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The class of real harmonizable fractional Lévy motions (RHFLMs) is introduced. It is shown that
these share many properties with fractional Brownian motion. These fields are locally asymptotically
self-similar with a constant index H, and have Hoélderian paths. Moreover, the identification of H for
the RHFLMs can be performed with the so-called generalized variation method. Besides fractional
Brownian motion, this class contains non-Gaussian fields that are asymptotically self-similar at infinity
with a real harmonizable fractional stable motion of index H as tangent field. This last property
should be useful in modelling phenomena with multiscale behaviour.
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1. Introduction

The fractional Brownian motion (FBM) Bpy(f) of fractional index H, introduced in
Mandelbrot and Ness (1968), provides a very powerful model in applied mathematics. It is
the only centred Gaussian self-similar process with stationary increments and with index H.

Let us recall the definition of self-similarity. A field X(x), x € R, is self-similar with
index H if, for all A > 0,

(XO)yepe 2 A7 (X () s

@) o T
where = stands for equality in distribution.
Self-similarity is a global property, and for some applications one needs a local version
of it. A field X(x) is locally asymptotically self-similar (lass) at point x with index H if

. [ X(x+Au) — X(x)) ()

where the non-degenerate field (7(u)),cre is called the tangent field at x. This definition was
introduced in Benassi et al. (1997) and Peltier and Lévy Véhel (1995), and various examples
of lass Gaussian fields have been studied: filtered white noise (Benassi er al. 1998b);
multifractional Brownian motion, where the fractional index H is replaced by a fractional
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function H(x) (Benassi et al. 1997; Peltier and Lévy Véhel 1996); and, for irregular fractional
functions, the generalized multifractional Brownian motion (Ayache and Lévy Véhel 1999)
and the step fractional Brownian motion (Benassi et al. 2000). These fields share many
properties with FBM. For instance, the sample paths are locally almost surely C* for every
H' < H(x). In these models the identification of the fractional function is a central problem.
It has been done with semi-parametric estimators based on generalized quadratic variations
(Istas and Lang 1997; Benassi ef al. 1998a; 2000).

In this paper we propose a class of second-order fields which we refer to as real
harmonizable fractional Lévy motion (RHFLM), including non-Gaussian fields and FBM,
which have stationary increments, which are lass with index H and tangent FBM, and
which have sample paths locally almost surely C" for every H' < H. These fields are
obtained by integrating fractionally a Lévy measure L(d&) that has moments of every order:

|

X = | e ) 1)

When the Lévy measure L(d§) is a Brownian measure W(d§), (1) yields the harmonizable
representation of the FBM (Samorodnitsky and Taqqu 1994). Let us also recall that the real
harmonizable fractional stable motion (RHFSM) has a representation similar to (1) where
L(d§) is a complex isotropic stable a-symmetric measure M, (d). Nevertheless, RHFSMs are
not RHFLMs since the variance of their increments is infinite. Actually the complex isotropic
stable a-symmetric measure can be truncated to yield an RHFLM that has an asymptotic self-
similarity at infinity with an index H different from H:

[ X(Au) @)
lETOC <A—H> VeRi = (T(u))ue[Rd»

where the non-degenerate field (7'(«),crw is called the asymptotic field. Roughly speaking,
this ‘truncated’ real harmonizable fractional stable motion can be seen as a bridge between
FBM and true RHFSMs. We think that this class of identifable models which exhibit a very
different behaviour at low scale (4 — 07, lass) and at large scale (1 — +o00), where discrete
structures (related to the ‘big jumps’ of M,(d§)) appear, should be useful in certain
applications (see Hermann and Roux 1990, for instance). This phenomenon of different
asymptotic self-similarities at low and large scales has already been encountered in Benassi
and Deguy (1999), but there the asymptotic fields are both FBMs, which is less remarkable.
FBM is also often used in finance, although a scaling index that varies with scale has been
reported in Bardet (2001). RHFLM may provide a more realistic model in this domain.

From the statistical point of view, the fractional index of an RHFLM can be estimated
with the method of generalized quadratic variations which cannot be applied to RHFSM —
see Abry et al. (2000a; 2000b) for other methods of estimation in the case of RHFSM.

In Section 2 the construction of RHFLMs is discussed. The asymptotic self-similarity
properties and the regularity of the sample paths of such fields are studied in Section 3, and
Section 4 is devoted to the identification of the fractional index.
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2. Construction of non-Gaussian fractional fields

In this section the RHFLMs are obtained and the construction of the Lévy measure L(d§)
described in detail. For the sake of simplicity, we work first with a Lévy measure (written
M(d&)) without Brownian component. Since it is desirable to be able to identify the
parameter H with generalized quadratic variations, we require the field Xy to have moments
of order 2: E(|Xy(x)]*) < +oo, for all x € R?. Actually if M(d§) is a symmetric a-stable
measure the RHFSM Xy (cf. Samorodnitsky and Taqqu 1994) is self-similar but Xy(x) fails
to have moments of order 2. Hence we consider a non-vanishing Lévy measure M(dE)
represented by a Poisson random measure N(d&, dz) in the sense of Section 3.12 of
Samorodnitsky and Taqqu (1994) but with a control measure that has moments of order
p=2. See Neveu (1977) for a general discussion of Poisson measures. Specifically,
let N(dE,dz) be a Poisson measure on R X C for which the mean measure
n(dg, dz) = EN(d&, dz) = dév(dz) satisfies

Vp =2, J |z|Pv(dz) < +o0. )
c
Let us recall the basic properties of the compensated Poisson measure
N=N—n.
For every function ¢ : RY X C — C such that ¢ € L*(RY X C), the stochastic integral
|, o2
RIXC
is defined as the limit in L*(Q) of
[, o e e
RIXC
where ¢ is a simple function of the form > ;c;a;14,. The set [ is finite and

| Satdes e S e,

RIXC %7 icl

where the Poisson random variables have intensity n(A4;) and are independent if the sets A4;
are disjoint. The classical isometry property is:

2
[EU @(&, D)N(dE, d2)| = J lp(&, 2)[n(dé, d2). 3)
RIxC RIXC

Furthermore if ¢ is real-valued then so is [¢ dN, and if R(z) denotes the real part of a
complex quantity z then R([¢p dN) = fR((p)dN ; the same property is true for the imaginary
part J of stochastic integrals.

It follows that, for all u, v € R, the characteristic function of the stochastic integral is

Eexp (i (uJR(qo)dN + UJJ((p)dN) )
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= exp me[eXpﬁ(MR((p) +vJ(9) = 1 —i(uR(p) +vJ ((P))]dé'V(dZ)}, “)

where the integral on the right-hand side is convergent since
lexp(ix) — 1 — ix| < Clx|? Vx € R.

We observe that the Poisson measure N has to be defined on RY X C for the field X to be
real-valued, as in the case of RHFSM. To be more specific, we consider the compensated
Poisson measure N = N — n, and we can now define the Lévy measure.

Definition 2.1. We define a Lévy measure by the following integration property:
J f(EM(dE) = J [f(E)z + f(—E)ZIN(dE, dz) ®)
R4 RIXC
for every function f: R? — C where f € L*(R?).

The name ‘Lévy measure’ is related to Lévy processes, which are processes with stationary
and independent increments. The Lévy decomposition of such processes (cf. Theorem 42 in
Protter 1990, p. 32) can in some cases be given by

X = [ tn.a@zNes, a2,
where N is a real-valued compensated Poisson measure. Formally, we can define

M(dE) = zN(dé&, dz)

and
X, = jl[o,t](s)M(da.

This suggests (5) if we neglect the problem of getting real-valued processes. Then if,

VS € Rda f(_g) = @3 (6)

then
J FEM@E) :J YR(S(E)2)N(E, dz) = 2R (J FE)2N(E, dz)) e R.
R4 RIXC RIXC

Hence X is a real-valued field since the integrand
|
[ @

satisfies (6).

Classically, the field Xy has stationary increments if the control measure v(dz) is
assumed to be rotationally invariant. Let P be the map P(pexp(if)) = (0, p) € [0, 2m) X
[R?::. Henceforth the measure satisfies the property
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P(v(dz)) = dOv,(dp), ®)

where df is the uniform measure on [0, 2;t). When f satisfies (6), for every measurable
function a, the equality

@)

[r@eiaenmae @ [romas.
where 2 means that the random variables have the same distributions, is a consequence of
(4). Moreover, the stochastic integral has a symmetric distributions:

—Jf(E)M(dé) @ Jf(S)M(dS)-

Hence, under assumption (8), Xy is a field with stationary increments, which considerably
simplifies the following developments. Moreover, as a consequence of (3), an isometry
property holds for the Lévy measure M(d€) when f satisfies (6):
2 —+00
e[ r@ma] =l | o

To study the field Xy moment of order 2p, E(Xy(s) — Xy(£))*?) is computed with the
help of the corresponding L?>” norms of the deterministic integrand (7). Actually the
characteristic function (4) allows us to compute every moment of the stochastic integrals

JA(E)M(dE).

Proposition 2.2. If f € 05:1 L*Y(R?) and f satisfies (6) then [f(E)M(dE) is in L*7(Q) and

+00
o\  mf | e
: (Jf(S)M(d§)> ~S e S 0 O
=1 P, g=1 (mg!)
where ) p, stands for the sum over the set of partitions P, of {1, ..., 2p} into n subsets K,

such that the cardinality of K, is 2mg with my =1 and where ||f |2, is the L*"1(RY) norm

of 1.
Proof. A power series expansion of both sides of (4) yields the result. O
We now introduce the real harmonizable fractional Lévy motion.

Definition 2.3. A real harmonizable fractional Lévy motion (RHFLM) is a real-valued field
which admits a harmonizable representation

S|
Xiu(x) = JW e L)

where L(d§) = aM(dE) + bW(dE) is the sum of a Lévy measure aM(dE) and of an
independent bW(dE) Wiener measure. We suppose that M(dE) satisfies the finite-moment
assumption (2) and the rotational invariance (8).



102 A. Benassi, S. Cohen and J. Istas

With this definition X is the sum of the process

J )
o JET75 7

which is an FBM, and of

|

both processes being independent. In particular, the FBM is an RHFLM obtained for

L(d&) = W(d?).
In the following proposition all the properties obtained for the RHFLMs in the
construction are summarized. For the sake of simplicity, let us focus on the case

L(d&) = M(dS).

Proposition 2.4. Let us consider a Lévy measure M(dE) that satisfies the finite moment
assumption (2) and the rotational invariance (8).
The real harmonizable fractional Lévy motion

|
X0 = | S M@

is such that:

e P(Xy(x) €R, Vx € RY) = 1;
o Xy has stationary increments such that

oo 21 —
(o)~ Xu ) =47 )| %ﬁf‘» déllx — v,

where &) is the first component of &;
o for every u=(uy, ..., uy) and v =(vy, ..., Uy),

Eexp <i Z UkXH(“k)) = €Xp (JR C[exp(fu,v,H(ga z2)—1- fl/,U,H(ga z)]d& dV(Z)) >
k=1 I

where
] n efi(u/f-é -1
Sup,u(§, 2) =i2R ZZ UkW .
k=1

The proof of this proposition is a straightforward consequence of the construction of
RHFLM.
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3. Some properties of real harmonizable fractional Lévy
motions

In this section we investigate some properties of self-similarity and regularity types that the
RHFLM shares with FBM. In Section 3.1 we prove two asymptotic self-similarity properties
for the RHFLM. Since no trivial invariance property is assumed for the Lévy measure, this is
the best result we can hope for in that direction. In Section 3.2 we see that the paths of the
RHFLM are almost surely Holder-continuous with a pointwise Hoélder exponent H. We
suppose for the sake of simplicity in this subsection that L(d§) = M(d$).

3.1. Asymptotic self-similarity

Since we know the characteristic function of stochastic integrals of the measure M(d§) we
can prove the local self-similarity of RHFLMs. Actually this is a consequence of the
homogeneity property of 1/(||&]|4/**#) and of a central limit theorem for the stochastic
measure M (dE).

Proposition 3.1. Real harmonizable fractional Lévy motion is locally self-similar with
parameter H in the sense that, for every fixed x € RY,

1/2
[ Xu(x+ eu) — Xp(x) ) oo
gggg( T uers = | 2m 0 p*vp(dp) | (Bu())eme, (10)

where the convergence is in distribution on the space of continuous functions endowed with
the topology of the uniform convergence on compact sets. The limit is the distribution of an
FBM.

Proof. The convergence of the finite-dimensional margins is proved first. Since the RHFLM

has stationary increments we only have to prove convergence for x = 0. Let us consider the
multivariate function

) n efieuk»é' —~1
Guw (¢, &, 2) = 2R ZZ Uk T ENa2en |
= <"léll
where u = (uy, ..., u,) and v = (vy, ..., 0,) are in R”. Then
o~ Xpy(eu
Eexp <lka ”(H")> = exp <J [exp(guori(c, & 2) — 1 = guonn(c, & z)]dsdv(z)>.
= € RIXC
The change of variable A = €& is applied to the integral on the right-hand side to give

di
J [exp (ed/zg,w,H(l, A, z)) —1—¢"guu(l, 4, 2) — do(2).
RIXC €

Then as ¢ — 0 a dominated convergence argument yields that
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. N~ Xu(euy) 1 J 2
lim E E = ~ 1, A, z)dAd )
;,%5 . (1 k=1 i e ) P (2 Rdxcgu’U’H( »42) i

Moreover, (8) allows us to express the logarithm of this limit as

n 2

Uk(e—iuk';u _ 1)
k=1

d,

+00
—2nJ %, (dp)J
o T e A28

which is the variance of Y }_,vxBu(ux), and this concludes the proof of the convergence of
finite-dimensional margins.
Let us proceed to the proof that the distributions are tight. We need to estimate

E(X#(x) — Xu(1))*?

for sufficiently large p. Unfortunately, when H > 1 — d/2 these moments are not finite
because of the asymptotic properties of the integrand:

e s 1
go(x, §) = EE

when ||&]] — 0. In the case H > 1 — d/2 we thus apply a transformation to the integrand g
to analyse in two different ways its behaviour at both ends of the spectrum.
Let us first consider the easy case: H <1—d/2. Then go(x,.) € L*(RY) for all
g € N*, and
2 - 2
lgoCx, ) = g0 M haay = Ix = YIPTNT D go(er, D gy
where e; = (1,0, ..., 0) € R?. Because of (9) we know that
p
E(Xp(x) — Xu(p)*? =Y D(n)|x — y|Hrde=m
n=1
for some non-negative constants D(n). Hence there exists C < 400 such that
E(X1(x) = Xu(n)*? < Cllx — y|P'P. (1D
Hence if H <1-4d/2,

(Xu(x + cu) — Xu(x + cv))??
[E( - 62HpH < [lu— |

and we can take p > d/2H to show tightness.
When H >1—4d/2, let K be an integer such that K = 1+ d/2, let

K tk
P =)
k=1 "

and let @ an even C'-function such that ¢(¢) = 1 when |¢| < 1/2 and ¢(t) = 0 when |¢| > 1.
Then
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e — 1 — Pr(=ix - o(|x] 5]
gk(x, &) = ”g”d/;i[-[ :

is in L?7(R?) for every x € RY and g € N*.
Xy is then split into two fields Xy = X}; + X;, where

Xj(x) = JgK(x, EM(dE) (12)
and
X = [ ol 1M, (13)

A method similar to the one used for Xy when H < 1 — d/2 is applied to X7;, and we check
that X, has almost surely C' paths.
Let us start by observing that

2q

l gx (e, I 2ogay = [RGE

2
1)”gK(ely ')HLZII(Rd)'

As in the easy case, we have to estimate
L= Jextr ® - gntr a7 d
R
when ¢ — 0". Let us split this integral into

If = " 1|g1<(x, &) — gx(x + cu, &% dE

and

10 = el 1|g1<(x, £) — gi(x + eu, ) d&

as I, = I7 + 1. Actually
|gx(x, &) — gx (¥, O] = |go(x — », &)
on {¢||&]| = 1} for ¢ small enough, and we obtain, by the change of variable 1 = €&,

|efiel-/'L —1 |Zq

+ __ 2Hg+d(q-1)
I =c¢ J R da. (14)

[41=1
Then a Taylor expansion is applied to /_:
=] s . b
<l

where dgx(6(x, cu, &), &) is the differential of the map gk(., &) and 6(x, ¢, §) is a point in
the segment (x, x 4 cu). Note that
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J H c”dg"(e(x’ eu, &), &)|1d& < +oo

for every fixed C and that
Idgi(BCx, cun, &), )| = O(||§|P =)

when ||&]] — 400, hence

<J |dgs 6, cu. £). £ d5> G
lEl<¢

when ¢ — 07 and
|I7]| < cAHardla= (15)
when ¢ — 07. Because of (14) and (15) there exists a positive constant C such that
JRdIgK(x, &) — gk(y, B dE < Cllx — y|Prirtaah,
and consequently
E(X7(0) — X5(0))* < Cllx =y (16)
when ||x|| < 1, ||y|| <1, which yields that the distributions of

(X;(x +e)— X;(x)>
eH >0

are tight. To conclude, let us write X7, for ||x|| < ¢ as

Py(—ix - §) Pg(=ix-§) .
e M@+ | e ot el M)
J(|g|<1/z [|E[4/2+H 1a=die<1 ||EN9/2HH
The first integral of this expression is actually a polynomial in the variables (xi, ..., x;7) with

coefficients that are random variables; hence it has almost surely C' paths. Let us remark that
the integrand of the second integral is bounded with compact support in R? X C and is C' in
the variable x, and so the integral has the same properties which yield that X, is almost
surely Cl. Then it is clear that

lim <XH(x + cu) — XH(x)) @)
ucRd

=0
—0+ et ’
which concludes the proof. O

We now wish to exhibit an example of RHFLM that has asymptotic self-similarity
properties when the increment is taken at large scales. Actually if the control measure

v,(dp) is
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; ‘Ha 1(p| < 1) (17)

where 0 < o < 2, we show that at large scales the RHFLM is asymptotically self-similar
with parameter 0 < H < 1 such that H + d/a = H + d/2. Heuristically this means that at
large scales the truncation of the Lévy measure disappears. Moreover, the limit field is an
RHFSM with parameter H. This shows that at large scales the behaviour of an RHFLM can
be very far from the Gaussian model even if the RHFLM is a field that has moments of order
2. The RHFLM with control measure (17) can be viewed roughly speaking as between an
RHFSM at large scales and an FBM at low scales. Let us now state the asymptotic self-
similarity precisely.

Proposition 3.2. Let us assume that H, defined by H +d/a=H+d/2, is such that
0 < H < 1. The RHFLM with control measure v,(dp) given by (17) is asymptotically self-
similar with parameter H,
. Xy (Ru) (d)
1 -~ = Y~
i (), O

where the limit is in distribution for all finite-dimensional margins of the fields and the limit
is an RHFSM that has a representation

e—iu-§ —1
Y 7(u) = ZRJ —— M,(d&),
" re [|§]|4/a+H

where M, (d&) is complex isotropic stable a-symmetric random measure.

Proof. As in the previous proposition we consider a multivariate function
71Ruk 13 1
8u,v, H(R § Z) = 12R< ; UkiRHHSHd/zJFH)

where u and v are in R”. Further,
" Xu(Ru
[Eexp( D u i "’) — exp (J exp(guon(R. & )~ 1~ g (R, & 2)dE dv(z>>.
RIXC

Then the change of variable A = RE is applied and H is chosen such that the integral in the
previous equation is now

. } dp
J |:eXp(gu,U,H(19 A, Rd/apele)) —1- gu,U,H(ly j‘a Rd/ape]0>i| 1(|p| < 1)R ddﬂ‘da 14a”
RdX[O,ZI[]XR;: | |

Setting r = R%/%p, the integral becomes
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I(R) = J [exp(gu,vﬂ<l, A, rem)) —-1- gu,u,H(l, A, rem)}
R4 X[0,2] X R

dr
d/a
1(|r| <R )d/1d92|r|]+a.
Recall that
: dr
_ xr : d
et = o) 2
for every R > 0, where
oo dr
Cla) = L (1- cos(r))m.
Write
Jr= J [e" — 1 — ixr]1<|r| < Rd/“) _dr_ .
R 2|r|1+a
Then
lim (Jg+ C@lx|*) = lim | [¢" - I]I(M > Rd/“> dr
R—+o0 R—+00 | 2|r‘1+0‘
=0.
Hence
! 03 5 =N giag
im I(R) = —C(a)J 2R | €' Uy ———— ,
R—>+o0 R4[0.27] = e
27 n e*iuki 1 a
= —C(a)J 2 cos(0)|* dGJ Uy ————
o oo, | o
Since this last expression is the logarithm of
E €xp (1 Z Uy, Yﬁ(uk)> ,
k=1
the proof is complete. O

3.2. Regularity of the sample paths of the RHFLM

The Kolmogorov theorem (see, for instance, Karatzas and Shreve 1988) and Proposition 2.2
show that H can be considered roughly speaking as the Holder exponent of the sample paths
of the RHFLMs. Recall the definition of the pointwise exponent H;(x) of a deterministic
function f at point x:
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fat0—f() _ 0}_

el

Then the regularity of the sample paths is described by the following proposition.

He(x) = sup{H’, ling
: .

Proposition 3.3. For every H' < H there exists a continuous modification of the RHFLM

such that
w; sup (M> < 6] =1, (18)

0<||x—y||<e(w).||x||<L||y|<1 llx =l "

P

where ¢(w) is an almost surely positive random variable and 6 > 0. Moreover, at every point
x the pointwise exponent Hy, (x) of the RHFLM Xy is almost surely equal to H.

Proof. In the first part of the proof we will use our estimate (11) and the Kolmogorov
theorem. When H < 1 — d/2 we already know by (11) that

E(X#(x) — Xu(»)*? < Cllx — y|**

when ||x|]| < 1, ||y|| =1 and the Kolmogorov theorem yields (18) for every H' < H. When
H >1—d/2 we recall that Xy has been split into

Xy =X+ X5,

where X}, and X, are defined in (12) and (13). Furthermore, we know that X}, is H'-Hélder
continuous for every H' < H by the Kolmogorov theorem and inequality (16), and that X
has almost surely C' sample paths, which concludes the proof of (18).

Because of (18), at every point x the Holder exponent satisfies H(x) = H. To show
H(x) < H let us use local self-similarity (10). Actually if H' > H we can deduce from

(10) that
e @)
lim = 05
c—0*t ‘XH()C +¢€) — XH()C)l

which is also a convergence in probability. Hence we can find a sequence (¢,),en — 07 such
that

| Xu(x + &) — Xu(x)|

li : = Imost ly.
nirfoo 65[ +o00 almost surely
This argument concludes the proof of Proposition 3.3. O

4. Identification of the fractional index

Let W be a Brownian measure on L*(R?) and M a Lévy measure satisfying the assumptions
of Definition 2.3. Assume that M and W are independent. Define the Lévy measure

L=oW+ M.
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Recall that

eflx & _ 1
o) = | fggarn 409
is the sum of an FBM and an RHFLM, both motions being independent.
For k = (ki, ..., k;) € N? and n € NT, define

L(ﬁ ﬁ)

I’l_ n’“" n ’

XH<I—‘> )(H(k1 @)
n n n

The aim of this section is to identify the fractional index H in a semi-parametric set-up
from discrete observations of the field Xy on [0, 1]%: the variance ¢ and the control

measure v(dz) of M are therefore unknown. Xy is observed at times (ki/n, ..., kq/n),
O0<kisn i=1,...,d.
Let (a;), [=0, ..., K, be a real-valued sequence such that
K K
Zalzo, Zla;:O.
=0 =0
For k = (ky, ..., kg) € N9, define
akg = iy - .. Aiy-

Define the increments of X associated with the sequence a:

K
k
A, =Y akXH< i p)
k=0 h

& ki + p1 ka + pa .
= Z akl...akdXH 5 ey 5
Koy =0 h n
one can take, for instance, K =2, ag = 1, a; = —2, a; = 1. Define the quadratic variations
associated with sequence a:
On = K+ (n—K+1)i & Z( )’

One can check that
log(E(Q,)) = —2H logn + C,

where C is a constant, and it is usual to identify H as the slope of a linear regression of
log(Q,) with respect to logn for the FBM. Coeurjolly (2001) shows that the quadratic
variations are optimal in a Gaussian framework. For the sake of simplicity, we consider that
the estimator of fractional index H is
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5 o1 Oy
Hl’l = E 10g2 Q:z 5

but linear regression with (log(Q,/))i=1,... could have been chosen. As pointed out in
Section 1, this estimator is the estimator used by Istas and Lang (1997) to estimate the
fractional index of an FBM. Other estimators using wavelet coefficients instead of discrete
variations are also available in the literature (see Bardet 2000; Flandrin and Abry 1999) but
only in the Gaussian and stable framework.

Theorem 4.1. As n — +o0,

~ P
g 9w

() . . .
where — means a convergence in probability. Moreover, there exists a constant C > 0 such

that, as n — +o0,

nd/z(ﬁn — H) ® C.

Proof. First define the following constants:
A=0>+ 4J'IZJ pzvp(dp)
R+
B = 4nJ p41/p(dp).
R+

Define the following functional spaces:

fZ - {f S Lz(Rd)a f(_g) = @7 v& S Rd}a
Fao={f € AR N L'RY), f(=&) = f(§), VE € R'}.

According to Proposition 2.2, we then have:

o for all f1, /> € F>,
[Ejfl (E)L(dE)sz(E)L(df) - Ajfl E)f2(—E)E; (19)

e for all f1, f2, f3, fa € Fa,



112 A. Benassi, S. Cohen and J. Istas

E Jf,»(&)ud&)

i=1

e (Jﬁ (E)/3(—E)E X Jf3($)f4(—§)d§ + Jﬁ (E)/3(—E)E X sz(&)f4(—§)d§
+Jf1 (E)f(—EE X sz(&)f3(—§)d§> + B(jfl EVo(—E) /() fa(—E)E

+ Jf 16)/2(8) f3(=8) fa(—)dE +Jf 1 (f)fz(—g)f3(—§)f4(§)d§) . (20)
Now define
v, =n*Q,.
We first calculate the expected value of ¥,. We deduce from (19) that

2
K
k
Z ay exp (i . 5)
k=0 h

B

EAX,)* = AJ
R4

The change of variables A = &/n leads to

2

K
Z ag exp(ik - 4)

k=0

E(AX,) = An’zHJRd T da,
and therefore
K 2
Z ag exp(ik - 1)
€7, = 4] = - 0

We can now calculate the variance of V,. We deduce from (20) that

E KAXP)Z (AX,,,H =T+ Tr+ Ts + T4,

with
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K Kk
Zak exp (—i; . §>

T = 4 = d
=) | g |

2 2

K k
Z ax exp (—i; : 5)

k=0

T, = 242 g dé |,
2 J,.e & ¢

K K 4
Zak exp(i; . E)

k=0
h= ZBJRH BRI

4

Zakexp(l_ ‘)

Zp Zp
T,=B € dé&.
= n JEpar %
Thus
var(V,) = G, + NG,
with
2 2
K
k
o Zakexp(ln.g>
n H U P =0
G, =24 — I d
(n— K+ 1)2d Z J || E]|4+2H e
K 4
(5¢)
n
NG, = 2B 4HJ = d
e F A

4

Zakexp(l_.g)

B 2p 2p é_. .
(n— K—|— 1)2d Z J{Rd |[E[|24+4H d§

p.p'=0

_|_

We first study the G, part of the variance. The change of variables A = &/n leads to:
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zak ow(-i%-¢)

2 2

K
Z ay exp(ik - 1)

2Pg _ ,2H —i(p—p")-A | k=0
e dé=n J e dA.
Jw 1&[|4+2H R [1A[|4+2#
Define the operator
_ ﬁi
=1 axi
Let us suppose that for all j, p; # pj. Integrating by parts leads to
K
Z ax exp(ik -
—i(pp)-4 | k=0 Y J o—ip-p)ipy | k=0
e D da.
Jw [1A[| 424 H(pj r)) [[A]|+2H

The conditions Zf:oal =0, Z /—ola; = 0 ensure the convergence of the integral.
Since there exists a constant C; such that, as n — 4o,

1
- S C
n Z (m— m')? —

as n — +o00,
n'G, — C;.
We now study the NG, part of the variance. Using the change of variables 1 = &/n, we

obtain, for T3,
4

K
Z ag exp(ik - 1)
2B k=0

) N

da.

It remains to study the part of NG, depending on 7. This part can be written as:
K 4
. > aexp(ik - 2)
BY J Q2ipp) | k=0
p.p=0°R

da.

H/‘{||2d+4H

Using integration by parts as previously, we prove that this part is negligible with respect to
the previous parts.
To summarize, we have proved that there exists C > 0 such that

n? var V,— C,

and Theorem 4.1 is proved. |
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