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We investigate the existence of (local) solutions and explosions for backward stochastic differential
equations with generator |f(z, w, y, z)| < G(y) + F(¥)R(z), where G, F, R are continuous, G is in-
creasing in R; (decreasing in R_) and R is subquadraticc. We study in detail the case
[t @, p,2) = G(y) + 4|z,
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1. Introduction

In this paper we consider backward stochastic differential equations (BSDEs) of the form

1 1

165, Y, Zs>ds—J Zdw.  0=i=1,

t

Yi=&+ J

t
where (W,) is a standard d-dimensional Brownian motion on a probability space (€2, F, P)
and (F,)o</<1 1is the standard Brownian filtration. The random function f: [0, 1]
X R X R? — R is called the coefficient or generator and the R-valued, F-adapted variable
& is called the terminal condition. This equation is denoted by Egq(&, f).

Pardoux and Peng (1990) gave the first existence and uniqueness result in the case when
f is Lipschitz continuous in (y, z) uniformly in (¢, w), and & is square-integrable. Lepeltier
and San Martin (1997) extended the existence result to the case where the coefficient is
only continuous with linear growth (in (y, z)). Kobylanski (1997) obtained an existence
result in the case where & is bounded, and f is continuous with linear growth in y and
quadratic growth in z. Lepeltier and San Martin (1998) extended her result to the case
|f(t, 0, y, 2)] < I(y) + c|z]*, with [>0 such that ["dy/l(y)= f_ooo dy/l(y) = co. The
question is then what can be said when the coefficient is more than superlinear in the above
sense.

We begin by considering the case |f(¢, w, y, 2)] < G(y) + F(y)R(z), with G, F, R
continuous functions such that R is subquadratic, that is,
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R
limsup |L|ZZ) < o0,
z

|z[—c0

and vanishes at 0 and the function G is increasing on R, and decreasing on R_. Our main
result is Theorem 4, where we prove that if b < & < ¢ for some a and b with b <0 < q,
then there exists a maximal solution (Y, Z) on (£, 1] with * = ¢, V t, and

H = 1 —J —_, tHh = 1 —J —_—.
: e G() 2 . G()

In Section 3 we first consider the case f(¢, , y,z) = G(y). If €= 0, ||&||oc = a, with
f;o dy/G(y) > 1, we obtain, from Section 2, the existence of a solution on [0, 1]. In the
critical case (ch dy/G(y) = 1, which corresponds to #* =0) we obtain a sufficient
condition for no explosion which is also necessary when G is convex. In the case
f;c dy/G(y) <1 (still wide open) we give some sufficient conditions for no explosion.

We then investigate the case f(t, w, y, z) = G(y) + A|z]>, 4 >0, and obtain results by
using an exponential 1t6 formula.

Finally, using a comparison theorem, we obtain some sufficient conditions for no
explosion in the case

f(t, 0, y, 2)| < G(y) + 4|z

2. The general case
Throughout this paper we shall deal with BSDEs of the form

1 1

Y, :§+J f(s, w, Y5, Zs)ds—J Z,dw,, )
t t

where we assume that & is Fj-measurable and bounded, and that f: [0, 1] X Q

X R X RY — R satisfies the following hypothesis:

Hypothesis H.

(i) f is P ® B(R) ® B(R?)-measurable
(i0) f(s, w, -, ) is continuous for all (s, w).
(i) 1f(s, w, y, 2)| < G(y) + F(y)R(z) where G, F, R are continuous non-negative
functions satisfying R(0) =0, R is subquadratic, and G is assumed to be increasing
(decreasing) on R, (R.).

We say that (Y, Z) is a (bounded) local solution of (1) if there exists 7 << 1 such that
(Y, Z) is defined on [/, 1], Y is adapted (and bounded), Z is predictable and, for all
t € [f, 1], we have

1 1
Yt :§+J f(sa , Ys; Zx)dS_J. stWc
t

t
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A maximal (bounded) local solution of (1) is a (bounded) local solution (Y, Z) such that for
any other (bounded) local solution (X, A), in any interval [#y, 1] where both solutions are
defined we have X; <Y, t € [ty, 1]. We observe that if (Y, Z) and (Y, U) are local
solutions of (1) then in the common interval of definition Z = U. This implies immediately
that if maximal solutions exist they are unique.

The study of (1) is carried out by comparison with ordinary differential equations (ODEs)
of the form

1

u(t) =a+ J G(u(s))ds. 2)

For this reason we shall first deduce some properties for this type of ODE. Given a € R, we
write F(x) = [} dy/G(y) and [, dy/G(y) = Fa(a+) € {0, co}. We shall see that (2) has a
unique maximal solution up to an explosion time ¢* € [—oo, 1). £* is characterized as
1—t*= f;o dy/G(»). We write t* = r*(a, G). We say that a is the upper critical value for
2) if f;o dy/G(y) = 1, which amounts to saying that t* = 0.

Example. If G(y) = y* then a=1 is the upper critical value for (2) and, in general,
t*(a, G) =1 —1/a. One can verify in this case that the unique solution of (2) is

a

_— t l* 1].
ai— D+ 1 €l 1]

u(t) =
We can prove the following result relative to the solutions of (2).

Lemma 1. Let ty > t*(a, G). For every ¢ >0, 8 > 0 sufficiently small, the equation

1
ul(t)=a+c+ J (G(u(s)) + O)ds (3)

has a unique solution on [tg, 1]. Moreover, u® is monotonously increasing in (c, 0). The
limit u(t) = lim5)—o uo(1) exists on [ty, 11, and is the maximal solution of (2). If

fﬁ dy/G(y) = oo, the unique solution of (2) is u = a.
Proof. Let

X dy
F(x) = J .
(X) a+te G(y) + 6

Using the monotone convergence theorem, we have that
F(00) /" Fo(00) =1~ 1*(a, G)

when (¢, 8) \, 0. Therefore, for (¢, ) small enough, we have F“°(c0) > 1 —t,. A sim-
ple calculation shows that the unique solution of (3) is given implicitly by F&(u“°(£))
=1—t¢ t=t,. That is, u“?(t) = (F*°)~'(1 — ¢).

Since
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u‘*b(t) lt"é(t)
l— = J _d J _&
ate G(y)+ 0 are G(¥)+ 0

if ¢ <e¢ 0 <0, we deduce that 4“® is monotonously increasing in (¢, 8), and is clearly
bounded below by a. Therefore, the limit

u(f):= lim u®o(¢

(= lim u)
exists. It is easy to verify that u(f) is a solution of (2) on [#, 1].

Let v(#) be another continuous solution of (2). Then, for (¢, ) small, we find that
v(l)=a < u°(l)=a+ec If there exists 7 <1 such that v(r) = u“’(7), ‘we can find
another time 7 < 1 such that, for all s € (7, 1], v(s) < u“°(s) and v(T) = u“°(%). Then we
obtain

L o0 = ~6m) > ~6u @) 0 = Su @,

which implies that v(s) > u“°(s) in some small interval to the right of 7, which is a
contradiction. Therefore, in the common interval where v and u“® are defined we have
v < u’. Passing to the limit (in (¢, 8)), we conclude that v < u.

Finally, assume that [, dy/G(y) = co. Then u“® is well defined on [0, 1] for (¢, O)
small enough, and u is also defined on [0, 1]. If u(#) > a for some ¢ € [0, 1], we obtain, for
small (¢, 0), that

Ju(t) dy Ju"a(t) dy

— = —=1-1
a+e G(y) + 0 a+te G(y) + 0
Then
u(t) u(1)
lim J _d J Y _ .
(€£0)\0 a-+¢ G(y) + o a G(y)
which is a contradiction. Therefore u(f) = a for all ¢ € [0, 1] and the result follows. O

Remark. Take the ODE u(¢) = L] v/ |u(s)| ds. Then u = 0 is a possible solution, but is not the
maximal one. In fact u(f) = (1 — #)?/4 is the maximal solution. Notice that in this case
Jo+dy//y =0. On the other hand, the equation u(z) = J"tl u*(s)ds has a unique solution
u=0, since [ody/y* = oc.

We have in the following result a comparison theorem between solutions and subsolutions
of ODEs of the type given by (2).

Lemma 2. Let v be a non-negative continuous function such that v(t) < a + ftl G1(v(s))ds,
where G is a non-negative continuous function such that G\ < G. If u is the maximal

solution of (2), then v < u, in the common interval where v and u are defined.

Proof. We have v(1) < a < u“°(1) = a + €. As before, suppose that there exists 7 such that
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v(T) = u(7) and v(s) < u“(s) for all s € (, 1]. Since G; < G and G is increasing on R,
we obtain

1 1 1
V@) <a+ J Gi(v(s))ds < a + J G(v(s))ds < a + J G(u(s))ds < u“(7),

T T

which is a contradiction. U

Remark. In the same way as before, for b < 0 we can obtain on (#*, 1] a minimal solution
for I(1) = b — [' G(I(s))ds, with 1 — 7 = [* _dy/G(»).
For all C > 0, we consider the following truncation of the identity

—-C y<-C,
pc() =¥ —CsysC
C y>C.

Our assumption on G implies that G o ¢¢ < G, and then from Lemma 2 we obtain that if v
is a solution of v(¢) = cH—L1 G(pc(v(s))ds, then v < u. From this fact we deduce the
following comparison lemma between the solutions of (1) and (2).

Lemma 3 (A priori estimation). If (Y, Z) is a bounded solution of (1) and & < a then
Y, < u(t) forall t € (¢*, 11N[0, 1], where u(t) is the maximal solution of (2).

Proof. We take C large enough such that |Y| < C. Clearly (Y, Z) is also a bounded solution
of the equation

1 1
Y, = §+J Sfc(s, w, Y, ZQdS*J ZgdW,
t t
with fc(s, o, y, z2) = f(s, 0, c(y), z). Also we have
[fe(s, @, p, 2| < G(ec(y) + 4AR(2),

for a suitable constant 4 = 0. Using the fact that R(0) = 0 and the quadratic bound on R, we
find that, for all 6 > 0, there exists D = D(d) < oo such that

[fe(s, @, p, 2)| < Gloc(») + 0 + DO)|z|*.

Since,

J 0 dy B J 0 dy .

o Goc(M)+0 Jo Glopc(y) +0

we conclude, using the results of Lepeltier and San Martin (1998), that
Y, < v°(1), for all ¢ € [0, 1],

where

1
VO =a+ec+ J (G(@c(°(s))) + O)ds.
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Taking any ty > t*(a, G), by Lemma 2 we have that
VO < u(f) ont= 1.
Then we deduce that P-almost surely
Y, < u(t), for all + € (¢*, 11N [0, 1],

proving the result. O

Assume we have a bounded local solution (Y, Z) which is defined on an interval that
contains [7, 1]. Consider

i _ S0y, tsss,
f(Saw’y’Z){O O$S<i,
and define X, = E( Y,-|j’-'t),_ t< {. Then X, =Y; — f: Ay dW; for some predictable process A.
In this way the process (Y, Z) defined by

7 _ X, 0=s1<i 7 _ A, 0=s1<i,
Ty, istr<l, Tz, ist<l,

is a bounded solution of the BSDE

1 1
:g+jff(s, o, 7., Zs)ds—J Z.dw,  0=i<1.
t t

Since |fi(s, o, y, 2)| < |f(s, w, ¥, 2)| < G(») + F(»)R(z), we conclude that on (r*, 1]
N[0, 1], ¥; < u(t), but then on (£*, 11N [0, 11N [Z, 1] we have Y, < u(¢) P-a.s.

Henceforth, for each bounded local solution (¥, Z) of (1) defined on [7, 1] , where 7 will
be clear from the context, we shall denote the extension to [0, 1] constructed above by
(Y, Z). We can state now an existence theorem for a local solution of (1).

Theorem 4. Let & be a bounded F, random variable. Assume b < & < aP-a.s. and
b < 0 < a. Consider

b o)

dy dy *

tlzl—J —_—, tZ:I—J —_ =1Vt.
00 G(Y) « G(»)

Then there exists a local solution (Y, Z) of (1) defined on (t*, 11N [0, 1] which is bounded
on [to, 11N[0, 1] for each ty > t* and which is also maximal among the bounded local
solutions of (1).

Proof. Let t, € (t*,1]1N[0, 1]. Let C be large enough such that —C=Ilty) =l =
u(t) < u(ty) =< C, where [(¢) is the m1n1mal solution of I(t) = b — j G(I(s))ds and u(?) is
the maximal solution of u(¢) = a —&—f G(u(s))ds. Consider the coefficient

{f(S, w, (PC(y); Z) hy=s= 1
0

fo _
S, W zZ) =
cls, @, 3, 2) 0=ss<rt.

Then



Existence or non-existence of solutions for certain BSDEs 129

|ftC0(Sa w, y, Z)| < G(QDC()/)) + AR(Z),

for some finite constant 4. As before, we take 6 > 0 and D(d) < oo such that AR(z) <
0 + D(0)|z]*. From the results of Lepeltier and San Martin (1998), there exists a unique
maximal solution (X%, A%) of Eq(f ’CO, £) and, from Lemma 3 and similar arguments, we
have,

Yt = t, I(to) < I(1) < X < u(t) < u(ty), 4)

which proves that Y, = X", Z, = A;", t =ty defines a bounded local solution of (1) on
[0, 1].

We shall now prove that if 1 > sy > ¢y, then (X*°, A%) and (X', A") agree on [so, 1].
In fact this follows from the method developed in Kobylanski (1997) and Lepeltier and San
Martin (1998) because after a localization and an exponential change of variable, the
maximal solutions are found by approximating the respective coefficients from above by
Lipschitz functions. Our a priori estimate (4) implies that the same truncation can be used
on [sg, 1] as on [#y, 1]. Since f tco = f¢ on [so, 1], we obtain that the Lipschitz functions
there constructed also agree on [sg, 1]. By Lemma 5 below we shall have the desired
compatibility.

Finally, take (M, T) to be any bounded local solution of (1) defined on [7, 1]. We
consider so = £V ty. If (M, T) is the extension of the process to [0, 1], then (M, T) is a
solution of the BSDE whose coefficient is [, implying that M, < X}* = X" =Y, on
[so, 1]. This completes the proof of the theorem. ]

Lemma 5. Let [ satisfy the standard Lipschitz conditions. If (X', A") is a solution whose
coefficient is ', i =1, 2, then

(Xél,A;I):(X?,A;z) ons=HVith=1

Proof. The result follows immediately from 1It6’s formula applied to the process
e’ (X" — X2)2. In fact we obtain

. 1 ; .
EE”(X! — X?)) +E (J PO — X2) + (Al — A )2)ds>

t

1
=2E <J (X — XY f(s, 0, X1, A — f(s, 0, X2, A;Z))ds>

t

1 1
2K
<2K(1+ C)E (J e\ xl — xi2f? ds) +E (J e |Al — AL ds> :
t t
The result follows by taking C > 2K and 6 > 2K(1 + C). O
We now discuss the explosion time for equation (1). For this purpose we will construct

recursively a decreasing sequence (s,) . We take so =1, bp = —||E [Joo < || ||co = 0. Let
s1 be such that
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Jroo dx by dx
so—s1=| ——A J —_—
a Gx) ] G(x)

We know that there is a maximal bounded solution (Y', Z% on (s1, 11N[0, 1]. If 51 < 0, we
stop. Otherwise two things may happen. If limy g, || ¥}l = oo then s; is an explosion time
for (1). If not, take C > sup,~, || Y!|| and consider #, > s; such that

to — 81 <dexAJCdx— to — 1.
c G ) Gx)
We know that the equation
Iy fo
X =Y + J (s, w, Xy, Ag)ds — J AgdWy
t t

has a unique bounded maximal solution on (7, #p] N[0, #]. Then X, =Y } on (s, tp], which
in particular shows that ¥} =lim, , Y} exists and is also bounded by C. Then we take

by =—[|(Y{) |lss < a1 =[[(¥Y}) [, and we define s, by
r’ de (M dx

S| — 8§ = —A J .

o G ) G(x)

On (53, s1] N[0, 1] there exists a unique maximal bounded solution of

S1 S1

75, 0, Xy, Ay)ds — J A d,.

t

x|

t

Let

YZZ Y} t=sq,
! X[ re (SZ, Sl] N [07 1]5

and define Z? in an analogous way.
If s, < 0, we obtain a solution on [0, 1]. Otherwise we start again. In this way we have a
sequence (s,) which may eventually stop after a finite number of steps because

(i) s, <0, in which case we have a maximal bounded solution on [0, 1], or
(i) sups=s, , |Y" oo < sups>s, || Y"]|oc = 00 in which case there is a unique maximal
bounded solution which explodes at s,,.

We call 7= s, the explosion time of (1).
If the procedure continues indefinitely we have s,, 7= 0 which is also the explosion
time of (1). In fact, since

S, — S —Jwﬁ/\r” dx 0
P )L G ) Gy e

we have either limsup, a, = oo or liminf, b, = —oco. The unique maximal solution (Y, Z)
on (f, 1] agrees with (Y, Z") on (s,, 1], and therefore limsup . ; [| Yi|oo = 0. O
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Notice that 7 is the explosion time for the maximal solution of (1). There may be other
solutions which do not explode at 7 as the following ODE shows. Let

1
u(r) = j Glu(s))ds,

where
4./|x] x| <1
G(x) = ’
) {4x2 x| > 1.
Then u = 0 is a solution on [0, 1], but the maximal solution is

u(t) = {4(1—02 t=1

(l—4(%—t))’1 %<t<%,

which explodes at 7 = J.
We also have a comparison theorem for the maximal solutions for BSDEs.

Theorem 6. Assume § = 1 are bounded and F\-measurable. Also assume that f = g, where
g is P ® B(R) ® B(RY)-measurable and f satisfies Hypothesis H. If (X, A) is a bounded
local solution of Eq(n, g) on (t1, 1] and (Y, Z) is the maximal bounded local solution of
Eq(&, ) on (1, 1], then X <Y on (t; V 1, 1].

Proof. The proof follows from the Corollary 2 of Lepeltier and San Martin (1998) after
noticing that . = gL for any 7, C. O

3. The case f(s, o, y, 7) = G(y) + A|z]?

We now concentrate on the case f(s, w, y, z) = G(y) + A|z|?, where 4 = 0. We shall assume
that £ is bounded and positive, ||&]| = a. Recall that a is critical if [° dx/G(x) = 1.

3.1. The case 4A=0

In this subsection we assume that the drift takes the particular form f(s, o, v, z) = G(y), and
we study the critical case in more detail.

Theorem 7. Let (Y, Z) be the maximal bounded solution of

Vi=E+ Jl G(Y,)ds - Jl Z.dw,, (5)

t

where a = |||« is such that |° dx/G(x) = 1.

(@) If for some ty >0, |[ECE|F ) =2a <a, then (Y,Z) may be extended to a
maximal bounded solution on [0, 1].
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(ii) If G is convex, the previous condition is also necessary for the existence of a
maximal bounded solution on [0, 1].

Proof. (i) We take (Y, Z) to be the unique maximal bounded solution on (0, 1]. Since G = 0,

we have
ft) = O)

and since G is increasing on R,, we obtain, for ¢ < ¢,

1
Y, =E (g i J G(Y,)ds

1
1Yilloe < [EEIF )]0 +j G(IY,)ds
t

1

<d + J G(u(s))ds + J G ] )ds

o t

ty
—uto)+d —a+t J G| Ys[|o)ds.
t

Therefore, the explosion time for the solution of Eg(Y;,, G) on the interval [0, fy] is bounded
by the explosion time of the ODE

u(t)=u(ty) +a —a+ J U G(v(s))ds,

t

which is given by #* such that

" 00 dx 00 dx % dy u(to) dx
-t = > - = — =1—(1—- 1) = t.
u(tg)+a'—a G(x) u(ty) G(x) a G()C) a G(x)

Hence, +* < 0 and there is an extension of (¥, Z) to the entire interval [0, 1].

(i) If a=0 then £=10 and (u, 0) is the maximal solution of (5), which obviously
explodes at + = 0. So we can assume that @ > 0. We reason by contradiction and suppose
that [|[E(§|F)|leo =a for all t>0. We fix ¢>0 and f) > 0. Consider 4= {w:
E(E|F,,)(@) > a — ¢}; then P(4) > 0. For ¢ = f,, we have ¥, = B(£ + [ G(Y,)ds|F,); then

1
E(Y,1,) = B(E(EF,)10) +j E(G(Y,)1 )ds

E( Ys 1 A)
P(A)

Hence ¢(1) = E(Y,1,4)/P(A) satisfies ¢(t) = (a —¢) + jtl G(¢p(s))ds, which implies that

1
= (a—P(4) + J G( )P(A)ds.

1
o()y=u“(t)=a—c+ J G(u=“(s))ds.

We notice that since G is convex it is locally Lipschitz, and therefore u~¢ is unique.
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Moreover, u~“(t) /" u(t) when € — 0, which also is the unique solution of (2). Since
u(t) = || Y¢lloo = (1) = u=“(f) we conclude that ||Y,|« = u(¢) for all #>0, and then
limy o || ¥:||cc = 00, which implies that there is no bounded maximal solution on [0, 1]. O

Remark. We observe that, using the technique developed in the proof of Lemma 7, we
actually have that if (Y, Z) is a maximal bounded solution of (5), then || ¥;||coc < w(?), where
w is the maximal solution of w(?) = |E(&|F )|l + Ll G(w(s))ds, and that, under convexity,
equality holds. Also we point out that if @ = || is such that [* dx/G(x) > 1, we have the
existence of a maximal bounded solution on [0, 1] by using the result of Theorem 4 and
observing that if £ = 0, we can take t* = t, < 0. A difficult case is the supercritical situation
f;o dx/G(x) < 1. We can give a sufficient condition for there being no explosion in this case.

Proposition 8. Assume that a = |&| is such that ch dx/G(x) <1, that is, the explosion
time for (2) is t* > 0. If there exists to > t* such that a' = |E(&|F )|« satisfies

u(to)
| & ©
u(ty)+a'—a G(x)

where u is the maximal solution of (2), then there is a unique maximal bounded solution of
(5) in [0, 1].

Proof. As in the previous proof, we have that for (¥, Z) the maximal local bounded solution
of (5) satisfies, for 7 < ¢,

to
¥l < utto) + @'~ a+ | G017
t
Therefore, the explosion time of Eg(Y,,, G) in the interval [0, #y] is dominated by 7, where
) 00 dx u(ty) dx 00 dx u(to) dx %
o= N
u(ty)+a'—a G(x) u(tg)+a'—a G(x) u(ty) G(x) u(tog)+a'—a G(X)

which implies that # < 0 because of condition (6). O

In the case G(x) = x? and a > 1, condition (6) becomes that 7o > t* =1 —1/a and

u(ty)+a'—a G()C) a’

Ju(to) dx - 1

Under some sufficient conditions we can prove the non-existence of solutions on [0, 1]
for the supercritical case.

Theorem 9. Let |&|«, = a be such that [ dx/G(x) < 1, where G is non-negative, increasing
on Ry and locally Lipschitz.

(i) Equation (5) has no solution on [0, 1] when
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~d
30 < ap < a such thatJ = < I, G(ap) >0, &=ay.
a G(¥)
(i1) Under the assumption that G is convex, (5) has no bounded solution when
0 < ag <a such that | ——=<1, G(ag) >0, E(&) = ay.
a G(¥)

Proof. (i) Let (Y, Z,) be a solution of (5) on [0, 1]. By the comparison theorem (Pardoux
and Peng, 1990) we obtain, for all » =1, that Y; = Y(t”), where (Y (t"), 0) is the unique
solution of the BSDE

1 1
X, = ag+ J G(@n(X,)ds — J A, s,
t t

It is casy to see that Y'” is the unique solution of the ODE

1
X, = ao+ J G(n(X,)ds.

Let us assume that Y\ < n. Since Y™ is decreasing, we have Y{” < n for all s, and
consequently Y\ is a solution of the ODE

1

Xi=a+ | G,

t
which admits no solution on [0, 1]. Finally, we obtain Y, = Y f)") = p for all n, which is a
contradiction.

(i) In the same way, let (Y, Z;) now be a bounded solution of (5) on [0, 1]. Taking

expectations, we obtain, since G is convex,

1 1
E(Y) = E(®) + J E(G(Y)ds = ao + J G(E(Y,))ds.

Thus, (E(Ys))o<s<1 is a supersolution of (2) which has no solution on [0, 1], consequently no
supersolution, which is a contradiction. U]

Remark. In the critical case (ﬁo dx/G(x) = 1) we can also treat the case of & not necessarily
positive. In fact, let (X, A) be the maximal solution of Eq(*, G). Then the maximal
solution (Y, Z) of Eg(&§, G) satisfies:

—E e =Y, < X,

If X, does not explode then neither does Y;, and the sufficient condition for this is the
existence of #) > 0 such that ||[E(§"|F,)|l« < a. Nevertheless, when G is convex, this
condition cannot be both sufficient and necessary since we do not have G increasing in
[_”57”005 OO)

In the special case when G is C', we can give a uniqueness result.
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Theorem 10. Let G be C' and (Y', Z"), (Y2, Z?) be two solutions of (5), with Y' and Y?
bounded. Then we have Y' = Y? 7! = 72

Proof. Since G is C', hence locally Lipschitz, and Y!, Y2 bounded, the function G is
Lipschitz in the range of Y!, Y2, and the uniqueness result of Pardoux and Peng is
applicable. O

3.2. The case 4 >0

We consider the BSDE

1 1
V=4 J (G(Y,) + 4| Z,P)ds — J Z,dw,, ™

where ||&]|cc = a, £=0.
We can reduce the study of this BSDE to case when 4 = 0 by an exponential change of
variables. Let X, = e?4¥. Then, using It6’s formula, we obtain

1 1
1 = 4 J 241" dY, + %J 447>
t

t

Z? ds

1 1
=l 4 J 24e* Y (—G(Yy) — A| Z,[*)ds + J 242 7, AW
t t

1
+ J 242245 7% ds,

t

and therefore
1 1 Xs 1
X, =5+ J 2AXSG(M>ds - J A dW,,
‘ 24 ‘

where 7 = e?4¢.
We observe that Y, = 0, implying that X, = 1. If G is increasing then so is the function
h(x) = 24xG(log(x)/2A4) for x = 1, and if G is convex then so is /4. The explosion time for

X is given by
~1
> log(x))> JOO dx
1 -1 = 24 dr=| ——
L( XG< 24 . GR)’

the same as the one of the initial equation (7), as expected. By Theorem 7 we deduce the
following result.

Theorem 11.

(i) Equation (7) does not explode if ||E(e*4%|F )|l < €*4¢ for some ty > 0.
(it) If G is convex, the above condition is also necessary.
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Using Theorems 4, 7 and the comparison theorem, we obtain the following result about
the BSDE (1).

Theorem 12. Assume |f(s, o, y, 2)| < G(y) + A|z|>, where G is a symmetric function, and
G : R, — Ry is increasing. Assume ||| = a' < a, where [ dy/G(y) = 1.

(i) If a' < a then (1) does not explode.

(if) In the (critical) case a' = a, a sufficient condition for non-explosion is that there
exists to >0 such that ||E(*%|F,)||le <e*4% when A>0; and such that
IECETFi)loo < a, when A=0.

Finally, we investigate the condition
1€lloc =@ and 319 > O[[E(E|F )l < a. ®)

For this purpose let us denote by F,g the completed o-algebra generated by W, —
Wea<u<t<p.

Lemma 13. Under either of the following conditions, the random variable & satisfies (8).

(@) ||€]loc = a, & is not a constant P-a.s. and & € U9 U Fy;
@) E=FWyy, ..., Wy,), where 0 < t; < t, < ...<t, <1, with |F|lcc = a and there
exists € >0, K C R" compact, such that |F(x)| <a—e¢ for all x¢ K.

Proof. Under (i), & € F; for some ¢ > 0 and then E(&|F,) = E(§) < a, and (8) holds.
Now assume (ii), and take any 0 < ¢y < #;. We have

E(F(th’ o th) ]:fo) = (P(Wfo)a
where ¢(x) = Ex(F(W, -4, --., Wi,—1,)). The function ¢ is continuous and satisfies the
inequality
|(p(x)| = an((th—l‘oa sty Wl‘n—l(]) S K) + (a - 6)PJC((VVf1—l‘()9 R th—to) ¢ K) <a.
Since limy oo Po((Wt—tys - s Wi,—1) € K) =0, it is deduced that ||¢|| < a. Also observe
that |[F(Wy, oo Wi)llo = || Flle = a. O

We remark that under (i) or (ii) of Lemma 13 we also have, for all 4 > 0,
@[ F )l < &2

for the same ¢.

We also give an example where (8) is not satisfied. Take 4, € Fyq1),1/, for all n =1,
0< P4, <I1, with },_, P(4,) < oo, and define §=a —exp(—)_,=,14,), which is a
non-negative bounded random variable. It is easy to prove that ||&|| =a, and if
t€(1/(n+1),1/n], then
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E(é‘f,)a—exp(— Z lAk>E<exp<—i1Ak>‘}",>
k=n+1 k=1
Ba—exp(— Z lAk>.

k=n+1

Let By = Ans1 N ... N Apym; then

n+m

P(Byn)= ] PAn)>o0.
k=n+1
We have E(§|F)1p,, = (a —e ™)lp,,, which proves that ||[E(§|F /)|« = a for all > 0.
Observe that £ = F(W,) with F bounded by 1 but lim,_,,, F(x) = 1 also gives an example of
a random variable which does not satisfy (8).
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