 2 W , the distributions of ôw and ô�w are not known, but

we have the following features.

Lemma 2.5. The random variables ôw and ô�w are continuous. If w 2 W is symmetric about
1
2

then ôw and ô�w are symmetrically distributed about 1
2
.

Proof. The ®rst assertion is shown in Example 2.7 of Ferger (1999). Notice, furthermore, that

arg max0< t<1 f (1ÿ t) � 1ÿ arg max0< t<1 f (t) for all continuous f with unique maximizing

point. Recall that fB0(t) : 0 < t < 1g�L fB0(1ÿ t) : 0 < t < 1g to get the desired symmetry,

upon noticing again that Ã(1)
0 and jÃ(1)

0 j 2 Ĉ a.s. h

If w � 1 then ô1 � T0 :� arg max0< t<1j B0(t)j and ô�1 � T�0 :� arg max0< t<1 B0(t). In this

case the distributions are completely known. Indeed, Ferger (1995) proves that T�0 is

uniformly distributed on (0, 1). The distribution of T0 as determined in the next theorem is

much more complicated.

Theorem 2.6. Let B0 denote a Brownian bridge and put M0 � max0< t<1jB0(t)j. Then we

have:

(i) The random vector (M0, T0) has Lebesgue density f (M0,T0
) given by
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f (M0,T0
)(u, v) �

����
8

ð

r
f (u, v) f (u, 1ÿ v), (2:18)

where 0 < u ,1, 0 , v , 1 and

f (u, v) :� uvÿ3=2
X1
j�0

(ÿ1) j(2 j� 1)exp ÿ (2 j� 1)2

2

u2

v

� �
:

(ii) The random variable T0 has Lebesgue density

f T0
(x) � 2

X1
i�0

X1
j�0

(ÿ1)i� jáiá jfá2
i (1ÿ x)� á2

j xgÿ3=2, 0 , x , 1, (2:19)

where ái � 2i� 1.

Proof. (i) Let j denote the standard normal density and let B denote a Brownian motion. Put

M � max0< t<1jB(t)j and T � arg max0< t<1jB(t)j. By (11.34) in Billingsley (1968), for all

0 < x ,1 and 0 , y , 1, we have

P(M0 < x, T0 < y) � lim
å # 0

P(M < x, T < yjjB(1)j < å)

� lim
å # 0

P(M < x, T < y, jB(1)j < å)

P(jB(1)j < å)

� lim
å # 0

1

2

�x

0

� y

0

1

å

�å
0

d(s, t, u)du

� �
dt ds

1

2å

�å
ÿå
j(u)du

� 1

2

�x

0

� y

0

d(s, t, 0)dt ds

j(0)

�
���
ð

2

r �x

0

� y

0

d(s, t, 0)dt ds,

where d denotes the common density of (M , T , jB(1)j). Thus

f (M0,T0)(u, v) �
���
ð

2

r
d(u, v, 0), 0 < u <1, 0 , v , 1:

By (1.13.8) in Borodin and Salminen (1996, p. 258),

d(u, v, 0)
4

ð
f (u, v) f (u, 1ÿ v),

which yields (2.18).

(ii) By (i), for all 0 , x , 1, we have
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f T0
(x) �

���
8

ð

r �1
0

f (u, x) f (u, 1ÿ x)du:

Put ai :� (ÿ1)iái and ci :� á2
i and recall that�1

0

u2 exp ÿa
u2

2

� �
du �

���
ð

2

r
aÿ3=2, 8a . 0:

Since, for all 0 < u ,1, 0 , x , 1,

f (u, x) f (u, 1ÿ x) � (x(1ÿ x))ÿ3=2u2
X
i, j>0

aia j exp ÿ u2

2

ci

x
� c j

1ÿ x

� �( )
,

interchanging integration and summation gives (2.19). h

Observe that w(t) � (t(1ÿ t))ÿa 2 W for all 0 < a , 1
2
, but w =2 W if a � 1

2
. This

extreme case is treated in the following:

Theorem 2.7. Under the assumptions of Theorem 2.1,

èn,1=2 :� 1

n
arg max

1<k,n

���� Xn

i�k�1

Xk

j�1

K(X in, X jn)

����������������������
k(nÿ k)
p !L Z, n!1, (2:20)

where P(Z � 0) � P(Z � 1) � 1
2
.

Proof. Put k n � (log n)ÿ2, I n � [k n, 1ÿ k n], Gn � fknÿ1 : 1 < k , ng and recall the

de®nition of Sn(t) in the proof of Theorem 2.1. Then

èn,1=2 � arg max
t2Gn

(t(1ÿ t))ÿ1=2 nÿ3=2jSn(t)j:

Next de®ne

Yn � sup
t2Gn\ I n

(t(1ÿ t))ÿ1=2 nÿ3=2jSn(t)j,

Z n � sup
t2Gnn I n

(t(1ÿ t))ÿ1=2 nÿ3=2jSn(t)j

and

Vn � sup
t2Gn

(t(1ÿ t))ÿ1=2 nÿ3=2jSn(t)j � max(Yn, Z n):

From Theorem 4.3 of CsoÈrg}o and HorvaÂth (1988) it follows (recall Remark 2.2(i)) that

Vn

(2 log log n)1=2
!P 1, n!1: (2:21)

The derivation of (2.44) and (2.45) in CsoÈrg}o and HorvaÂth (1988) shows that
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Yn � OP((log log log n)1=2),

which implies

Yn

(2 log log n)1=2
!P 0, n!1: (2:22)

Since

P(èn,1=2 2 I n) < P(Z n < Yn) � P(Vn � Yn),

we can conclude from (2.21) and (2.22) that

P(èn,1=2 2 I n)! 0, n!1: (2:23)

Write Sn(t) � Sn(t; X1n, . . . , X nn) to stress the dependence on the observations X in. Then by

antisymmetry of K,

Sn(t; X nn, . . . , X1n) � ÿSn(1ÿ t; X1n, . . . , X nn),

for all observations X 1n, . . . , X nn and for all t 2 Gn. Clearly (X1n, . . . , X nn)�L
P(X nn, . . . , X1n), whence

fjSn(t)j : t 2 Gng�L fjSn(1ÿ t)j : t 2 Gng,

and therefore èn,1=2�L 1ÿ èn,1=2 for all n 2 N. Combine this with (2.23) to see that

P(èn,1=2 , (log n)ÿ2)! 1
2
, n!1,

which gives the desired result. h

Remark 2.8. The above proof is due to Lajos HorvaÂth (private communication). A short

sketch of the proof is given by Lombard and Hart (1994, p. 205) and CsoÈrg}o and HorvaÂth

(1997, p. 135).

3. Berry±Esseen estimates

In this section we con®ne ourselves to the one-sided estimator è�n with w � 1 ± that is, to

è�n � nÿ1arg max
1<k,n

Xn

i�k�1

Xk

j�1

K(X in, X jn): (3:1)

From Theorem 2.1 and Remark 2.2(ii) we can infer under the second-moment condition (2.1)

with p � 2 that è�n !
L

ô�1 , where ô�1 is uniformly distributed on (0, 1). If higher moments

exist, then it is possible to establish rates of convergence in law. This is the subject of the

next theorem.

Theorem 3.1. For all n 2 N, let X 1n, . . . , X nn be i.i.d. random elements in (X , F ) with

common distribution ín. Assume that
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sup
n>1

�
jKj pdín 
 ín ,1, for some p . 2, (3:2)

and that ó 2
n �

�
[
�

K(x, y)ín(dy)]2ín(dx) satis®es

lim inf
n!1 ó 2

n . 0: (3:3)

Then we have:

sup
x2[0,1]

jP(è�n < x)ÿ xj � O nÿ
pÿ2

2( p�1)

� �
, 2 , p , 5,

O nÿ1=4(log n)3=4
ÿ �

, p > 5:

(

If the array (X in) arises in the usual way from a sequence X 1, X2, . . . i.i.d. with X 1 � í ±

that is, X in � X i, 1 < i < n, n 2 N ± then under (2.1) we actually have

sup
x2[0,1]

jP(è�n < x)ÿ xj � o nÿ
pÿ2

2( p�1)

� �
, 2 , p ,1,

O nÿ1=2 log n
ÿ �

, K bounded:

(

Proof. Let în be the continuous random polygonal line with vertices at the points

(knÿ1, ónÿ3=2Sn(knÿ1)), 0 < k < n. Thus we have

è�n � ø(în):

For x 2 [0, 1) we de®ne the mapping Tx : C[0, 1]! R by

Tx( f ) � sup
x< t<1

f (t)ÿ sup
0< t<x

f (t), f 2 C[0, 1],

where as usual C[0, 1] is the set of continuous functions on [0, 1]. Recall that ø(B0) � T�0 is

uniformly distributed on (0, 1). Here, without loss of generality, we can assume that B0 is

de®ned on the same probability space (Ù, A, P) that carries our random elements X in. This

is possible because the following arguments only involve the distribution of B0. So for all

x 2 [0, 1),

jP(è�n < x)ÿ xj � jP(ø(în) < x)ÿ P(ø(B0) < x)j (3:4)

� jP(Tx(în) < 0)ÿ P(Tx(B0) < 0)j:

Our goal is to apply Lemma 6.2. For that purpose, note that Tx is Lipschitz continuous:

jTx( f )ÿ Tx(g)j < 2 sup
0< t<1

j f (t)ÿ g(t)j 8 f , g 2 C[0, 1]: (3:5)

Furthermore, by the Markov property of B0 the df Hx of Tx(B0) can be written as
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Hx(ë) � P(Tx(B0) < ë)

� P

 
sup

x< t<1

B0(t) < ë� sup
0< t<x

B0(t)

!

�
��

P(M9x < ë� yjB0(x) � u)mx,u(dy)L (B0(x))(du)

for all ë 2 R, where

M9x � sup
x< t<1

B0(t)

and

mx,u(y) � P

 
sup

0< t<x

B0(t) < yjB0(x) � u

!
:

From (17) in Shorack and Wellner (1986, p. 38) it follows that

mx,u(y) � 1ÿ exp ÿ 2

x
y(yÿ u)

� �
, y . max(0, u),

0, otherwise,

8<:
and

P(M9x < ë� yjB0(x) � u) � 1ÿ exp ÿ 2

1ÿ x
(ë� yÿ u)(ë� y)

� �
, y . max(uÿ ë, ÿë),

0, otherwise:

8<:
Herewith we obtain, for ë > 0:

Hx(ë) �
�0

ÿ1

�1
0

1ÿ exp ÿ 2

1ÿ x
(ë� yÿ u)(ë� y)

� �� �
mx,u(dy)L (B0(x))(du)

�
�1

0

�1
u

1ÿ exp ÿ 2

1ÿ x
(ë� yÿ u)(ë� y)

� �� �
mx,u(dy)L (B0(x))(du):

Integration yields

Hx(ë) � 1� 2
������������������������
2x(1ÿ x)=ð

p
ë exp ÿ 2

1ÿ x
ë2

� �
(3:6)

� 2[x(4ë2 ÿ 1)� 1] Ö 2

�����������
x

1ÿ x

r
ë

 !
ÿ 1

" #
expfÿ2ë2g,

for all ë > 0 and 0 < x , 1, where Ö is the standard normal df. Differentiation gives
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dHx(ë)

dë
� 4 exp ÿ 2

1ÿ x
ë2

� �
(1ÿ 2ë2)

������������������������
2x(1ÿ x)=ð

p
� 8ë expfÿ2ë2g[x(4ë2 ÿ 3)� 1] 1ÿÖ 2

�����������
x

1ÿ x

r
ë

 ! !
:

Consider this expression separately for the three cases 0 < ë < 1=
���
2
p

, 1=
���
2
p

, ë < 1
2

���
3
p

and

ë. 1
2

���
3
p

to infer that

L0 :� sup
0<x,1
ë>0

dHx(ë)

dë
,1:

Consequently, by the mean value theorem, Hx is Lipschitz continuous on [0, 1) with a

Lipschitz constant L0 that does not depend on x:

jHx(ë� h)ÿ Hx(ë)j < L0 h, 8h 2 R, 8ë > 0, 80 < x , 1:

Since B0(:)�L B0(1ÿ :), we have Tx(B0)�L ÿT1ÿx(B0), whence the above inequality holds for

all ë 2 R and for all 0 , x , 1. By (3.5) we are in a position to apply Lemma 6.2 to the term

on the right-hand side of (3.4) and obtain

sup
0<x<1

jP(è�n < x)ÿ xj � sup
0,x,1

jP(è�n < x)ÿ xj < (4L0 � 1)r(P � Ãÿ1
n , P � Bÿ1

0 ),

where r denotes the Prokhorov metric. Now, in the case of (3.2) and (3.3), Theorems 1.1 and

1.2 of Ferger (1994b) state that

r(P � Ãÿ1
n , P � Bÿ1

0 ) �
O nÿ

pÿ2
2( p�1)

� �
, if 2 , p , 5,

O n1=4(log n)3=4
ÿ �

, if p > 5,

8<: (3:7)

whence the ®rst part of the theorem follows. If the X in arise from a single sequence, then the

rates in (3.7) can be sharpened. This is the message of Theorems 1.3 and 1.4 of Ferger

(1994b), which say that now

r(P � Ãÿ1
n , P � Bÿ1

0 �
o n ÿ pÿ 2

2( p� 1)

� �
, if 2 , p ,1,

O(nÿ1=2)log n, if K is bounded:

8><>:
This completes the proof. h

Remark 3.2. Note that

Hx(0) � P(Tx(B0) < 0) � P arg max
0< t<1

B0(t) < x

� �
and that

H0(ë) � P sup
0< t<1

B0(t) < ë

� �
:
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So formula (3.6) for ë � 0 again yields that the maximizer ø(B0) of a Brownian bridge is

uniformly distributed on (0, 1). For x � 0 it reduces to the well-known boundary non-crossing

probability P(sup0< t<1 B0(t) < ë) � 1ÿ exp(ÿ2ë2), ë > 0.

4. Almost sure divergence

We return to the case of general w 2 W . First it will be shown that our estimators are a.s.

divergent under the null hypothesis. Here a speci®cation of the probabilistic relation between

the rows of the array (X in) is required.

Theorem 4.1. Assume that the rows (X1n, . . . , X nn), n 2 N, are independent X n-valued

random variables. Then under the assumptions of Theorem 2.1 the estimators (èn), (è�n ) and

èn,1=2 are divergent with probability one. If X � R the almost sure divergence still holds for

(èn) and (è�n ) under the weaker assumption of Theorem 2.3(ii).

Proof. Let è�n denote any of the three estimators èn, è�n , èn,1=2. By Kolmogorov's zero±one

law we know that

P((è�n ) is divergent) 2 f0, 1g:

Assume the above probability is equal to zero, which means è�n converges a.s. to some limit

î�. According to Lemma 1.16.6 in GaÈnssler and Stute (1977), this î� is a.s. constant. Since

almost sure convergence implies convergence in distribution, we can conclude from

Theorems 2.1, 2.3 or 2.7, respectively, that î� is equal in distribution to the limit variables

ôw, ô�w or Z, respectively. However, ôw and ô�w are actually continuous by Lemma 2.5 and Z

is a Bernoulli(1
2
) variable, so that in all three cases we arrive at a contradiction. This

completes the proof. h

Recall Example 1.1 to see that the independence assumption on the rows can have a

quite reasonable statistical justi®cation. In our next result we make the statement on

divergence more precise by specifying exactly the almost sure set of cluster points.

Theorem 4.2. Under the assumptions of Theorem 2.1 or Theorem 2.3(ii), assume that the

rows (X1n, . . . , X nn), n 2 N, are pairwise independent. If the distribution functions H and

H� of ôw and ô�w, respectively, are strictly monotone, then the sets C and C� of cluster

points of (èn) and (è�n ), respectively, coincide with probability one with the closed unit

interval:

C � [0, 1] � C� a:s: (4:1)

The set C1=2 of cluster points of (èn,1=2) contains the two boundary points of [0, 1]:

f0, 1g � C1=2 a:s: (4:2)
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Proof. Consider an arbitrary ®x x 2 (0, 1) and let å0 . 0 be such that 0 , xÿ å, x� å, 1

for all 0 , å, å0. By (2.3) or (2.16), we have that

lim
n!1 P(jèn ÿ xj < å) > H(x� å)ÿ H(xÿ å) . 0:

Therefore the series X
n>1

P(jèn ÿ xj < å)

is divergent, whence by Theorem 4.2.5 of Chung (1974), P(lim supn!1fjèn ÿ xj < åg) � 1

for all 0 , å < å0. Since\
0 , å2Q lim sup

n!1
fjèn ÿ xj < åg � fx 2 Cg,

this shows that x 2 C a.s. It follows that Q :� (0, 1) \Q � C a.s. Let A denote the

topological closure of a set A � R. Since C is closed and Q is dense in I � [0, 1], we can

further conclude that I � Q � C � C � I , so C � I a.s. The second equality in (4.1) follows

analogously.

Similarly,
P

n>1 P(èn,1=2 < å) is divergent for all å. 0, because limn!1 P(èn,1=2 < å) �
1
2

. 0 by (2.12). Therefore 0 2 C1=2 a.s. and by the same arguments 1 2 C1=2, so that

f0, 1g � C1=2 a.s., which ®nishes the proof. h

Note that the above result extends Theorem 4.1 even under a weaker assumption on the

rows of the array, but on the other hand strict monotonicity of the dfs of ôw and ô�w is

needed. For w � 1 this is ensured by Theorem 2.6.

5. An exact result

In this section we give a ®nite sample size result. Therefore it is no longer necessary to deal

with arrays. Consider the slightly modi®ed one-sided estimator of è�n with no weights

(w � 1) pertaining to a sample X 1, . . . , X n, n 2 N:

~è�n �
1

n
arg max

0<k,n

Xn

i�k�1

Xk

j�1

K(X i, X j):

The difference from the original è�n lies in the fact that the argmax now includes the point

zero. Here, as usual, the summation over the empty set is de®ned to be zero. Our next

theorem gives the exact ®nite sample size distribution of ~è�n . It suf®ces to require

exchangeability of X1, . . . , X n, that is, (X1, . . . , X n)�L (Xð(1), . . . , Xð(n)) for all permuta-

tions ð of the integers 1, . . . , n.

Theorem 5.1. Let X 1, . . . , X n be exchangeable. Then ~è�n is uniformly distributed on the grid

fknÿ1 : 0 < k , ng, that is,
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P ~è�n �
k

n

� �
� 1

n
, for all 0 < k < nÿ 1,

if and only if

P
Xn

i�k�1

Xk

j�1

K(X i, X j) � 0

0@ 1A � 0, for all 1 < k < nÿ 1: (5:1)

Proof. We consider the increments Yk of Sk �
Pn

i�k�1

Pk
j�1 K(X i, X j):

Yk �
Xn

i�k�1

Xk

j�1

K(X i, X j)ÿ
Xn

i�k

Xkÿ1

j�1

K(X i, X j)

�
Xn

i�k

K(X i, X k)ÿ
Xk

j�1

K(X k , X j)

�
Xn

i�1

K(X i, X k), 1 < k < n,

where the last equality holds by antisymmetry of K. By de®nition Tn :� n ~è�n is the smallest

index k 2 f0, 1, . . . , nÿ 1g with Sk � max0<i<nÿ1 Si. Our goal is the application of

Theorem 2 of Andersen (1953). For that purpose it remains to show that Y1, . . . , Yn are

exchangeable. Let ð be an arbitrary permutation of the integers 1, . . . , n. Then we have

(Y1, . . . , Yn) �
Xn

i�1

K(X i, X k)

 !
1<k<n

� T (X 1, . . . , X n),

where T : X n ! Rn is measurable. It follows that

(Yð(1), . . . , Yð(n)) �
Xn

i�1

K(X i, Xð(k))

 !
1<k<n

�
Xn

i�1

K(Xð(i), Xð(k))

 !
1<k<n

� T (Xð(1), . . . , Xð(n))

�L T (X 1, . . . , X n) � (Y1, . . . , Yn):

Choosing C � Ù in Theorem 2 of Andersen (1953) yields the assertion. h

One might expect the original estimator è�n with w � 1 also to be uniformly distributed

on the grid fknÿ1 : 1 < k < nÿ 1g. But surprisingly, simulation studies strongly con®rm
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our conjecture that this is not true. The two ®nal examples below concern the necessary and

suf®cient condition (5.1).

Example 5.2. Let X 1, . . . , X n be i.i.d. and K(x, y) � f (x)ÿ f (y) with f : X ! R

measurable. If f (X1) is continuous, then (5.1) is ful®lled for all n 2 N. Under the

assumption that X1 has no atoms, it suf®ces to require that the sets f f � rg are countable

for all r 2 R, which is quite a weak requirement.

Example 5.3. Let X 1, . . . , X n be i.i.d. Bernoulli variables with success parameter p 2 (0, 1).

If K(x, y) � xÿ y, then (5.1) is violated for all n 2 N. For example, for n � 4, p � 0:3 with

pk � P( ~è�4 � k=4), 0 < k < 3, a Monte Carlo method (with 107 replicates) produced

p0 � 0:458, p1 � 0:210, p2 � 0:166 � p3.

6. Technical lemmas

Lemma 6.1. We use the notation of the proof of Theorem 2.1. Then the following statements

hold:

(i) For all f 2 D � D[0, 1], the set S( f ) � [0, 1] is non-empty and closed.

(ii) The set Ĉ of continuous functions on [0, 1] with a unique maximizing point is

contained in the complement of E in D: Ĉ � DnE.

Proof. (i) First we show that S( f ) 6� Æ. Put M( f ) � sup0< t<1 f (t). Since f 2 D, it is

bounded and thus î :� M( f ) 2 R. In particular, there exists a sequence (un) � [0, 1] with

f (un)! î. By compactness, we can assume without loss of generality that (un) converges to

some u 2 [0, 1]. (Otherwise take a suitable subsequence.) If f is continuous at u then

f (u) � î, whence u 2 S( f ). If f has a positive jump at u, so that f (u) . f (uÿ), then un . u

for all but a ®nite number of n 2 N. (Otherwise there exists a subsequence (un k
)k of (un)

with un k
" u, which implies î � f (uÿ) , f (u) < î, a contradiction.) Therefore, by the right

continuity of f we obtain î � f (u) and u 2 S( f ). If f has a negative jump, so that

f (uÿ) , f (u), then un , u for all but a ®nite number of n 2 N. (Otherwise there exists a

subsequence (un k
)k with un k

# u, whence î � f (u) , f (uÿ) and f (v) . î for all v , u

suf®ciently close to u, which again is a contradiction.) Thus î � f (uÿ) and u 2 S( f ). This

shows that S( f ) is non-empty. To prove that S( f ) is closed let (un) � S( f ) be a convergent

sequence with limit u. We can assume without loss of generality that either un # u or un " u.

In the ®rst case f (u) � limn!1 f (un) � limn!1 î � î, so that u 2 S( f ). In the second case

f (u) < f (uÿ), because otherwise f (u) . f (uÿ) � limn!1 f (un) � î > f (u). If f (u) �
f (uÿ) then u 2 S( f ) by continuity of f . If f (u) , f (uÿ), then f (uÿ) �
limn!1 f (un) � î and u 2 S( f ).

(ii) Let f 2 Ĉ and ( f n) � D with f n !s f . We have to show that

øn( f n)! ø( f ), n!1: (6:1)

Since f is continuous we actually have f n !d f , where d denotes the sup metric on D.
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Let å. 0 and put t0 � ø( f ), tn � [nt0]=n, Uå � (t0 ÿ å, t0 � å) and må � supf f (t):

t 2 [0, 1]nUåg. Because t0 is unique, ä � äå � 1
5
( f (t0)ÿ må) . 0. Moreover, there exists an

N0 � N0(äå) 2 N such that d( f n, f ) , ä and j f ([nt0]=n)ÿ f (t0)j, ä for all n > N0. Thus

for all t 2 [0, 1]nUå and for all n > N0, we have

f n(tn)ÿ f n(t) � f (tn)ÿ f (t)� [ f n(t0)ÿ f (t0)]� [ f (t)ÿ f n(t)]

� [ f (t n)ÿ f (t0)]� [ f n(tn)ÿ f (tn)]� [ f (t0)ÿ f n(t0)]

> f (t0)ÿ må ÿ 4d( f n, f )ÿ j f (tn)ÿ f (t0)j
. 5äÿ 4äÿ ä. 0:

Consequently f n(tn) . f n(t) for all t 2 [0, 1]nUå and for all n > N0, which implies

øn( f n) 2 Uå, for all n > N0,

proving (6.1). h

The following lemma due to Borovkov (1973) is a sharpening of the continuous mapping

theorem under an additional smoothness condition of Lipschitz continuity. Let (S, d) be a

metric space endowed with the Borel ó-algebra B (S), and let r denote the Prokhorov

metric on the set of probability measures on B (S).

Theorem 6.2 (Borovkov). Let T : S ! R be a mapping with

jT (x)ÿ T (y)j < K1d(x, y), 8x, y 2 S,

for some constant K1 ,1, and let Q be a probability measure on B (S) with

Q(T < ë� h)ÿ Q(T < ë) < K2 h, 8ë 2 R, 8h . 0,

for some constant K2 ,1. Then for each random element î on a probability space

(Ù, A, P) with values in (S, B (S)), we have

sup
ë2R

jP(T (î) < ë)ÿ Q(T < ë)j < (2K1 K2 � 1)r(P � îÿ1, Q):
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