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Cahn—Hilliard stochastic equation:
existence of the solution and of its density
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We show the existence and uniqueness of a function-valued process solution to the stochastic Cahn—
Hilliard equation driven by space-time white noise with a nonlinear diffusion coefficient. Then we
show that the solution is locally differentiable in the sense of the Malliavin calculus, and, under some
non-degeneracy condition on the diffusion coefficient, that the law of the solution is absolutely
continuous with respect to Lebesgue measure.
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1. Introduction

Set D =0, m]?, let W denote a one-dimensional (d + 1)-parameter Wiener process, and
consider the stochastic partial differential equation (SPDE)

%Jr(Azquf(u)) = oW, (1D

with initial condition u(0, -) = uyp and homogeneous Neumann boundary conditions

Oou O0Au

on  On

This is a stochastic version of the Cahn—Hilliard equation (o = 0). This equation describes
the complicated phase separation and coarsening phenomena in a melted alloy that is
quenched to a temperature at which only two different concentration phases can exist stably.
u represents a scaled concentration, and —Au + f(u) represents the chemical potential. The
Neumann boundary conditions reflect the conservation of mass and insulation from outside.
The function f is the derivative of the homogeneous free energy F. In its original form, F
contains a logarithmic term. In some cases, F' can be approximated by an even-degree
polynomial with positive dominant coefficient. For more physical background on this
equation, see, for example, Cahn and Hilliard (1958) and Novick-Cohen and Segel (1984).
The existence and uniqueness of the solution to (1.1) have already been proved by
Debussche and Dettori (1995) when f is the derivative of a logarithmic term in the case of
logarithmic free energy and o = 0, and by Da Prato and Debussche (1996) in the case of an
additive noise (0 = 1), when f is a polynomial of odd degree in a set of distributions, and if

=0 on 0D. (1.2)
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d =2 in the set of L?>(D) functions only for Gaussian perturbations more regular than the
white noise W. Our study is restricted to dimension d, where d € {1, 2, 3}, on the domain
D = [0, w]Y. We assume that f is a polynomial of degree 3. To prove existence and
uniqueness of an almost surely (a.s.) continuous solution, we need some information on the
Green function G of the operator /9t 4 A”. This operator has a well-defined expression as a
Fourier series, but this is not easy to use. We need other estimates of G; for this, we use a
result from Eidelman and Ivasisen (1970) on Green’s functions on a smooth domain. We have
extended these estimates from smooth domains to the domain D in the Appendix. In the first
part of this paper we use the estimate of the Green function to prove first the existence and
uniqueness of the solution for a similar equation with truncated coefficients. This yields the
existence and uniqueness of the solution on the time interval [0, T[, where 7 is a stopping
time. To prove that 7 = +o0co, we need a priori estimates in the space L*°([0, T]; LI(D)),
g = 4. For this we prove two different upper estimates and use an interpolation method. In
these computations we need the degree of f not to be larger than 3. The approach is similar
to that used by Gydngy (1998) and Da Prato and Gatarek (1995) for another nonlinear
parabolic stochastic equation with correlated noise, the Burgers stochastic equation. We then
study the regularity of u and prove that if u, is Holder continuous, then u also has Holder
regular trajectories. More precisely, in the case d = 1, if ug is differentiable (1o € Z (D)),
the solution u is differentiable with respect to the space variable.

In the second part of this paper, we study the existence of the density of u(¢, x) for t>0
and x € ]0, w[¢. For this we use the Malliavin calculus (see Nualart 1995) associated with
the space-time white noise . Similar results have been obtained by Morien (1999) in the
case of the stochastic Burgers equation. Concerning the Burgers equation, let us mention
the work of Lanjri Zaidi and Nualart (1999), which proves the existence of a density under
weaker conditions. This refinement seems to be more difficult to obtain in our case, because
we do not have good lower estimates of the Green function.

The paper is organized as follows. We first state the hypotheses and the main results of
this paper; then we give some lemmas on the Green function G. In Section 2, we establish
the existence of the solution to the SPDE (1.1) and study its regularity. In Section 3, we
prove the absolute continuity of the solution u(z, x) for +>0 and x € 0, x[“. Finally, the
basic pointwise upper estimates of the Green function and of its derivatives are shown in
the Appendix. As usual, constants C and ¢ may change from one line to the next; we
denote by C, a constant which depends on some parameter a. We denote the space variable
by x and the space integral by | ...dx, even if the dimension d is not 1, and denote by
| -1lg the L?-norm with respect to dx.

1.1. Hypotheses and results

We make the following assumptions:
Assumption 1. f is a polynomial of degree 3 with positive dominant coefficient.

Assumption 2. 0 : R — R is a bounded and Lipschitz function.
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Assumption 3. uy belongs to Li(D) for q = 4.

Assumption 4. uy is a continuous function on D.

Assumption 4'. uy is an a-Holder continuous function on D, a € 10, 1[.

Assumption 4". d = 1 and uy is an o-Hdélder continuous function on D, a = 2; moreover,
up(0) = ug(m) = 0.

Assumption 5. The function ¢ does not vanish (o # 0).

Remark 1.1. In Assumption 1, we have assumed that f is of degree 3; the case of degree 1 is
easier and its proof is omitted.

We will use Assumptions 4, 4’ and 4” only in Sections 2.3 and 3 to prove the regularity
property of the solution, and Assumption 5 only in Section 3.2 to obtain the existence of a
density.

We suppose that W = {W(t, x), t€[0, T]; x € D} is a one-dimensional, (d + 1)-
parameter Wiener process on the probablllty space (Q2,.7, P);, as usual, we set .7; =
o(W(s, x); s<t,x € D).

Let 4 denote the operator —A on the domain ¥(4) = {u € H*(D); Ou/On =0 on OD}.
The following family (£;)zcne is a basis of eigenfunctions of 4 in L*(D). If d =1,

eﬂ@:cm@m¢%ﬁk¢a

| (1.3)
&o(x) = ﬁ;
and for d € {2, 3},
d
ex(x) = Heki(x», (1.4)

associated with the eigenvalues A, = S k2 = |k[2. By convention, denote by N** the set
N\{0}. The semigroup S(f) generated by —A4? is denoted by S(f)=e “’ that is, for
z € [X(D),

S()z = Z e "z, ex)e,
keNd

where (-, -) denotes the usual scalar product in L?(D); this is a convolution semigroup with
the Green function G defined by

Gt x, )= Y e ilep(@en(y). (1.5)

keNd

The following lemma is proved in the Appendix.
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Lemma 1.2. There exist C>0 and ¢>0 such that, for t€10,T], x,ye D, a a d-
dimensional exponent satisfying |a| < 3:

c o — y[*?
|G(t9 X, J’)‘ = W exXp (_CT > (16)
fel C |x_ y|4/3
|05 G(t, x, y)| < T@rians SXP <_C|t|7‘/3 ) 1.7
C x — y*3
9,62, x, )| < gy exp <_c||t|i3>. (1.8)

We wish to prove the existence and uniqueness of the solution to the SPDE (1.1). Since
the derivative of W is formal, this can be made rigorous only in a weak sense, as in Walsh
(1986) for the stochastic heat equation. We say that u is a weak solution of (1.10) if, for
each ¢ € C*(D) such that d¢/0n = OA¢/On =0 on AD, u satisfies

J (u(t, x) — up(x))p(x)dx = — J J A2¢(x)u(s, x)dxds + J J AP(x) f(u(s, x))dxds
D 0JD 0Jp

+ JtJ @(s, x)o (u(s, x))W(dx, ds). (1.9)
D

0

As usual, u is a solution to (1.9) if and only if it solves the following evolution equation:

t

u(t, x) = JDG(I, X, y)uo(y)dy + J

J AG(t — 5, %, )f(uls, y)dyds
0JD

t
+] | 6= s x ot ywar a9 (1.10)
oJp
forxe D, t€ [0, T].

The main results of this paper are the following:

Theorem 1.3. Suppose that Assumptions 1-3 hold; there exists a unique process u =
{u(t, x), t € [0, T], x € D} in L>([0, T], LY(D)), that is adapted, that is to say, u(t, x) is
F-measurable for (t, x) € [0, T] X D, and satisfies the evolution equation (1.10).

Theorem 1.4. If Assumptions 1-4 are satisfied, then the solution to (1.10) has a.s.
continuous trajectories.

If the Assumptions 1-3 and 4’ are satisfied, then the trajectories of the solution to (1.10)
are a.s. PB-Holder continuous in t and p'-Hoélder continuous in x, with < a/4,
,8<%(1 —d/4) and ' < a, f'<(2-4d/2).

If d =1 and Assumptions 1-3 and 4 (or 4") are satisfied, then the trajectories of the
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solution to (1.10) are a.s. B-Holder continuous in t and B'-Hoélder continuous in x on
[0, TIX D for 0<ty<T (or [0, T] X D), with f<3 and B’ <3.

Theorem 1.5. Suppose that Assumptions 1—4 and 5 are satisfied, and let u denote the
solution to (1.10). For (t, x) € 10, T] X 10, w[¢, the law of u(t, x) is absolutely continuous
with respect to the Lebesgue measure on R.

1.2. The Green function

The following result, similar to Gyongy (1998, Lemma 3.1), gives precise estimates of the
regularizing effect of convolution with G, AG and G?.

Lemma 1.6. Let J be defined, for all v € L'([0, T], L?(D)), 0 < ty<t=<T, and x € D, by
t

J(0)(ty, t, x) = J JDH(t — s, x, Y)u(s, y)dyds.

0]

Then for any p € [1, 0], q € [p, 400, and 1/r=1/q—1/p+1€[0, 1], J is a bounded
operator from L'([0, T], LP(D)) to L>([0, T], LY(D)) such that:

1. If H(s, x, y) = G(s, x, y), there is a constant C>0 such that
t
wnuxm,a-mqs;cj(t—syW““ﬁ—“mx&-Nbd& (1.11)
to

2. If H(s, x, y) = AG(s, x, ¥) (if d = 3, we also need r<3; and if d =2, r # o), there
is a constant C >0 such that

t
[T @)(to, £, )lg < c?J (t — s)~@EDAEAEAD 1 p(s, ||, ds. (1.12)
to

3. If H(s, x, y) = G*(s, x, ¥) (if d = 3, we also need r<%, and if d =2, r # ), there
is a constant C>0 such that

t
Hﬂmmaomscju—gwﬂwmw@)mw. (1.13)
ty

Proof. The proof is based on the inequalities of Minkowski and Young. We only prove
(1.11); the proof of the two other inequalities is similar. Minkowski’s inequality and Lemma
1.2 imply that

t
ds
q

[ i
JDGXP e (s, )| dy

|MManﬁﬂ Lawaamuww

to

ds.

t
< cJ |t — 5|79/
fy q
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We observe that for >0,

4/3
exp( — 7Y 4y = e, (1.14)
R Vel

Let r=1 be such that 1/g+1=1/r+1/p (r exists because 1 =1/g+1—1/p = 0).
Young’s inequality and (1.14) imply that
| |4/3
exXp —CW H ds

t
< cJ | — s|@HAT=D (s, )], ds.
to

t
Hnmmaom<jv—ﬂ”mM&wp
to

Note that, again using Young’s inequality, the left-hand sides of (1.11)—(1.13) converge with
the conditions which are made on » when d = 2, 3. O

The proof of following lemma, which is similar to the preceding one, will be omitted.

Lemma 1.7. Let J, be defined, for all v e L'([0, T], L?(D)), 0<ty<t<T, and x € D,
a €10, 1[, by

t

Jo(U)(tg, t, X) = J JD(t —8) *AG(t — s, x, Y)u(s, y)dyds.

to

Then for any p € [1, 0], q € [p, +0], and 1/r=1/q—1/p+1€[0, 1], J is a bounded
operator from L([0, T], LP(D)) to L>([0, T], LY(D)) such that, for d/(4r)>a + d /4 —1/2,

t
|MMMWLJM<CJu—@ﬂ*“W”MWMaww& (1.15)
to

We also need upper estimates of increments of the Green kernel G.

Lemma 1.8. For y <4 —d and y <2, y' <1 — d/4, there exists C >0 such that, for t>s,
x,z€ D,

t
JJ |G(t — u, x, y) — G(t — u, z, y)[*dydu < C|x — z|", (1.16)
oJp
JJ |G(t — u, x, y) — G(s — u, x, y)* dydu < C|t — 5|, (1.17)
olp
t
J J |G(t — u, x, y)|* dydu < C|t — 5] (1.18)
sJD

Proof. To prove these inequalities, we use the series decomposition (1.5) of G. Since the
family (e;)ren is an orthonormal basis of L2(D), we have
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t
” Gt — 1, %, ) — Gt — u, =z, )P dydu
0JD

-1,

-y J exp(—222(1 — w))|e(2) — ex(x)? du

keNd

2

3 ex(y)exp(—23( — w)er(z) — ex@)]| dydu

keNd

= Y ler(@) — ex@P[1 — exp(—243014;,°27".

keNd*

Since k # 0, we have

1/2

lex(2) — ex(@)] < C([A/ |z = x[]A 1),

and for a € [0, 1],

t
LJ |G(t — u, x, y) — G(t — u, z, y)* dydu < C|z — x|** Z A1 — exp(—2A2 1))
keNd

= C|Z_x|2a Z /1;2+a.

keNd*

Comparing the series a4y With a multiple integral, we deduce that it converges if
u>d/2. So taking 0 <a < (4 — d)/2 and a < 1, we deduce (1.16).
We now prove inequality (1.17). Using (1.5), we obtain

” Gt — 1, x, ) — Gls — u, x, > dydu
0JD

= 57 JextP | fexp(-3(r ~ )~ 1P exp(-23(s — )

keNd

< C Y Allexp(=A3(t — 5) — 1P[1 — exp(—2439)].

keNd+
Since |1 — exp(—24%s| < 1 A (2475), taking a € [0, 1], we have, for s < T,
JJ |G(t_u x, ) — G(s — u, x, y)|2dydu$C Z |t |a/1%{a—2.
’ keNd+

The series converges if and only if a <1 — d/4, which yields (1.17).
The proof of (1.18), similar to the previous one, is omitted. 0
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2. Existence and uniqueness of the solution to the Cahn—
Hilliard stochastic equation

Suppose that Assumptions 1-3 are satisfied; we first solve the problem when the function f
is truncated to have globally Lipschitz coefficients.

2.1. The case of truncated f

Let n>0 and denote by K, : [0, +oo[ — [0, +oo[ a # ! function such that |K,| <1,
|K;| <2 and
1 if x<n,
K”(x){o if x=n+1. @D

Let 8 € [g, +oo[ if d € {1, 2}; if d = 3, choose f such that ¢ < §<6q/(6 — q)*. We will
prove the existence and uniqueness of the solution to the SPDE

t

(1, 3) = JDG(t, %, Wiuo(¥)dy +j

OJDAGU 3 DK, Y )f s, 1) dyds

+ JtJ G(t — s, x, y)o(uu(s, y))W(dy, ds) (2.2)
0JdD

in the set .77 of LY(D)-valued .7 ,-adapted random processes u(t, -) such that the norm
lull = sup Eu, I (2.3)
sIs

is finite. Define two nonlinear operators on .77 by

Hy: 9 — 7 (2.4)

wis j J AG(t — 5, x, Ko(llu(s, ) f (s, 1) dy ds
0JD

and

L — T (2.5)

U +— JtJ G(t — s, x, y)o(u(s, y))W(dy, ds).
0JD

We prove that for 7' small enough, H, and L are contractions.
We begin by studying H,. Let u € .7; (1.12) applied with 1 s p<g, 1 =r <oo if
d=2and r <3 if d =3 such that 1/¢g =1/r +1/p — 1, implies that

| Ha(u)(t, )|y < J0|r — | TG s, D) Ka(||uls, o), ds.
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Taking 3p = g, we have 1/r; =1 —2/q, which satisfies r <+oo if d =2 and r <3 if
q = 3. Also

| Hu(u)(t, )llg < C(n+ 1)} T/ @r)—(d+2)/4
so that
| Hu(u)|| 57 < 005 (2.6)

hence H, is an operator mapping .7 into itself.
Let u and v belong to .77; notice that

(1K n[[uCs, S (uls, ) = Ka([[Us, D[S @WCs, Nlp < Calluls, -) —v(s, Hlg- (2.7
Indeed, without any loss of generality, we suppose that ||u(s, -)||; < ||v(s, -)||4; then
1 Kn([luls, g f(uls, ) — Ku([[Us, )| f s, N,
< Ky([[vs, I fWCs, ) = f(uls, )],
+ K alluCs, )llg) = Ka(l[UCs, D[]S uls, Nlp-

Assumption 1 implies that
Kau([[vGs, IS s, ) = 1 uls, Nl
< Cllluts, ) = v, g1+ s, g + uts, T3 Koo, llg)
< Cllu(s, -) — v(s, -)||g X [1 +2(n + 1)?]. (2.8)
For the second term, notice that if ||u(s, -)||; = |lu(s, -)||; > n + 1, then

LK (s, lg) — Kn([loCs, [ (uls, D, = 05
this yields
K Cl[us, lg) = Knllo€s, IS s, Dl < C A+ (n 4+ 1) [|uls, g = llots, gl
< C(1 + (n+ 1)*)||u(s, -) — v(s, )|ly- (2.9)
Inequalities (2.8) and (2.9) imply (2.7). Using (2.7), (1.12) and Hoélder’s inequality with

respect to (¢ — s)"(@t2/4+d/4m) d5 we conclude that

t p-1
HHn(u)(f, ) — H,(v)(t, )||ﬂ7/ < C, sup [(J (t— s)*(d+2)/4+d/(4r1) ds>
t€[0,T] 0

t
xj (t — ) CEDIEAIEE (s, ) = (s, )[1)) ds}
0

< €, TPR-d1/4+d/Gr)||y U||€%, (2.10)

If T satisfies C, T(¢/4)+2=d/9F <1 the map H, is a contraction on .77.
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We now turn to L. Let u belong to .77; Burkholder’s inequality, (1.6) and Assumption 2
imply that, for an absolute constant C depending on G,
B)

JtJ Gz(t — S, X, y)oz(u(s, y))dyds
0JD

JtJ G(t — s, x, y)o(u(s, y)W(dy, ds)
0JD

sup E
(£,X)€[0,T]X D

B/2
< sup E
(£.x)€[0,T1X D

< Cllo|l3, <+oo; .11

this implies || L(u)|| 5 < oo, for every u € . 7. Let u, v € 7, then, since f§ = ¢, we have
E([| L(u)(s, -) — L(v)(s, ')||§) = CJ E(| L(u)(s, x) — L()(s, x)|") dx.
D
Burkholder’s inequality and (1.13) applied with /2 instead of g and ¢/2 instead of p,

1/rs=1+2/B—2/¢g>0 (indeed, if d =3, the condition S <64q/(6 — q)* yields r, <3),
imply, for t < T,
B/2
dx

E(||L(u)(t, ) — L@)(t, ]I
| (
D

t
< CE (” (t = 5)~PHAEm) (s, ) — os, )5 ds
0

J JDC’Q(’ s, 3 Wlouls, ) — o(o(s, )P dyds

0
ﬁ/z>

< CrPI=HUE) sup E(|lu(s, ) — o, I[f)- 2.12)
s€[0,7]

Again, for T small enough, L is a contraction on .7Z.
In conclusion, the operator H, + L working on .77 is a contraction for 7 < Tj. Hence, it
admits a unique fixed point in the set

{u € 7 such that u(0, -) = up}.

By a classical argument, because T, does not depend on u,, we can construct by concate-
nation on every interval [0, 7] a unique solution u, to the SPDE (2.2).

2.2. Existence and uniqueness of the solution to (1.10)

Again let € [gq, +oo[ if d =1, 2, and f € [q, 6q/(6 — q)"[ if d = 3; set

T, = inf{r = 0] ||u,(¢, -)||; = n}.



Cahn—Hilliard stochastic equation 787

By uniqueness of the solution to (2.2), the local property of stochastic integrals yields, for
m>n, uy(t, ) = u,(t, ) if t < t,, so that we can define a process u by u(t, -) = u,(t, -) on
t < 1, Set 7o, = lim, 7,; clearly u is a solution to the SPDE (1.10) on the interval [0, 7,),
and is unique. We just need to prove that 7., = 400 a.s., and use an argument similar to that
of Da Prato and Debussche (1996, Section 2.1).

Let L be defined by (2.5) and set v, = u,, — L(u,); then, for every T >0, v, is the weak
solution on [0, T] to the SPDE

v,

;t (£, x) + szn(ta x) — A[K,,(HU,,(I, )+ L(u,(t, ')”q)f(un(ta x) + L(u,)(t, x))] =0,
Un(0, ) = uo(-),

dv, OAv,

I on =0 on JdD.

(2.13)

Again (2.13) is formal and can be made rigorous as in (1.9) by requiring that, for any
¢ € C*(D) such that ¢ satisfies (1.2),

JwAAﬂ—uML@M@ﬁU=-—YJA%QWAxwwﬂS
D 0JD

+JjAmmKAMAxo+Lwomomvaxm
0JD

+ L(u,(s, x))dxds.
Since o is bounded, (2.11) yields, for any p, 6 € ]1, +oo],

sup sup sup E(|L(u,)(t, x)|*°) < 4o0. (2.14)
n  te[0,T] x€D

Lemma 1.8 and Burkholder’s inequality imply that, for every y< @4 —d) y <2,
y' <1—d/4, and a>1, T>0, (¢, t', x, x') € [0, T]* X D2, for all n € N:

E(|L(un)(t, %) = Lun)(', X)) < C(lt = ']+ [x = x"[")" (2.15)

Inequalities (2.14) and (2.15) and the Garsia—Rodemich—Ramsay lemma (see Garsia 1972)
yield, if ||Z(uy)||loc = supreqo,ry supxen| L(un)(t, X)|,

sup E(|| L(u,)||27°) < o0. (2.16)

On the other hand, since G(t, x, y) = G(¢, y, x) and fD |G(¢, x, y)|dy <+oo, for every
q € [1, +ocf,

sup |[|Geuollg < Cllugl|4- (2.17)
t€[0,7T]

We just need to prove a uniform upper estimate for H,(u,). Since the functional H, has a
regularizing effect, we first show that u, belongs to the sets L?([0, T]; LY(D)) for 2 <
a<-+o0. As in Da Prato and Debussche (1996), we shall prove a priori estimates on v,,.
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Recall that for 4 = —A, a # 0 and u € Dom(A4%),

a a
A%u = E lk<€k, u)sk,
keNd»

A%u exists for every u such that 3 ena-A3%(ex, u)2 <oo. In what follows, for a function
u: [0, T] X D— R, we will set

m(u)(f) = (&g, u(t, -)) = n’d/zj u(t, x)dx and (s, y) = u(t, y) — m(u)(?).
D

Notice that 4% = A%u for a # 0, u € Dom(4%). Apply A~' to equation (2.24) and take its
scalar product in L?(D) with D,(t, -); this leads to

t
||A_1/21}n(t5 )”g - ||A_1/26n(03 )”g +J HAl/zUn(S> )Hg ds
0

+ JOKn(”Un(Ss )+ Luy)(s, ')||q)JDf(Un(S, X) + L(un)(s, X)Vn(s, x)dxds = 0. (2.18)

This equation is justified because v, belongs to L>([0, T], LI(D)); since for g =2,
L9(D) C Dom(A4~"/2) and the first two terms are well defined so that [ [|4'/20,(s, )3 ds
converges too and v,(s, -) belongs to Dom(4~1/?).

Let us deal with the last term of (2.18):

J Falts )+ L(un)(ts )5a(t, ) dx 2.19)
D
- ijwn(t, )+ L(utn)(ts )[0n(ts 3) + Latn)(t, )] dx

- JDf(U”(t’ x) + L(un)(t, ) [m(U)(1) + L(un)(t, x)] dx.

The polynomial f is of degree 3 with positive dominant coefficient; hence, limjy_ ;o X/ (x) =
+00, and there exist a, C and ¢ >0 such that

xf(x) = %ax4 —c, lf(x)] < §a|x\3 + C.
The lower estimate of xf(x) implies
JDf(U”(t’ X) + Lun(t, D)0ty %) + L) (8, ) dx = Jalloa(t, ) + L8, g — c.
(2.20)

The upper estimate of |f| and Holder’s inequality with conjugate exponents 4 and % yield:
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JDf(Un(f, x) + L(un(, X)) (m(va)(1) + L(un)(1, X)) dx
= %aJD\Un(l, x) + L(u,)(t, X)]P(|m)(0)] + [L(u,)(2, -)]) dx

+ CJD(lmwnm L), ) dr

< 3af||va(t, ) + L)t 3| m@a) O] + [[oat, )+ L)ty L )2, )]a]

+ C(mn)(D)] + [|L(ua)(t, )l]4)-

Notice that there exists ¢ >0 such that, for every x and y, |x|*|y| < |x|* + ¢|y|*; this implies

JDf(vnu, )+ Lltn(ts ) ma)(0) + L(un)(t, 1)) dr

Sa
< 20t )+ L)t s+ COm, (o) + [ Lw)e L @21
K, is a positive bounded function; using (2.19)—(2.21), (2.18) yields

t
14726, 8, 1 = 147 25,0, 91 + [ 140,06, )1 s

+3 LKn(Hun(s, )+ Lun)(s. ) 0als, ) + Lua)s, )3 ds

t
< J C(1+ m(a)(s)* + | L@a)(s, )7 ds. (2.22)
0
Taking the scalar product of the solution to (2.24) with the function &y, we obtain

0
E<Un(t9 ')9 80> - 07

<Un(05 ')9 €0> = <u0(')9 €0>;

hence for m(ug) = (eq, uo), m(v,)(t) = m(ug). Since A~y = A='?uy, equation (2.22)
yields that, for every 7 >0,

T
147 25,7, | + j 14 20,2, )| ds

T
[ G0 L) ot )+ L Ol de

T
< CJO (1 + m(uo)* + | L)t Dt + 4~ uo ().
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This yields

T
J Ka(loa(t, =) + Lua)(t, ot ) + L)1, )3 d

0
< Cr(1 + m(uo)* + | LGp)l|2) + 47 P uo()]f3- (2.23)
We need another estimate, for this we denote by v’ the Galerkin approximation of v,.
We define P, to be the orthogonal projector on Span{ey, ..., €, }. For every w, v is the
‘strong’ solution of the following PDE:
oo™
5, (LX) + A1, x)

— ALK ([[0)(2, ) + L(un)(t, )| P f () (8, x) + L(un)(2, X)))] = 0, 2.24)
o0, ) = Pu(uo()), '
ovr  OAvY

=—2"1=0 D.
on on on 9

The proof of existence and uniqueness of the processes v’ is classical; we use deterministic
methods and prove that v’ is unique on some time interval [0, ¢7'[. The following a priori
estimates will prove that ¢! = 4-o0.

The boundary conditions satisfied by v’ and the Green formula yield

J A" (1, x) X 0"(t, x)dx = | Av™ (¢, X)|[5.
D

We now take the scalar product in L?(D) of (2.24) with v,; using the Green formula once
more, we obtain

Lo

m 2 2..m m
or(t, ) + | ATv(t, x) X v(t, x)dx

— Ky(|loy(t, ) + Lua)(t, ')llq)JDf(UZ”(t, x) + L(un)(t, x))Av, (2, x)dx = 0.
Thus
10

m 2 m 2
20 e 918 + Aoy

= Kn(”U:zn(t’ ) + L(un)(ts )HQ)
X UD[f(Unm(f» x) + L(un)(t, x)) = (0, (1, X)]A, (¢, x)) dx

+Jﬂwuﬂmwmmw. (2.25)
D

f is a polynomial of degree 3; thus, for every x, y € R,
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[+ ) = f0)] < ClyllL+2 + 571, (2.26)

Let ¢ >0; Schwarz’s inequality, (2.26) and the inequality xy < x?/c + ¢y* imply

JD[f(UL”(t, x) + L(un)(t, X)) — [ (0 (1, x))]Av, (2, x) dx

< j ClLu)(t, O+ [L(a)(t, ) + 031, ) ]| A} (2, x)| dx
D
< ClIZGa) ol + I L)%, + 107 (2, Pl Avy (2
m C m
< Cel|Avy(r, )5+~ 1+ L)% + o3 )l )] (227)
Let us now turn to the second term of the right-hand side of (2.25). First, let us prove that

fD(U;”(t, x)*)Av™(t, x) dx is negative. Integrating by parts and using the boundary conditions
on v, we find if d = 2 (the other cases are similar),

0?
JJ o —— (U1, x1, X2)) X V(1 X1, x2)° dxy dy

J [—(Um(l X1, X2)) X 0}'(, X1, X2) ] dx;

x1=0

T (T 2
—3J J {81(0;”(@ xl,xz))] v™(t, X1, x2)* dx; dx
X1

0J0

T 9 2
= —3J J { (0, (2, x1, Xz))} vy(t, xq, x2)? dx; dx, < 0;
0Jo [0x1

this yields [pv2(t, x)3AU;”(t, x)dx =< 0. Since the main coefficient of f is positive, this
implies

| rponsope ar=c| avlopeopiace. e
D D

m C m
< CelAvy (e )l +— [+ oyl (@228)
Furthermore, ||K,||co < 1; using (2.27) and (2.28), equation (2.25) becomes
1 m m m 2 G 4 m 4
3 a7 I + 1807, I = Coellawgs I + 00+ Ll + 1956,

X (14 || L) PO K (|07t ) + L), )ly)-

Choose ¢ = 1/(2C)); then
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|

1 m 1 m
5 5 1on Ol + 5 A0y )3

o)

t
< 20,1 + || L(un)|E + 07t A+ | L2 K072, ) + L)1, )l)-

Integrating on [0, 7], we obtain

t
o™, )5 + LIIAUL”(S, N5 ds < || Prto]5 + CT(L 4[| L(un)]|%)

+C(1 + ||L<un>||ic>JO||v2’(s, MK (055, ) + L), llg) ds.
Therefore the equality m(v]'(t, -)) = m(v(¢, -)) = m(up(-)) implies

o™z, )5 + JO[HAUZ”(S, N3+ m((s, )*1ds < |luo||3 + CT(1 + || L(un)||S + m(uo))

t
+C(1+ IIL(un)Hic)JOIIUZ"(S, MKV} (s, )+ Lln)(s, )llg) ds.
The norm (||A - ||2LZ(D) + m(-)*)"/? is equivalent to the Sobolev norm of W?*(D) (see, for
example, Da Prato and Debussche 1996, p. 245). The sequence (U)')necn is bounded in
L*([0, T], W**(D)). Thus, t™ = oo and this sequence converges as m — +oc in the weak™
topology of L*([0, T], W>?(D)). Its weak limit is the weak solution to (2.13) and hence is

equal to v,. Therefore, v, belongs to L*([0, T], W??(D)), and we can repeat the preceding
computation with v, instead of v, which yields

loa(t, Iz + L 1805, I3 + m(a(s. )| ds < Juolls + CTA + L) 5, + m(uo))

+ C(1 + ”L(un)Hio)JOHUn(S’ MaKa(loals, ) + L(wa)(s, -)lg) ds.

Inequality (2.23) and Schwarz’s inequality imply that
t
v, )5 + L [||AU,,(s, M + m(v,(s, .))2} ds

< JJuollz + Cr( + ILGunlI) + Cr(1 + [ LA™ w0l + m(uo)*].
Inequality (2.16) yields that, for 8 € ]1, o0,

supE( sup ||va(t, )||§ﬂ> < o0, (2.29)
n 1€[0,71]

B
T
J {l|Ava(t, I3 + m(va(t, .))Z}dt] < . (2.30)
0

supE
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Furthermore, by Sobolev’s embedding theorem (Adams 1975, Corollary 5.16) there exists
C >0 such that for r =2, d <4, if u € W>*(D),

lullrpy < Cllullw2(p)-

Thus, (2.30) becomes for 2 < r < o0,

B
T
supE U |va(2, -)||idt] < 0. (2.31)
n 0
Inequalities (2.16), (2.29) and (2.31) imply for 2 < r <+o0,
supE( sup [lua(1, -)||§ﬁ> < oo, (2:32)
n 1€[0,T]
T B
supE J un(t, )| de| | <oo. (2.33)
n 0

Let us use the interpolation method to prove that u, belongs a.s. to L%([0, T], LY(D)), with
+oo>r=¢g=2, a=1V2q/r. Holder’s inequality implies, if g = (1 —4)2+ ri, for
A €10, 1], that

T T

a 2a(1-2 arl

[ ente Mg = | e A e
0 0

Taking A = 2¢/(ar), we obtain
! [2/qla(1-2) ! 2
J llun(t, )llgdt < sup [lun(t, 3" XJ [[un(t, IS di;
0 1€[0,T] 0

(2.32) and (2.33) imply that for g € [2, oo[ and a € [gq, +o0],

B

T

supE “ (2, -)||Zdt] < 0. (2.34)
n 0

Using (1.12) with ¢ =4 and p = ¢/3, so that 1/r =1 —2/gq, we obtain
t
| H (), )l g < Cj (t — 5) " EDARAIED L, (s, I + 1) ds.
0

Let y, y" €11, +oo[ be conjugate exponents, with v close enough to unity to ensure
(=(d +2)/4+d/(4r))y > —1; then Holder’s inequality implies

t 1y et 1/y'
anMMﬁcWFWWWWWM4[Mm@m+Mm
0 0

Using (2.34), we obtain
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supE< sup Ho(un)(t, -)||§> < o0; (2.35)
1

n te[0,T

(2.16), (2.17) and (2.35) imply that, for 8 € [¢, +oc[, and if d = 3 for € 1g, 6¢/(6 — ¢)*[
with ¢ = 4,

supE( sup ||un(t, -)|§> < 0.
1€[0,7]

n

We can now conclude that 7., = +00 a.s.; indeed, for every 7 >0,
P, <T)= P(sup luat, |y = n) <E| sup un(s, -)||?f’> P (236)
=T =T

so that lim, . P(t, =< T) = 0. Therefore, we can construct the solution to the SPDE (1.10)
on every interval [0, T]; this completes the proof of Theorem 1.3. O

2.3. Path regularity of u

We prove Theorem 1.4, and study separately each term on the right-hand side of (1.10). Let
us prove two lemmas on the regularity of Guy.

Lemma 2.1. If ug is continuous, the function G.uy(x) is continuous.

Proof. The function Gu, is continuous on [a, T X D, for a >0, because the series which
defines G is absolutely convergent on [a, T'] X D. We just need to prove continuity at ¢ = 0.
Let xp € D be fixed; at ¢>0 given, there exists #>0 such that |xy — y|<# implies
luo(y) — uo(xp)| <e. Using the fact that G is a semigroup and (1.6), we find

|G uo(x0) — uo(xo)| = UDG(E X0, ¥)(uo(y) — uo(x)) d)"

<ej |G<z,xo,y>|dy+MJ 1G(t, 0, )] d
|y—xo|<n

[y=xo|=n
=< Cec+ CJ exp(—z4/3) dz.
|z| >nt=1/4

The last integral on the right-hand side converges to 0 as ¢ tends to 0; this concludes the
proof. O

Lemma 2.2. If uy belongs to 7 *(D), for 0<a<l1, the function G.uy(x) belongs to
7z ([0, 11, D).
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Proof. The proof is inspired by Bally et al. (1995, Lemma A.2), in the case of the heat
kernel. Let us study the time increment. Because G is a semigroup, using (1.6) we find that

|Gotp(x) — Gottol)| = U J Gls, x, YG(i — s, y, Z)uo(Z)dde—J G(s, x, )’)uo()/)dJ/’
DJD D
~ UDG(S’ % ) (LG(’ s 3, () — 103) dz) dy‘
< c| 66 x| G- sy 2= yitdzdy
D D
< CJ |G(s, x, y)||t — S|O’/4 dy
D
< C|t — s|**.

For the space variable, we prove the regularity with respect to the first space coordinate; the
proof is similag for the other ones. If d = 2, we set x = (x;, X), where X = (x,, ..., x4) and
D = [0, ] X D. With this notation, we find that

G(t, x, ) = > exp(=A3 D&k, )€ f(F)ek, () (F)-
keNd

Notice that
e (xR, (1) = 3Hew (51 + y1) + €4, (1 =y,
and hence
G(t, x, y) = ¢x1 + y1, X, )+ ¢ux1 — 31, X, §), (2.37)

with ¢t(xl> 5‘:5 )7) = %G(ta (Xl, 5‘:)3 (05 .)7)) Furthermorea ¢l‘(xl + 231:3 5{:3 );) = ¢t(xl, 555 )7) =
¢t(_xl: f, )7) and

sup  sup J o, £ P dy = C. (2.38)
t€[0,7] (x1,x)eD J D

Take x = (x1, X) and x’ = (x{, X), with x; > x{; we have
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7T
Guolt, %) — Guo(t, ') = J J~[¢t(x1 o E )+ it — s E D)l iy
0JD

- L jﬁ[qst(xi by & §) 4 ol — s % P)lu0) didy,

T+ —x1)
_ J j B+ i, B Pioln — (v — ¥, §)didn,

x1—x1) D

7T

- j~¢,<xi 1, % Pue()djdy
0JD

T— (X —x1)
+ J~¢,(xi & P + (x1 — 2, 7)didy
—(x1—x1) JD

7T

- jﬂwi o & Pue(n)djdy
0JD

= iD[(f, X, x’),
i=1

with

Dy(t, x, ') = j prf(xi o & o — (61— x0), 7) = w001 didy
x1—x{JD

t—(x; —x1)
D(t, x, x') = J}Pf(xi & PO+ (= 5D, ) — uOA]dpdyy
0 D

(x1—x1)

Di(t, x, x')= — J

jmxi 1 & Pue(y) didn
0 D

0
+ J j;;ﬁt(xi o E Pl + (1 — x), 7)didyy

—(q—x1)J D
TT+(x1 —x1)

Dy(t, x, x") = J

T

|| #utat 05 P 1 = )

b

T

[ ] e - o dran.

nt—(x;—x1)J D

Using (2.38) and the fact that uy has a-Holder continuous trajectories, we obtain
|Di(t, x, x")| + |Da(t, x, x")| < Clx; — xi|*.

For D;, we notice first that
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(1 —x1)

Ds(t, x, x') = J

O JD¢,(xa o E Do) + (1 + (a1 — XD, )] didy;

the estimation is then similar to that of D; and D,. For the last term, since ¢, is 2m-periodic,
we have

(o1 —x1)

Dy(t, x, x") = J

Jﬁbx(n +x1 4+ i, X, Y)uo(m + yi — (e — x1), ) — uo(sw — y1, y)]dydyi,
0 D

which immediately yields the same upper estimate as that of D; and D,.

Using Lemma 1.8, the fact that o is bounded and Kolmogorov’s lemma, we see that the
stochastic term is a.s. Hélder continuous; more precisely, it belongs to #77' ([0, T], D),
with y< (1 —4d/4)/2, y'<2—-d/2 < 1.

We need to study the regularity of the drift term; for this, we use the factorization
method (see, for example, Da Prato and Zabczyk 1992). We remark that

AG(t, x, y) = J G(t—s, x, 2)AG(s, z, y)dz.
D

Fix a € ]0, 1] and set

t

700 = |

J G(t—s, x, 2)(t — ) “U(s, z)ds dz, (2.39)
0Jp
T (), z) = J J AG(s — 5", z, y)(s — s N f(u(s', y)))dyds'; (2.40)
oJp
then the drift term is H(u)(t, x) = 7' sin(ra) 7(FZ (v))(t, x), for all t, x € [0, T] X D.
Because u( is continuous, it belongs to all LY(D), ¢ =4>3V3d/2, and u belongs to
L>([0, T], LY(D)) a.s. according to Theorem 1.3. We first show that .77 is an operator
mapping L*([0, 7], LY(D)) into itself. Using (1.15), with ¢ and ¢/3, 1/r=1-2/q, we
obtain

t
17 @)t g < J (1 = g)” o EREHARARIN 4 [Jugs, )]|;) ds.
0
We require —1 +a —1/2 —d/(2q)>—1, that is, a >1/2 4+ d/(2q).

Then we study 7, and prove that 7 (v) is Holder continuous if v € L*([0, T], L1(D)).
Let us first study the regularity with respect to the space variable. For x, x' € D,

t
A(t, x, x') = J J Lxmyizpp—r (2 = )" “(G(t — 5, x, )| + |G(t — s, X", y)|u(s, y)|dyds,
olp

t
B(t, x, x') = jOJDlﬂxfy\ﬂHq}(r C G — 5, %, ) — Gl — s, 2", )|u(s, )] dyds:

then

T()(t, x) — Z(v)(t, x")| < A(t, x, x") + B(t, x, x').



798 C. Cardon-Weber

Using Holder’s inequality with ¢ and its conjugate exponent, (1.6) and (1.14) we find, for
£ €10,4(1 —a—d/(49))], that

t
A(t, x, x) < |x — x’|ﬂJ (t — 5) ¢ PIA=4/CD| (s, )|, ds < Clx — x'|P. (2.41)
0
We notice that if |x —y| = |x —x'|, and X denotes a point between x and x’, then
|¥ — y| =27"2(]2x —x' — y| A |x" — y|). Let A € [0, 1]; using Holder’s inequality, Taylor’s
formula, (1.7) and (1.14), we find that
t
Bt x ) = =3 [ (=976 55 9]+ (60 s )
oJp

A
1
j 0,G(t s, 6x+ (1 — ), ) dG] Ju(s, )| dyds
0

X e yl=[x—x'l}

t
< Clx— x’|AJ J (t — )~ d0-D/4-Ad+D/4
oo

A
c|2x — x' — y|*3 clx’ — y|*3
X |ﬁxp (— W + exXpl| — W u(s, y) dy ds

t
< Clx— x'|lj (1 — 5)” @ AHEDAND) (5 )|, ds. (2.42)
0

We need —a — d/(4q) — 1/4> —1, that is, A <4(1 — a — d/(4q)). Since ¢ can be chosen as
big as we want, 7 (v) is A-Holder continuous with respect to the space variable with A <1.
Let us study the time regularity; for 0 < <t < T, we have

JO)t', x) = 7)1, x)

= Jt J G(t' — s, x, 2)(t' — s)"%U(s, z)ds dz
D

t

+ th [G(t — s, x, 2)(t' —s)" % — G(t — s, x, z)(t — s) “u(s, z)ds dz.
0lp

Using (1.6) and Holder’s inequality with ¢ and its conjugate exponent and (1.14), we have,
for a +d/(4q) <1,

t t
| [ ot =sox a0 5wz dsdz‘ <| =9 ot ds
D t

t

< |t—¢'|"" 4D sup u(s, ),
5€[0,T]

For the second term, let u € [0, 1], € > 0; Taylor’s formula, Holder’s inequality and the fact
that if 7 € [¢, '], then |7 — s| > |t — s| for s € [0, #], imply that
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JOJD[G(t’ —5,x Yt —5)"“=G(t—s,x, y)(t—s) *Jus, y)ds dy'

t
<Cli- r'\ﬂj j (1 — 5) -4 (s )
0JD
1 L4/ “
X || 01+ =0y — sy @ exp| — =)l 46| dyd
UO( A =60r=3) P\ Mot + (1= 0y — 513 yds

t
<Clr- r'\'“j j (1 — ) A4 (s, )| dyds
0JD

t
<C|t— t’\"‘J (t = 8)" V41 (= )7 yg oG, | ds < Cle— o'},
0

with u<l—a—d/4+¢ and ¢<d(l—1/q)/4. Since a>1/2+d/(2q), we obtain
u<l—a—d/(4q)<1/2 —3d/(4q). Since g can be chosen as big as we want, we
conclude that the function 7(v) is u-Hoélder continuous in time with u < % This concludes
the proof of Theorem 1.4. ]

2.4. Improvement of the regularity of u when d=1

We suppose here that d =1 and that Assumption 4” is satisfied. Let us again study the
regularity of each term on the right-hand side of (1.10). As for the initial condition term, we
prove the following result.

Lemma 2.3. If uy belongs to #*T(D), for 0 <e<1, the function G.uy(*) belongs to
g/(2+c)/4,2+(([0’ T], D).

Proof. We first notice that U(t, x) = up(x) — [, [ pA:G(s, x, y)uf(y)dyds satisfies
the partial differential equation 9,U + A?U = 0 with the boundary conditions (1.2) and

U(0, -) = uo; hence U(t, x) = Gug(x). Since [pG(s, x, y)dy =1, [pAG(s, x, y)dy =0,
and hence

t
Guto) ~ 10() = | | A5, p)ub) = i) v
0Jp
Then using (1.7) and the hypothesis on u;, we deduce that
|G uo(x) — up(x)| < Cr®9/4,

Since G,up(x) — Gsup(x) = fDG(s, X, V(G —sup(y) — up(y))dy, we deduce the time regu-
larity of Guy.
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For the space regularity, we use (2.37) and notice that
AGn(®) = [ @t x+ 3+ 9"t x = ) dy = | @ x50+ 90 x = i) dy

for > 0. Hence the proof of space regularity of Guy is similar to the corresponding one in
Lemma 2.2, using the same decomposition. O

Let us prove that the stochastic term L(u) defined by (2.5) belongs to Z 7 ([0, T], D)
with y <%. This time regularity has already been established. It suffices to prove that L(u)
is differentiable with respect to the space variable, and that its derivative is A-Holder
continuous with /1<%. We use the same methods as Kunita (1984, p. 219) and introduce
n(t, x, &) = (L(u)(t, x + &) — L(u)(t, x))E~! for £€]0,mt—x]. We have to evaluate
E(n(¢, x, §) — n(¢, x', £")|?). Using Burkholder’s inequality and the fact that the sequence
(ex)ken is an orthonormal basis of L*(D) and that ¢ is bounded, we obtain

Ep(r, x, & — (1, ', £)|7) < CUOjD[(G(t s xtE ) - Gl s, x )
—(G(t— s, %" + &, )= Gt — 5, X', )NE) TP dyds] "

<C J Z exp(—2(t — s)k*)[{cos(k(x + &)) — cos(kx)} &

0 feNe

— {cos(k(x' + &) — cos(ke)}(E) TP ds] 2.

Using the identity cos(y + k&) — cos(y) = —k& jol sin(y + k&u)du, a simple computation
shows that, for 0 < A <1,

t r/2

J D exp(—2(t — Y (|x — x| + [E - £ ds

0 feN-

E(In(t, x, &) —n(t, x', EN|F) < C

Thus, for A <j, we finally obtain that

E(n(t, x, &) —n(t, x', ENP) < C(|x — x'| + & — &Y.

Therefore, 7(t, x, -) can be extended as a continuous function on [0, 7], and #5(¢, -, 0) is the
space derivative of L(u)(¢, x) which also has A-Ho6lder continuous trajectories.

For the last term H(u), we proceed in the same way as in the preceding subsection. We
observe that 92G(t, x, z) = [, 02G(t — s, x, y)G(s, y, z)dy, and replace in the function .77
defined by (2.40) the second-order derivative by the third-order one. Using the factorization
method again, we prove that the space derivative of H(u) is A-Holder with A <1, so that
H(u) belongs to #“/*4([0, T], D) with u<3.
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3. Malliavin calculus for the Cahn—Hilliard SPDE

In this section we suppose that Assumption 4 holds, because we need u to be continuous. We
first prove local regularity of u in the sense of the Malliavin calculus. Let us recall some
classical notation of Malliavin calculus (see Nualart 1995). D!? is the set of random
variables F' such that the Malliavin derivative DF exists and satisfies

I1F[l1.2 = [BAFP) + B DF | 320, rpx py)1'/* < 00
A process X € [*(Q X [0, T] X D) belongs to L2 if, for each (s, x) € [0, T] X D, Xi,

belongs to D! and
T¢ (T
E J J J J | Dy, X (1, x)|* dydsdxdt | <-+oo.
olJploJp

We define the ‘local’ versions [Dll(;g and ﬂ_ll(;i of these two spaces as follows. X belongs to [Dll(ﬁ

(I]_1’2) if there exists a sequence Q, such that, for every n, X = X, on Q, a.s., X, belong

loc

to Dl’z (ILLZ)a and llmnHOCP(Qn) =L

loc loc

Lemma 3.1. The solution u of the SPDE (1.10) belongs to L\

loc*

3.1. Approximation of u by a sequence of elements of !

For every n>0, let us denote by

Q, = {w € Q| sup sup|u(t, x, w)| < n} 3.1

0<t<T xeD

Because the process u is a.s. continuous, lim,_.,P(R,)=1. Let us construct an
approximation (u,),en of u, such that u, =u on Q, a.s. For this we still truncate the
polynomial f, but in another way. Set f,(x) = K,(|x|)f(x), where K, is defined by (2.1); f,,
is #'! function with bounded derivative. Let us denote by u, the solution to the SPDE

t

(t, %) = JDGU, % V() dy + J

J AG(t — s, x, y) fn(u(s, y))dyds
0JD

t
] [ 6= s ot mwa. o). (3.2
oJp
Notice that since f), is globally Lipschitz, a standard argument shows that (3.2) has a unique
solution. The local property of stochastic integrals proves that u = u,, on Q, a.s. In order to
prove Lemma 3.1, according to Nualart (1995, p. 45), it suffices to check the following result.

Lemma 3.2. The solution u,, to (3.2) exists and is unique; furthermore, it belongs to ' and
its Malliavin derivative satisfies the SPDE
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t

Dy yu,(t, x) = G(t — s, x, )0 (un(s, y)) + J

S

JDAG(t 0, x, 1) 410 1) Dsy11n(6, 1) d 6

+j JDG(r — 0, x, )Su(0, 1) Dyrtn(0, )Wy, dO) (33)

if s <t and Dgyu,(t,x) =0 if s>t where S,(0, n) is Fo-adapted, bounded and satisfies

Ds,y(a(un(ea 77))) = Sn(aa n)Ds,yun(ea 77)

Proof. To prove the existence and the uniqueness of the solution to (3.3) we construct a
Cauchy sequence (u, x)ren converging to u, by the Picard iteration scheme, which means
that

uno(t, x) = Grup(x)

and
t

o1 (£ %) = J G, x, Yyuo(y) dy + J
D

OJ AG(t = s, x, )fu(tt i (s, ) dyds
D

+ J J G(t — s, x, )0 (un (s, ¥)W(dy, ds), 34
0JD

for k = 0. Then for £k = 1,

t

un,kJrl(ts x) - un,k(ts X) = J

OJDAG(r 52 DL k(5 ) — FuCttmpa(s, )] dy ds

4 J J Gt — 5, % P[0 (tns(s, 1) — 0 (ump_1(s, W)W (dy, ds).
0JD

Burkholder’s inequality and the fact that o and f, are Lipschitz functions imply, for

p € [2, +oo[, that
p
< C,E

r/2
+ CE .

Lemma 1.6 applied twice with ¢ = p = oo and » = 1, and Hdlder’s inequality, imply that

E('”n,k+1(ts .X) - un,k(ta x)|p)

t
J j AG(t — 5, %, Y)llunas, 3) — tng-r(s, )| dy ds
0JD

t
J J Gt — 5. %, a5, 3) — tnpr(s, 9P dyds
0JD
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)
)

t
< C,E (J (1 — ) WEDVCOVEAR oy, (1, ) = (8, )2 ds).
0

E(Sup|un,k+l(ta x) - un,k(ta x)‘p)
xeD

t
gC&E(U(I_S)“H”M+WﬂWmM&')—Mmk1@wmmds
0

t
+ CE(U (1 — )Yy 4 (s, ) — s (s, )2 ds
0

Let b= %{(d +2) V (2d)}; iterating this inequality and using Fubini’s theorem as in Walsh
(1986, Lemma 3.3), we obtain

E(|[tn, 5122, ) — tn s (2, )| 2)

t S
< C,| (t— 57019 dsj (s — O P E(|up i (T, ) — i (T, ))|2) dT
0 0

t t
<C, <J (t — 5) PHd/4(g — g)~bHd/4 ds> E(||uni(T, -) — uni (T, )||2) dr
0 T
t
< C,| supE(||uni(z, -) — tpi—1(z, )||2) dz.
0xeD

This implies, for k£ = 0, that

(Cn)*
sup E(||un20k1y(f -) — tn2ir1 (2, )||2) <

2D sup BlJuaa(t, ) — (2, )12)
1€[0,T] - €[0,7]

(C)F
sup E(|lunzis1(t, ) — un2i(t, )||2) <

Xl sup E(H”n,l - ”nOHé)o)
t€[0,7] - 1€[0,7]

Hence

sup E(||ul’!,k(ta ) - un,k—l(ta )”é)o) <00,
k>0 t€0,7]

and the sequence u, (¢, x) converges in L”(2) as k — o0, for (¢, x) € [0, T'] X D, to the
solution to the SPDE (3.2) such that

sup E(”un(t’ )”zfc) < oo,
t€[0,7]

for p € [2, +oo[. Computations similar to preceding ones shows that if u, and v, are
solutions to (3.2), for p € [2, +o0],
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t
sup E([Jun(t, -) — va(t, )ch) < CnJ E(|[un(s, -) — Uals, )”([:o) ds.
t€[0,7] 0

Gronwall’s lemma implies u,(¢, x) = v,(t, x) a.s. Since the solution is a.s. continuous, the
processes u, and v, are indistinguishable.

We now prove by induction that the sequence u,i(t, x) belongs to D2, Since u,, is
deterministic, it belongs to D'? and Du,o = 0. Suppose that, for k=0 and for every
(t, x) € [0, T]1 X D, u,i(t, x) belongs to D' and satisfies

T
sup supE J J | Dy, 1t i(2, x)|2dyds < 00.
te[0,T] xeD 0JD

According to Nualart (1995, Proposition 1.2.3), since ¢ is Lipschitz, there exists S, (0, 1)
such that

Ds,y(a(un,k(ea 77))) = Sn,k(es n)Ds,y”n,k(Oz 77) (35)
and
sup [S,,x(0, )| = Co < oc. (3.6)
k,n,0,n

Let us take the Malliavin derivative of both sides of (3.4); then for s < ¢,

Ds,yun,k+1(ta x)

t

= Gt — 5, %, V)0 (na(s, 1) + J JDAG(t 0, x, )16, 1) Dyt 16, 7) dy 40

N

t
—|—J J G(t— 0, x, )S,,k(0, 1) Dy yu, 1 (0, )W (dn, d0), 3.7
sJD
and for s>t D, yu,;+1(f, x) = 0. We need to verify that
T
sup sup supE J J | Dy yttn i (2, x))* dyds | <oo. (3.8)
k t€[0,T]xeD 0Jp

Clearly, E(fOT o | D nttni(t, x)[* dy ds) < 32?:1 A;(t, x), where

T
Ai(t, x) = E( |G(t — s, x, )0 (un (s, ¥)|*dy ds>,
JoJp
T t 2
Ay(t, x) =E J J AG(t— 0, x, n)fu(uni(0, 1)Dy, yu, 1 (0, n)dndo| dyds |,
0JDI|JsJD
T t 2
As(t, x) =E J J G(t— 0, x, N)S,.x(0, 1) Dy, yu, 1 (0, n)W(dy, d0)| dyds |.
0JDI|JsJD

Since ¢ is bounded, (1.18) implies that



Cahn—Hilliard stochastic equation 805

T
sup sup sup A4;(t, x) < H0||§C sup supE(J J Gt —s, x, y)dyds)
k t€[0,T]xeD 1€[0,T] x€D D

= (<. (3.9)

Since |f,| < C,, Fubini’s theorem and Holder’s inequality with respect to the measure
|AG(t — 0, x, n)| dn d@ yield

t

]
4.0 =G| | 1860-6.x n)|E<H 1Dyt 1(6, n>|2dyds> d do
D 0JD

0

t 6
< c,,J J IAG(t — 6, x, )| dy supE(J J | Dy, 14,16, 7]’)|2dyds> de.
0Jp 7 0Jp

Thus (1.7) implies that

t

6
Ay(t, x) < cJ supE(J J | Dy, yttn (6, 17)|2dyds) do. (3.10)
n 0JD

1
ovVt—0
Inequality (3.6), Burkholder’s inequality, Fubini’s theorem and (1.6) imply that

t t
As(t, x) < CE (J J J J |G(t — 0, x, P)|*| Dy yttn 1(0, 7)* dn d9dyds>
D D

0 K

t 60
< CJ (t — )~/ supE(J J | Dyt 1(6, 77)|2dyds> do. (3.11)
0 n 0JD

Therefore, (3.9)—(3.11) yield the existence of positive constants C and C, such that, for
every t € [0, T] and k = 0,

t
supE(J J | Dyt 41 (2, x)|2 dy ds>
D

xeD 0

t 6
<C+ c,,J (t— 0)(1/2Vd/4)supE<J J | Dy ptt (6, 17)|2dyds> de;
0 n 0JD

therefore, iterating this inequality and using the convergence of the integral
Jit — 0)=1/2VdH (g — 5)=(1/2Vd/D 49, we deduce (3.8).

We have proved that u, (¢, x) belongs to D! for all (¢, x) € [0, T] X D. Using Nualart
(1995, Lemma 1.2.3), we deduce that the random variable u,(t, x) belongs to D'?, and
that the sequence Du,(t,x) converges to Du,(f,x) in the weak topology of
L*([0, T] X D X Q). Let us define S,(6,7) as the weak limit of (S,4(0, 7))k =0 in
L*(82 X [0, T] X D); then Ds (0 (un(0, 7)) = S,(0, 1)Ds,yu,(0, 7) and

sup |S,(0, )| = Cy < o0. (3.12)
n,0,n
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Differentiating the SPDE (2.2), we obtain that for each (¢, x), the process Dy ,u,(t, x)
satisfies the following SPDE:

t

VIt = Gl = 5.3 7)ot ) + |

N

| a6t~ 6.5 30 72,0 d ao

+JLawﬁmewwwuammwﬁm (3.13)

s

for s< 1 and V{ (¢, x) =0 if s> We need to prove the uniqueness of the solution to
(3.13). Let V,, and U, be two solutions of (3.13). Computations similar to those made to
prove (3.9)—(3.11) imply that

t
supE(J J Ve, (8 x) — Ug (2, x)[? dyds)
D

xeD 0

xeD

! 0
< C,,J (t— 0)‘(%v‘z’) X supE(J J |VS”,y(0, x) — Usn’y(g, x)‘z dydsd0>,
0 0Jp

and Gronwall’s generalized lemma yields

T
sup supE(J J Ve (8 x) = Ug (1, x)[? dyds> =0.
D

t€[0,T] x€D 0

Hence (3.8) shows that the process u, belongs to [L'2, which implies that

t
sup supE(J J | Dy yun(t, %) dyds) =C, <o (3.14)
t€[0,T] x€D oJp
this concludes the proof of Lemma 3.2. O

3.2. Existence of a density for the random variable u,(t, x)
Let >0 and x € 0, x[“; according to Nualart (1995, Theorem 2.1.3), we have to prove that
t
J J |D,-1u,(t, x))* drdz>0 as. (3.15)
0lp
Let us prove the following technical result for time integrals over small time intervals:

Lemma 3.3. There exists a constant C,, such that, for every 0 <e<ft,

t
sup supE(J J |Dyzun(s, y)? dzdr) < C,e' 94, (3.16)
D

s€[t—e,t] yeD t—e

Proof. For t —e < s <, set H'(s, ) = E(J,_, [, |Drzun(s, y)|*dzdr); (3.14) shows that
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sup supH (s, y) = C, <oo. (3.17)
s€[0,T] yeD

According to (3.2),

3
H(n(S, y) <sC A,’(S, Y, 6)9
i=1
with
Ai(s, y, €) = E( ‘ |G(s — 7, v, 2)0 (u,(r, 2))|? dzdr)
t—eJ D
S S 2
asts, 7.0 =E( [ [ ][] a6t -0, mriu@. D@, manas| aras
t—eJD|Jrd D
s s 2
As(s, x, ) =E J J G(s — 0, x, 1)S,(0, 1) D, ;u,(0, n)W(dn, d0)| drdz)
t—eJD|Jrd D
Because o is bounded, (1.6) implies that
Ai(s, y, ©) < Cc /4, (3.18)

Burkholder’s inequality, Fubini’s theorem, inequalities (1.6), (3.12), (3.17) and equation (1.14)
imply that

As(s, y, ¢) < CE <J J JJ G*(s—6,y, )| D, (0, 77)\2 dody dzdr)
pJrJp

t—e r

S 6
< CE (J J J J G*(s — 0, y, )| Dyzun(0, n)lzdzdrdnd0>
D D

t—e t—e

< CJ J GX(s — 6, y, ) H',(6, ) dy d6
D

t—e¢

< J (s — 0)"*sup H(0, ) do. (3.19)
t—e nebD
For the other term, Schwarz’s inequality with respect to the measure |[AG(s — 6, y, 17)| d0 dn
implies that

t—c r

Ax(s, x, €)= CnE<J J J J |AG (v, M| Dr.zun(8, n)|* d6 dy dzdr>~
D D

Using (1.7), by a computation similar to that of A3, we find

N

(s, y, ) = cnj (s — 6)"V2sup HE(6, 1) do. (3.20)

t— nebD
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Inequalities (3.18)—(3.20) imply that

sup H' (s, y) < Ce'~4/* ¢ C”J‘ (s — 0)" Y Dsup HE (6, ) db;
yeD t—¢ neD

Gronwall’s generalized lemma concludes the proof of (3.16). O
Let us prove Theorem 1.5 when o = 1.

Lemma 3.4. If 0 = 1, denote by u,, the solution to (3.2). For t>0 and x € 10, nw[¢, the law
of u(t, x) is absolutely continuous with respect to the Lebesgue measure on R.

Proof. 1t suffices to prove (3.15) in the particular case o = 1. Denote by Q the process
defined by

D, u,(t, x) = G(t —r, x, 2) + O,.(t, x), 3.21)

and set
t

Ii(t, x, €) = J J Gz(t —r, x, z)dzdr,
D

1—€

t

I(t, x, €) = J JDQ,,Z(t, x)* dzdr.

1—e¢
According to (3.21),

t

t
1
J J |D,.u,(t, x)]* dzdr = J J |D,.u,(t, x)]* dzdr = EIl(t, x, €) — I(t, x, ¢).  (3.22)
0JD D

t—c

Let us find an upper estimate for E(/5(¢, x, €)) < 2(B(¢, x, €) + Ba(t, x, €)), where

' 2

Bi(t, x,¢) = J J E( > dzdr,
t—eJ D
t 2

By(t, x, €)= J J E( ) dzdr.
t—eJ D

Schwarz’s inequality applied with respect to the measure |AG(¢ — 6, x, 17)| dy d6 and Fubini’s
theorem imply that

” AG(t = 0, x, 1) [ w(un(0, 1) Dyzun(0, 1) diy d6
D

I

”DG(r — 0, %, )Su(6, 1) Dyattn(0, )W (dy, d6)

r

t t
Bi(t, x, €) < an J E(J J |AG(t — 0, x, n)|| Dy..un(6, n)|* dn d0> dzdr
D D

1—e€ N

t 6
< C”J J IAG(t — 6, x, 17)|E<J J | D, 21,(0, 77)|2dzdr> dn do.
D D

t—e t—e

Using Lemma 3.3 with 1 —e¢ < 6 < ¢ and (1.14), we deduce that
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t

Bi(t, x, €) < Cnel’d/“J J IAG(t — 6, x, p)| dydO < C,e/?~4/4, (3.23)
D

t—e

For the second term, Burkholder’s inequality implies that

t t
mxo=c| | E(” 1G (e — 0, x, )P |Dr a0, 77)|2d77d9> dzdr.
D D

t—e¢ N
Computations similar to that for B; imply that
By(t, x, ) < Ccd4,
so that
E(I5(t, x, €)) < C,B/2=dHNC=d/4) (3.24)

We now need to find lower estimates for /;. For this, we use the exact expression of the
Green function G given by (1.5), which yields

t 2
nexo=| | lz (Ve () exp(— A1 - s))} dyds.
t—e keNd

Since the sequence (&;)ene is an orthonormal basis for L2(D),

1i(t, x, €) = J’ [Z &2 (x)exp(—245 (1 — s))] ds.

=€ | keNd

> ei(x)iz[l — exp(—242¢)] + Ce.
keNd-* 2j‘k

The series is well defined because Y, - 1/&?{ < o00. Let us choose xg = (x)ic[1.4) € 10, 7[?.
According to (1.4),

2
1 d

h(t,x,0=C Y Mi<i=q c08* (ki) ————— | 1 = exp —2<Z k?) ¢
i=1

ke(N+)d (Z k2>
i=1

Given a in ]0, x; A ... A xg Am/2[, we observe the following:

Remark 3.5. If k € N*, x € D are such that kx € Jm/2 — a/2, ©/2 + a/2[(mod ), then
a w
2°2
The intervals /2 —a/2, ©/2 4+ a/2[(mod ) correspond to small values of the cosine
function; in fact there exists B>0 such that cos’(x)>B if x¢ In/2—a/2,

7/2 + a/2[(mod m). Using Remark 3.5, we obtain the following lower estimate, skipping
every other term:

(k+1)x¢]§— +§[<mod ).
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-2

d 2
1 —exp| —2¢ [Z(zk,-)zl
=1

[ d
Lt x, 0= CH Y |> (1+2k)
| i=1

kE(N*)‘[
[ d -2 d 2
=g . D) k?] 1 —exp| —8¢ [Z k?]
ke(N*)d Li=1 i=1

Take M >0 small enough (M <2) such that for 0 <x< M we have 1 — exp(—x) = x/2;
then since the number of points with integer coordinate in a circle (or sphere) or radius r is
dominated by Cr,

d -2 d 2
11(t, xo, €) = Cp? Z l kf.] 1 —exp| —8¢ lz kf.]
<M 1

ke(N*)4 8e(Z4_, k2 i= i=1

=170

= Cﬂz Z €

ke(N*) 8e(=4 k22 < M

i=1"i

M

d/4
—> = C fP! 4, (3.25)
8¢

= Cﬁze<

Inequalities (3.22), (3.24) and (3.25) yield

T
P(J J | Dy yutn(t, %) dy ds > 0> = sup P(3(t, x, €) — Ir(t, x, €) >0)
0Jp

0<esg

= sup P(L(t, x, 6)< C%elfd/“)
0<es¢

) 2
=1— inf {E(Iz(l, X, 6))m}

0<es¢
=1— inf C,e/20-4/9
0<es¢g "
=1
This concludes the proof of Lemma 3.4. O

3.3. Proof of Theorem 1.5

Let us now extend Lemma 3.4 to functions o which do not vanish. Let us denote by vy, the
solution to the SPDE (3.3) with o0 = 1, that is, for ¢ = s,
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t

U;,”y(t, xX)=G(t—s,x,¥) —|—J

s

jDAG(r — 0, % 1) b(un(0, M)V (0, ) d 46

t
]| 6= 6.5 msie.mor, @ miwan. co),
D

and vg, (1, x) =0 if #+<<s. Because of the uniqueness of the solution to (3.3),
U;l,y(ta x)o (un(s, y)) = Ds,yun(t: x).

Also, because o does not vanish,

t t
P(J J | Doy, un(t, x)|2dyds>0> = P( 07 (2, )0 (u,(s, y))|2dyds>0>
0JD D

v

~

t
( Lor (100 un(s, 2 > 0 dy ds > 0)
D

D1{|Uz‘v(,’x)‘2 >0} dy ds > 0)

P v} (1, x)|2dyds>0)
D

=1.

This proves (3.15), which implies that the law of u,(#, x) is absolutely continuous, and the
localization u|q, = u, yields Theorem 1.5.

Appendix: Proof of Lemma 1.2

We use a theorem from Eidelman and Ivasisen (1970), which gives a similar result for
smooth domains. The difficulty is in the ‘corners’ of D, that is, the points x at least two of
whose coordinates belong to {0, mt}, and where the boundary of D is not smooth. Let us
denote by D® the parallelepiped D without its ‘corners’.

Let D, be an increasing sequence of smooth convex domains included in D such that the
intervals {x; € [1/n, ® — 1/n]} of OD belongs to dD,. Denote by G, the Green function
associated with the operator 9/0t+ A? on D, with the Neumann boundary conditions.
According to Eidelman and Ivasisen (1970, Theorem 1.1), and the first chapter of Eidelman
and Zhitarashu (1998), we conclude that this parabolic system in the sense of Petrovskii is
well defined and that the following inequalities hold for x, y € D,, a <1, |f| <4 with
constants which do not depend on u:
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C clx —y|*?
|Ga(t = s, x, y)| Sm“l’(—m ) (A.T)
c clx —y|*?
B _
|DYDEG,(t— s, x, )| < 7 = ST exp( =) (A.2)
If |B| < 3, D?G, is integrable; moreover, for 0 < t<t' < T,
.
J J DPG,(t—s, x, y)dyds < C|t — ¢'|'~9/4, (A.3)
t JR4

Let ¢ be a C*™ function on [0, T] X D; for (¢, x) € [0, T] X D,, set

t
W1, %) = j J Gu(t — 5, %, (s, ) dyds.
0JD,
The function w, satisfies
P01 x) 4 M, 3) = (1, (A4)

on D, with the homogeneous Neumann boundary conditions on dD,. We first prove the
convergence of (w,) on [0, T] X D°.

Lemma A.1. For each k>0, the sequence (w,),=y is relatively compact in Z ([0, T] X D).
We can extract a subsequence w, such that its time derivative converges uniformly on each
interval [e, T] X Dy, for ¢ >0, and such that its space derivative of order a, with |a| <3,
converges uniformly on [0, T] X Dy. Let us denote by Wy the limit of w, on [0, T] X Dy,
there exists a function w defined on D® such that w|p, = Wy|p,.

Proof. According to the Arzela—Ascoli theorem, we have to prove that the sequence is
bounded and equicontinuous. Inequalities (A.1) and (1.14) imply the uniform boundedness of
the sequence.

Equicontinuity in time and in space are proved by different arguments, since w, is a
convolution in time. Let 0 < t<¢ < T, x € Dy; then

Wall's %) — walt, x) = U Gols, % WP — 5, 7)— (1 — 5, )] dyds

n

+ th G, (t' —s, x, y)p(s, y)dyds. (A.5)
D,

t

The function ¢ is uniformly continuous on [0, 7] X Dy, and the upper estimate (A.1) of G,
is independent of n; this implies that the first term on the right-hand side of (A.5) can be
made less than € for ' — ¢ small enough uniformly in x € Dj. Furthermore, using (A.1) and
(1.14), we have
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)
j JD Gt — 5, %, (s, ) dyds| < Cllp ol — 7'

t

this implies the equicontinuity of w, in the time variable (uniformly in the space variable).
To study the space increment, let x, x’ € Dy; then

t

wu(t, x) — wy(t, x') = J

OJD (Gt — 5, %, ) — Golt — 5. %', P]p(s, y)dyds.

Using (A.2) for the first-order partial derivatives with respect to the space variable and the
Taylor formula, we deduce, by a computation similar to that made to prove (2.41) and (2.42),
that

t
Walt, 2) — wa(t, )] < C|x—x/|j [t — |41l .
0

This yields the equicontinuity in the space variable in Dy, uniformly in the time variable. The
sequence w, admits a subsequence (W,),=; which converges to w; in C([0, T] X Dy). For
the time derivative, we proceed in a similar way. We observe that

ow,, ! ,
w (t,x):” Gols, %, VPUE — s, y)dyds+j Go(t, %, VPO, y)dy.
ot 0J b, D,

We have to prove equicontinuity in space and time variables and the boundedness of the
sequence. The first term can be studied as w,(¢, x), ¢ being replaced by ¢;. Because there is
only a space integral, we prove equicontinuity and boundedness for the second term on
[e, T] X Dy. For the space increment, take ¢, t' € [¢, T]; then

‘J [Gn(t’ X, J’) - Gn(t’, X, y)](p(oa y) dy‘

n

! C —clx — y|4/3
<|t—1t déd
| |JDL @1+ (1 —0y)@di TP\ g - (1 = o)) >

Using (1.14), we conclude that the second term is equicontinuous in the time variable on
[¢, T], uniformly in the space variable. We proceed in a similar way for the equicontinuity in
the space variable. We can extract a further subsequence such that the time derivative con-
verges too on [¢, T] X Dy for ¢ >0.

For the space derivative, let 8 € N¢ be such that |3| < 3; then we have

t

Dlw,(t, x) = J

j DEG(t — s, %, V)p(s, ) dyds.
0JD,

Uniform boundedness is a straightforward consequence of (A.2) and (1.14); the time
increment of wa,, can be studied like that of w,. For the space increment, let 4 € 10, 1[,
apply Taylor’s formula, (A.2) and (1.14) and proceed as in the proof of (2.41) and (2.42); this
yields, for A1 € [0, 1],
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t
DB, (1, %) — Dbw,(t, x')] = |x —xﬂ £ — |+ bl .
0

We see that it suffices to take A4 such that f+ 1 <<4. To obtain the equicontinuity of the
derivatives of w, of order less than 3 in the space variable, we can finally extract a further
sequence such that all the partial derivatives of order less than 3 with respect to the space
variable converge on [0, 7] X D;. The fact that there exists a function w defined on
[0, T] X D® comes from the fact that the values of the sequences do not depend on k. The
function w also has a time derivative and space derivative of order up to 3, because the
corresponding derivatives of (w,) converge uniformly on Je, 7[ X D. ]

Since W, is a solution to (A.4), the sequence A%w, restricted to D; is uniformly
convergent hence it also admits a limit point w which satisfies the PDE

9]

5V X) = —A’w(t, x) + ¢(t, x) (A.6)
on D®. Furthermore, w satisfies the Neumann boundary conditions because the function w,
satisfies such conditions on the boundary of D,, and we have constructed D, so that
0D, \OD increases to dD\{0, n}¢ as n — oco. The initial condition is again w(0, ) = 0.
Since (A.6) has a unique solution with homogeneous Neumann’s condition, we deduce that

w(t, x) = LJDG(t — s, x, ¥)f(s, y)dyds,

where G is the Green kernel given by (1.5). The sequence (G,(-, x, -)),= also converges
weakly on [0, f] X Dy for every ¢ € 10, T] and every x € Dy.

We need to extend upper estimates (A.l1) and (A.2) from G, to G. Let s9, o,
xo € 10, T[ X (]O, Jt[d)z; there exist & such that yy and x; belong to Dj_;\ODy_1. Let y be
a positive C* function on R X R? with compact support included in [—1, 1]9*!, such that
f[fu]“l x(x)dx =1, and set

—d S—8 X— Mo\,
Xso,yo,((sa x)=c¢ ( +1)X (T’ T)j

then the sequence y, ,, converges weakly to dy, ,, in Z([0, T] X Dy). For ¢ small enough,
the support of yq, ,, is included in [0, #] X Dy; hence for fixed #y, we have

to
J jDG(ro 8300 P s a5 ) dyds

to
J J Gt — 5, X0, Vtsg (s y)dyds
0 Dy

0

to
nmj j Gt — 5, X0u Ylspe(s, ) dyds.
Dy

n—00 0

The function y is positive, and (A.1) implies that
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to
,[0 J G(tO - S, X0, y)XSo,yo,é(S’ y) dy ds
D
to 1 C|X() _ y|4/3
=C _ — 00 (8> ¥)dyds. A7
), exp( st o8 D Ards o BD
On the other hand, we know that the kernel G is defined by (1.5); hence G is a continuous

function on 10, T] X D?, so that

to
III%J J G(to - S: an y)XSo,yo,(.(sa y) dy dS = G(tO - SOa X(), yo)
€— 0 D

Therefore, as € tends to 0, (A.7) yields
clxo — )/0|4/3>

C
Glto — s0, %0, y0)| < ————exp| —
|G(to — s0, X0, Y0)| to = sodlt exp( PREATE

We observe that for |a| < 3,
t
Iw(t, x) = J J AUNG(t — 5, x, p)f (s, y)dyds.
0Jp

Because 0¢w, converges to 9%w; (0G,(-, x, -))n=¢ converges weakly to G(-, x,-) on
[0, T] X Dy. Arguments similar to the preceding ones imply that, for |a| < 3,

clxo — y0|4/3>

[tg — so|'/3

C
O
|0%G(ty — 50, X0, Y0)| < o = so @7 exp <_
and

|A?G(ty — s0, X0, Y0)| <

c|XO - J’0|4/3>. (A.8)

|19 — 50|44 p( |70 — s0|'/3
Because G is the Green kernel associated with the operator 9/0¢ + A%, G satisfies

9 2
5,G =N,

if >0, x, y € D, and the estimate (1.8) can be deduced from (A.8); this concludes the proof
of Lemma 1.2.
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