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Let Y ¼ (Yi)i2 I be a finite or countable sequence of independent Gaussian random variables with

mean f ¼ ( f i)i2 I and common variance 	 2. For various sets F � ‘2(I), the aim of this paper is to

describe the minimal ‘2-distance between f and 0 for the problem of testing f ¼ 0 against f 6¼ 0,

f 2 F , to be possible with prescribed error probabilities. To do so, we start with the set F which

collects the sequences f such that f j ¼ 0 for j . n and jf j, f j 6¼ 0gj < k, where the numbers k and n

are integers satisfying 1 < k < n. Then we show how such a result allows us to handle the cases

where F is an ellipsoid and more generally an ‘ p-body with p 2]0, 2]. Our results are not asymptotic

in the sense that we do not assume that 	 tends to 0. Finally, we consider the problem of adaptive

testing.
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1. Introduction

We consider the statistical model

Yi ¼ f i þ 	
i, i 2 I , (1)

where f ¼ ( f i)i2 I is an unknown sequence of real numbers (called the signal), 	 is a positive

number and the 
i are a sequence of independent standard Gaussian random variables.

Throughout this paper, I denotes either the set f1, . . . , Ng (for some integer N > 1) or

N� ¼ Nnf0g, the notation I enabling us to handle both the Gaussian regression model and

the Gaussian sequence model simultaneously. The observations are given by the sequence of

Gaussian random variables Y ¼ (Yi)i2 I , and their joint law is denoted by Pf .

Let F be some subset of the Hilbert space

‘2(I) ¼ f 2 R I , k f k2 ¼
X
i2 I

f 2
i , þ1

( )
:

Our aim is to describe the minimal radius r for which the problem of testing f ¼ 0 against

the alternative, f 2 F and k f k > r, with prescribed error probabilities is possible.

More precisely, let us fix some level Æ 2]0, 1[ and consider some level-Æ test �Æ, with

values in f0, 1g, for f ¼ 0 against f 2 Fnf0g (we decide to reject the null hypothesis

when �Æ(Y ) ¼ 1). The test �Æ is powerful if it rejects the null hypothesis for all f 2 F
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lying outside a small ball around 0 (the smaller the better) with probability close to 1.

Then, given some � 2]0, 1[ (typically small), it is natural to measure the performance of

the test via the quantity r(�Æ, F , �, 	 ) defined by

r(�Æ, F , �, 	 ) ¼ inf r . 0, inf
f 2F ,k f k>r

Pf [�Æ ¼ 1] > 1� �

� �

¼ inf r . 0, sup
f 2F ,k f k>r

Pf [�Æ ¼ 0] < �

( )
:

The aim of this paper is to describe the quantity

inf
�Æ

r(�Æ, F , �, 	 ) ¼ r(F , Æ, �, 	 ), (2)

the infimum being taken over all the level-Æ tests. We shall call this quantity the (Æ, �)-

minimax rate of testing over F (or the minimax separation rate), the word ‘rate’ referring to

the scale parameter 	 which is meant to decrease towards 0 when one considers the

asymptotic point of view.

It is beyond the scope of this paper to give an exhaustive review of the literature on the

problem of hypothesis testing. We refer for further details to the series of papers by

Ingster (1993a; 1993b; 1993c) which represent a landmark in the problem of finding

minimax rates of testing over nonparametric alternatives. In the Gaussian white noise

model, the case of ellipsoids was first considered in Ermakov (1991) where exact minimax

rates of testing are stated under assumptions on the semi-axes of the ellipsoids. Other

kinds of alternatives are considered in Ingster (1993a; 1993b; 1993c) including Hölderian

functional spaces, and ellipsoids in ‘2. Lepski and Spokoiny (1999) obtain minimax rates

of testing over Besov bodies Bs, p,q(R) with p 2]0, 2[ (see also Ingster and Suslina 1998)

and show an unexpected dependence (with regard to the case p ¼ 2) of the minimax rate

of testing with respect to s. Spokoiny (1996) considers the problem of finding adaptive

tests and shows that adaptation is impossible without some loss of efficiency (see also

Ingster 1998). In other words, it is not possible to find a test which achieves the minimax

rate of testing (up to a universal constant) simultaneously over non-trivial collections of

Besov bodies.

A common feature of those results is their asymptotic character. In this paper we give

non-asymptotic results, mainly focusing on the problem of finding sharp lower bounds for

the minimax rate of testing. However, asymptotic (upper) and lower bounds for the quantity

r(F , Æ, �, 	 ) can be deduced from our result by making 	 tend to 0. In the regression

framework, it is convenient to set 	 ¼ 1=
ffiffiffiffiffi
N

p
in order to obtain separation rates with

respect to k:kN ¼ k k=
ffiffiffiffiffi
N

p
. Asymptotic results are then obtained by letting N grow towards

infinity as usual.

This paper was originally motivated by the following question: in the regression

framework, what is the minimax rate for testing 0 against the class of signals which have

all but at most D of their components equal to 0? This situation corresponds to the

reception of a sparse signal (at least N � D components of the signal are 0, with D=N

small), the problem being to determine some lower bound on the signal energy, k f k2, for
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the detection to be possible with probability close to 1 and the probability of false alarm

close to 0.

In Section 2, we give a partial answer to this question (a lower bound and an upper

bound on the minimax rate of testing which are equal up to a possible factor of ln(N )). An

interesting feature of the result is that, for suitable values of D, the minimax rate of testing

and the minimax rate of estimation are of the same order – which is, as far as we know,

seldom the case.

Another particular feature of this result is that it allows us to derive non-asymptotic

lower bounds for the minimax rates of testing over ellipsoids, and more generally over

‘ p-bodies (also called ellipsoids in ‘ p). A similar approach was adopted by Birgé and

Massart (2001) for the related problem of estimation. To our knowledge the statement of

lower bounds for the minimax rates of testing over general ‘ p-bodies (i.e. under no

assumption on the decay of the semi-axes) is new.

These results allow us to recover those first established by Ermakov for ellipsoids (thus

relaxing the assumptions on the semi-axes) and by Lepski and Spokoiny for some Besov

bodies Bs, p,q(R) with s . 0, R . 0, p 2]0, 2], q > p, this set being related to ‘ p-bodies

with semi-axes of the form k�s.

The paper is organized as follows. As already mentioned, Section 2 is devoted to the

problem of the detection of a sparse signal. Non-asymptotic upper and lower bounds for the

minimax rates of testing over ellipsoids are given in Section 3, the more general case of

‘ p-bodies (with p 2]0, 2]) being treated in Section 4. The case of Besov bodies is

considered in Section 5. The problem of adaptive testing is considered in Section 6. Proofs

are postponed to the final two sections.

To end this section we introduce some notation that will be used throughout the paper.

For any F � ‘2(I) and Æ 2]0, 1[, we denote by �(F ) the quantity

�(F ) ¼ inf
�Æ

sup
f 2F

Pf [�Æ ¼ 0],

the infimum being taken over all tests �Æ with values in f0, 1g satisfying P0[�Æ ¼ 1] < Æ.

By convention �(F ) ¼ 0 if F ¼ ˘. For x, y 2 R, we set

x ^ y ¼ inffx, yg, x _ y ¼ supfx, yg, dxe ¼ inffn 2 N, n > xg,

and for all integers n, k such that 0 < k < n,

C k
n ¼

n!

k!(n� k)!
:

Throughout the paper the numbers Æ and � 2]0, 1� Æ] are fixed, and in order to keep our

formulae as short as possible, we set

� ¼ 2(1� Æ� �) and L(�) ¼ ln(1þ �2) , ln 5:

Finally, C and C9 denote constants that may vary from line to line.
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2. Detecting non-zero coordinates

2.1. The problem of interest

Let I be either f1, . . . , Ng or N� and let fe j, j>1g be the orthonormal family of vectors of

‘2(I) defined by

(ej)i ¼
1 if i ¼ j,

0 otherwise:

�
(3)

When I is finite the space ‘2(I) is merely RN and the ej the canonical basis. For each pair of

integers (n, k) with k 2 f1, . . . , ng (n < N when I ¼ f1, . . . , Ng), let M(k, n) be the class

of all the subsets of f1, . . . , ng of cardinality k. Now for all m 2 M(k, n) and D > 1, let us

set

Sm ¼ spanfej, j 2 mg and SD ¼ spanfej, j 2 f1, . . . , Dgg,

where span(A) denotes the linear space generated by A � ‘2(I). In this section we study the

case where F is given by

F ¼
[

m2M(k,n)

Sm: (4)

2.2. Lower bounds

To start with, let us consider the elementary case where n ¼ k ¼ D > 1, that is, when

F ¼ SD.

Proposition 1. Let

r2
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L(�)D

p
	 2: (5)

Then, for all r < rD,

�(f f 2 SD, k f k ¼ rg) > �:

The result can be described in words in the following way: whatever the level-Æ test �Æ, there

exists some signal f 2 SD satisfying k f k > rD for which the error of second kind,

Pf [�Æ ¼ 0], is at least �. This implies the lower bound

r(SD, Æ, �, 	 ) > rD,

the left-hand side of this inequality being defined by (2).

The Gaussian distribution being invariant under orthogonal transformations, the same

result holds when F is any linear space of dimension D.

Let us now turn to the general case.

Theorem 1. Let F be given by (4), and let
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r2
k,n ¼ k ln 1þ L(�)

n

k2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L(�)

n

k2
þ L(�)

n

k2

� �2
r !

	 2: (6)

Then, for all r < rk,n,

�(f f 2 F , k f k ¼ rg) > �:

If Æþ � < 59%, then

r2
k,n > k ln 1þ n

k2
_

ffiffiffiffiffi
n

k2

r� �
	 2: (7)

2.3. Upper bounds

Let us now discuss the sharpness of the results stated in Section 2.2. For this purpose we

introduce some additional notation and define some special tests based on �2 statistics. For

each finite subset m of N� we set

�m,Æ ¼ 1
X
i2m

Y 2
i . tjmj,Æ	

2

( )
, (8)

where, for each d 2 N�, td,Æ satisfies

P[Z2
d . td,Æ] ¼ Æ if Z2

d � �2(d): (9)

We denote by �D,Æ the test defined by

�D,Æ ¼ �f1,...,Dg,Æ ¼ 1
XD

i¼1

Y 2
j > tD,Æ	

2

( )
: (10)

Then we have the following result.

Proposition 2. Let F be defined by (4). The test ��Æ defined by

��Æ ¼ sup
m2M(k,n)

�m,Æ=(2C k
n)

" #
^ �n,Æ=2,

satisfies

P0[��Æ ¼ 1] < Æ and Pf [��Æ ¼ 0] < �,

for all f 2 F such that

k f k2 > C k ln e
n

k

� �� �
^

ffiffiffi
n

ph i
	 2:

One can take C ¼ 2(
ffiffiffi
5

p
þ 4)ln(2e=(Æ�)).

Non-asymptotic minimax rates of testing in signal detection 581



The results of Theorem 1 and Proposition 2 show that (for reasonable values of Æ and �)

the quantity r2 ¼ r2(F , Æ, �, 	 ) satisfies

k ln 1þ n

k2
_

ffiffiffiffiffi
n

k2

r� �
	 2 < r2 < C k ln e

n

k

� �� �
^

ffiffiffi
n

ph i
	 2:

To analyse these inequalities further, we take 	 2 ¼ 1 and distinguish four cases for the value

of k.

When k ¼ n ¼ D, we see that the lower and the upper bound are both of order
ffiffiffiffi
D

p
,

which shows that the result of Proposition 1 is sharp and that an optimal test is merely

obtained by rejecting the null hypothesis when
PD

j¼1Y 2
j is large enough.

When k < nª for some ª , 1
2
, the lower and the upper bound are both of order k ln(n)

(up to a constant depending on ª for the lower bound). This shows that the lower bound

given in Theorem 1 is sharp and that the test �Æ is rate-optimal. Since the minimax rate of

estimation with respect to the quadratic loss function k:k2 over F is of order k ln(en=k)

(see Birgé and Massart 2001, Theorem 4) we note that in this case the squared minimax

separation rate and the minimax estimation rate over F are both of the same order.

When
ffiffiffi
n

p
< k , n, the lower and the upper bound no longer depend on k and are both

of order
ffiffiffi
n

p
. Here again, the lower bound stated in Theorem 1 is sharp and the test �Æ rate-

optimal. The fact that the separation rate stabilizes around
ffiffiffi
n

p
for k .

ffiffiffi
n

p
contrasts with

the estimation problem for which the estimation rate keeps growing almost linearly with

respect to k as k becomes large. This phenomenon is due to the fact that for the problem

of hypothesis testing we benefit from the prior assumption that f belongs to Sn, the squared

rate of testing over Sn being of order
ffiffiffi
n

p
. Consequently, in the regression framework (by

taking n ¼ N and SN ¼ RN ) rates of testing are always better than
ffiffiffiffiffi
N

p
(up to a constant).

We shall meet this phenomenon again but without drawing attention to it.

When k ,
ffiffiffi
n

p
and k is close to

ffiffiffi
n

p
, the lower and the upper bound differ by a factor of

at most ln(n). For example, when k is of order
ffiffiffi
n

p
=ln(n), the lower bound presented in

Theorem 1 is of order
ffiffiffi
n

p
ln ln(n)=ln(n), the upper bound being of order

ffiffiffi
n

p
. We conjecture

that the lower bound is sharp and do not know whether the preceding testing procedure is

suboptimal or not.

Finally, let us emphasize the gap (in terms of rates of testing) between the situation

where the location of the non-zero components of the signal is known (the squared rate is

of order
ffiffiffiffi
D

p
) and where the location is unknown (the squared rate is at least D). This

difference is worth mentioning since for the estimation problem the corresponding minimax

rates differ by a factor of (at most) ln(n).

3. Minimax rate of testing over an ellipsoid

In this section we assume that F is an ellipsoid, that is, of the form

Ea,2(R) ¼ f 2 ‘2(I),
X
k2 I

f 2
k

a2
k

< R2

( )
,
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where R denotes a positive number and the aj are a non-increasing sequence of positive

numbers such that a1 ¼ 1 and limk!þ1 ak ¼ 0 when I ¼ N�. The case of ‘ p-bodies, which

is an extension to the case p 6¼ 2, will be considered in Section 4.

3.1. Lower bounds

Proposition 3. Let

r2
a,2,R ¼ sup

D2 I

[r2
D ^ (R2a2

D)], (11)

where rD is defined by (5). Then

�(f f 2 Ea,2(R), k f k > ra,2,Rg) > �:

If Æþ � < 59%, then

r2
a,2,R > sup

D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2a2

D)]:

Proof. We use the notation introduced at the beginning of Section 2. We set F ¼ Ea,2(R) and,

for each D 2 I , r2
D ¼ r2

D ^ (R2a2
D). Let us fix some D 2 I . Since the aj are non-increasing

and r2
D < R2a2

D,
PD

j¼1 f 2
j=a2

j < R2 for all f 2 SD such that k f k ¼ rD. This shows the

inclusion

f f 2 SD, k f k ¼ rDg � f f 2 F , k f k > rDg:
Now, since rD < rD we deduce from Proposition 1 that

�(f f 2 Ea,2(R), k f k > rDg) > �,

and the result follows since D is arbitrary in I . h

3.2. Optimality of the lower bounds

We now show that the result of Proposition 3 is sharp. To this end we introduce the quantity

D� defined by

D� ¼ inffD 2 I , R2a2
D <

ffiffiffiffi
D

p
	 2g,

with the convention that inf ˘ ¼ N .

Proposition 4. If 	 , R, the test ��Æ defined by ��Æ ¼ �D� ,Æ, where �D�,Æ is given by (10),

satisfies

P0[��Æ ¼ 1] < Æ and Pf [��Æ ¼ 0] < �,

for all f 2 Ea,2(R) such that

k f k2 > C sup
D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2a2

D)]:
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One can take C ¼
ffiffiffi
2

p
[1þ 2(

ffiffiffi
5

p
þ 4)]ln(1=Æ�).

This result and Proposition 3 show that the quantity ra,2,R is of the same order as the

minimax rate of testing over Ea,2(R). Note that the quantity ra,2,R is obtained by finding

the best trade-off over I between the two terms R2a2
D and r2

D (which is of order
ffiffiffiffi
D

p
	 2).

The quantity RaD represents the maximal ‘2-distance of a point of Ea,2(R) from SD. It is

non-increasing with respect to D. In contrast, the quantity rD, which is (up to a constant)

the minimax rate of testing over SD, is non-decreasing with respect to D. The situation is

very similar to the situation encountered in the estimation problem. Let us explain why. For

the sake of simplicity let us assume that I ¼ f1, . . . , Ng. For each f 2 Ea,2(R), one can

estimate f from the data (Yi)i2 I thanks to the projection estimator onto SD given by

f̂f D ¼ (Y1, . . . , YD, 0, . . . , 0)T. Since this estimator satisfies

sup
f 2E a,2(R)

E[k f � f̂f Dk2] < R2a2
D þ D	 2,

one obtains that for some value of D ¼ D� suitably chosen to balance the bias term R2a2
D

and the variance term D	 2, the minimax risk on Ea,2(R) is bounded from above, up to a

universal constant, by

sup
D2 I

[(D	 2) ^ (R2a2
D)]

(with some additional minor conditions). This quantity turns out to be the minimax rate of

estimation over the ellipsoid in various cases (see Birgé and Massart 2001). Then the analogy

with the problem of testing becomes clear. It is worth mentioning that just as the estimator

f̂f D� is minimax (up to a constant) for the problem of estimation, the test based on the test

statistic k f̂f D�k2 is rate-optimal for the problem of hypothesis testing. Yet, in general,

D� 6¼ D�, the choice of D� being similar to that prescribed for the quadratic functional

estimation problem by model selection (see Laurent and Massart 2000).

Instead of considering the ellipsoid Ea,2(R), we could also have dealt with the larger set

E9a,2(R) defined by

E9a,2(R) ¼ f f 2 ‘2(I), 8D 2 I , d( f , SD) < RaDg,

where d( f , SD) denotes the ‘2-distance between f and SD. Then the lower and the upper

bound for the separation rate would have been the same (it is enough to see that the proof of

Proposition 4 remains unchanged when replacing Ea,2(R) by E9a,2(R)). Of course in the

regression framework, via some orthogonal transformation, the same result holds when

replacing the nested collection of linear spaces (SD)D¼1,...,N by any other. Finally, let us

mention that the result easily extends to sets of the form

f f 2 ‘2(I), 8D 2 I9, d( f , SD) < RaDg,

with I9 � I , by noticing that

f f 2 ‘2(I), 8D 2 I9, d( f , SD) < RaDg ¼ E9a,2(R)

when one defines the aD for D 2 InI9 by the formula
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aD ¼ inffak , k 2 I9 \ f1, . . . , Dgg:
Moreover, it is easy to check that one has

r2
a,2,R ¼ sup

D2 I 9

[r2
D ^ (R2a2

D)]:

The proof of Proposition 4 is deferred to Section 8.

4. Minimax rates of testing over an ‘p-body with 0 < p < 2

In this section we consider the case where F is an ‘ p-body, that is, of the form

Ea, p(R) ¼ f 2 ‘2(I),
X
k2 I

���� f k

ak

����
p

< Rp

( )
,

where R and p denote positive numbers and a ¼ (ak)k2 I is some non-increasing sequence

such that a1 ¼ 1 and limk!þ1 ak ¼ 0 when I ¼ N�. The case p ¼ 2 has already been

considered in the previous section.

4.1. Lower bounds

Proposition 5. Let

r2
a, p,R ¼ sup

D2 I

r2
d
ffiffiffi
D

p
e,D ^ (R2a2

Dd
ffiffiffiffi
D

p
e1�2= p)

h i
,

where r2
d
ffiffiffi
D

p
e,D is defined by (6). Then

�(f f 2 Ea, p(R), k f k > ra, p,Rg) > �:

If Æþ � < 29%, then

r2
a, p,R > sup

D2 I

[(d
ffiffiffiffi
D

p
e	 2) ^ (R2a2

Dd
ffiffiffiffi
D

p
e1�2= p)]:

As for the case p ¼ 2, we see that the lower bound derives from some best trade-off between

two terms, this trade-off being realized for some D� satisfying (roughly speaking)ffiffiffiffiffiffiffi
D�

p
¼

Rpa
p

D�

	 p
:

For the sake of simplicity, we assume that D� 2 I . As
ffiffiffiffi
D

p
	 2 and R2a2

D	
2� p are also of the

same order for the same value of D�, we also have that r2
d
ffiffiffi
D

p
e,D is of order

sup
D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (Rpa

p
D	

2� p)]:

In the light of the related result obtained for p ¼ 2, the last lower bound turns out to be

better interpretable. Indeed, on the one hand, we recognize the quantity
ffiffiffiffi
D

p
	 2 which is of
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the same order as the minimax rate of testing over SD. On the other hand, the quantity

Rpa
p
D	

2� p can be interpreted as a ‘bias’ term since it is the maximal distance to SD of a

point belonging to the set

Ea, p(R) \ f 2 ‘2(I), max
i2 I

j f ij < 	

� �
:

In other words, we use the linear space SD to approximate the signals of the ‘ p-body

belonging to some hypercube.

Proof. We use the notation introduced in Section 2, set F ¼ Ea, p(R) and, for each D 2 I ,

r2
D ¼ r2

d
ffiffiffi
D

p
e,D ^ (R2a2

Dd
ffiffiffiffi
D

p
e1�2= p). Let us now fix D 2 I . For all m 2 M(d

ffiffiffiffi
D

p
e, D) and

f 2 Sm � SD such that k f k ¼ rD, we have, by Hölder’s inequality,

X
j2 I

���� f j

aj

����
p

¼
X
j2m

���� f j

aj

����
p

< jmj1� p=2
X
j2m

f 2
j

a2
j

 ! p=2

<
r

p
Dd

ffiffiffiffi
D

p
e1� p=2

a
p
D

< Rp, (12)

using the fact that r2
D < R2a2

Dd
ffiffiffiffi
D

p
e1�2= p. We deduce from (12) the inclusion

f 2
[

m2M(d
ffiffiffi
D

p
e,D)

Sm, k f k ¼ rD

8<
:

9=
; � f f 2 F , k f k ¼ rDg,

and, as rD < rd
ffiffiffi
D

p
e,D, we derive from Theorem 1 that

�(f f 2 Ea, p(R), k f k > rDg) > �:

The result follows since D is arbitrary in I . To complete the proof, it remains to check that

r2
d
ffiffiffi
D

p
e,D > d

ffiffiffiffi
D

p
e when Æþ � < 29%. Since, for D < 1, D=d

ffiffiffiffi
D

p
e2 > 1

2
, we deduce from (6)

that

r2
d
ffiffiffi
D

p
e,D > ln 1þ L(�)

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(�)þ L(�)2

4

r !
d
ffiffiffiffi
D

p
e,

and the result follows since, for Æþ � < 29%,

ln 1þ L(�)

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L(�)þ L(�)2

4

r !
> 1:

h

586 Y. Baraud



4.2. Upper bounds

Let us define D� by

D� ¼ inf D 2 I , R2a2
Dd

ffiffiffiffi
D

p
e1�2= p < d

ffiffiffiffi
D

p
e	 2

n o
,

with the convention that inf ˘ ¼ N , and

�loc,Æ=2 ¼ sup
j .D�, j2 I

�f jg,2Æ=(�2( j�D�)2),

where the tests �f jg,2Æ=(�2( j�D�)2) are given by (8). Now let

æ2
a, p,R ¼ sup

D2 I

d
ffiffiffiffi
D

p
e	 2

� �
^ R2a2

Dd
ffiffiffiffi
D

p
e1�2= p

� �h i
:

The first result considers the case of the regression framework.

Proposition 6. Assume that I ¼ f1, . . . , Ng and that 	 , R. Let us define the test ��Æ by

��Æ ¼ �loc,Æ=2 _ �D�,Æ=2: (13)

The test ��Æ satisfies

P0[��Æ ¼ 1] < Æ and Pf [��Æ ¼ 0] < �, (14)

for all f 2 Ea, p(R) such that

k f k2 > C(ln(2þ N ))1� p=2æ2
a, p,R: (15)

One can take C ¼ 8(
ffiffiffi
5

p
þ 4)ln(e�=Æ�).

This result shows that in the regression framework the rate r2
a, p,R is optimal up to a possible

factor of ln(N ). Note that the test presented above actually mixes several tests. The presence

of local tests, namely the �f jg,2Æ=(�2( j�D�)2), allows us to reject the null hypothesis when one

value of the jYjj is large enough.

The next proposition shows that the rate r2
a, p,R is optimal under the following (restrictive)

condition:

Condition H. The sequence (Ł j) j2 I defined by

Ł j ¼ sup
j92 I , jþ j92 I

a jþ j9

a j9

satisfies

� ¼
X
j2 I

Ł p
j ln(2 þ j)1� p=2 , þ1:

Proposition 7. Assume that 	 , R and that Condition H holds. The test ��Æ defined by (13)

satisfies
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P0[��Æ ¼ 1] < Æ and Pf [��Æ ¼ 0] < �,

for all f 2 Ea, p(R) such that

k f k2 > C9æ2
a, p,R: (16)

One can take C9 ¼ (� _ 1)8(
ffiffiffi
5

p
þ 4)ln(e�=(Æ�)).

Condition H is fulfilled when, for example, the aj are of the form Łe�º j for some º, Ł . 0.

Unfortunately, when the ak are of the form k�s for some s . 0, Condition H is not fulfilled.

Yet, in this case, the lower bound obtained in Proposition 5 is known to be sharp, as we shall

see in the next section.

The proofs of Proposition 6 and 7 are deferred to Section 8.

5. Besov bodies

This section is devoted to the statement of lower bounds for the minimax rate of testing over

Besov bodies. Let us first recall what a Besov body is (as introduced by Donoho and

Johnstone 1998). In what follows, I ¼ N�. Let R . 0, p . 0, q 2]0, þ1] and

s9 . (1=p� 1=2)þ. Setting s ¼ s9� (1=p� 1=2)þ, we define the Besov body Bs9, p,q(R) by

Bs9, p,q(R) ¼ f 2 ‘2(I),
X
j>0

2 js
X2 jþ1�1

k¼2 j

j f k j p

 !1= p
2
4

3
5

q

< Rq

8<
:

9=
;,

when q , þ1, and

Bs9, p,1(R) ¼ f 2 ‘2(I), sup
j>0

2 js
X2 jþ1�1

k¼2 j

j f k j p

 !1= p

< R

8<
:

9=
;:

Clearly, when p < q we have Bs9, p, p(R) � Bs9, p,q(R).

5.1. From Besov to ‘p-bodies

Originally the Gaussian white noise model was the statistical framework chosen to study the

problem of minimax hypothesis testing (we have already mentioned the work of Ingster and

of Lepski and Spokoiny). The use of a suitable wavelet basis allows us to translate the

problem to hand from the Gaussian white noise model to the Gaussian sequence model, and

the property that the function belongs to some usual functional space (such as a Besov space)

to the property that the sequence of its coefficients onto the wavelet basis belongs to some

related sequence space (namely, a Besov body). This translation is described in Spokoiny

(1996). In order to make further connections between our results and previous work, we now

establish some connections between Besov and ‘ p-bodies.
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Proposition 8. For all s, p . 0, denote by E s, p(R) the ‘ p-body defined by

E s, p(R) ¼ f 2 ‘2(I),
X
k2 I

k psj f k j p < Rp

( )
:

Then

Bs9, p, p(2�s R) � E s, p(R) � Bs9, p, p(R),

where s9 ¼ sþ (1= p� 1=2)þ.

This proposition shows that from the minimax point of view, the ‘ p-body E s, p(R) and the

Besov body Bs9, p, p(R) behave essentially in the same way. In the next section we shall restrict

our study to those ‘ p-bodies. To keep our notation coherent we write rs,2,R for ra,2,R when

the ak are of the form k�s.

Proof. We have that

X
j>0

2 jps
X2 jþ1�1

k¼2 j

j f k j p <
X
j>0

X2 jþ1�1

k¼2 j

kpsj f k j p <
X
k>1

kpsj f k j p,

which shows that E s, p(R) � Bs9, p, p(R). Conversely,

X
k>1

kpsj f k j p ¼
X
j>0

X2 jþ1�1

k¼2 j

kpsj f k j p < 2 ps
X
j>0

2 jps
X2 jþ1�1

k¼2 j

j f k j p

which shows that Bs9, p, p(2�s R) � E s, p(R). h

5.2. The result for p ¼ 2

The asymptotic version of this result is known from Ermakov (1991).

Corollary 1. Let s . 0. Assume that 	 2 , R2 and that Æþ � < 59%. Then, for I ¼ N�,

r2
s,2,R > 2�2s R2=(1þ4s)	 8s=(1þ4s), (17)

and, for I ¼ f1, . . . , Ng,

r2
s,2,R > 2�2s[(R2=(1þ4s)	 8s=(1þ4s)) ^ (

ffiffiffiffiffi
N

p
	 2)]: (18)

From an asymptotic point of view, by taking 	 2 ¼ 1=N in the Gaussian regression model, we

obtain that the right-hand side of (18) is of order N�4s=(1þ4s) if s . 1
4

and of order 1=
ffiffiffiffiffi
N

p

otherwise.

Proof. Applying Proposition 3, we obtain
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r2
s,2,R > sup

D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2 D�2s)]:

For all x . 0,
ffiffiffi
x

p
	 2 > R2x�2s is and only if

x >
R2

	 2

� �2=(1þ4s)

¼ x� > 1:

If D� ¼ dx�e belongs to I , then x� < D� < x� þ 1 < 2x� and we obtain that

r2
s,2,R > R2(D�)�2s > 2�2s R2(x�)�2s ¼ 2�2s R2=(1þ4s)	 8s=(1þ4s):

If D� =2 I , then I ¼ f1, . . . , Ng and N , x�, which implies that

r2
s,2,R >

ffiffiffiffiffi
N

p
	 2:

h

5.3. The result for p , 2

The rates given below are optimal according to the results of Spokoiny (1996) on the related

Besov bodies.

Corollary 2. Let s . 0 and s 0 ¼ s� 1=4þ 1=(2 p). Assume that 	 2 , R2 and that

Æþ � < 29%. Then, for I ¼ N�,

r2
s, p,R > 2�4s 0R2=(1þ4s 0)	 8s 0=(1þ4s 0), (19)

and, for I ¼ f1, . . . , Ng,

r2
s, p,R > 2�4s 0[(R2=(1þ4s 0)	 8s 0=(1þ4s 0)) ^ (

ffiffiffiffiffi
N

p
	 2)]: (20)

From an asymptotic point of view, by taking 	 2 ¼ 1=N we obtain that the right-hand side of

(20) is of order N�4s 0=(1þ4s 0) when s > 1=2� 1=(2 p).

Proof. Applying Proposition 5, we obtain that

r2
s, p,R > sup

D2 I

(R2 D�2sd
ffiffiffiffi
D

p
e1�2= p) ^ (d

ffiffiffiffi
D

p
e	 2)

# $

> sup
D2 I

(R2d
ffiffiffiffi
D

p
e�4s 0) ^ (d

ffiffiffiffi
D

p
e	 2)

# $
:

For x . 0, x	 2 > R2x�4s 0 if and only if

x > (R2=	 2)1=(1þ4s 0) ¼ x� > 1:

Let D� be the smallest integer such that d
ffiffiffiffi
D

p
e > x�. Note that D� > 1 since x� > 1 and

therefore d
ffiffiffiffiffiffiffi
D�

p
e < x� þ 1 < 2x� since
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d
ffiffiffiffiffiffiffi
D�

p
e � 1 ¼ d

ffiffiffiffiffiffiffi
D�

p
� 1e < d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
e < x�:

If D� 2 I , then

r2
s, p,R > R2d

ffiffiffiffiffiffiffi
D�

p
e�4s 0 > 2�4s 0R2=(1þ4s 0)	 8s 0=(1þ4s 0):

Otherwise, I ¼ f1, . . . , Ng and d
ffiffiffiffiffi
N

p
e , x� which implies that

r2
s, p,R > d

ffiffiffiffiffi
N

p
e	 2,

and the proof of Corollary 2 is complete. h

6. Simultaneous rates of testing

6.1. Detecting non-zero coordinates

We return briefly to the problem of detecting non-zero coordinates. In order to explain the

problem, let us introduce some notation. Let (Ij) j2J be some finite or countable family of

finite disjoint subsets of I . For each j 2 J , let n( j) ¼ jIjj and k( j) 2 f1, . . . , n( j)g. We now

set

M j ¼ fm � Ij, jmj ¼ k( j)g, F j ¼
[

m2M j

Sm

and

~rr j ¼
rn( j), when k( j) ¼ n( j),

rk( j),n( j), otherwise,

�

where rn( j) is defined by (5) and rk( j),n( j) by (16). We have seen in Section 2 that, for each j,

the quantity ~rr j ¼ ~rr j(�) is of the same order as the minimax separation rate over F j (up to a

possible factor of ln(n( j)) for some cases). From now on, the dependency of ~rr j ¼ ~rr j(�) with

respect to � is emphasized.

Proposition 9. For any sequence of positive weights pj such thatX
j2J

pj < 1,

we have

�
[
j2J
f f 2 F j and k f k ¼ rjg

 !
> �,

if, for all j 2 J , rj < ~rr j(�=
ffiffiffiffiffi
pj

p
).

The proof is postponed to Section 7.4.
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Since the quantity ~rr j(�=
ffiffiffiffiffi
pj

p
) is of order ~rr j times a power of ln(1=pj), Proposition 9

means that, in the problem of testing 0 against this multiple alternative, a loss of efficiency

over at least one of the alternatives is unavoidable. For example, when jJ j is finite, by

taking pj ¼ 1=jJ j for all j 2 J one derives that a loss of efficiency by a factor of (a power

of) ln(jJ j) over one of the F j is unavoidable. From an asymptotic point of view this

phenomenon is worth mentioning when the cardinality of J depends upon 	 (or N in the

regression framework). Let us also mention that the loss of efficiency may not affect all of

the alternatives (this fact is seldom emphasized in the literature); we refer for further details

to the work of Baraud et al. (2003) in the regression framework.

In what follows we derive some lower bounds for the problem of testing f ¼ 0 against a

multiple alternative such as a collection of nested linear spaces or a collection of nested

ellipsoids. Extensions to more general ‘ p-bodies are possible but involve further

technicalities.

6.2. The case of nested linear spaces

We shall restrict our study to the case of the linear spaces SD defined at the beginning of

Section 2. However, when I ¼ f1, . . . , Ng, the following result holds for any (substantial)

nested collection of linear subspaces of RN .

Corollary 3. Let

r2
D ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln(Dþ 1)

p ffiffiffiffi
D

p
	 2, (21)

with C ¼
ffiffiffi
2

p
[(��=

ffiffiffi
6

p
) ^ 1]. Then

�
[
D2 I

f f 2 SD, k f k ¼ rDg
 !

> �,

if, for all D 2 I , rD < rD.

Proof. We take 	 2 ¼ 1. For all j > 0 such that 2 jþ1 � 1 2 I (i.e. for all j < J with J ¼ þ1
if I ¼ N�, J ¼ J (N ) ¼ ln(N þ 1)=ln(2)� 1 when I ¼ f1, . . . , Ng), let S j be the linear span

of the ek for k 2 f2 j, . . . , 2 jþ1 � 1g. Note that dimfS j) ¼ 2 j and that S j � SD for

D ¼ D( j) ¼ 2 jþ1 � 1. Setting, for F � ‘2(I) and r . 0,

F [r] ¼ f f 2 F , k f k ¼ rg,

we obtain that

[J
j¼0

S j[rD( j)] �
[J
j¼0

SD( j)[rD( j)] �
[
D2 I

SD[rD]:

We now use Proposition 9 with pj ¼ 6=[�2( jþ 1)2] for j 2 N and we obtain
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�
[
D2 I

f f 2 SD, k f k ¼ rDg
 !

> �,

if, for those D ¼ D( j),

r2
D <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln(1þ �2=pj)

q ffiffiffiffi
D

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln(1þ �2�2( jþ 1)2=6)

p
2 j=2: (22)

Thus, it remains to check (22). Using the fact that

jþ 1 ¼ ln(Dþ 1)

ln(2)
> ln(Dþ 1),

2 j=2 >
ffiffiffiffiffiffiffiffiffi
D=2

p
and the convexity inequality

ln(1þ ux) > u ln(1þ x), (23)

which holds for all x . 0 and u 2 [0, 1], we obtain thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

1þ �2�2( jþ 1)2

6

� �s
2 j=2 >

��ffiffiffi
6

p ^ 1

# $ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(1þ ln2(Dþ 1))

p ffiffiffiffi
D

p

>
ffiffiffi
2

p ��ffiffiffi
6

p ^ 1

# $ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ln(Dþ 1)

p ffiffiffiffi
D

p

¼ r2
D:

Since by assumption r2
D > r 2

D, (22) is proved and the result follows. h

6.3. Collection of nested ellipsoids

We now consider the case of a collection of ellipsoids of the form fEa,2(R), R 2 Rþg.

Corollary 4. For each R . 0, let

r2
a,2,R ¼ sup

D2 I

[r2
D ^ (R2a2

D)],

where rD is given by (21). Then

�
[
R.0

f f 2 Ea,2(R), k f k > ra,2,Rg
 !

> �:

The problem of finding a test that achieves (up to a constant) the minimax separation rate

simultaneously over a family of alternatives is usually called the problem of adaptation. In

contrast with the problem of estimation, in the problem of hypothesis testing adaptation is

generally impossible. This result was proved by Spokoiny (1996) for the case of a family of

Besov bodies. In the case considered here we deal with the family of nested ellipsoids

fEa,2(R), R 2 Rþg. This amounts to adapting over the radius R in R�þ. In the literature, one
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usually tries to adapt over both R 2 R�þ and a among some non-trivial class of sequences of

positive numbers, but since we are interested in lower bounds, it is enough to address the

problem of adaptation over R only. As in Spokoiny (1996), by this result we conclude that the

problem of finding adaptive tests is possible only if one tolerates a loss of efficiency (which

is of the order of ln ln(N ) in the regression framework).

Proof. We use the same notation as in the proof of Proposition 3. Let D(R) 2 I , which

achieves the supremum of r2
D ^ (R2a2

D) ¼ r2
D over I (the existence of D(R) is obvious when

I is finite and is a consequence of the monotonicity of rD and R2a2
D otherwise). Arguing as

in the proof of Proposition 3, we have, for each R,

f f 2 SD(R), k f k ¼ rD(R)g � f f 2 Ea,2(R), k f k > rD(R)g,

and as D(R) describes I when R varies, we obtain that

[
D2 I

f f 2 SD, k f k ¼ rDg ¼
[
R.0

f f 2 SD(R), k f k ¼ rD(R)g

�
[
R.0

f f 2 Ea,2(R), k f k > rD(R)g:

Then the result follows from Corollary 3. h

7. Proof of Theorem 1 and Propositions 1 and 9

7.1. A general method for obtaining lower bounds

The proofs in this section are based on a Bayesian approach which is classical (see Lehmann

1997, Chapter 6, for example). The starting point of the proof is similar to that described in

Ingster (1993a; 1993b; 1993c) and borrows some classical inequalities on the norm in total

variation that can be found in Le Cam (1986, Chapter 4). For the sake of completeness, let us

describe the main ideas of the approach.

Let F be some subset ‘2(I) and r some positive number. Let �r be some probability

measure on

F [r] ¼ [ f 2 F , k f k ¼ rg:

Setting P�r ¼
Ð

Pf d�r( f ) and denoting by �Æ the set of level-Æ tests, we have
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�(F [r]) > inf
�Æ2�Æ

P�r [�Æ ¼ 0]

> 1� Æ� sup
AjP0(A)<Æ

jP�r(A)� P0(A)j

> 1� Æ� sup
A2A

jP�r(A)� P0(A)j

¼ 1� Æ� 1
2
kP�r � P0k, (24)

where kP�r � P0k denotes the total variation norm between the probabilities P�r and P0.

Whenever P�r is absolutely continuous with respect to P0, the norm in total variation

between these two probabilities is easy to compute. Setting

L�r(y) ¼
dP�r

dP0

(y),

we obtain

kP�r � P0k ¼
ð
jL�r(y)� 1jdP0(y),

¼ E0[jL�r (Y )� 1j],

< (E0[L2
�r

(Y )]� 1)1=2,

and we deduce from (24) that

�(F [r]) > 1� Æ� 1

2
(E0[L2

�r
(Y )]� 1)1=2:

Thus, it remains to find some r� ¼ r�(�) such that

ln(E0[L2
�r�

(Y )]) < L(�), (25)

to ensure that, for all r < r�,

�(F [r]) > 1� Æ� � ¼ �:

7.2. Proof of Theorem 1

By homogeneity, we assume that 	 2 ¼ 1. Let m̂m be some random variable uniformly

distributed over M(k, n), and for each m 2 M(k, n) let 
m ¼ (
m
j ) j2m be a sequence of

Rademacher random variables (i.e. for each m, the 
m
j are independent and identically

distributed random variables taking the values "1 with probability 1
2
). We assume that for all

m 2 M(k, n), 
m and m̂m are independent. Let r be given and �r the distribution of the

random variable
P

j2 m̂mº
 m̂m
j ej, where º ¼ r=

ffiffiffi
k

p
. Clearly �r is supported by F [r]. To prove

the result, we apply the method described in Section 7.1 with
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L�r(Y ) ¼ E
,m̂m exp � 1

2
r2 þ º

X
j2 m̂m


 m̂m
j Yj

 !" #

¼ 1

C k
n

X
m2M(k,n)

E
 exp � 1

2
r2 þ º

X
j2m


m
j Yj

 !" #

¼ e�r
2=2 1

C k
n

X
m2M(k,n)

Y
j2m

cosh(ºYj):

Let us now compute E0[L2
�r

(Y )]. Introducing the notation

m˜m9 ¼ (m [ m9)n(m \ m9)

for m, m9 belong to M(k, n), we obtain that

E0[L2
�r

(Y )] ¼ e�r
2

(C k
n)2

X
m,m92M(k,n)

E0

Y
j2m

cosh(ºYj)
Y
j2m9

cosh(ºYj)

" #

¼ e�r
2

(C k
n)2

X
m,m92M(k,n)

E0

Y
j2m\m9

cosh2(ºYj)
Y

j2m˜m9

cosh(ºYj)

" #

¼ e�r
2

(C k
n)2

X
m,m92M(k,n)

(E0[cosh2(ºY1)])jm\m9j(E0[cosh(ºY1)])jm˜m9j,

by mutual independence of the Yj. Using the fact that

(E0[cosh(ºY1)]) ¼ eº
2=2, E0[cosh2(ºY1)] ¼ eº

2

cosh(º2),

and noting that jm \ m9j þ jm˜m9j=2 ¼ k, we derive

E0[L2
�r

(Y )] ¼ 1

(C k
n)2

X
m,m92M(k,n)

(cosh(º2))jm\m9j

¼
Xk

j¼1

(cosh(º2)) j pj,k,n,

where

pj,k,n ¼ (C k
n)�2jf(m, m9) 2M(k, n)2 m \ m9j ¼ jgj:

If j , 2k � n then obviously pj,k,n ¼ 0, otherwise pj,k,n ¼ C
k� j
k C

k� j
n�k=C k

n. Hence,

pj,k,n ¼ P[X ¼ j], where X is a random variable following a hypergeometric distribution

with parameters n, k and k=n. Thus, we derive that

E0[L2
�r

(Y )] ¼ E[(cosh(º2))X ]: (26)

We know from Aldous (1985, p. 173) that X has the same distribution as the random variable
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E[Z=Bn] where Z is a binomial random variable with parameters k and k=n, and Bn is some

suitable 	-algebra. Thus, by a convexity argument we infer from (26) that

E0[L2
�r

(Y )] < E[(cosh(º2)) Z]

¼ 1þ k

n
(cosh(º2)� 1)

� �k

¼ exp k ln 1þ k

n
(cosh(º2)� 1)

� �# $
: (27)

For r < rk,n, one has

º2 < º2
k,n ¼ ln(1þ uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2uþ u2

p
),

where u ¼ L(�)n=k2. We deduce from (27) that, for all r < rk,n,

E0[L2
�r

(Y )] < exp k ln 1þ k

n
(cosh(º2

k,n)� 1)

� �# $

¼ exp k ln 1þ k

n
u

� �# $

< exp
k2

n
u

# $
¼ exp[L(�)] ¼ 1þ �2:

To complete the proof of Theorem 1, it remains to check (7). Clearly we have that

r2
k,n > k ln 1þ (2L(�)) ^

ffiffiffiffiffiffiffiffiffiffiffiffi
2L(�)

p
]

n

k2
_

ffiffiffiffiffi
n

k2

r# $# �
,

�

and thanks to the convexity inequality (23) we obtain that

r2
k,n > ((2L(�)) ^ 1)k ln 1þ n

k2
_

ffiffiffiffiffi
n

k2

r� �
:

The result follows since, for Æþ � < 59%, 2L(�) > 1.

7.3. Proof of Proposition 1

We argue as previously, taking n ¼ k ¼ D. Then the right-hand side of (27) merely becomes

(cosh(º2))D. Since, for all x 2 R,

cosh(x) < exp
x2

2

� �

(compare the series) the result follows easily.
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7.4. Proof of Proposition 9

It is enough to show the result under the assumption that
P

j2J pj ¼ 1. Arguing as in the

proof of Theorem 1, we know that, for each rj < ~rr j(�=
ffiffiffiffiffi
pj

p
), there exists some measure � j

over

F j[rj] ¼ f f 2 F j, k f k ¼ rjg

such that

E0[L2
� j

(Y )] < 1þ �2=pj: (28)

Let us now set � ¼
P

j2J pj� j which is a probability measure over
S

j2J F j[rj]. Denoting by

L� j
the density of P� j

¼
Ð

Pf d� j( f ) with respect to P0, we have that

L�(Y ) ¼ dP�

dP0

(Y ) ¼
X
j2J

pjL� j
(Y ),

and thus

E0[L2
�(Y )] ¼

X
j, j92J

pjpj9E0[L� j
(Y )L� j9

(Y )]:

Since, for j 6¼ j9, F j and F j9 are orthogonal the random variables L� j
(Y ) and L� j9

(Y ) are

independent, and thus

E0[L2
�(Y )] ¼ 1þ

X
j2J

p2
j(E0[L2

� j
(Y )]� 1) < 1þ �2,

thanks to (28). This leads to our result via (25).

8. Proof of Propositions 2, 4, 6 and 7

8.1. Preliminary result

The next result describes the performance of tests based on �2 statistics. It is a slight

modification (the constants are sharper) of Theorem 15.3.1 in Baraud et al. (2002).

Theorem 2. Let Æ, � 2 [0, 1] and F � ‘2(I). Let M be a class of finite subsets of I and

Æ ¼ (Æm)m2M a sequence of non-negative numbers such that
P

m2MÆm < Æ. For each

f 2 F , let
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~rr2
M,Æ,�( f ) ¼ inf

m2M

X
j=2m

f 2
j þ 2

ffiffiffi
5

p
ln1=2 1

Æm�

� � ffiffiffiffiffiffiffi
jmj

p
	 2 þ 8 ln

1

Æm�

� �
	 2

8<
:

9=
;

< inf
m2M

X
j=2m

f 2
j þ 2(

ffiffiffi
5

p
þ 4)ln

1

Æm�

� � ffiffiffiffiffiffiffi
jmj

p
	 2

8<
:

9=
;: (29)

Then the test �M,Æ defined by �M,Æ ¼ supm2M �m,Æm
, where �m,Æm

is given by (8), satisfies

P0[�M,Æ ¼ 1] < Æ and Pf [�M,Æ ¼ 0] < �,

for all f 2 F such that k f k > ~rrM,Æ,�( f ).

Remark. Thanks to Theorem 2, the proofs of Propositions 2, 4, 6 and 7 below reduce to

obtaining some adequate upper bound on sup f 2F ~rrM,Æ,�( f ).

Proof. Inequality (29) is clear, and the fact that the test �M,Æ is of level Æ merely derives

from the following:

P0[�M,Æ ¼ 1] <
X
m2M

P0[�m,Æm
¼ 1] ¼

X
m2M

Æm < Æ:

Let us now show the result on the power of the test. Without loss of generality we can

take 	 2 ¼ 1. For each m 2M, we set Z2
m, f ¼

P
j2mY 2

j and E2
m ¼

P
j2m f 2

j . On the one

hand, we have that

Pf [�M,Æ ¼ 0] ¼ Pf [8m 2M, Z2
m, f < tjmj,Æm

]

< inf
m2M

Pf [Z2
m, f < tjmj,Æm

]: (30)

On the other hand, a deviation inequality on non-central �2 random variables due to Birgé

(2001) tells us that

Pf [Z2
m, f < jmj þ E2

m � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(jmj þ 2E2

m)ln(1=�)

q
] < �:

Thus, the result is proved if we show that, for some m in M,

tjmj,Æm
< jmj þ E2

m � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(jmj þ 2E2

m)ln(1=�)

q
: (31)

We now prove that (31) holds if m satisfies

E2
m ¼ k f k2 �

X
j=2m

f 2
j . 2

ffiffiffi
5

p
ln1=2 1

Æm�

� � ffiffiffiffiffiffiffi
jmj

p
þ 8 ln

1

Æm�

� �
: (32)

We start with an inequality due to Laurent and Massart (2000) on central �2 random

variables. We have

tjmj,Æm
< jmj þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmjln(1=Æm)

p
þ 2 ln(1=Æm):

Non-asymptotic minimax rates of testing in signal detection 599



Setting x ¼ ln(1=�) and ym ¼ ln(1=Æm), we need to check that

1
2
E2

m >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(jmj þ 2E2

m)x

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jmjym

p
þ ym: (33)

Solving inequality (33) we respect to E2
m, we obtain that

1
2
E2

m >
ffiffiffiffiffiffiffiffiffiffiffiffi
jmjym

p
þ

ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xþ 4ym þ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
jmjym

p
þ jmj

q
þ 2xþ ym: (34)

Hence it remains to obtain a suitable upper bound for the right-hand side of (34). Using the

inequalities
ffiffiffiffiffiffiffiffiffiffiffi
uþ v

p
<

ffiffiffi
u

p þ
ffiffiffi
v

p
, 2uv < u2 þ v2 and

ffiffiffi
u

p þ 2
ffiffiffi
v

p
<

ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffi
uþ v

p
which hold

for all u, v . 0, we obtain that

ffiffiffiffiffiffiffiffiffiffiffiffi
jmjym

p
þ

ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4xþ 4ym þ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
jmjym

p
þ jmj

q
þ 2xþ ym

<
ffiffiffiffiffiffiffi
jmj

p
(
ffiffiffi
x

p
þ ffiffiffiffiffiffi

ym

p
)þ 2

ffiffiffi
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ ym þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jmjym

pq
þ 2xþ ym

<
ffiffiffiffiffiffiffi
jmj

p
(
ffiffiffi
x

p
þ 2

ffiffiffiffiffiffi
ym

p
)þ 4xþ 2ym

<
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ ym

p ffiffiffiffiffiffiffi
jmj

p
þ 4(xþ ym),

the last expression being smaller than E2
m=2 by (32). This concludes the proof of (31). h

8.2. Proof of Proposition 2

We set M¼M(k, n) and, for each m 2M,

Æm ¼ Æk,n ¼
Æ

2C k
n

>
Æ

2(en=k)k
:

We deduce from Theorem 2 that the test ��Æ is of level Æ. Concerning the power of the test,

we have that

ln
1

Æm�

� �
< ln

2

Æ�

� �
þ k ln

en

k

� �
< ln

2

Æ�

� �
þ 1

# $
k ln

en

k

� �

¼ ln
2e

Æ�

� �
k ln

en

k

� �
;

thus, by setting

L ¼ ln
2e

Æ�

� �
> 1,

and choosing m from M(k, n) such that f j ¼ 0 for j =2 m, we deduce that, for each f ,
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~rr2
M,Æ,�( f ) < 2

ffiffiffi
5

p ffiffiffiffiffiffi
Lk

p
ln1=2 en

k

� �
	 2 þ 8Lk ln

en

k

� �
	 2

< 2(
ffiffiffi
5

p
þ 4)Lk ln

en

k

� �
	 2: (35)

Now, by choosing m ¼ f1, . . . , ng and arguing in the same way, we obtain that

~rr2
M,Æ,�( f ) < 2(

ffiffiffi
5

p
þ 4)L

ffiffiffi
n

p
	 2: (36)

Inequalities (35), (36) and Theorem 2 lead to the desired result.

8.3. Proof of Proposition 4

It is straightforward to see that the test ��Æ is of level Æ. In what follows, we set

Aa,2,R ¼ fD 2 I , R2a2
D <

ffiffiffiffi
D

p
	 2g, L ¼ ln

1

Æ�

� �
> 1,

F ¼ Ea,2(R), M¼ ff1, . . . , D�gg and Æ ¼ Æ. For the power of the test, we use Theorem 2

with some suitable upper bound for the quantity ~rr2
M,Æ,�( f ), with f 2 F . To do so, we

distinguish between two cases.

Firstly, if Aa,2,R ¼ ˘ then D� ¼ N (note that the condition is possible only in the case of

a finite I since the aj converge towards 0) and, for all D 2 I , R2a2
D .

ffiffiffiffi
D

p
	 2. This implies

that, for all f 2 F ,X
j.D�

f 2
j ¼ 0 and sup

D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2a2

D)] ¼
ffiffiffiffiffi
N

p
	 2

and thus

~rr2
M,Æ,�( f ) < 2(

ffiffiffi
5

p
þ 4)L

ffiffiffiffiffi
N

p
	 2

¼ 2(
ffiffiffi
5

p
þ 4)L sup

D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2a2

D)],

which proves the result in this case.

Secondly, if Aa,2,R 6¼ ˘ then there exists some D� 2 I such that R2a2
D� <

ffiffiffiffiffiffiffi
D�

p
	 2, and

by assumption we know that D� > 2. For such a D�, we have that, for all f 2 F ,X
j.D�

f 2
j < R2a2

D�

and that ffiffiffiffiffiffiffi
D�

p
	 2 <

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
	 2 ¼

ffiffiffi
2

p
[(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
	 2) ^ (R2aD��1)]

<
ffiffiffi
2

p
sup
D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2a2

D)]:

Thus, for all f 2 F ,
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~rr2
M,Æ,�( f ) < R2a2

D� þ 2(
ffiffiffi
5

p
þ 4)L

ffiffiffiffiffiffiffi
D�

p
	 2

< [1þ 2(
ffiffiffi
5

p
þ 4)L]

ffiffiffiffiffiffiffi
D�

p
	 2

<
ffiffiffi
2

p
[1þ 2(

ffiffiffi
5

p
þ 4)L]sup

D2 I

[(
ffiffiffiffi
D

p
	 2) ^ (R2a2

D)],

which concludes the proof.

8.4. Proof of Propositions 6 and 7

Let us set

M¼ f1, . . . , D�g [
[

j.D�, j2 I

f jg

0
@

1
A,

Æf1,...,Dg ¼ ÆD� ¼ Æ=2 and, for all j 2 I ,

j . D� Æf jg ¼ Æ j ¼
2Æ

�2( j� D�)2
:

Thanks to Theorem 2, we obtain that the test ��Æ ¼ �M,Æ is clearly of level Æ. It remains to

prove the result concerning the power of the test. In what follows, we set

k ¼ 2(
ffiffiffi
5

p
þ 4)ln

2

Æ�

� �
and F ¼ Ea, p(R):

8.4.1. Reduction of the problem.

Let us define the set ~AAa, p,R by

~AAa, p,R ¼ fD 2 I , R2a2
Dd

ffiffiffiffi
D

p
e1�2= p < d

ffiffiffiffi
D

p
e	 2g:

Note that this set is non-empty when I is infinite since the aD converge towards 0.

We first prove Propositions 6 and 7 under one of the following conditions:

(i) ~AAa, p,R ¼ ˘ and (15) holds

(ii) f belongs to the space

F loc ¼ f f 2 ‘2(I), 9 j . D�, j f jj2 > b2
j�D�	

2g

¼ f 2 ‘2(I), k f k2 > inf
j.D�

X
k2 I ,k 6¼ j

f 2
k þ b2

j�D�	
2

( )( )
:
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where, for j 2 N�, the bj are defined by

b2
j ¼ 2(

ffiffiffi
5

p
þ 4)ln

�2 j2

2Æ�

� �
:

Let us first assume (i). Then I ¼ f1, . . . , Ng, D� ¼ N and

æ2
a, p,R ¼ d

ffiffiffiffiffi
N

p
e	 2:

By applying Theorem 2 with �N ,Æ=2 ¼ �f1,...,Ng,Æ=2 and arguing as in the proof of Proposition

4, we obtain that

Pf [��Æ ¼ 0] < Pf [�N ,Æ=2 ¼ 0] < �

for all f 2 F such that k f k > ~rrM,Æ=2,�, where we have taken M¼ ff1, . . . , Ngg. Since

now

~rr2
M,Æ,�( f ) < k

ffiffiffiffiffi
N

p
	 2

< C(ln(2þ N ))1� p=2æ2
a, p,R,

the result follows under (15).

Let us now assume (ii). By setting

M9 ¼ ff jgj j 2 I , j . D�g and Æ9 ¼ (Æ j) j2M9,

we have that �loc,Æ ¼ �M9,Æ9. We derive from (29) that, for all f 2 F loc,

k f k2 > inf
j.D�

X
k2 I ,k 6¼ j

f 2
k þ b2

j�D�	
2

( )
> ~rr2

M9,Æ9,�( f ),

which leads to the result, that is,

Pf [��Æ ¼ 0] < Pf [�loc,Æ ¼ 0] < �,

by applying Theorem 2.

Leaving aside cases (i) and (ii), we now assume that ~AAa, p,R 6¼ ˘ and that f belongs to

the set

H ¼ F \ f f 2 ‘2(I), 8 j . D�, j f jj2 < b2
j�D�	

2g:

Thus, it remains to obtain some suitable bound on ~rr2
M,Æ,�( f ) for f 2 H.
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8.4.2. Conclusion of the proof of Proposition 6

For all f 2 H, we bound the bias term in the following way:

X
j.D�

f 2
j <

X
j.D�

a
p
j b

2� p

j�D�	
2� p j f jj p

a
p
j

(37)

< b
2� p
N R pa

p

D�	
2� p: (38)

Since ~AAa, p,R 6¼ ˘, we have that

D� ¼ inffD 2 I , R2a2
Dd

ffiffiffiffi
D

p
e1�2= p < d

ffiffiffiffi
D

p
e	 2g

¼ inffD 2 I , Rpa
p
D	

2� p < d
ffiffiffiffi
D

p
e	 2g,

and by (38) we obtain that, for all f 2 H,

~rr2
M,Æ,�( f ) <

X
j.D�

f 2
j þ k

ffiffiffiffiffiffiffi
D�

p
	 2

< (kþ b
2� p
N )d

ffiffiffiffiffiffiffi
D�

p
e	 2:

By assumption D� > 2, which implies that d
ffiffiffiffiffiffiffi
D�

p
e < 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
e and thus, by definition of

D�, we obtain

~rr2
M,Æ,�( f ) < 2(kþ b

2� p
N )d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
e	 2)

¼ 2(kþ b
2� p
N )[(d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
e	 2) ^ (R2a2

D��1
d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � 1

p
e1�2= p)]

< 2(kþ b
2� p
N )sup

D2 I

[(d
ffiffiffiffi
D

p
e	 2) ^ (R2a2

Dd
ffiffiffiffi
D

p
e1�2= p)]:

To conclude the proof, it remains to show that

2(kþ b
2� p
N ) < 8(

ffiffiffi
5

p
þ 4)ln

e�

Æ�

� �
ln1� p=2(2þ N ):

This inequality is a straightforward consequence of the following: for all j > 1,

b2
j ¼ 4(

ffiffiffi
5

p
þ 4) ln

�ffiffiffiffiffiffiffiffiffi
2Æ�

p
� �

þ ln( j)

� �

< 2(
ffiffiffi
5

p
þ 4)ln

e2�2

2Æ�

� �
ln(2 þ j): (39)
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8.4.3. Conclusion of the proof of Proposition 7

Using Condition H on the aj, we infer from (37) thatX
j.D�

f 2
j < Rp	 2� p

X
j>1

a
p

jþD�b
2� p
j

< Rpa
p

D�	
2� p

X
j>1

Ł p
j b

2� p
j :

We now use (39) we obtainX
j.D�

f 2
j < 2�(

ffiffiffi
5

p
þ 4)ln

e2�2

2Æ�

� �
Rpa

p

D�	
2� p,

and the result follows by arguing as previously.
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