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We show the existence and uniqueness of a function-valued process solution to the stochastic Cahn±

Hilliard equation driven by space-time white noise with a nonlinear diffusion coef®cient. Then we

show that the solution is locally differentiable in the sense of the Malliavin calculus, and, under some

non-degeneracy condition on the diffusion coef®cient, that the law of the solution is absolutely

continuous with respect to Lebesgue measure.
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1. Introduction

Set D � [0, ð]d , let W denote a one-dimensional (d � 1)-parameter Wiener process, and

consider the stochastic partial differential equation (SPDE)

du

dt
� (Ä2uÿ Ä f (u)) � ó (u) _W , (1:1)

with initial condition u(0, �) � u0 and homogeneous Neumann boundary conditions

@u

@n
� @Äu

@n
� 0 on @D: (1:2)

This is a stochastic version of the Cahn±Hilliard equation (ó � 0). This equation describes

the complicated phase separation and coarsening phenomena in a melted alloy that is

quenched to a temperature at which only two different concentration phases can exist stably.

u represents a scaled concentration, and ÿÄu� f (u) represents the chemical potential. The

Neumann boundary conditions re¯ect the conservation of mass and insulation from outside.

The function f is the derivative of the homogeneous free energy F. In its original form, F

contains a logarithmic term. In some cases, F can be approximated by an even-degree

polynomial with positive dominant coef®cient. For more physical background on this

equation, see, for example, Cahn and Hilliard (1958) and Novick-Cohen and Segel (1984).

The existence and uniqueness of the solution to (1.1) have already been proved by

Debussche and Dettori (1995) when f is the derivative of a logarithmic term in the case of

logarithmic free energy and ó � 0, and by Da Prato and Debussche (1996) in the case of an

additive noise (ó � 1), when f is a polynomial of odd degree in a set of distributions, and if
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d > 2 in the set of L2(D) functions only for Gaussian perturbations more regular than the

white noise W . Our study is restricted to dimension d, where d 2 f1, 2, 3g, on the domain

D � [0, ð]d . We assume that f is a polynomial of degree 3. To prove existence and

uniqueness of an almost surely (a.s.) continuous solution, we need some information on the

Green function G of the operator @=@ t � Ä2. This operator has a well-de®ned expression as a

Fourier series, but this is not easy to use. We need other estimates of G; for this, we use a

result from Eidelman and Ivasisen (1970) on Green's functions on a smooth domain. We have

extended these estimates from smooth domains to the domain D in the Appendix. In the ®rst

part of this paper we use the estimate of the Green function to prove ®rst the existence and

uniqueness of the solution for a similar equation with truncated coef®cients. This yields the

existence and uniqueness of the solution on the time interval [0, ô[, where ô is a stopping

time. To prove that ô � �1, we need a priori estimates in the space L1([0, T ]; Lq(D)),

q > 4. For this we prove two different upper estimates and use an interpolation method. In

these computations we need the degree of f not to be larger than 3. The approach is similar

to that used by GyoÈngy (1998) and Da Prato and Gatarek (1995) for another nonlinear

parabolic stochastic equation with correlated noise, the Burgers stochastic equation. We then

study the regularity of u and prove that if u0 is HoÈlder continuous, then u also has HoÈlder

regular trajectories. More precisely, in the case d � 1, if u0 is differentiable (u0 2 C 2(D)),

the solution u is differentiable with respect to the space variable.

In the second part of this paper, we study the existence of the density of u(t, x) for t . 0

and x 2 ]0, ð[d . For this we use the Malliavin calculus (see Nualart 1995) associated with

the space-time white noise W . Similar results have been obtained by Morien (1999) in the

case of the stochastic Burgers equation. Concerning the Burgers equation, let us mention

the work of Lanjri Zaidi and Nualart (1999), which proves the existence of a density under

weaker conditions. This re®nement seems to be more dif®cult to obtain in our case, because

we do not have good lower estimates of the Green function.

The paper is organized as follows. We ®rst state the hypotheses and the main results of

this paper; then we give some lemmas on the Green function G. In Section 2, we establish

the existence of the solution to the SPDE (1.1) and study its regularity. In Section 3, we

prove the absolute continuity of the solution u(t, x) for t . 0 and x 2 ]0, ð[d . Finally, the

basic pointwise upper estimates of the Green function and of its derivatives are shown in

the Appendix. As usual, constants C and c may change from one line to the next; we

denote by Cá a constant which depends on some parameter á. We denote the space variable

by x and the space integral by
�

. . . dx, even if the dimension d is not 1, and denote by

k � kq the Lq-norm with respect to dx.

1.1. Hypotheses and results

We make the following assumptions:

Assumption 1. f is a polynomial of degree 3 with positive dominant coef®cient.

Assumption 2. ó : R 7! R is a bounded and Lipschitz function.
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Assumption 3. u0 belongs to Lq(D) for q > 4.

Assumption 4. u0 is a continuous function on D.

Assumption 49. u0 is an á-HoÈlder continuous function on D, á 2 ]0, 1[.

Assumption 40. d � 1 and u0 is an á-HoÈlder continuous function on D, á > 2; moreover,

u90(0) � u90(ð) � 0.

Assumption 5. The function ó does not vanish (ó 6� 0).

Remark 1.1. In Assumption 1, we have assumed that f is of degree 3; the case of degree 1 is

easier and its proof is omitted.

We will use Assumptions 4, 49 and 40 only in Sections 2.3 and 3 to prove the regularity

property of the solution, and Assumption 5 only in Section 3.2 to obtain the existence of a

density.

We suppose that W � fW (t, x), t 2 [0, T ]; x 2 Dg is a one-dimensional, (d � 1)-

parameter Wiener process on the probability space (Ù, F , P); as usual, we set F t �
ó (W (s, x); s < t, x 2 D).

Let A denote the operator ÿÄ on the domain D (A) � fu 2 H2(D); @u=@n � 0 on @Dg.
The following family (åk)k2Nd is a basis of eigenfunctions of A in L2(D). If d � 1,

åk(x) � cos(kx)

���
2

ð

r
if k 6� 0,

å0(x) � 1���
ð
p ;

(1:3)

and for d 2 f2, 3g,

åk(x) �
Yd

i�1

åk i
(xi), (1:4)

associated with the eigenvalues ëk �
Pd

i�1 k2
i � jkj2. By convention, denote by Nd,� the set

Ndnf0g. The semigroup S(t) generated by ÿA2 is denoted by S(t) � eÿ tA2

, that is, for

z 2 L2(D),

S(t)z �
X
k2Nd

eÿë
2
k thz, åkiåk ,

where h�, �i denotes the usual scalar product in L2(D); this is a convolution semigroup with

the Green function G de®ned by

G(t, x, y) �
X
k2Nd

eÿë
2
k tåk(x)åk(y): (1:5)

The following lemma is proved in the Appendix.
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Lemma 1.2. There exist C . 0 and c . 0 such that, for t 2 ]0, T ], x, y 2 D, á a d-

dimensional exponent satisfying jáj < 3:

jG(t, x, y)j < C

td=4
exp ÿc

jxÿ yj4=3

jtj1=3

 !
, (1:6)

j@áx G(t, x, y)j < C

t(d�jáj)=4
exp ÿc

jxÿ yj4=3

jtj1=3

 !
, (1:7)

j@ tG(t, x, y)j < C

t(d�4)=4
exp ÿc

jxÿ y4=3

jtj1=3

 !
: (1:8)

We wish to prove the existence and uniqueness of the solution to the SPDE (1.1). Since

the derivative of W is formal, this can be made rigorous only in a weak sense, as in Walsh

(1986) for the stochastic heat equation. We say that u is a weak solution of (1.10) if, for

each ö 2 C4(D) such that @ö=@n � @Äö=@n � 0 on @D, u satis®es�
D

(u(t, x)ÿ u0(x))ö(x) dx � ÿ
� t

0

�
D

Ä2ö(x)u(s, x) dx ds�
� t

0

�
D

Äö(x) f (u(s, x)) dx ds

�
� t

0

�
D

ö(s, x)ó (u(s, x))W (dx, ds): (1:9)

As usual, u is a solution to (1.9) if and only if it solves the following evolution equation:

u(t, x) �
�

D

G(t, x, y)u0(y) dy�
� t

0

�
D

ÄG(t ÿ s, x, y) f (u(s, y)) dy ds

�
� t

0

�
D

G(t ÿ s, x, y)ó (u(s, y))W (dy, ds) (1:10)

for x 2 D, t 2 [0, T ].

The main results of this paper are the following:

Theorem 1.3. Suppose that Assumptions 1±3 hold; there exists a unique process u �
fu(t, x), t 2 [0, T ], x 2 Dg in L1([0, T ], Lq(D)) , that is adapted, that is to say, u(t, x) is

F t-measurable for (t, x) 2 [0, T ] 3 D, and satis®es the evolution equation (1.10).

Theorem 1.4. If Assumptions 1±4 are satis®ed, then the solution to (1.10) has a.s.

continuous trajectories.

If the Assumptions 1±3 and 49 are satis®ed, then the trajectories of the solution to (1.10)

are a.s. â-HoÈlder continuous in t and â9-HoÈlder continuous in x, with â < á=4,

â, 1
2
(1ÿ d=4) and â9 < á, â9 , (2ÿ d=2).

If d � 1 and Assumptions 1±3 and 4 (or 40) are satis®ed, then the trajectories of the
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solution to (1.10) are a.s. â-HoÈlder continuous in t and â9-HoÈlder continuous in x on

[t0, T ] 3 D for 0 , t0 , T (or [0, T ] 3 D), with â, 3
8

and â9 , 3
2
.

Theorem 1.5. Suppose that Assumptions 1±4 and 5 are satis®ed, and let u denote the

solution to (1.10). For (t, x) 2 ]0, T ] 3 ]0, ð[d, the law of u(t, x) is absolutely continuous

with respect to the Lebesgue measure on R.

1.2. The Green function

The following result, similar to GyoÈngy (1998, Lemma 3.1), gives precise estimates of the

regularizing effect of convolution with G, ÄG and G2.

Lemma 1.6. Let J be de®ned, for all v 2 L1([0, T ], Lr(D)) , 0 < t0 < t < T, and x 2 D, by

J (v)(t0, t, x) �
� t

t0

�
D

H(t ÿ s, x, y)v(s, y) dy ds:

Then for any r 2 [1, 1], q 2 [r, �1], and 1=r � 1=qÿ 1=r� 1 2 [0, 1], J is a bounded

operator from L1([0, T ] , Lr(D)) to L1([0, T ], Lq(D)) such that:

1. If H(s, x, y) � G(s, x, y), there is a constant C . 0 such that

kJ (v)(t0, t, �)kq < C

� t

t0

(t ÿ s)(d=4)(1=rÿ1)kv(s, �)kr ds: (1:11)

2. If H(s, x, y) � ÄG(s, x, y) (if d � 3, we also need r , 3; and if d � 2, r 6� 1), there

is a constant C . 0 such that

kJ (v)(t0, t, �)kq < C

� t

t0

(t ÿ s)ÿ(d�2)=4�d=(4r)kv(s, �)kr ds: (1:12)

3. If H(s, x, y) � G2(s, x, y) (if d � 3, we also need r , 3
2
, and if d � 2, r 6� 1), there

is a constant C . 0 such that

kJ (v)(t0, t, �)kq < C

� t

t0

(t ÿ s)ÿd=2�d=(4r)kv(s, �)kr ds: (1:13)

Proof. The proof is based on the inequalities of Minkowski and Young. We only prove

(1.11); the proof of the two other inequalities is similar. Minkowski's inequality and Lemma

1.2 imply that

kJ (v)(t0, t, �)kq <

� t

t0





�
D

G(t ÿ s, �, y)v(s, y) dy






q

ds

< c

� t

t0

jt ÿ sjÿd=4





�
D

exp ÿc
j � ÿyj4=3

jt ÿ sj1=3

 !
jv(s, y)j dy






q

ds:
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We observe that for t . 0, �
Rd

exp ÿ cjxj4=3

t1=3

� �
dx � Ctd=4: (1:14)

Let r > 1 be such that 1=q� 1 � 1=r � 1=r (r exists because 1 > 1=q� 1ÿ 1=r > 0).

Young's inequality and (1.14) imply that

kJ (v)(t0, t, �)kq <

� t

t0

jt ÿ sjÿd=4kv(s, �)kr




exp ÿc

j � j4=3

jt ÿ sj1=3

 !




r

ds

< C

� t

t0

jt ÿ sj(d=4)(1=rÿ1)kv(s, �)kr ds:

Note that, again using Young's inequality, the left-hand sides of (1.11)±(1.13) converge with

the conditions which are made on r when d � 2, 3. h

The proof of following lemma, which is similar to the preceding one, will be omitted.

Lemma 1.7. Let Já be de®ned, for all v 2 L1([0, T ], Lr(D)), 0 < t0 < t < T, and x 2 D,

á 2 ]0, 1[, by

Já(v)(t0, t, x) �
� t

t0

�
D

(t ÿ s)ÿáÄG(t ÿ s, x, y)v(s, y) dy ds:

Then for any r 2 [1, 1], q 2 [r, �1], and 1=r � 1=qÿ 1=r� 1 2 [0, 1], J is a bounded

operator from L1([0, T ] , Lr(D)) to L1([0, T ], Lq(D)) such that, for d=(4r) .á� d=4ÿ 1=2,

kJá(v)(t0, t, �)kq < C

� t

t0

(t ÿ s)ÿáÿ(d�2)=4�d=(4r)kv(s, �)kr ds: (1:15)

We also need upper estimates of increments of the Green kernel G.

Lemma 1.8. For ã, 4ÿ d and ã < 2, ã9 , 1ÿ d=4, there exists C . 0 such that, for t . s,

x, z 2 D, � t

0

�
D

jG(t ÿ u, x, y)ÿ G(t ÿ u, z, y)j2 dy du < Cjxÿ zjã, (1:16)

� s

0

�
D

jG(t ÿ u, x, y)ÿ G(sÿ u, x, y)j2 dy du < Cjt ÿ sjã9, (1:17)

� t

s

�
D

jG(t ÿ u, x, y)j2 dy du < Cjt ÿ sjã9: (1:18)

Proof. To prove these inequalities, we use the series decomposition (1.5) of G. Since the

family (åk)k2N is an orthonormal basis of L2(D), we have
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� t

0

�
D

jG(t ÿ u, x, y)ÿ G(t ÿ u, z, y)j2 dy du

�
� t

0

�
D

����� X
k2Nd

åk(y) exp(ÿë2
k(t ÿ u))[åk(z)ÿ åk(x)]

�����
2

dy du

�
X
k2Nd

� t

0

exp(ÿ2ë2
k(t ÿ u))jåk(z)ÿ åk(x)j2 du

�
X

k2Nd,�
jåk(z)ÿ åk(x)j2[1ÿ exp(ÿ2ë2

k t)]ëÿ2
k 2ÿ1:

Since k 6� 0, we have

jåk(z)ÿ åk(x)j < C([ë1=2
k jzÿ xj] ^ 1),

and for á 2 [0, 1[,� t

0

�
D

jG(t ÿ u, x, y)ÿ G(t ÿ u, z, y)j2 dy du < Cjzÿ xj2á
X

k2Nd,�
ëÿ2�á

k (1ÿ exp(ÿ2ë2
k t))

< Cjzÿ xj2á
X

k2Nd,�
ëÿ2�á

k :

Comparing the series
P

k2Nd,�ë
ÿu
k with a multiple integral, we deduce that it converges if

u . d=2. So taking 0 ,á, (4ÿ d)=2 and á < 1, we deduce (1.16).

We now prove inequality (1.17). Using (1.5), we obtain� s

0

�
D

jG(t ÿ u, x, y)ÿ G(sÿ u, x, y)j2 dy du

�
X
k2Nd

jåk(x)j2
� s

0

[exp(ÿë2
k(t ÿ s)ÿ 1]2 exp(ÿ2ë2

k(sÿ u)) du

< C
X

k2Nd,�
ëÿ2

k [exp(ÿë2
k(t ÿ s))ÿ 1]2[1ÿ exp(ÿ2ë2

k s)]:

Since j1ÿ exp(ÿ2ë2
k sj < 1 ^ (2ë2

k s), taking á 2 [0, 1], we have, for s < T,� s

0

�
D

jG(t ÿ u, x, y)ÿ G(sÿ u, x, y)j2 dy du < C
X

k2Nd,�
jt ÿ sjáë2áÿ2

k :

The series converges if and only if á, 1ÿ d=4, which yields (1.17).

The proof of (1.18), similar to the previous one, is omitted. h
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2. Existence and uniqueness of the solution to the Cahn±
Hilliard stochastic equation

Suppose that Assumptions 1±3 are satis®ed; we ®rst solve the problem when the function f

is truncated to have globally Lipschitz coef®cients.

2.1. The case of truncated f

Let n . 0 and denote by K n : [0, �1[ ! [0, �1[ a C 1 function such that jK nj < 1,

jK9nj < 2 and

K n(x) � 1 if x , n,

0 if x > n� 1:

�
(2:1)

Let â 2 [q, �1[ if d 2 f1, 2g; if d � 3, choose â such that q < â, 6q=(6ÿ q)�. We will

prove the existence and uniqueness of the solution to the SPDE

un(t, x) �
�

D

G(t, x, y)u0(y)dy�
� t

0

�
D

ÄG(t ÿ s, x, y)K n(kun(s, �)kq) f (un(s, y)) dy ds

�
� t

0

�
D

G(t ÿ s, x, y)ó (un(s, y))W (dy, ds) (2:2)

in the set H of Lq(D)-valued F t-adapted random processes u(t, �) such that the norm

kukH � sup
0< t<T

E(ku(t, �)kâq)1=â (2:3)

is ®nite. De®ne two nonlinear operators on H by

H n : H !H (2:4)

u 7!
� t

0

�
D

ÄG(t ÿ s, x, y)K n(ku(s, �)kq) f (u(s, y)) dy ds

and

L : H !H (2:5)

u 7!
� t

0

�
D

G(t ÿ s, x, y)ó (u(s, y))W (dy, ds):

We prove that for T small enough, H n and L are contractions.

We begin by studying H n. Let u 2H ; (1.12) applied with 1 < r < q, 1 < r1 ,1 if

d � 2 and r1 , 3 if d � 3 such that 1=q � 1=r1 � 1=rÿ 1, implies that

kH n(u)(t, �)kq <

� t

0

jt ÿ sjÿ(d�2)=4�d=(4r1)k f (u(s, �))K n(ku(s, �)kq)kr ds:
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Taking 3r � q, we have 1=r1 � 1ÿ 2=q, which satis®es r1 ,�1 if d � 2 and r1 , 3 if

q � 3. Also

kH n(u)(t, �)kq < C(n� 1)3T 1�d=(4r1)ÿ(d�2)=4,

so that

kH n(u)kH ,1; (2:6)

hence H n is an operator mapping H into itself.

Let u and v belong to H ; notice that

kK n(ku(s, �)kq) f (u(s, �))ÿ K n(kv(s, �)kq) f (v(s, �))kr < Cnku(s, �)ÿ v(s, �)kq: (2:7)

Indeed, without any loss of generality, we suppose that ku(s, �)kq < kv(s, �)kq; then

kK n(ku(s, �)kq) f (u(s, �))ÿ K n(kv(s, �)kq) f (v(s, �))kr
< K n(kv(s, �)kq)k f (v(s, �))ÿ f (u(s, �))kr
� k[K n(ku(s, �)kq)ÿ K n(kv(s, �)kq)] f (u(s, �))kr:

Assumption 1 implies that

K n(kv(s, �)kq)k f (v(s, �))ÿ f (u(s, �))kr
< C[ku(s, �)ÿ v(s, �)kq(1� kv(s, �)k2

q � ku(s, �)k2
q)] 3 K n(kv(s, �)kq)

< Cku(s, �)ÿ v(s, �)kq 3 [1� 2(n� 1)2]: (2:8)

For the second term, notice that if kv(s, �)kq > ku(s, �)kq . n� 1, then

k[K n(ku(s, �)kq)ÿ K n(kv(s, �)kq)] f (u(s, �))kr � 0;

this yields

k[K n(ku(s, �)kq)ÿ K n(kv(s, �)kq)] f (u(s, �))kr < C(1� (n� 1)3)j ku(s, �)kq ÿ kv(s, �)kqj

< C(1� (n� 1)3)ku(s, �)ÿ v(s, �)kq: (2:9)

Inequalities (2.8) and (2.9) imply (2.7). Using (2.7), (1.12) and HoÈlder's inequality with

respect to (t ÿ s)ÿ(d�2)=4�d=(4r1) ds, we conclude that

kH n(u)(t, �)ÿ H n(v)(t, �)kâH < Cn sup
t2[0,T]

� t

0

(t ÿ s)ÿ(d�2)=4�d=(4r1) ds

� �âÿ1
"

3

� t

0

(t ÿ s)ÿ(d�2)=4�d=(4r1)E(ku(s, �)ÿ v(s, �)kâq) ds

�
< CnT â([2ÿd]=4�d=(4r1))kuÿ vkâH : (2:10)

If T satis®es CnT (d=(4r1)�[2ÿd]=4)â , 1, the map H n is a contraction on H .
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We now turn to L. Let u belong to H ; Burkholder's inequality, (1.6) and Assumption 2

imply that, for an absolute constant C depending on G,

sup
( t,x)2[0,T ]3D

E

����� t

0

�
D

G(t ÿ s, x, y)ó (u(s, y))W (dy, ds)

����â
 !

< sup
( t,x)2[0,T ]3D

E

����� t

0

�
D

G2(t ÿ s, x, y)ó 2(u(s, y)) dy ds

����â=2
 !

< Ckók2
1,�1; (2:11)

this implies kL(u)kH ,1, for every u 2H. Let u, v 2H ; then, since â > q, we have

E(kL(u)(s, �)ÿ L(v)(s, �)kâq) < C

�
D

E(jL(u)(s, x)ÿ L(v)(s, x)jâ) dx:

Burkholder's inequality and (1.13) applied with â=2 instead of q and q=2 instead of r,

1=r2 � 1� 2=âÿ 2=q . 0 (indeed, if d � 3, the condition â, 6q=(6ÿ q)� yields r2 < 3
2
),

imply, for t < T,

E(kL(u)(t, �)ÿ L(v)(t, �)kâq)

<

�
D

E

����� t

0

�
D

G2(t ÿ s, x, y)jó (u(s, y))ÿ ó (v(s, y))j2 dy ds

����â=2
 !

dx

< CE

����� t

0

(t ÿ s)ÿd=2�d=(4r2)ku(s, �)ÿ v(s, �)k2
q ds

����â=2
 !

< CT â(1ÿd=2�d=(4r2)) sup
s2[0,T]

E(ku(s, �)ÿ v(s, �)kâq): (2:12)

Again, for T small enough, L is a contraction on H .

In conclusion, the operator H n � L working on H is a contraction for T < T0. Hence, it

admits a unique ®xed point in the set

fu 2H such that u(0, �) � u0g:
By a classical argument, because T0 does not depend on u0, we can construct by concate-

nation on every interval [0, T ] a unique solution un to the SPDE (2.2).

2.2. Existence and uniqueness of the solution to (1.10)

Again let â 2 [q, �1[ if d � 1, 2, and â 2 [q, 6q=(6ÿ q)�[ if d � 3; set

ôn � infft > 0j kun(t, �)kq > ng:
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By uniqueness of the solution to (2.2), the local property of stochastic integrals yields, for

m . n, um(t, �) � un(t, �) if t < ôn, so that we can de®ne a process u by u(t, �) � un(t, �) on

t < ôn. Set ô1 � limn ôn; clearly u is a solution to the SPDE (1.10) on the interval [0, ô1),

and is unique. We just need to prove that ô1 � �1 a.s., and use an argument similar to that

of Da Prato and Debussche (1996, Section 2.1).

Let L be de®ned by (2.5) and set vn � un ÿ L(un); then, for every T . 0, vn is the weak

solution on [0, T ] to the SPDE

@vn

@ t
(t, x)� Ä2vn(t, x)ÿ Ä[K n(kvn(t, �)� L(un(t, �)kq) f (vn(t, x)� L(un)(t, x))] � 0,

vn(0, �) � u0(�),
@vn

@n
� @Ävn

@n
� 0 on @D:

(2:13)

Again (2.13) is formal and can be made rigorous as in (1.9) by requiring that, for any

ö 2 C4(D) such that ö satis®es (1.2),�
D

[vn(t, x)ÿ u0(t, x)]ö(x) dx � ÿ
� t

0

�
D

Ä2ö(x)vn(s, x) dx ds

�
� t

0

�
D

Äö(x)K n(kvn(s, �)� L(un)(s, �)kq) f (vn(s, x)

� L(un(s, x)) dx ds:

Since ó is bounded, (2.11) yields, for any p, ä 2 ]1, �1[,

sup
n

sup
t2[0,T ]

sup
x2D

E(jL(un)(t, x)j2 pä) ,�1: (2:14)

Lemma 1.8 and Burkholder's inequality imply that, for every ã, (4ÿ d), ã < 2,

ã9 , 1ÿ d=4, and á. 1, T . 0, (t, t9, x, x9) 2 [0, T ]2 3 D 2, for all n 2 N:

E(jL(un)(t, x)ÿ L(un)(t9, x9)j2á) < C(jt ÿ t9jã9� jxÿ x9jã)á: (2:15)

Inequalities (2.14) and (2.15) and the Garsia±Rodemich±Ramsay lemma (see Garsia 1972)

yield, if kL(un)k1 � sup t2[0,T] supx2DjL(un)(t, x)j,
sup

n

E(kL(un)k2 pä
1 ) ,1: (2:16)

On the other hand, since G(t, x, y) � G(t, y, x) and
�

D
jG(t, x, y)j dy ,�1, for every

q 2 [1, �1[,

sup
t2[0,T]

kGtu0kq < Cku0kq: (2:17)

We just need to prove a uniform upper estimate for H n(un). Since the functional H n has a

regularizing effect, we ®rst show that un belongs to the sets La([0, T ]; Lq(D)) for 2 <
a ,�1. As in Da Prato and Debussche (1996), we shall prove a priori estimates on vn.
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Recall that for A � ÿÄ, á 6� 0 and u 2 Dom(Aá),

Aáu �
X

k2Nd,�
ëákhåk , uiåk ,

Aáu exists for every u such that
P

k2Nd,�ë2á
k hek , ui2 ,1. In what follows, for a function

u : [0, T ] 3 D! R, we will set

m(u)(t) � hå0, u(t, �)i � ðÿd=2

�
D

u(t, x) dx and ~u(t, y) � u(t, y)ÿ m(u)(t):

Notice that Aá ~u � Aáu for á 6� 0, u 2 Dom(Aá). Apply Aÿ1 to equation (2.24) and take its

scalar product in L2(D) with ~vn(t, �); this leads to

kAÿ1=2 ~vn(t, �)k2
2 ÿ kAÿ1=2 ~vn(0, �)k2

2 �
� t

0

kA1=2vn(s, �)k2
2 ds

�
� t

0

K n(kvn(s, �)� L(un)(s, �)kq)

�
D

f (vn(s, x)� L(un)(s, x))~vn(s, x) dx ds � 0: (2:18)

This equation is justi®ed because vn belongs to L1([0, T ], Lq(D)); since for q > 2,

Lq(D) � Dom(Aÿ1=2) and the ®rst two terms are well de®ned so that
� t

0
kA1=2vn(s, �)k2

2 ds

converges too and vn(s, �) belongs to Dom(Aÿ1=2).

Let us deal with the last term of (2.18):�
D

f (vn(t, x)� L(un)(t, x))~vn(t, x) dx (2:19)

�
�

D

f (vn(t, x)� L(un)(t, x))[vn(t, x)� L(un)(t, x)] dx

ÿ
�

D

f (vn(t, x)� L(un)(t, x))[m(vn)(t)� L(un)(t, x)] dx:

The polynomial f is of degree 3 with positive dominant coef®cient; hence, limjxj!�1 xf (x) �
�1, and there exist a, C and c . 0 such that

xf (x) > 7
8
ax4 ÿ c, j f (x)j < 5

4
ajxj3 � C:

The lower estimate of xf (x) implies�
D

f (vn(t, x)� L(un(t, x)))(vn(t, x)� L(un)(t, x)) dx > 7
8
akvn(t, �)� L(un)(t, �)k4

4 ÿ c:

(2:20)

The upper estimate of j f j and HoÈlder's inequality with conjugate exponents 4 and 4
3

yield:
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�
D

f (vn(t, x)� L(un(t, x)))(m(vn)(t)� L(un)(t, x)) dx

< 5
4
a

�
D

jvn(t, x)� L(un)(t, x)j3(jm(vn)(t)j � jL(un)(t, �)j) dx

� C

�
D

(jm(vn)(t)j � jL(un)(t, �)j) dx

< 5
4
a[kvn(t, �)� L(un)(t, �)k3

4jm(vn)(t)j � kvn(t, �)� L(un)(t, �)k3
4kL(un)(t, �)k4]

� C(jm(vn)(t)j � kL(un)(t, �)k4):

Notice that there exists c . 0 such that, for every x and y, jxj3jyj < 1
4
jxj4 � cjyj4; this implies�

D

f (vn(t, x)� L(un(t, x)))(m(vn)(t)� L(un)(t, x)) dx

<
5a

8
kvn(t, �)� L(un)(t, �)k4

4 � C[m(vn(t))4 � kL(un)(t, �)k4
4]: (2:21)

K n is a positive bounded function; using (2.19)±(2.21), (2.18) yields

kAÿ1=2 ~vn(t, �)k2
2 ÿ kAÿ1=2 ~vn(0, �)k2

2 �
� t

0

kA1=2vn(s, �)k2
2 ds

� a

4

� t

0

K n(kvn(s, �)� L(un)(s, �)kq)kvn(s, �)� L(un)(s, �)k4
4 ds

<

� t

0

C(1� m(vn)(s)4 � kL(vn)(s, �)k4
4) ds: (2:22)

Taking the scalar product of the solution to (2.24) with the function å0, we obtain

@

@ t
hvn(t, �), å0i � 0,

hvn(0, �), å0i � hu0(�), å0i;
hence for m(u0) � hå0, u0i, m(vn)(t) � m(u0). Since Aÿ1=2 ~u0 � Aÿ1=2u0, equation (2.22)

yields that, for every T . 0,

kAÿ1=2 ~vn(T , �)k2
2 �

�T

0

kA1=2vn(t, �)k2
2 dt

�
�T

0

a

4
K n(kvn(t, �)� L(un)(t, �)kq)kvn(t, �)� L(un)(t, �)k4

4 dt

< C

�T

0

(1� m(u0)4 � kL(un)(t, �)k4
4)dt � kAÿ1=2u0(�)k2

2:

Cahn±Hilliard stochastic equation 789



This yields �T

0

K n(kvn(t, �)� L(un)(t, �)kq)kvn(t, �)� L(un)(t, �)k4
4 dt

< CT (1� m(u0)4 � kL(un)k4
1)� kAÿ1=2u0(�)k2

2: (2:23)

We need another estimate, for this we denote by vm
n the Galerkin approximation of vn.

We de®ne Pm to be the orthogonal projector on Spanfå0, . . . , åmg. For every ù, vm
n is the

`strong' solution of the following PDE:

@vm
n

@ t
(t, x)� Ä2vm

n (t, x)

ÿ Ä[K n(kvm
n (t, �)� L(un)(t, �)kq)Pm( f (vm

n (t, x)� L(un)(t, x)))] � 0,

vm
n (0, �) � Pm(u0(�)),
@vm

n

@n
� @Ävm

n

@n
� 0 on @D:

(2:24)

The proof of existence and uniqueness of the processes vm
n is classical; we use deterministic

methods and prove that vm
n is unique on some time interval [0, tm

n [. The following a priori

estimates will prove that tm
n � �1.

The boundary conditions satis®ed by vm
n and the Green formula yield�

D

Ä2vm
n (t, x) 3 vm

n (t, x) dx � kÄvm
n (t, x)k2

2:

We now take the scalar product in L2(D) of (2.24) with vn; using the Green formula once

more, we obtain

1

2

@

@ t
kvm

n (t, �)k2
2 �

�
D

Ä2vm
n (t, x) 3 vm

n (t, x) dx

ÿ K n(kvm
n (t, �)� L(un)(t, �)kq)

�
D

f (vm
n (t, x)� L(un)(t, x))Ävm

n (t, x) dx � 0:

Thus

1

2

@

@ t
kvm

n (t, �)k2
2 � kÄvm

n (t, �)k2
2

� K n(kvm
n (t, �)� L(un)(t, �)kq)

3

�
D

[ f (vm
n (t, x)� L(un)(t, x))ÿ f (vm

n (t, x))]Ä(vm
n (t, x)) dx

�

�
�

D

f (vm
n (t, x))Ävm

n (t, x) dx

�
: (2:25)

f is a polynomial of degree 3; thus, for every x, y 2 R,
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j f (x� y)ÿ f (x)j < Cjyj[1� x2 � y2]: (2:26)

Let E. 0; Schwarz's inequality, (2.26) and the inequality xy < x2=E� Ey2 imply�����
D

[ f (vm
n (t, x)� L(un)(t, x))ÿ f (vm

n (t, x))]Ävm
n (t, x) dx

����
<

�
D

CjL(un)(t, x)j[1� jL(un)(t, x)j2 � jvm
n (t, x)j2]jÄvm

n (t, x)j dx

< CkL(un)k1[1� kL(un)k2
1 � kvm

n (t, �)2k2]kÄvm
n (t, �)k2

< CEkÄvm
n (t, �)k2

2 �
C

E
[1� kL(un)k4

1 � kvm
n (t, �)k4

4]kL(un)k2
1: (2:27)

Let us now turn to the second term of the right-hand side of (2.25). First, let us prove that�
D

(vm
n (t, x)3)Ävm

n (t, x) dx is negative. Integrating by parts and using the boundary conditions

on vm
n , we ®nd if d � 2 (the other cases are similar),�ð

0

�ð
0

@2

@x2
1

(vm
n (t, x1, x2)) 3 vm

n (t, x1, x2)3 dx1 dx2

�
�ð

0

@

@x1

(vm
n (t, x1, x2)) 3 vm

n (t, x1, x2)3

� �x1�ð

x1�0

dx2

ÿ 3

�ð
0

�ð
0

@

@x1

(vm
n (t, x1, x2))

� �2

vm
n (t, x1, x2)2 dx1 dx2

� ÿ3

�ð
0

�ð
0

@

@x1

(vm
n (t, x1, x2))

� �2

vm
n (t, x1, x2)2 dx1 dx2 < 0;

this yields
�

Dvm
n (t, x)3Ävm

n (t, x) dx < 0. Since the main coef®cient of f is positive, this

implies �
D

f (vm
n (t, x))Ävm

n (t, x) dx < C

�
D

(1� jvm
n (t, x)j2)jÄvm

n (t, x)j dx

< CEkÄvm
n (t, �)k2

2 �
C

E
[1� kvm

n (t, �)k4
4]: (2:28)

Furthermore, kK nk1 < 1; using (2.27) and (2.28), equation (2.25) becomes

1

2

@

@ t
kvm

n (t, �)k2
2 � kÄvm

n (t, �)k2
2 < C1EkÄvm

n (t, �)k2
2 �

C2

E
[1� kL(un)k4

1 � kvm
n (t, �)k4

4]

3 (1� kL(un)k2
1)K n(kvm

n (t, �)� L(un)(t, �)kq):

Choose E � 1=(2C1); then
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1

2

@

@ t
kvm

n (t, �)k2
2 �

1

2
kÄvm

n (t, �)k2
2

< 2C1C2[1� kL(un)k4
1 � kvm

n (t, �)k4
4](1� kL(un)k2

1)K n(kvm
n (t, �)� L(un)(t, �)kq):

Integrating on [0, t], we obtain

kvm
n (t, �)k2

2 �
� t

0

kÄvm
n (s, �)k2

2 ds < kPmu0k2
2 � CT (1� kL(un)k6

1)

� C(1� kL(un)k2
1)

� t

0

kvm
n (s, �)k4

4 K n(kvm
n (s, �)� L(un)(s, �)kq) ds:

Therefore the equality m(vm
n (t, �)) � m(vn(t, �)) � m(u0(�)) implies

kvm
n (t, �)k2

2 �
� t

0

[kÄvm
n (s, �)k2

2 � m(vm
n (s, �))2] ds < ku0k2

2 � CT (1� kL(un)k6
1 � m(u0))

� C(1� kL(un)k2
1)

� t

0

kvm
n (s, �)k4

4 Kn(kvm
n (s, �)� L(un)(s, �)kq) ds:

The norm (kÄ � k2
L2(D) � m(�)2)1=2 is equivalent to the Sobolev norm of W 2,2(D) (see, for

example, Da Prato and Debussche 1996, p. 245). The sequence (vm
n )m2N is bounded in

L2([0, T ], W 2,2(D)). Thus, tm
n � 1 and this sequence converges as m! �1 in the weak�

topology of L2([0, T ], W 2,2(D)). Its weak limit is the weak solution to (2.13) and hence is

equal to vn. Therefore, vn belongs to L2([0, T ], W 2,2(D)), and we can repeat the preceding

computation with vn instead of vm
n , which yields

kvn(t, �)k2
2 �

� t

0

kÄvn(s, �)k2
2 � m(vn(s, �))2

h i
ds < ku0k2

2 � CT (1� kL(un)k6
1 � m(u0))

� C(1� kL(un)k2
1)

� t

0

kvn(s, �)k4
4 K n(kvn(s, �)� L(un)(s, �)kq) ds:

Inequality (2.23) and Schwarz's inequality imply that

kvn(t, �)k2
2 �

� t

0

kÄvn(s, �)k2
2 � m(vn(s, �))2

h i
ds

< ku0k2
2 � CT (1� kL(un)k6

1)� CT (1� kL(un)k2
1)[kAÿ1=2u0k2

2 � m(u0)4]:

Inequality (2.16) yields that, for â 2 ]1, �1[,

sup
n

E

 
sup

t2[0,T]

kvn(t, �)k2â
2

!
,1, (2:29)

sup
n

E

�T

0

fkÄvn(t, �)k2
2 � m(vn(t, :))2g dt

" #â0@ 1A,1: (2:30)

792 C. Cardon-Weber



Furthermore, by Sobolev's embedding theorem (Adams 1975, Corollary 5.16) there exists

C . 0 such that for r > 2, d , 4, if u 2 W 2,2(D),

kukLr(D) < CkukW 2,2(D):

Thus, (2.30) becomes for 2 < r ,�1,

sup
n

E

�T

0

kvn(t, �)k2
r dt

" #â0@ 1A,1: (2:31)

Inequalities (2.16), (2.29) and (2.31) imply for 2 < r ,�1,

sup
n

E

 
sup

t2[0,T]

kun(t, �)k2â
2

!
,1, (2:32)

sup
n

E

�T

0

kun(t, �)k2
r dt

" #â0@ 1A,1: (2:33)

Let us use the interpolation method to prove that un belongs a.s. to La([0, T ], Lq(D)), with

�1. r > q > 2, a > 1 _ 2q=r. HoÈlder's inequality implies, if q � (1ÿ ë)2� rë, for

ë 2 [0, 1], that �T

0

kun(t, �)ka
q dt <

�T

0

kun(t, �)k2a(1ÿë)=q
2 kun(t, �)karë=q

r dt:

Taking ë � 2q=(ar), we obtain�T

0

kun(t, �)ka
q dt < sup

t2[0,T]

kun(t, �)k[2=q]a(1ÿë)
2 3

�T

0

kun(t, �)k2
r dt;

(2.32) and (2.33) imply that for q 2 [2, 1[ and a 2 [q, �1[,

sup
n

E

�T

0

kun(t, �)ka
q dt

" #â0@ 1A,1: (2:34)

Using (1.12) with q > 4 and r � q=3, so that 1=r � 1ÿ 2=q, we obtain

kH n(un)(t, �)kq < C

� t

0

(t ÿ s)ÿ(d�2)=4�d=(4r)(kun(s, �)k3
q � 1) ds:

Let ã, ã9 2 ]1, �1[ be conjugate exponents, with ã close enough to unity to ensure

(ÿ(d � 2)=4� d=(4r))ã.ÿ1; then HoÈlder's inequality implies

kH n(un)(t, �)kq < C

� t

0

(t ÿ s)(ÿ[d�2]=4�[d=(4r)])ã ds

� �1=ã � t

0

(kun(s, �)k3
q � 1)ã9 ds

� �1=ã9

:

Using (2.34), we obtain
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sup
n

E

 
sup

t2[0,T ]

H n(un)(t, �)kâq
!

,1; (2:35)

(2.16), (2.17) and (2.35) imply that, for â 2 [q, �1[, and if d � 3 for â 2 ]q, 6q=(6ÿ q)�[

with q > 4,

sup
n

E

 
sup

t2[0,T]

kun(t, �)kâq
!

,1:

We can now conclude that ô1 � �1 a.s.; indeed, for every T . 0,

P(ôn < T ) � P

 
sup
t<T

kun(t, �)kq > n

!
< E sup

t<T

kun(t, �)k2â
q

!
nÿ2â,

0@ (2:36)

so that limn!1P(ôn < T ) � 0. Therefore, we can construct the solution to the SPDE (1.10)

on every interval [0, T ]; this completes the proof of Theorem 1.3. h

2.3. Path regularity of u

We prove Theorem 1.4, and study separately each term on the right-hand side of (1.10). Let

us prove two lemmas on the regularity of Gu0.

Lemma 2.1. If u0 is continuous, the function G�u0(�) is continuous.

Proof. The function Gu0 is continuous on [a, T ] 3 D, for a . 0, because the series which

de®nes G is absolutely convergent on [a, T ] 3 D. We just need to prove continuity at t � 0.

Let x0 2 D be ®xed; at E. 0 given, there exists ç. 0 such that jx0 ÿ yj, ç implies

ju0(y)ÿ u0(x0)j, E. Using the fact that G is a semigroup and (1.6), we ®nd

jGtu0(x0)ÿ u0(x0)j �
�����

D

G(t, x0, y)(u0(y)ÿ u0(x)) dy

����
< E
�
j yÿx0j<ç

jG(t, x0, y)j dy� M

�
j yÿx0j>ç

jG(t, x0, y)j dy

< CE� C

�
jzj. ç tÿ1=4

exp(ÿz4=3) dz:

The last integral on the right-hand side converges to 0 as t tends to 0; this concludes the

proof. h

Lemma 2.2. If u0 belongs to C á(D), for 0 ,á, 1, the function G�u0(�) belongs to

C á=4,á([0, T ], D).
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Proof. The proof is inspired by Bally et al. (1995, Lemma A.2), in the case of the heat

kernel. Let us study the time increment. Because G is a semigroup, using (1.6) we ®nd that

jGtu0(x)ÿ Gsu0(x)j �
�����

D

�
D

G(s, x, y)G(t ÿ s, y, z)u0(z) dy dzÿ
�

D

G(s, x, y)u0(y) dy

����
�
�����

D

G(s, x, y)

�
D

G(t ÿ s, y, z)(u0(z)ÿ u0(y)) dz

� �
dy

����
< C

�
D

jG(s, x, y)j
�

D

G(t ÿ s, y, z)kzÿ yjá dz dy

< C

�
D

jG(s, x, y)kt ÿ sjá=4 dy

< Cjt ÿ sjá=4:

For the space variable, we prove the regularity with respect to the ®rst space coordinate; the

proof is similar for the other ones. If d > 2, we set x � (x1, ~x ), where ~x � (x2, . . . , xd) and

D � [0, ð] 3 ~D. With this notation, we ®nd that

G(t, x, y) �
X
k2Nd

exp(ÿë2
k t)åk1(x1)å ~k(~x )åk1( y1)å ~k( ~y ):

Notice that

åk1
(x1)åk1

(y1) � 1
2
[åk1

(x1 � y1)� åk1
(x1 ÿ y1)],

and hence

G(t, x, y) � ö t(x1 � y1, ~x, ~y )� ö t(x1 ÿ y1, ~x, ~y ), (2:37)

with ö t(x1, ~x, ~y ) � 1
2
G(t, (x1, ~x ), (0, ~y )). Furthermore, ö t(x1 � 2ð, ~x, ~y ) � ö t(x1, ~x, ~y ) �

ö t(ÿx1, ~x, ~y ) and

sup
t2[0,T ]

sup
(x1,~x )2D

�
D

jöT (x1, ~x, ~y)j dy < C: (2:38)

Take x � (x1, ~x ) and x9 � (x91, ~x ), with x1 . x91; we have
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Gu0(t, x)ÿ Gu0(t, x9) �
�ð

0

�
~D

[ö t(x1 � y1, ~x, ~y)� ö t(x1 ÿ y1, ~x, ~y )]u0(y) d ~y dy1

ÿ
�ð

0

�
~D

[ö t(x91 � y1, ~x, ~y )� ö t(x91 ÿ y1, ~x, ~y )]u0(y) d ~y dy1

�
�ð�(x1ÿx91)

x1ÿx91)

�
~D

ö t(x91 � y1, ~x, ~y )u0(y1 ÿ (x1 ÿ x91), ~y ) d ~y dy1

ÿ
�ð

0

�
~D

ö t(x91 � y1, ~x, ~y )u0(y) d ~y dy1

�
�ðÿ(x1ÿx91)

ÿ(x1ÿx91)

�
~D

ö t(x91 ÿ y1, ~x, ~y )u0(y1 � (x1 ÿ x91), ~y ) d ~y dy1

ÿ
�ð

0

�
~D

ö t(x91 ÿ y1, ~x, ~y )u0(y) d ~y dy1

�
X4

i�1

Di(t, x, x9),

with

D1(t, x, x9) �
�ð

x1ÿx91

�
~D

ö t(x91 � y1, ~x, ~y )[u0(y1 ÿ (x1 ÿ x91), ~y )ÿ u0(y)] d ~y dy1

D2(t, x, x9) �
�ðÿ(x1ÿx91)

0

�
~D

ö t(x91 ÿ y1, ~x, ~y )[u0(y1 � (x1 ÿ x91), ~y )ÿ u0(y)] d ~y dy1

D3(t, x, x9) � ÿ
�(x1ÿx91)

0

�
~D

ö t(x91 � y1, ~x, ~y )u0(y) d ~y dy1

�
�0

ÿ(x1ÿx91)

�
~D

ö t(x91 ÿ y1, ~x, ~y )u0(y1 � (x1 ÿ x91), ~y ) d ~y dy1

D4(t, x, x9) �
�ð�(x1ÿx91)

ð

�
~D

ö t(x91 � y1, ~x, ~y )u0(y1 ÿ (x1 ÿ x91), ~y ) d ~y dy1

ÿ
�ð
ðÿ(x1ÿx91)

�
~D

ö t(x91 ÿ y1, ~x, ~y )u0(y) d ~y dy1:

Using (2.38) and the fact that u0 has á-HoÈlder continuous trajectories, we obtain

jD1(t, x, x9)j � jD2(t, x, x9)j < Cjx1 ÿ x91já:
For D3, we notice ®rst that
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D3(t, x, x9) �
�(x1ÿx91)

0

�
~D

ö t(x91 � y1, ~x, ~y )[ÿu0(y)� u0(ÿy1 � (x1 ÿ x91), ~y )] d ~y dy1;

the estimation is then similar to that of D1 and D2. For the last term, since ö t is 2ð-periodic,

we have

D4(t, x, x9) �
�(x1ÿx91)

0

�
~D

ö t(ð� x91 � y1, ~x, ~y )[u0(ð� y1 ÿ (x1 ÿ x91), ~y )ÿ u0(ðÿ y1, ~y )] d ~y dy1,

which immediately yields the same upper estimate as that of D1 and D2.

Using Lemma 1.8, the fact that ó is bounded and Kolmogorov's lemma, we see that the

stochastic term is a.s. HoÈlder continuous; more precisely, it belongs to C ã,ã9([0, T ], D),

with ã, (1ÿ d=4)=2, ã9 , 2ÿ d=2 < 1.

We need to study the regularity of the drift term; for this, we use the factorization

method (see, for example, Da Prato and Zabczyk 1992). We remark that

ÄG(t, x, y) �
�

D

G(t ÿ s, x, z)ÄG(s, z, y) dz:

Fix á 2 ]0, 1[ and set

J (v)(t, x) �
� t

0

�
D

G(t ÿ s, x, z)(t ÿ s)ÿáv(s, z) ds dz, (2:39)

K (v)(s, z) �
� s

0

�
D

ÄG(sÿ s9, z, y)(sÿ s9)áÿ1( f (v(s9, y))) dy ds9; (2:40)

then the drift term is H(u)(t, x) � ðÿ1 sin(ðá)J (K (v))(t, x), for all t, x 2 [0, T ] 3 D.

Because u0 is continuous, it belongs to all Lq(D), q > 4 . 3 _ 3d=2, and u belongs to

L1([0, T ], Lq(D)) a.s. according to Theorem 1.3. We ®rst show that K is an operator

mapping L1([0, T ], Lq(D)) into itself. Using (1.15), with q and q=3, 1=r � 1ÿ 2=q, we

obtain

kK (v)(t, �)kq <

� t

0

(t ÿ s)ÿ1�áÿ(d�2)=4�(d=4)(1ÿ2=q)(1� kv(s, �)k3
q) ds:

We require ÿ1� áÿ 1=2ÿ d=(2q) .ÿ1, that is, á. 1=2� d=(2q).

Then we study J , and prove that J (v) is HoÈlder continuous if v 2 L1([0, T ], Lq(D)).

Let us ®rst study the regularity with respect to the space variable. For x, x9 2 D,

A(t, x, x9) �
� t

0

�
D

1fjxÿ yj<jxÿx9jg(t ÿ s)ÿá(jG(t ÿ s, x, y)j � jG(t ÿ s, x9, yj)ju(s, y)j dy ds,

B(t, x, x9) �
� t

0

�
D

1fjxÿ yj. jxÿx9jg(t ÿ s)ÿájG(t ÿ s, x, y)ÿ G(t ÿ s, x9, y)ku(s, y)j dy ds;

then

jJ (v)(t, x)ÿJ (v)(t, x9)j < A(t, x, x9)� B(t, x, x9):
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Using HoÈlder's inequality with q and its conjugate exponent, (1.6) and (1.14) we ®nd, for

â 2 ]0, 4(1ÿ áÿ d=(4q))[, that

A(t, x, x9) < jxÿ x9jâ
� t

0

(t ÿ s)ÿáÿâ=4ÿd=(4q)ku(s, �)kq ds < Cjxÿ x9jâ: (2:41)

We notice that if jxÿ yj > jxÿ x9j, and ~x denotes a point between x and x9, then

j~xÿ yj > 2ÿ1=2(j2xÿ x9ÿ yj ^ jx9ÿ yj). Let ë 2 [0, 1]; using HoÈlder's inequality, Taylor's

formula, (1.7) and (1.14), we ®nd that

B(t, x, x9) < jxÿ x9jë
� t

0

�
D

(t ÿ s)ÿájG(t ÿ s, x, y)j � jG(t ÿ s, x9, y)j1ÿë

3 1fjxÿ yj>jxÿx9jg

�1

0

j@xG(t ÿ s, èx� (1ÿ è)x9, y)j dè
" #ë

ju(s, y)j dy ds

< Cjxÿ x9jë
� t

0

�
D

(t ÿ s)ÿáÿd(1ÿë)=4ÿë(d�1)=4

3 exp ÿ cj2xÿ x9ÿ yj4=3

jt ÿ sj1=3

 !
� exp ÿ cjx9ÿ yj4=3

jt ÿ sj1=3

 !" #ë
u(s, y) dy ds

< Cjxÿ x9jë
� t

0

(t ÿ s)ÿáÿd=4ÿë=4�(d=4)(1ÿ1=q)ku(s, �)kq ds: (2:42)

We need ÿáÿ d=(4q)ÿ ë=4 .ÿ1, that is, ë, 4(1ÿ áÿ d=(4q)). Since q can be chosen as

big as we want, J (v) is ë-HoÈlder continuous with respect to the space variable with ë, 1.

Let us study the time regularity; for 0 < t , t9 < T, we have

J (v)(t9, x)ÿJ (v)(t, x)

�
� t9

t

�
D

G(t9ÿ s, x, z)(t9ÿ s)ÿáv(s, z) ds dz

�
� t

0

�
D

[G(t9ÿ s, x, z)(t9ÿ s)ÿá ÿ G(t ÿ s, x, z)(t ÿ s)ÿá]v(s, z) ds dz:

Using (1.6) and HoÈlder's inequality with q and its conjugate exponent and (1.14), we have,

for á� d=(4q) , 1,����� t9

t

�
D

G(t9ÿ s, x, z)(t9ÿ s)ÿáv(s, z) ds dz

���� <

� t9

t

(t9ÿ s)ÿáÿd=(4q)kv(s, �)kq ds

< jt ÿ t9j1ÿáÿd=(4q) sup
s2[0,T ]

kv(s, �)kq:

For the second term, let ì 2 [0, 1], E. 0; Taylor's formula, HoÈlder's inequality and the fact

that if ~t 2 [t, t9], then j~t ÿ sj. jt ÿ sj for s 2 [0, t], imply that
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����� t

0

�
D

[G(t9ÿ s, x, y)(t9ÿ s)ÿá ÿ G(t ÿ s, x, y)(t ÿ s)ÿá]v(s, y) ds dy

����
< Cjt ÿ t9jì

� t

0

�
D

(t ÿ s)ÿáÿ[d(1ÿì)]=4jv(s, y)j

3

�1

0

(èt � (1ÿ è)t9ÿ s)ÿ(d�4)=4 exp ÿc
jxÿ yj4=3

jèt � (1ÿ è)t9ÿ sj1=3

 !
dè

" #ì
dy ds

< Cjt ÿ t9jì
� t

0

�
D

(t ÿ s)ÿáÿd=4ÿì�Ejxÿ yjÿ4Ejv(s, y)j dy ds

< Cjt ÿ t9jì
� t

0

(t ÿ s)ÿáÿd=4ÿì�Ek(xÿ �)ÿ4Ekq=qÿ1kv(s, �)kq ds < Cjt ÿ t9jì,

with ì, 1ÿ áÿ d=4� E and E, d(1ÿ 1=q)=4. Since á. 1=2� d=(2q), we obtain

ì, 1ÿ áÿ d=(4q) , 1=2ÿ 3d=(4q). Since q can be chosen as big as we want, we

conclude that the function J (v) is ì-HoÈlder continuous in time with ì, 1
2
. This concludes

the proof of Theorem 1.4. h

2.4. Improvement of the regularity of u when d 1

We suppose here that d � 1 and that Assumption 40 is satis®ed. Let us again study the

regularity of each term on the right-hand side of (1.10). As for the initial condition term, we

prove the following result.

Lemma 2.3. If u0 belongs to C 2�E(D), for 0 < E, 1, the function G:u0(�) belongs to

C (2�E)=4,2�E([0, T ], D).

Proof. We ®rst notice that U (t, x) � u0(x)ÿ � t

0

�
DÄxG(s, x, y)u 00(y)dy ds satis®es

the partial differential equation @ tU � Ä2U � 0 with the boundary conditions (1.2) and

U (0, �) � u0; hence U (t, x) � Gtu0(x). Since
�

DG(s, x, y) dy � 1,
�

DÄxG(s, x, y) dy � 0,

and hence

Gtu0(x)ÿ u0(x) �
� t

0

�
D

ÄxG(s, x, y)(u 00(y)ÿ u 00(x)) dy ds

Then using (1.7) and the hypothesis on u0, we deduce that

jGtu0(x)ÿ u0(x)j < Ct(2�E)=4:

Since Gtu0(x)ÿ Gsu0(x) � � DG(s, x, y)(Gtÿsu0(y)ÿ u0(y)) dy, we deduce the time regu-

larity of Gu0.
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For the space regularity, we use (2.37) and notice that

ÄGtu0(x) �
�

D

(ö 0(t, x� y)� ö 0(t, xÿ y))u0(y) dy �
�

D

(ö(t, x� y)� ö(t, xÿ y))u 00(y) dy

for t . 0. Hence the proof of space regularity of Gu0 is similar to the corresponding one in

Lemma 2.2, using the same decomposition. h

Let us prove that the stochastic term L(u) de®ned by (2.5) belongs to C ã,4ã([0, T ], D)

with ã, 3
8
. This time regularity has already been established. It suf®ces to prove that L(u)

is differentiable with respect to the space variable, and that its derivative is ë-HoÈlder

continuous with ë, 1
2
. We use the same methods as Kunita (1984, p. 219) and introduce

ç(t, x, î) � (L(u)(t, x� î)ÿ L(u)(t, x))îÿ1 for î 2 ]0, ðÿ x]. We have to evaluate

E(jç(t, x, î)ÿ ç(t, x9, î9)j p). Using Burkholder's inequality and the fact that the sequence

(åk)k2N is an orthonormal basis of L2(D) and that ó is bounded, we obtain

E(jç(t, x, î)ÿ ç(t, x9, î9)j p) < C

� t

0

�
D

[(G(t ÿ s, x� î, y)ÿ G(t ÿ s, x, y))îÿ1

�
ÿ (G(t ÿ s, x9� î9, y)ÿ G(t ÿ s, x9, y))(î9)ÿ1]2 dy ds

� p=2

< C

� t

0

X
k2N�

exp(ÿ2(t ÿ s)k4)[fcos(k(x� î))ÿ cos(kx)gîÿ1

"

ÿ fcos(k(x9� î9))ÿ cos(kx9)g(î9)ÿ1]2 ds
� p=2

:

Using the identity cos(y� kî)ÿ cos(y) � ÿkî
� 1

0
sin(y� kîu) du, a simple computation

shows that, for 0 < ë < 1,

E(jç(t, x, î)ÿ ç(t, x9, î9)j p) < C

� t

0

X
k2N�

exp(ÿ2(t ÿ s)k4)k2�2ë(jxÿ x9j � jîÿ î9j)2ë ds

" # p=2

:

Thus, for ë, 1
2
, we ®nally obtain that

E(jç(t, x, î)ÿ ç(t, x9, î9)j p) < C(jxÿ x9j � jîÿ î9j)ë p:

Therefore, ç(t, x, �) can be extended as a continuous function on [0, ð], and ç(t, �, 0) is the

space derivative of L(u)(t, x) which also has ë-HoÈlder continuous trajectories.

For the last term H(u), we proceed in the same way as in the preceding subsection. We

observe that @3
x G(t, x, z) � �

D
@3

x G(t ÿ s, x, y)G(s, y, z) dy, and replace in the function K
de®ned by (2.40) the second-order derivative by the third-order one. Using the factorization

method again, we prove that the space derivative of H(u) is ë-HoÈlder with ë, 1, so that

H(u) belongs to C ì=4,ì([0, T ], D) with ì, 3
2
.
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3. Malliavin calculus for the Cahn±Hilliard SPDE

In this section we suppose that Assumption 4 holds, because we need u to be continuous. We

®rst prove local regularity of u in the sense of the Malliavin calculus. Let us recall some

classical notation of Malliavin calculus (see Nualart 1995). D1,2 is the set of random

variables F such that the Malliavin derivative DF exists and satis®es

kFk1,2 � [E(jFj2)� E(kDFk2
L2([0,T ]3D))]

1=2 ,1:
A process X 2 L2(Ù 3 [0, T ] 3 D) belongs to L1,2 if, for each (s, x) 2 [0, T ] 3 D, X s,x

belongs to D1,2 and

E

�T

0

�
D

�T

0

�
D

jDs, y X (t, x)j2 dy ds dx dt

 !
,�1:

We de®ne the `local' versions D1,2
loc and L1,2

loc of these two spaces as follows. X belongs to D1,2
loc

(L1,2
loc) if there exists a sequence Ùn such that, for every n, X � X n on Ùn a.s., X n belong

to D1,2
loc (L1,2

loc), and limn!1P(Ùn) � 1.

Lemma 3.1. The solution u of the SPDE (1.10) belongs to L1,2
loc.

3.1. Approximation of u by a sequence of elements of L1,2

For every n . 0, let us denote by

Ùn �
(
ù 2 Ùj sup

0< t<T

sup
x2D

ju(t, x, w)j < n

)
: (3:1)

Because the process u is a.s. continuous, limn!1P(Ùn) � 1. Let us construct an

approximation (un)n2N of u, such that un � u on Ùn a.s. For this we still truncate the

polynomial f , but in another way. Set f n(x) � K n(jxj) f (x), where K n is de®ned by (2.1); f n

is C 1 function with bounded derivative. Let us denote by un the solution to the SPDE

un(t, x) �
�

D

G(t, x, y)u0(y) dy�
� t

0

�
D

ÄG(t ÿ s, x, y) f n(u(s, y)) dy ds

�
� t

0

�
D

G(t ÿ s, x, y)ó (un(s, y))W (dy, ds): (3:2)

Notice that since f n is globally Lipschitz, a standard argument shows that (3.2) has a unique

solution. The local property of stochastic integrals proves that u � un on Ùn a.s. In order to

prove Lemma 3.1, according to Nualart (1995, p. 45), it suf®ces to check the following result.

Lemma 3.2. The solution un to (3.2) exists and is unique; furthermore, it belongs to L1,2 and

its Malliavin derivative satis®es the SPDE
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Ds, yun(t, x) � G(t ÿ s, x, y)ó (un(s, y))�
� t

s

�
D

ÄG(t ÿ è, x, ç) f 9n(un(è, ç))Ds, yun(è, ç) dç dè

�
� t

s

�
D

G(t ÿ è, x, ç)Sn(è, ç)Ds, yun(è, ç)W (dç, dè) (3:3)

if s < t, and Ds, yun(t, x) � 0 if s . t, where Sn(è, ç) is F è-adapted, bounded and satis®es

Ds, y(ó (un(è, ç))) � Sn(è, ç)Ds, yun(è, ç):

Proof. To prove the existence and the uniqueness of the solution to (3.3) we construct a

Cauchy sequence (un,k)k2N converging to un by the Picard iteration scheme, which means

that

un,0(t, x) � Gtu0(x)

and

un,k�1(t, x) �
�

D

G(t, x, y)u0(y) dy�
� t

0

�
D

ÄG(t ÿ s, x, y) f n(un,k(s, y)) dy ds

�
� t

0

�
D

G(t ÿ s, x, y)ó (un,k(s, y))W (dy, ds), (3:4)

for k > 0. Then for k > 1,

un,k�1(t, x)ÿ un,k(t, x) �
� t

0

�
D

ÄG(t ÿ s, x, y)[ f n(un,k(s, y))ÿ f n(un,kÿ1(s, y))] dy ds

�
� t

0

�
D

G(t ÿ s, x, y)[ó (un,k(s, y))ÿ ó (un,kÿ1(s, y))]W (dy, ds):

Burkholder's inequality and the fact that ó and f n are Lipschitz functions imply, for

p 2 [2, �1[, that

E(jun,k�1(t, x)ÿ un,k(t, x)j p)

< CnE

����� t

0

�
D

jÄG(t ÿ s, x, y)kun,k(s, y)ÿ un,kÿ1(s, y)j dy ds

���� p
 !

� CE

����� t

0

�
D

jG2(t ÿ s, x, y)kun,k(s, y)ÿ un,kÿ1(s, y)j2 dy ds

���� p=2
 !

:

Lemma 1.6 applied twice with q � r � 1 and r � 1, and HoÈlder's inequality, imply that
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E sup
x2D

jun,k�1(t, x)ÿ un,k(t, x)j p� �
< CnE

����� t

0

(t ÿ s)ÿ(d�2)=4�d=4kun,k(s, �)ÿ un,kÿ1(s, �)k1 ds

���� p
 !

� CE

����� t

0

(t ÿ s)ÿd=2�d=4kun,k(s, �)ÿ un,kÿ1(s, �)k2
1 ds

���� p=2
 !

< CnE

� t

0

(t ÿ s)ÿ[(d�2)_(2d)]=4�d=4kun,k(t, �)ÿ un,kÿ1(t, �)k p
1 ds):

�
Let b � 1

4
f(d � 2) _ (2d)g; iterating this inequality and using Fubini's theorem as in Walsh

(1986, Lemma 3.3), we obtain

E(kun,k�2(t, �)ÿ un,k�1(t, �)k p
1)

< Cn

� t

0

(t ÿ s)ÿb�(d=4) ds

� s

0

(sÿ ô)ÿb�d=4E(jun,k(ô, �)ÿ un,kÿ1(ô, �)k p
1) dô

< Cn

� t

0

� t

ô
(t ÿ s)ÿb�d=4(sÿ ô)ÿb�d=4 ds

� �
E(kun,k(ô, �)ÿ un,kÿ1(ô, �)k p

1) dô

< Cn

� t

0

sup
x2D

E(kun,k(ô, �)ÿ un,kÿ1(ô, �)k p
1) dô:

This implies, for k > 0, that

sup
t2[0,T]

E(kun,2(k�1)(t, �)ÿ un,2k�1(t, �)k p
1) <

(Cn)k

k!
sup

t2[0,T]

E(kun,2(t, �)ÿ un,1(t, �)k p
1)

sup
t2[0,T ]

E(kun,2k�1(t, �)ÿ un,2k(t, �)k p
1) <

(Cn)k

k!
sup

t2[0,T ]

E(kun,1 ÿ un,0k p
1):

Hence X
k . 0

sup
t2[0,T]

E(kun,k(t, �)ÿ un,kÿ1(t, �)k p
1) ,1,

and the sequence un,k(t, x) converges in L p(Ù) as k ! �1, for (t, x) 2 [0, T ] 3 D, to the

solution to the SPDE (3.2) such that

sup
t2[0,T ]

E(kun(t, �)k p
1) ,1,

for p 2 [2, �1[. Computations similar to preceding ones shows that if un and vn are

solutions to (3.2), for p 2 [2, �1[,
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sup
t2[0,T]

E(kun(t, �)ÿ vn(t, �)k p
1) , Cn

� t

0

E(kun(s, �)ÿ vn(s, �)k p
1) ds:

Gronwall's lemma implies un(t, x) � vn(t, x) a.s. Since the solution is a.s. continuous, the

processes un and vn are indistinguishable.

We now prove by induction that the sequence un,k(t, x) belongs to D1,2. Since un,0 is

deterministic, it belongs to D1,2 and Dun,0 � 0. Suppose that, for k > 0 and for every

(t, x) 2 [0, T ] 3 D, un,k(t, x) belongs to D1,2 and satis®es

sup
t2[0,T ]

sup
x2D

E

�T

0

�
D

jDs, yun,k(t, x)j2 dy ds

 !
,1:

According to Nualart (1995, Proposition 1.2.3), since ó is Lipschitz, there exists Sn,k(è, ç)

such that

Ds, y(ó (un,k(è, ç))) � Sn,k(è, ç)Ds, yun,k(è, ç) (3:5)

and

sup
k,n,è,ç

jSn,k(è, ç)j � Có ,1: (3:6)

Let us take the Malliavin derivative of both sides of (3.4); then for s < t,

Ds, yun,k�1(t, x)

� G(t ÿ s, x, y)ó (un,k(s, y))�
� t

s

�
D

ÄG(t ÿ è, x, ç) f 9n(un,k(è, ç))Ds, yun,k(è, ç) dç dè

�
� t

s

�
D

G(t ÿ è, x, ç)Sn,k(è, ç)Ds, yun,k(è, ç)W (dç, dè), (3:7)

and for s . t Ds, yun,k�1(t, x) � 0. We need to verify that

sup
k

sup
t2[0,T ]

sup
x2D

E

�T

0

�
D

jDs, yun,k(t, x)j2 dy ds

 !
,1: (3:8)

Clearly, E(
� T

0

�
D
jDs,nun,k(t, x)j2 dy ds) < 3

P3
i�1 Ai(t, x), where

A1(t, x) � E

�T

0

�
D

jG(t ÿ s, x, y)ó (un,k(s, y))j2 dy ds

 !
,

A2(t, x) � E

�T

0

�
D

����� t

s

�
D

ÄG(t ÿ è, x, ç) f 9n(un,k(è, ç))Ds, yun,k(è, ç) dç dè

����2 dy ds

 !
,

A3(t, x) � E

�T

0

�
D

����� t

s

�
D

G(t ÿ è, x, ç)Sn,k(è, ç)Ds, yun,k(è, ç)W (dç, dè)

����2 dy ds

 !
:

Since ó is bounded, (1.18) implies that
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sup
k

sup
t2[0,T ]

sup
x2D

A1(t, x) < kók2
1 sup

t2[0,T]

sup
x2D

E

�T�
D

G2(t ÿ s, x, y) dy ds

 !

� C ,1: (3:9)

Since j f 9nj < Cn, Fubini's theorem and HoÈlder's inequality with respect to the measure

jÄG(t ÿ è, x, ç)j dç dè yield

A2(t, x) < Cn

� t

0

�
D

jÄG(t ÿ è, x, ç)jE
�è

0

�
D

jDs, yun,k(è, ç)j2 dy ds

 !
dç dè

< Cn

� t

0

�
D

jÄG(t ÿ è, x, ç)j dç sup
ç9

E

�è
0

�
D

jDs, yun,k(è, ç9)j2 dy ds

 !
dè:

Thus (1.7) implies that

A2(t, x) < C

� t

0

1�����������
t ÿ è
p sup

ç
E

�è
0

�
D

jDs, yun,k(è, ç)j2 dy ds

 !
dè: (3:10)

Inequality (3.6), Burkholder's inequality, Fubini's theorem and (1.6) imply that

A3(t, x) < CE

� t

0

�
D

� t

s

�
D

jG(t ÿ è, x, ç)j2jDs, yun,k(è, ç)j2 dç dè dy ds

� �

< C

� t

0

(t ÿ è)ÿd=4 sup
ç

E

�è
0

�
D

jDs, yun,k(è, ç)j2 dy ds

 !
dè: (3:11)

Therefore, (3.9)±(3.11) yield the existence of positive constants C and Cn such that, for

every t 2 [0, T ] and k > 0,

sup
x2D

E

� t

0

�
D

jDs, yun,k�1(t, x)j2 dy ds

� �

< C � Cn

� t

0

(t ÿ è)ÿ(1=2_d=4)sup
ç

E

�è
0

�
D

jDs,nun,k(è, ç)j2 dy ds

 !
dè;

therefore, iterating this inequality and using the convergence of the integral� t

s
(t ÿ è)ÿ(1=2_d=4)(èÿ s)ÿ(1=2_d=4) dè, we deduce (3.8).

We have proved that un,k(t, x) belongs to D1,2 for all (t, x) 2 [0, T ] 3 D. Using Nualart

(1995, Lemma 1.2.3), we deduce that the random variable un(t, x) belongs to D1,2, and

that the sequence Dun,k(t, x) converges to Dun(t, x) in the weak topology of

L2([0, T ] 3 D 3 Ù). Let us de®ne Sn(è, ç) as the weak limit of (Sn,k(è, ç))k > 0 in

L1(Ù 3 [0, T ] 3 D); then Ds, y(ó (un(è, ç))) � Sn(è, ç)Ds, yun(è, ç) and

sup
n,è,ç
jSn(è, ç)j � Có ,1: (3:12)
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Differentiating the SPDE (2.2), we obtain that for each (t, x), the process Ds, yun(t, x)

satis®es the following SPDE:

V n
s, y(t, x) � G(t ÿ s, x, y)ó (un(s, y))�

� t

s

�
D

ÄG(t ÿ è, x, ç) f 9n(un(è, ç))V n
s, y(è, ç) dç dè

�
� t

s

�
D

G(t ÿ è, x, ç)Sn(è, ç)V n
s, y(è, ç)W (dç, dè) (3:13)

for s < t and V n
s, y(t, x) � 0 if s . t. We need to prove the uniqueness of the solution to

(3.13). Let Vn and Un be two solutions of (3.13). Computations similar to those made to

prove (3.9)±(3.11) imply that

sup
x2D

E

� t

0

�
D

jV n
s, y(t, x)ÿ U n

s, y(t, x)j2 dy ds

� �

< Cn

� t

0

(t ÿ è)ÿ(1
2
_d

4
) 3 sup

x2D

E

�è
0

�
D

jV n
s, y(è, x)ÿ U n

s, y(è, x)j2 dy ds dè

 !
,

and Gronwall's generalized lemma yields

sup
t2[0,T ]

sup
x2D

E

�T

0

�
D

jV n
s, y(t, x)ÿ U n

s, y(t, x)j2 dy ds

 !
� 0:

Hence (3.8) shows that the process un belongs to L1,2, which implies that

sup
t2[0,T]

sup
x2D

E

� t

0

�
D

jDs, yun(t, x)j2 dy ds

� �
� Cn ,1; (3:14)

this concludes the proof of Lemma 3.2. h

3.2. Existence of a density for the random variable un(t, x)

Let t . 0 and x 2 ]0, ð[d ; according to Nualart (1995, Theorem 2.1.3), we have to prove that� t

0

�
D

jDr,zun(t, x)j2 dr dz . 0 a:s: (3:15)

Let us prove the following technical result for time integrals over small time intervals:

Lemma 3.3. There exists a constant Cn such that, for every 0 , E, t,

sup
s2[ tÿE, t]

sup
y2D

E

� t

tÿE

�
D

jDr,zun(s, y)j2 dz dr

� �
< CnE1ÿd=4: (3:16)

Proof. For t ÿ E < s < t, set H E
n(s, y) � E(

� s

tÿE
�

D
jDr,zun(s, y)j2 dz dr); (3.14) shows that
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sup
s2[0,T ]

sup
y2D

H E
n(s, y) � Cn ,1: (3:17)

According to (3.2),

H E
n(s, y) < C

X3

i�1

Ai(s, y, E),

with

A1(s, y, E) � E

� s

tÿE

�
D

jG(sÿ r, y, z)ó (un(r, z))j2 dz dr

� �

A2(s, y, E) � E

� s

tÿE

�
D

����� s

r

�
D

ÄG(sÿ è, x, ç) f 9n(un(è, ç))Dr,zun(è, ç) dç dè

����2 dr dz

 !

A3(s, x, E) � E

� s

tÿE

�
D

����� s

r

�
D

G(sÿ è, x, ç)Sn(è, ç)Dr,zun(è, ç)W (dç, dè)

����2 dr dz)

 
Because ó is bounded, (1.6) implies that

A1(s, y, E) < CE1ÿd=4: (3:18)

Burkholder's inequality, Fubini's theorem, inequalities (1.6), (3.12), (3.17) and equation (1.14)

imply that

A3(s, y, E) < CE

� s

tÿE

�
D

� s

r

�
D

G2(sÿ è, y, ç)jDr,zun(è, ç)j2 dè dç dz dr

� �

< CE

� s

tÿE

�
D

�è
tÿE

�
D

G2(sÿ è, y, ç)jDr,zun(è, ç)j2 dz dr dç dè

 !

< C

� s

tÿE

�
D

G2(sÿ è, y, ç)H E
n(è, ç) dç dè

<

� s

tÿE
(sÿ è)ÿd=4sup

ç2D

H E
n(è, ç) dè: (3:19)

For the other term, Schwarz's inequality with respect to the measure jÄG(sÿ è, y, ç)j dè dç
implies that

A2(s, x, E) < Cn E

� s

tÿE

�
D

� s

r

�
D

jÄGsÿè(y, ç)kDr,zun(è, ç)j2 dè dç dz dr

� �
:

Using (1.7), by a computation similar to that of A3, we ®nd

A2(s, y, E) < Cn

� s

tÿE
(sÿ è)ÿ1=2sup

ç2D

H E
n(è, ç) dè: (3:20)
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Inequalities (3.18)±(3.20) imply that

sup
y2D

H E
n(s, y) < CE1ÿd=4 � Cn

� s

tÿE
(sÿ è)ÿ(d=4_1=2)sup

ç2D

H E
n(è, ç) dè;

Gronwall's generalized lemma concludes the proof of (3.16). h

Let us prove Theorem 1.5 when ó � 1.

Lemma 3.4. If ó � 1, denote by un the solution to (3.2). For t . 0 and x 2 ]0, ð[d, the law

of un(t, x) is absolutely continuous with respect to the Lebesgue measure on R.

Proof. It suf®ces to prove (3.15) in the particular case ó � 1. Denote by Q the process

de®ned by

Dr,zun(t, x) � G(t ÿ r, x, z)� Qr,z(t, x), (3:21)

and set

I1(t, x, E) �
� t

tÿE

�
D

G2(t ÿ r, x, z) dz dr,

I2(t, x, E) �
� t

tÿE

�
D

Qr,z(t, x)2 dz dr:

According to (3.21),� t

0

�
D

jDr,zun(t, x)j2 dz dr >

� t

tÿE

�
D

jDr,zun(t, x)j2 dz dr >
1

2
I1(t, x, E)ÿ I2(t, x, E): (3:22)

Let us ®nd an upper estimate for E(I2(t, x, E)) < 2(B1(t, x, E)� B2(t, x, E)), where

B1(t, x, E) �
� t

tÿE

�
D

E

����� t

r

�
D

ÄG(t ÿ è, x, ç) f 9n(un(è, ç))Dr,zun(è, ç) dç dè

����2
 !

dz dr,

B2(t, x, E) �
� t

tÿE

�
D

E

����� t

r

�
D

G(t ÿ è, x, ç)Sn(è, ç)Dr,zun(è, ç)W (dç, dè)

����2
 !

dz dr:

Schwarz's inequality applied with respect to the measure jÄG(t ÿ è, x, ç)j dç dè and Fubini's

theorem imply that

B1(t, x, E) < Cn

� t

tÿE

�
D

E

� t

s

�
D

jÄG(t ÿ è, x, ç)kDr,zun(è, ç)j2 dç dè

� �
dz dr

< Cn

� t

tÿE

�
D

jÄG(t ÿ è, x, ç)jE
�è

tÿE

�
D

jDr,zun(è, ç)j2 dz dr

 !
dç dè:

Using Lemma 3.3 with t ÿ E < è < t and (1.14), we deduce that
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B1(t, x, E) < CnE1ÿd=4

� t

tÿE

�
D

jÄG(t ÿ è, x, ç)j dç dè < CnE3=2ÿd=4: (3:23)

For the second term, Burkholder's inequality implies that

B2(t, x, E) < C

� t

tÿE

�
D

E

� t

s

�
D

jG(t ÿ è, x, ç)j2jDr,zun(è, ç)j2 dç dè

� �
dz dr:

Computations similar to that for B1 imply that

B2(t, x, E) < CE2ÿd=4,

so that

E(I2(t, x, E)) < CnE(3=2ÿd=4)^(2ÿd=4): (3:24)

We now need to ®nd lower estimates for I1. For this, we use the exact expression of the

Green function G given by (1.5), which yields

I1(t, x, E) �
� t

tÿE

�
D

X
k2Nd

åk(x)åk(y) exp(ÿë2
k(t ÿ s))

" #2

dy ds:

Since the sequence (åk)k2Nd is an orthonormal basis for L2(D),

I1(t, x, E) �
� t

tÿE

X
k2Nd

å2
k(x)exp(ÿ2ë2

k(t ÿ s))

" #
ds:

�
X

k2Nd,�
å2

k(x)
1

2ë2
k

[1ÿ exp(ÿ2ë2
kE)]� CE:

The series is well de®ned because
P

k2Nd,�1=ë2
k ,1. Let us choose x0 � (xi)i2[1,d] 2 ]0, ð[d .

According to (1.4),

I1(t, x, E) > C
X

k2(N�)d

Ð1<i<d cos2(kixi)
1Xd

i�1

k2
i

 !2
1ÿ exp ÿ2

Xd

i�1

k2
i

 !2

E

0@ 1A24 35:

Given á in ]0, x1 ^ . . . ^ xd ^ ð=2[, we observe the following:

Remark 3.5. If k 2 N�, x 2 D are such that kx 2 ]ð=2ÿ á=2, ð=2� á=2[(mod ð), then

(k � 1)x =2 ]
ð

2
ÿ á

2
,
ð

2
� á

2
[(mod ð):

The intervals ]ð=2ÿ á=2, ð=2� á=2[(mod ð) correspond to small values of the cosine

function; in fact there exists â. 0 such that cos2(x) . â if x =2 ]ð=2ÿ á=2,

ð=2� á=2[(mod ð). Using Remark 3.5, we obtain the following lower estimate, skipping

every other term:
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I1(t, x0, E) > Câ2
X

k2(N�)d

Xd

i�1

(1� 2ki)
2

" #ÿ2

1ÿ exp ÿ2E
Xd

i�1

(2ki)
2

" #2
0@ 1A24 35

> Câ2
X

k2(N�)d

Xd

i�1

k2
i

" #ÿ2

1ÿ exp ÿ8E
Xd

i�1

k2
i

" #2
0@ 1A0@ 1A:

Take M . 0 small enough (M , 2) such that for 0 , x , M we have 1ÿ exp(ÿx) > x=2;

then since the number of points with integer coordinate in a circle (or sphere) or radius r is

dominated by Crd,

I1(t, x0, E) > Câ2
X

k2(N�)d ,8E(Ód
i�1 k2

i )2 , M

Xd

i�1

k2
i

" #ÿ2

1ÿ exp ÿ8E
Xd

i�1

k2
i

" #2
0@ 1A0@ 1A

> Câ2
X

k2(N�)d ,8E(Ód
i�1 k2

i )2 , M

E

> Câ2E
M

8E

� �d=4

> C1â
2E1ÿd=4: (3:25)

Inequalities (3.22), (3.24) and (3.25) yield

P

�T

0

�
D

jDs, yun(t, x)j2 dy ds . 0

 !
> sup

0 , E<E0

P 1
2
I1(t, x, E)ÿ I2(t, x, E) . 0

ÿ �
> sup

0 , E<E0

P(I2(t, x, E) , C1
2
E1ÿd=4�

> 1ÿ inf
0 , E<E0

E(I2(t, x, E))
2

E1ÿd=4C

� �
> 1ÿ inf

0 , E<E0

CnE1=2^(1ÿd=4)

> 1:

This concludes the proof of Lemma 3.4. h

3.3. Proof of Theorem 1.5

Let us now extend Lemma 3.4 to functions ó which do not vanish. Let us denote by vn
s, y the

solution to the SPDE (3.3) with ó � 1, that is, for t > s,
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vn
s, y(t, x) � G(t ÿ s, x, y)�

� t

s

�
D

ÄG(t ÿ è, x, ç) f 9n(un(è, ç))vn
s, y(è, ç) dç dè

�
� t

s

�
D

G(t ÿ è, x, ç)Sn(è, ç)vn
s, y(è, ç)W (dç, dè),

and vn
s, y(t, x) � 0 if t , s. Because of the uniqueness of the solution to (3.3),

vn
s, y(t, x)ó (un(s, y)) � Ds, yun(t, x):

Also, because ó does not vanish,

P

� t

0

�
D

jDjvs, yun(t, x)j2 dy ds . 0

� �
� P

� t

0

�
D

jvn
s, y(t, x)ó (un(s, y))j2 dy ds . 0

� �

� P

� t

0

�
D

1fjv n
s, y( t,x)ó (u n(s, y))j2 . 0g dy ds . 0

� �

� P

� t

0

�
D

1fjv n
s, y( t,x)j2 . 0g dy ds . 0

� �

� P

� t

0

�
D

jvn
s, y(t, x)j2 dy ds . 0

� �
� 1:

This proves (3.15), which implies that the law of un(t, x) is absolutely continuous, and the

localization ujÙ n
� un yields Theorem 1.5.

Appendix: Proof of Lemma 1.2

We use a theorem from Eidelman and Ivasisen (1970), which gives a similar result for

smooth domains. The dif®culty is in the `corners' of D, that is, the points x at least two of

whose coordinates belong to f0, ðg, and where the boundary of D is not smooth. Let us

denote by Dd the parallelepiped D without its `corners'.

Let Dn be an increasing sequence of smooth convex domains included in D such that the

intervals fxi 2 [1=n, ðÿ 1=n]g of @D belongs to @Dn. Denote by Gn the Green function

associated with the operator @=@ t � Ä2 on Dn with the Neumann boundary conditions.

According to Eidelman and Ivasisen (1970, Theorem 1.1), and the ®rst chapter of Eidelman

and Zhitarashu (1998), we conclude that this parabolic system in the sense of Petrovskii is

well de®ned and that the following inequalities hold for x, y 2 Dn, á < 1, jâj < 4 with

constants which do not depend on n:
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jGn(t ÿ s, x, y)j < C

jt ÿ sjd=4
exp ÿ cjxÿ yj4=3

jt ÿ sj1=3

 !
, (A:1)

jDá
t D â

x Gn(t ÿ s, x, y)j < C

jt ÿ sj(d�4á�jâj)=4
exp ÿ cjxÿ yj4=3

jt ÿ sj1=3

 !
: (A:2)

If jâj < 3, D â
x Gn is integrable; moreover, for 0 < t , t9 < T,� t9

t

�
Rd

Dâ
x Gn(t ÿ s, x, y) dy ds < Cjt ÿ t9j1ÿd=4: (A:3)

Let ö be a C1 function on [0, T ] 3 D; for (t, x) 2 [0, T ] 3 Dn, set

wn(t, x) �
� t

0

�
Dn

Gn(t ÿ s, x, y)ö(s, y) dy ds:

The function wn satis®es

@wn

@ t
(t, x)� Ä2wn(t, x) � ö(t, x) (A:4)

on Dn with the homogeneous Neumann boundary conditions on @Dn. We ®rst prove the

convergence of (wn) on [0, T ] 3 Dd.

Lemma A.1. For each k . 0, the sequence (wn)n>k is relatively compact in C ([0, T ] 3 Dk).

We can extract a subsequence ~wn such that its time derivative converges uniformly on each

interval [E, T ] 3 Dk, for E. 0, and such that its space derivative of order á, with jáj < 3,

converges uniformly on [0, T ] 3 Dk . Let us denote by wk the limit of ~wn on [0, T ] 3 Dk;

there exists a function w de®ned on Dd such that wjDk
� wnjDk

.

Proof. According to the ArzelaÁ ±Ascoli theorem, we have to prove that the sequence is

bounded and equicontinuous. Inequalities (A.1) and (1.14) imply the uniform boundedness of

the sequence.

Equicontinuity in time and in space are proved by different arguments, since wn is a

convolution in time. Let 0 < t , t9 < T , x 2 Dk ; then

wn(t9, x)ÿ wn(t, x) �
� t

0

�
Dn

Gn(s, x, y)[ö(t9ÿ s, y)ÿ ö(t ÿ s, y)] dy ds

�
� t9

t

�
Dn

Gn(t9ÿ s, x, y)ö(s, y) dy ds: (A:5)

The function ö is uniformly continuous on [0, T ] 3 Dk , and the upper estimate (A.1) of Gn

is independent of n; this implies that the ®rst term on the right-hand side of (A.5) can be

made less than E for t9ÿ t small enough uniformly in x 2 Dk . Furthermore, using (A.1) and

(1.14), we have

812 C. Cardon-Weber



����� t9

t

�
Dn

Gn(t9ÿ s, x, y)ö(s, y) dy ds

���� < Ckök1jt ÿ t9j;

this implies the equicontinuity of wn in the time variable (uniformly in the space variable).

To study the space increment, let x, x9 2 Dk ; then

wn(t, x)ÿ wn(t, x9) �
� t

0

�
Dn

[Gn(t ÿ s, x, y)ÿ Gn(t ÿ s, x9, y)]ö(s, y) dy ds:

Using (A.2) for the ®rst-order partial derivatives with respect to the space variable and the

Taylor formula, we deduce, by a computation similar to that made to prove (2.41) and (2.42),

that

jwn(t, x)ÿ wn(t, x9)j < Cjxÿ x9j
� t

0

jt ÿ sjÿ1=4kök1 ds:

This yields the equicontinuity in the space variable in Dk , uniformly in the time variable. The

sequence wn admits a subsequence ( ~wn)n>k which converges to wk in C([0, T ] 3 Dk). For

the time derivative, we proceed in a similar way. We observe that

@wn

@ t
(t, x) �

� t

0

�
Dn

Gn(s, x, y)ö9t(t ÿ s, y) dy ds�
�

Dn

Gn(t, x, y)ö(0, y) dy:

We have to prove equicontinuity in space and time variables and the boundedness of the

sequence. The ®rst term can be studied as wn(t, x), ö being replaced by ö9t. Because there is

only a space integral, we prove equicontinuity and boundedness for the second term on

[E, T ] 3 Dk . For the space increment, take t, t9 2 [E, T ]; then�����
Dn

[Gn(t, x, y)ÿ Gn(t9, x, y)]ö(0, y) dy

����
< jt ÿ t9j

�
D

�1

0

C

(èt � (1ÿ è)t9)(d�4)=4
exp

ÿcjxÿ yj4=3

(èt � (1ÿ è)t9)1=3

 !
dè dy,

Using (1.14), we conclude that the second term is equicontinuous in the time variable on

[E, T ], uniformly in the space variable. We proceed in a similar way for the equicontinuity in

the space variable. We can extract a further subsequence such that the time derivative con-

verges too on [E, T ] 3 Dk for E. 0.

For the space derivative, let â 2 Nd be such that jâj < 3; then we have

Dâ
x wn(t, x) �

� t

0

�
Dn

D â
x Gn(t ÿ s, x, y)ö(s, y) dy ds:

Uniform boundedness is a straightforward consequence of (A.2) and (1.14); the time

increment of Dâ
x wn can be studied like that of wn. For the space increment, let ë 2 ]0, 1[,

apply Taylor's formula, (A.2) and (1.14) and proceed as in the proof of (2.41) and (2.42); this

yields, for ë 2 [0, 1],
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jD â
x wn(t, x)ÿ D â

x wn(t, x9)j < jxÿ x9jë
� t

0

jt ÿ sjÿ(â�ë)=4kök1 ds:

We see that it suf®ces to take ë such that â� ë, 4. To obtain the equicontinuity of the

derivatives of wn of order less than 3 in the space variable, we can ®nally extract a further

sequence such that all the partial derivatives of order less than 3 with respect to the space

variable converge on [0, T ] 3 Dk . The fact that there exists a function w de®ned on

[0, T ] 3 Dd comes from the fact that the values of the sequences do not depend on k. The

function w also has a time derivative and space derivative of order up to 3, because the

corresponding derivatives of (wn) converge uniformly on ]E, T [ 3 D. h

Since ~wn is a solution to (A.4), the sequence Ä2 ~wn restricted to Dk is uniformly

convergent hence it also admits a limit point w which satis®es the PDE

@

@ t
w(t, x) � ÿÄ2w(t, x)� ö(t, x) (A:6)

on Dd. Furthermore, w satis®es the Neumann boundary conditions because the function wn

satis®es such conditions on the boundary of Dn, and we have constructed Dn so that

@Dnn@D increases to @Dnf0, ðgd as n!1. The initial condition is again w(0, �) � 0.

Since (A.6) has a unique solution with homogeneous Neumann's condition, we deduce that

w(t, x) �
� t

0

�
D

G(t ÿ s, x, y) f (s, y) dy ds,

where G is the Green kernel given by (1.5). The sequence (Gn(�, x, �))n>k also converges

weakly on [0, t] 3 Dk for every t 2 ]0, T ] and every x 2 Dk.

We need to extend upper estimates (A.1) and (A.2) from Gn to G. Let s0, y0,

x0 2 ]0, T [ 3 (]0, ð[d)2; there exist k such that y0 and x0 belong to Dkÿ1n@Dkÿ1. Let ÷ be

a positive C1 function on R 3 Rd with compact support included in [ÿ1, 1]d�1, such that�
[ÿ1,1]d�1 ÷(x) dx � 1, and set

÷s0, y0,E(s, x) � Eÿ(d�1)÷
sÿ s0

E
,

xÿ y0

E

� �
;

then the sequence ÷s0, y0,E converges weakly to äs0, y0
in D ([0, T ] 3 Dk). For E small enough,

the support of ÷s0, y0,E is included in [0, t0] 3 Dk ; hence for ®xed t0, we have� t0

0

�
D

G(t0 ÿ s, x0, y)÷s0, y0,E(s, y) dy ds �
� t0

0

�
Dk

G(t0 ÿ s, x0, y)÷s0, y0,E(s, y) dy ds

� lim
n!1

� t0

0

�
Dk

Gn(t0 ÿ s, x0, y)÷s0, y0,E(s, y) dy ds:

The function ÷ is positive, and (A.1) implies that
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����� t0

0

�
D

G(t0 ÿ s, x0, y)÷s0, y0,E(s, y) dy ds

����
< C

� t0

0

�
Dk

1

jt0 ÿ sjd=4
exp ÿ cjx0 ÿ yj4=3

jt0 ÿ sj1=3

 !
÷s0, y0,E(s, y) dy ds: (A:7)

On the other hand, we know that the kernel G is de®ned by (1.5); hence G is a continuous

function on ]0, T ] 3 D 2, so that

lim
E!0

� t0

0

�
D

G(t0 ÿ s, x0, y)÷s0, y0,E(s, y) dy ds � G(t0 ÿ s0, x0, y0):

Therefore, as E tends to 0, (A.7) yields

jG(t0 ÿ s0, x0, y0)j < C

jt0 ÿ s0jd=4
exp ÿ cjx0 ÿ y0j4=3

jt0 ÿ s0j1=3

 !
:

We observe that for jáj < 3,

@áx w(t, x) �
� t

0

�
D

@jájx G(t ÿ s, x, y) f (s, y) dy ds:

Because @áx ~wn converges to @áx w; (@áx Gn(�, x, �))n>k converges weakly to G(�, x, �) on

[0, T ] 3 Dk . Arguments similar to the preceding ones imply that, for jáj < 3,

j@áx G(t0 ÿ s0, x0, y0)j < C

jt0 ÿ s0j(d�jáj)=4
exp ÿ cjx0 ÿ y0j4=3

jt0 ÿ s0j1=3

 !

and

jÄ2G(t0 ÿ s0, x0, y0)j < C

jt0 ÿ s0j(s�4)=4
exp ÿ cjx0 ÿ y0j4=3

jt0 ÿ s0j1=3

 !
: (A:8)

Because G is the Green kernel associated with the operator @=@ t � Ä2, G satis®es

@

@ t
G � ÿÄ2G,

if t . 0, x, y 2 D, and the estimate (1.8) can be deduced from (A.8); this concludes the proof

of Lemma 1.2.

Acknowledgements

I would like to thank A. Millet for her never-ending help in the preparation of this paper.

Cahn±Hilliard stochastic equation 815



References

Adams, R.A. (1975) Sobolev Spaces. New York: Academic Press.

Bally, V., Millet, A. and Sanz-SoleÂ, M. (1995) Approximation and support theorem in HoÈlder norm for

parabolic stochastic partial differential equations. Ann. Probab., 23, 178±222.

Cahn, J.W. and Hilliard, J.E. (1958) Free energy for a nonuniform system I. Interfacial free energy.

J. Chem. Phys., 2, 258±267.

Da Prato, G. and Debussche, A. (1996) Stochastic Cahn±Hilliard equation. Nonlinear Anal., 26,

241±263.

Da Prato, G. and Gatarek, D. (1995) Stochastic Burgers equation with correlated noise. Stochastics

Stochastics Rep., 52, 29±41.

Da Prato, G. and Zabczyk, J. (1992) Stochastic Equations in In®nite Dimensions, Encyclopedia of

Mathematics and its Applications, Vol. 44. Cambridge: Cambridge University University Press.

Debussche, A. and Dettori, L. (1995) On the Cahn±Hilliard equation with a logarithmic free energy.

Nonlinear Anal., 24, 1497±1514.

Eidelman, S.D. and Ivasisen, N.V. (1970) Investigation of the Green matrix for a homogeneous

parabolic boundary value problem. Trans. Moscow Math. Soc., 23, 179±242.

Eidelman, S.D. and Zhitarashu, N.V. (1998) Parabolic Boundary Value Problems. Basel: BirkhaÈuser.

Garsia, A. (1972) Continuity properties of Gaussian processes with multi-dimensional time parameter.

In L. LeCam, J. Neyman and E.L. Scott (eds), Proceedings of the Sixth Berkeley Symposium on

Mathematical Statistics and Probability, Vol. 2, pp. 369±374. Berkeley: University of California

Press.

GyoÈngy, I. (1998) Existence and uniqueness results for semilinear stochastic partial differential

equations. Stochastic Process. Appl., 73, 271±299.

Kunita, H. (1984) Stochastic differential equations and stochastic ¯ows of diffeomorphisms. In P.L.

Hennequin (ed.), EÂ cole d'eÂteÂ de ProbabiliteÂs de St-Flour XII, 1982, Lecture Notes in Math. 1097,

pp. 143±303. Berlin: Springer-Verlag.

Lanjri Zaidi, N. and Nualart, D. (1999) Burgers equation driven by a space-time white noise: absolute

continuity of the solution. Stochastics Stochastics Rep., 66, 273±292.

Morien, P.-L. (1999) On the density for the solution of a Burgers-type SPDE. Ann. Inst. H. PoincareÂ

Probab. Statist., 35, 459±482.

Nualart, D. (1995) The Malliavin Calculus and Related Topics. Berlin: Springer-Verlag.

Novick-Cohen, A. and Segel, L.A. (1984) Nonlinear aspects of the Cahn±Hilliard equation. Physica

D, 10, 277±298.

Walsh, J.B. (1986) An introduction to stochastic partial differential equations. In P.L. Hennequin (ed.),

EÂ cole d'EÂ teÂ de ProbabiliteÂs de St-Flour XIV, 1984, Lecture Notes in Math. 1180, pp. 265±439.

Berlin: Springer-Verlag.

Received December 1999 and revised February 2001

816 C. Cardon-Weber


