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We study some properties of the class U of laws of a continuous local martingale which is determined
by the law of its quadratic variation, and we give a ‘simple’ characterization of this class.
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1. Introduction

Generally, the law L({M)) of the quadratic variation process of a continuous local martingale
M does not determine the law L£(M) of M. Indeed, two local martingales with different laws
may have the same quadratic variation process.

In this paper we characterize the class U of laws L(M) of a continuous local martingale
M determined by the law L({M)) of its quadratic variation process. That is, L(M) € U is
equivalent to the statement that if M’ is a continuous local martingale defined possibly on
another filtered space such that L((M)) = L({M")), then L(M) = L(M").

Vostrikova and Yor (2000) remarked that the class U/ is included in the class of laws of
Ocone’s local martingales (see Definition 2.1 below) and they have conjectured that the
class U is the class of Gaussian martingales (modulo a weak supplementary condition). A
proof of their conjecture is given in this paper.

In the following, we use the notation of Vostrikova and Yor (2000) for a continuous local
martingale M, C is the right-continuous inverse of (M), C,=inf{s =0, (M), > t},
{M;} =0 is the natural filtration of M, {N,};=¢ is the filtration of (M) and (C,) is the
filtration of C (the o-field Cy will play a crucial role in most of our arguments). All the
filtrations considered are complete and right-continuous. Furthermore, unless otherwise
mentioned, B is the Dambis—Dubins—Schwarz (DDS) Brownian motion of M.

2. The Ocone martingales
We begin by defining an Ocone (local) martingale as follows:

Definition 2.1. A continuous local martingale is called an Ocone (local) martingale if it is
null at 0 and if its DDS Brownian motion is independent of (M), the bracket of M.
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It will be convenient to suppress the adjective ‘local’ and write only Ocone martingale,
although we work with local martingales.

This definition is equivalent to the following property: if {e;},=¢ is a predictable process
which takes only the values —1 and +1, then

t
M M, where M = J e dM;. D
0

In fact, this is the property which Ocone (1993) took initially as a definition, and proved to
be equivalent to Definition 2.1. For other properties equivalent to (1), see Dubins et al.
(1993) and Vostrikova and Yor (2000).

The following simple property will be very useful in the sequel:

Proposition 2.1. Let M be a continuous local martingale. The following two properties are
equivalent:

(1) L(M) el.
(i) Whenever M' is a continuous local martingale defined on a filtered space
(R, A, P, F) such that L((M)") = L(M)), then M' is an Ocone martingale.

Proof. 1t suffices to prove that if £(M) € U then M is an Ocone martingale. For every
predictable process (g);=9 which takes the values —1 and +1, if M¢ = fot e, dM;, then
(M?) = (M) and L(M) = L(M?). |

Remarks 2.1. (i) It is natural in our study to introduce the notion of the F-Ocone martingale
(analogously to the notion of F-Brownian motion, etc.). An F-Ocone martingale is an
F-local martingale which satisfies (1) for every F-predictable process (¢;),=0. Generally, an
Ocone martingale is not an F-Ocone martingale. For example, if F is the natural filtration of
a Brownian motion B, then the only F-Ocone martingales with strictly increasing bracket are
the Gaussian martingales with respect to this filtration. Indeed, let M be an F-Ocone
martingale M, = fot usdB, (for an F-predictable process (u,)); then M} = jot |us|dB; is an
Ocone martingale. Using Theorem 3 of Vostrikova and Yor (2000), the process (|u/|)s=0 is
independent of B and is also adapted to B, hence (M) is deterministic. Vostrikova and Yor
(2000) give examples of Ocone martingales which are non-Gaussian in the filtration F (with
u; > 0drdP-as.).

(ii) Observe that if L(M) € U and M is an F-local martingale, then M is an F-Ocone
martingale. But the hypothesis that a local martingale M is an F-Ocone martingale is a
long way from sufficient to obtain L£(M) € U, because this hypothesis imposes the equality
of the increasing processes of a number of martingales related to M, which is much more
restrictive than only the equality of their laws (see Proposition 4.3 below).

Here is an example of Ocone martingale such that £(M) ¢ U. Let (B', B?) be a two-
dimensional Brownian motion. From Theorem 3 of Vostrikova and Yor (2000), M; =
Jo |BY|dB? is an Ocone martingale. But the local martingale N, = [;'|B!|dB! which satisfies
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(M) = (N) has a different law than M (because N is extremal, so it is not an Ocone
martingale).

3. Some elements of the class U/

It is obvious that if A, =Ny then £(M) € U. The following lemma permits us to obtain
other elements of U.

Lemma 3.1. Let M be a continuous local martingale. If M' is a continuous local martingale
such that

’ (lﬂ’v) .

(M)" ="V o0 (M) —c, @)
then L(M) € U implies that L(M') € U.

Proof. Let M| = B{)yy, be a continuous local martingale and (M) its natural filtration such
that (2) holds. Let 4 be the continuous increasing process 4, = (M'),,. A is a continuous
M-time change and N, = B), is a continuous local martingale such that L((M)) =
L({N}). Using Proposition 2.1, N is an Ocone martingale, and so is M', hence L(M') € U.(0

The following proposition gives a sufficient condition for L(M) € U.

Proposition 3.1. Let M be a continuous local martingale and C be the inverse of (M). If
N = Co, then L(M) € U.

Remark 3.1. In fact, we prove below that this property characterizes the elements of Y. To
avoid any confusion, let us emphasize that this property is precisely Co = A and not
Ny = N (because generally Coy # Ny). A simple counter-example is given after the proof.

Proof. If M’ is a continuous local martingale such that L({M')) = L({M)), then N, = Cj.
Consequently, if B’ is the DDS Brownian motion of M’ then B’ is independent of
Cy C Mg,, hence of N, which proves that M’ is an Ocone martingale. From Proposition
2.1, L(M) € U. O

Here is a simple example of a non-Gaussian martingale M with £(M) € U. Let a; and
a; be two continuous increasing functions from R™ into R™ such that a;(0) = a,(0) = 0,
and let # be a Bernoulli random variable with P(n = 1) =P(y =0) = % We define the
Ocone martingale M associated with the following increasing process:

(M), = ai1(t)1 =1y + a2()1 =0}

We have Ny, = o(n) =Cy. Then L(M) e U. For £ >0, if M' is the Ocone martingale
associated with the increasing process (M), such that (2) holds, then £(M') € U by Lemma
3.1. Observe also that Cy = ¢, Cy = o(n) and N is trivial. Then N # Cp.
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First, we will treat the case where d(M), is equivalent to dt. In this case, the cor-
responding elements of Uf are the Gaussian martingales. This follows easily from the next
proposition:

Proposition 3.2. Let M be a continuous local martingale defined on the filtered space
(R, A, P, F) such that

t
(M), = J H*ds and H, > 0dsdP-a.s.
0

If L(M) €U, then (M) is independent of every F-Brownian motion B.

Proof. Introducing, if necessary, an independent enlargement (i.e. the embedding of Q into
the product of Q with the Wiener space), we may assume the existence of a Brownian motion
B’ independent of F.. Let us define M} := fot H.dB; and M/ := fot H,dB.. M' and M" are
two F'-martingales where F'=F VvV B’ (B' is the natural filtration of B’). One has
B, = jot dM;/H; and B; = J"Ot dM{/H,, so B and B’ are adapted to {M;} and {M]},
respectively (using the positivity of H). So ((M), B) = ((M), B'). Thus, (M) is independent
of B. O

Theorem 3.1. Let M be a local martingale such that L(M) € U and

(i) (M) = [y Hds,
(i) Hy > 0dsdP-a.s.,
(iii) there exists a d-dimensional Brownian motion B (d € N* U {+oc}), such that (M)
is adapted to the filtration of B.

Then (M) is deterministic.

Proof. Let n € N* and ( fi(s))1<i<n be a vector of bounded deterministic Borel functions
such that )" f° ?(s) > 0 for every s = 0. Let v be the Brownian motion

¢ n n 1/2
v | > sns / (Z f%—(s>> .
i=1 i=1

Using Proposition 3.2, (M) is independent of y and so of fot Sm fi(s)dBL. Then, for t =0
and any functional ® = 0, one has:

D((M),, s < t)exp tzn:f,-(s)dBi, exp tzn:fi(s)dBé
0 0
i=1 i=1

Thus, (M) is independent of B and adapted to B, hence deterministic. O

E = E[®((M);, s < D]E

The following theorem, which is due to M. Emery, allows hypothesis (iii) of Theorem 3.1
to be suppressed. Define a filtration F to be weakly included in a filtration G if F; C G,, for
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all # = 0. Recall also that F is immersed in G if it is weakly included in G and the F-local
martingales are G-local martingales.

Theorem 3.2. A filtration F, such that F, is essentially separable and F trivial, can be
included in a one-dimensional Brownian filtration (that is, the Brownian filtration contains a
subfiltration which is isomorphic to F).

Proof. Let (t;)rez be a subdivision of ]0, +oo[. By the isomorphism theorem (see Vershik
1968; see also Theorem 3 of Emery and Schachermayer 2001), there exists a subsequence
(ti)kez of (tr)rez such that #;|0 when k| — oo and #;T 4+ oo when kT 4 oo and (Fy,) is
standard. So there exists a sequence of independent random variables with uniform law on
[0, 1] such that F;, =o(..., Ug—1, Uy). A Brownian motion B whose natural filtration
contains F is defined by the increments B, , — B, , = ¢;'(Uy), where ¢; is the
distribution function of N(0, #;_1 — t4_2). O

Corollary 3.1. Let M be a continuous local martingale such that Cy is trivial. If L(M) € U,
then (M) is deterministic.

Proof. (In the case where d{M), is equivalent to the Lebesgue measure, the result follows
immediately from Theorems 3.1 and 3.2 above.) Insert a Brownian motion B with a natural
filtration B such that C, C B, for all z. (M) is a B-time change (by Proposition 1.1 in Chapter
V of Revuz and Yor 1999). Considering the local martingale N; = By,, one has (N) = (M),
so N is an Ocone martingale (Proposition 2.1). But (M) is B.,-measurable, so (M) is
deterministic. O

4. The characterization theorem of the class U/

The following proposition is found in Vostrikova and Yor (2000). Here we propose another
proof.

Proposition 4.1. Let M be an Ocone martingale.

(i) Every {N}-martingale (N;) is an {M,}-martingale and is orthogonal to M, that is,
(N, M) =0.

(i1)) M is extremal if and only if M is Gaussian.

Proof. (i) Every {N,}-martingale is an {M,}-martingale because {N;V By}=0 is an
independent enlargement of {N,} (so {N,} is immersed in {N,V By}) and, for all ¢ = 0,

M, CN,VBy, where B, =0{B, u=0}

(see Emery and Schachermayer 2001). For the orthogonality, we suppose that (M) is strictly
increasing (for the general case, see Vostrikova and Yor 2000). N is a continuous
{M,}-martingale, so, for all # = 0,
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(M, N): = (B> Neopay): = ((B, N¢) o (M), =0,

because B and N¢ are independent.
(ii) Suppose that M is extremal; if N is an {N,}-martingale, then from (i) there exists a
predictable process ( f:)=0 such that

t t
Nt:NOJrJdeMS and (N, M)I:std<M>S:O.
0 0
So

(N), = J;f?d(M)s 0.

Thus N, = N, for all ¢ = 0. All the {\,}-martingales are constants, so N is trivial and M
is Gaussian. O

Remark 4.1. Proposition 4.1 is also true if M is assumed to be a P-local martingale.

The Ocone martingale property is preserved by an equivalent change of probability with
Radon—Nikodym density D,, € L'(N ). This is shown in the following proposition.

Proposition 4.2. Let M be a continuous local martingale defined on the filtered space
(R, My, P, M), and P’ be a probability equivalent to P such that Dy, = dP'/dP is
N oo-measurable. If M is a P-Ocone martingale, then M is a P'-Ocone martingale.

Proof. By Proposition 4.1(i), if D,:=E[Dy|M,] then (D, M) =0. In fact, if Dj:=
E[D,|N ], then D' is an M ,-local martingale, and so D= D'. Thus, M is a P’-local
martingale. Let H; € L®(B,) and H, € L™(N ); then

Ep [H|H;] = Ep[ Dy Hy H;]
= Ep[Do H>]Ep[ H1]Ep[ D]
= Ep[Dy H1]Ep[ Do H>]
= Ep[H1]Ep [H],

since Ep[Dy] =1 and B is independent of (M). So M is a P’-Ocone martingale. g

Remark 4.2. Proposition 4.2 is also true if P’ is absolutely continuous with respect to P, with
dP’/dP N ,-measurable.

Corollary 4.1. With the same notation and hypotheses as in Proposition 3.2, we have
Lp(M)elU < Lp(M) €U,
where Lp(M) is the law of M with respect to P.
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Proof. Let M’ be a continuous local defined defined on a filtered space (22, ML, Q', M)
such that Lo((M')) = Lp({M)). Write Q := D! - Q" with D! = D '((M")) and D} :=
Eq[D_'|M]]. Then Lo((M')) = Lp({M)); indeed, for every bounded functional F,

Eo[F((M')] = Eq/[D, F(M"))]
= Ep[D (M))F((M))]

= Ep[F((M))].

We have that M =M — [dD, M)/D' is a Q-local martingale such that (M'y = (M)

and Lo({M'")) = Lp({(M)). Then Lo(M') = Lp(M) and M' is a Q-Ocone martingale. So M’

is a Q'-Ocone martingale (by Proposition 4.2). But M’ = M’, which completes the proof.
O

The following two lemmas will be useful in the proof of the characterization theorem.

Lemma 4.1. Let 159 be a Bernoulli random variable with P{ny =1} =P{ny = -1} =1,
to, t—1 € 10, +o0[, where ty > t_y and B is a Brownian motion independent of ny. There
exists a Brownian motion B’ such that sgn(Bj, — B} |) = o, B = B V 0(10) and B is a
B'-Brownian motion, where B and B’ are the natural filtrations of B and B', respectively.
Remark 4.3. The Brownian motion B’ is a solution of the equation

dBs = a(s, By)dB,, where a(t, x) = sgn(x;, — X; ) y10,00.11(0)s
with x € Co(R*, R) and (#1)s<o a sequence of R* which decreases strictly to 0. This
equation has been studied by Le Gall and Yor (1983); see also Attal et al. (1995).

Proof. Considering the sequence (1;)r<o defined by
N1 = nosgn(By, — By)),

k+1

ne=no [[sen(B,, = B, ), k=-L
n=0

For all k£ =< 0, the random variable #; is independent of B; indeed

k+1
E[17:] = E[50]E lH u] =0,
n=0

and

k+1

FBm || u] = E[19]E
n=0

k+1

FB) ] un
n=0

We define B’ by sgn(Bj, — B ,) =19 and B’ = [ndB, where

E[F(B)i] = E

| E—
I
e
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M= Mk (D + 70T 1 ol (-
k<0
We observe that n; = sgn(Bj, — B;, ) and B; — B;, = ni(B, — B,,) if t € [ty, tys1[. The
filtration considered is the smallest completed filtration F which contains B, V o (), where
t € [tr, trr1[ (F is a right-continuous filtration).
We now prove that B’ is an F-Brownian motion. Let ¢ € [#f, t5([ and € € {—1, +1}.
Then

E[(B! — B},)1 {Wk:e}F(Bu: u=<ty)] =E[ni(B: — By)1 {WkZE}F(Bua u < ty)]
=Py = OE[(B; — B, )F(By, u < 1)] = 0.
Hence F = B’ because B, = F. B is a B'-Brownian motion because B = [ dB’ and 7 is

F-predictable. O

Lemma 4.2. Let ¢ > 0 and M be a continuous such that L(M) € U. If M? is a continuous
local martingale (defined possibly on another filtered space) such that

(la_w){ ¢ if r<e, 3)

&
(M) = (M)i—e + ¢ if r=¢,
then (M°®) is independent of o(B%,, — 3%, t = 0), where f° is the DDS Brownian motion of
ME.

Proof. Let M? be a local martingale which satisfies hypothesis (3). Write N, := y? e
where y{ = — Bt For s, t € R*, we have

{(N) <5} = {(M)rse < s+ €} € MEy

)ire—€’

&
t+e

Hence, (N) is a continuous (/\/l*gcf+ )s=0-time change, so N is a continuous local martingale.
Since L({N)) = L({M)), N is an Ocone martingale and (M¢) is independent of y*. O

We can now state our characterization theorem.

Theorem 4.1. Let M be a continuous local martingale and C be the inverse of the increasing
process (M). We have L(M) €U if and only if N = Cy. In particular, L(IM) €U is a
Gaussian distribution if and only if Cy is trivial.

Proof. 1t is enough to prove that L(M) € U = N o, = Cyp. We will present the proof in five
steps. In the first three steps, we treat the particular case where C is trivial.

Step 1. We shall prove that, for all t = 0, C, is trivial. Suppose to the contrary that there
exists a #p > 0 and a set 4 € C,, with P(4) ¢ {0, 1}. Let Q be the probability Q := Dy, - P,
where

Dy = d—Q = !
dP  2P(4)

1
1 T ge.
4 +2P(AC) 4
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Observe that Q(A4) = % In what follows, we shall work with respect to the probability Q (by
Corollary 3.1, Lo(M) € U). Let 0 < 7y <t and (7)o the increasing process

7 — t if =<1t
TV WM) L+t if t=1,,

(law)

(observe that 7 ="(M'-') from Lemma 4.2). Denote by C’ the inverse of 7 and introduce
the Brownian motion B’ of Lemma 4.1, with )y =14 — 14 and B the DDS Brownian
motion of M.

Step 2. We need the following lemma:

Lemma 4.3. Define F;:= BV C;. If A is independent of C;_,, then the Brownian motion B’
is an F'-Brownian motion (C; = () >00(Cj, s < t + ¢€)).

Proof. Let t;,) <t <t; and let F be a bounded Cj -measurable function. For k < —1,
define 7 = nov;, where v; = Hln‘ié sgn(B;, — By, ,). Then
1 :=E[(B,— B},)FH(B,, u < tk)‘\{nk:g}]
= > E[0k(B, — Bi,) HY (y,—ee JEI10 F 1 (yp=er}]-
e'==+1
But for £ =0,
I =E[(B; — By)H(By, u < 10)][E[Fnol ;=] = 0,
and for £ <0, 5 is independent of F, so that
I="" E[vi(B,— B,)H(By tt < )1 (p,—ee} JEN0T =} JELF]
e'==%1
= E[F]IE[(B; — B1, )H(By, u < 1;)1(5,—¢}]
= E[F]E[(B} — Bi,)(Bu, u < ty)1(;,=}] = 0.
Hence, B' is an F'-Brownian motion. O
Step 3. In fact, A4 is independent of C;, =Cp (because C;=1¢ for t=<1¢_; and
Ci=C,_y,+ 1t for t >1t_),so B'is an F’'-Brownian motion. It is easily seen that T is
a continuous F'-time change, hence N, = B7, is a continuous. Since <N>(g)<M’*1>, we
have that o(Bj.,, —B;,,t=0) and (N) are independent (Lemma 4.2). But then
0(Bix,,—Bi,,t=0) and (M) are independent, which is a contradiction (because

A ={B}, — B; , >0} is measurable with respect to N ). This finishes the proof of this
particular case.

Step 4 (the general case). In this step, we shall work on the canonical space (we do not
use the notation of Theorem 4.2). Let M’ be the convex set of all the probability measures
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P on Q = C(R", R) such that the coordinate process M;(w) = w(f) is a P-local martingale.
We need the following lemma:

Lemma 4.4. Let P € M’ and P' be a probability measure on M, such that P' < P and
D, = dP’'/dP is Cyo-measurable. Then
1 P eM'.
(i) If P €U, then P' € U.
Proof. (i) Let B be the DDS Brownian motion of M, 0 < s < f and F' € L* < (Mg,). Then
Ep[(B; — By)F] = Ep[(B; — Bs)FDy] = 0.

Hence B is a (P', M¢)-Brownian motion and M is a P’'-local martingale.
(ii)) The case where P’ ~P has been treated in Corollary 4.1. Suppose that
P(Dy = 0) > 0 and consider Q" € M’ such that Lo((M)) = Lp((M)). Define

Q = L2x70)

Do Q' +7,]{Dx:0} -P.
Using (i), we have
1 1{p.=0}
S ¢ YA=N VI d —2=0 pcM.
DoPD. >0y QM and oo FE
So, using the convexity of M', Q € M. Observe that Lo({(M)) = Lp((M)), so P =Q and
P'=Q. O

Step 5. We shall show that {Mult(C|Co) > 1} =@ a.s. Suppose to the contrary that
there exists 7p > 0 such that B := {Mult(C,,|Co) > 1} # @ a.s. Using Lemma 4.4,

1
| S——

.:P(B)-Peu.

Arguing as in the particular case (steps 1, 2 and 3) with P’ instead of P and

1 14 1 4e
' =3 ’ + ’ : P,
Q 2 (P (41Co) P (ACC0)>
instead of Q, we obtain the result (observe that 4 and Cy are Q’-independent, Q'(A4) = %,
Q(E)=P/(E)and Q(ANE) = %Q’(E) for every E € Cy). O

We now present another characterization of the uniqueness class.

Proposition 4.3. L(M) € U if and only if the DDS Brownian motion B of M has the
predictable representation property in the filtration F =BV C, and M is an Ocone
martingale.

Proof. We suppose that B has the predictable representation property in F and M is an
Ocone martingale, and we prove that Cy = Co, = N . The filtrations C and B are immersed
in F, and if N is a (C;)-local martingale, then N, = Ny + fotfs dBg, for an F-predictable
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process (f7). But (N, B) =0, so fotfs ds = 0 for all + = 0. Hence, for all = 0, fotff ds=0
and N, = Ny. Consequently, Cy = Coo = N and L(M) € U (by Proposition 3.1).
Conversely, if £(M) € U then Cy = N« (Theorem 4.1) and F;, = Cy V B;. O
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