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A nonparametric regression method that blends key features of piecewise polynomial quantile

regression and tree-structured regression based on adaptive recursive partitioning of the covariate space

is investigated. Unlike least-squares regression trees, which concentrate on modelling the relationship

between the response and the covariates at the centre of the response distribution, our quantile

regression trees can provide insight into the nature of that relationship at the centre as well as the tails

of the response distribution. Our nonparametric regression quantiles have piecewise polynomial forms,

where each piece is obtained by fitting a polynomial quantile regression model to the data in a

terminal node of a binary decision tree. The decision tree is constructed by recursively partitioning the

data based on repeated analyses of the residuals obtained after model fitting with quantile regression.

One advantage of the tree structure is that it provides a simple summary of the interactions among the

covariates. The asymptotic behaviour of piecewise polynomial quantile regression estimates and the

associated derivative estimates are studied under appropriate regularity conditions. The methodology is

illustrated with an example on the incidence rates of mumps in the United States.
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1. Introduction

For 0 , Æ , 1, quantile regression analysis focuses on the conditional Æth quantile of the

response Y given the covariate vector X ¼ (X1, X 2, . . . , X k). Unlike usual regression

analysis, which focuses only on the conditional mean (i.e., the ‘centre’ of the conditional

distribution) of Y given X, quantile regression is capable of providing insight into the centre

as well as the lower and upper tails of the conditional distribution of the response with

varying choices of Æ. As a result, quantile regression is quite effective as a tool for exploring

and modelling the nature of dependence of a response on the covariates when the covariates

have different effects on different parts of the conditional distribution of the response. Such

situations occur in many econometric problems. For example, a covariate may have very

different types of effect on high-, low- and middle-income groups. This is why quantile

regression has become a popular methodology for the analysis of income data – see Hogg

(1975) and Chaudhuri et al. (1997). Buchinsky (1994) used quantile regression to carry out

an extensive analysis of changes in the US wage structure during 1963–87. In marketing

Bernoulli 8(5), 2002, 561–576

1350–7265 # 2002 ISI/BS



studies, where covariates may have different effects on high-, medium- and low-consumption

groups, quantile regression can be useful in understanding the nature of the dependence

between the response and the covariates. Hendricks and Koenker (1992) used quantile

regression to study variations in electricity consumption over time.

Let gÆ(x) denote the conditional Æth quantile of Y given X ¼ x. Many authors have

considered various nonparametric methods for estimating a smooth quantile function from

the data (Y1, X1), (Y2, X2), . . . , (Yn, Xn) – see Cheng (1983; 1984), Janssen and

Veraverbeke (1987), Lejeune and Sarda (1998), Truong (1989), Dabrowska (1992), Fan et

al. (1994), Koenker et al. (1994) and Welsh (1996). Chaudhuri (1991a; 1991b) studied in

detail local polynomial estimates of a smooth conditional quantile function and discussed

their asymptotic properties. Such estimates were subsequently used by Chaudhuri et al.

(1997) in average derivative quantile regression, which is a useful methodology for

nonparametric and semi-parametric modelling. They demonstrated how local polynomial

estimates of a smooth regression quantile function can be used as an effective device for

estimating the parametric components in semi-parametric models such as monotone

transformation models, projection pursuit models and monotone single-index models that

are quite popular in the econometric literature – see Han (1987), Härdle and Stoker (1989),

Newey and Stoker (1993), Powell et al. (1989), Samarov (1993) and Sherman (1993).

Tree-structured methods and recursive partitioning algorithms for constructing piecewise

polynomial estimates using local least-squares and local maximum likelihood techniques

were studied by Chaudhuri et al. (1994; 1995), who gave some arguments in favour of the

methodology – see also Breiman et al. (1984), who considered piecewise constant estimates

of regression functions. Firstly, the decision tree produced by the data can describe the

overall model complexity, including, for example, interactions among the covariates. This

allows the polynomial model in each terminal partition to be kept simple for easy

interpretation and analytic study. Secondly, the adaptive nature of the recursive partitioning

algorithm allows for variation in the degree of smoothing across the covariate space so that

the terminal partitions may have different sizes and contain different numbers of data

points. This helps to cope with heteroscedasticity in the data and with the variable

smoothness of the function being estimated in different regions of the covariate space.

Piecewise constant median regression trees constructed using least absolute deviations

were considered by Breiman et al. (1984) as a robust alternative to least-squares regression

trees. Our goal in this paper is to combine some fundamental ideas in piecewise polynomial

quantile regression with recursive partitioning and tree-structured methods for constructing

nonparametric estimates of conditional quantile functions and their derivatives. We also

study the statistical performance of such estimates. Our quantile regression tree can be an

effective exploratory data-analytic tool for empirical model building as well as for model

checking and diagnostics.

Piecewise polynomial regression tree models have two advantages over piecewise

constant regression tree models. Firstly, the latter trees tend to be very large and hence hard

to interpret. The size of a piecewise polynomial regression tree, on the other hand, can be

altered by changing the form of the polynomials fitted at the nodes. Secondly, the greater

flexibility of polynomials over constants often translates to higher estimation accuracy of the

piecewise polynomial tree models.
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Another desirable feature of a piecewise polynomial estimate of an unknown function is

that the coefficients of the locally fitted polynomials provide estimates of the derivatives of

that function. This is useful for gaining insight into the shape and the geometry of the

unknown function as well as for statistical estimation of parametric components in semi-

parametric models, where those parametric components arise as some form of average

multidimensional slope (gradient vector) or average Hessian matrix associated with the

unknown function – see Härdle and Stoker (1989), Samarov (1993) and Chaudhuri et al.

(1997).

The rest of this paper is organized as follows. Section 2 describes the piecewise

polynomial estimate of a conditional quantile function and resulting derivative estimates.

We establish uniform consistency of these estimates under appropriate regularity conditions.

In the case of piecewise constant estimates of a conditional median function (constructed

using least absolute deviations regression trees), asymptotic consistency was conjectured by

Breiman et al. (1984, Section 8.11). Our result thus proves and generalizes their conjecture.

Section 3 illustrates the ideas using a data set on mumps. Appendix A contains the proof of

our theorem and Appendix B gives a brief discussion of the computational algorithm.

2. Description and large-sample performance of quantile
regression and derivative estimates

We begin by introducing some notation. We assume that (Y1, X1), (Y2, X2), . . . , (Yn, Xn) are

independent data points, where the response Y is real-valued and the regressor X is d-

dimensional. Let the conditional Æth quantile function of Y given X ¼ x be gÆ(x), which is

to be estimated on a subset C of the d-dimensional Euclidean space based on the data. We

denote by T n a random partition of C (i.e., C ¼ [ t2Tn
t) generated by some adaptive recursive

partitioning algorithm applied to the data. Tn is assumed to consist of only polyhedrons

having at most M faces, where M is a fixed positive integer. We also assume that the diameter

�(t) of the set t (i.e., �(t) ¼ supfjx� zj : x, z 2 tg) is positive for each t 2 Tn. Let X t

denote the average of the Xi that belong to t. The conditional quantile function gÆ(x) is

assumed to be mth-order differentiable (m > 0), and we write its Taylor expansion around X t

as

gÆ(x) ¼
X
u2U

(u!)�1fDu gÆ(X t)g(x� X t)
u þ rt(x, X t):

Here U is the collection of all d-tuples of non-negative integers of the form u ¼
(u1, u2, . . . , ud) such that [u] < m, where we define [u] ¼ u1 þ u2 þ . . . þ ud . For u 2 U,

let Du denote the mixed partial differential operator with index u and define u! ¼
Qd

i¼1 ui!.
For x ¼ (x1, x2, . . . , xd), define xu ¼

Qd
i¼1 x

ui

i . By convention, 0! ¼ 00 ¼ 1. Let s(U ) denote

the cardinality of the set U . For Xi 2 t, let î be the s(U )-dimensional column vector with

components of the form (u!)�1f�(t)g�[u](Xi � X t)
u, where u 2 U . The s(U ) 3 s(U ) matrixP

xi2 t îˆ
T
i will be denoted by D t. From now on all vectors in this paper will be column
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vectors unless otherwise specified, and the superscript T denotes the transpose of a vector or

matrix.

For an s(U )-dimensional vector ¨ ¼ (Łu)u2u, define the polynomial P(x, ¨, X t) in x as

P(x, ¨, X t) ¼
X
u2u

Łu(u!)�1f�(t)g�[u](x� X t)
u:

Let ^̈̈ (Æ)
t be the vector of coefficients of the polynomial fitted to the data points (Yi, Xi)

for which Xi 2 t. That is,

^̈̈ (Æ)
t ¼ arg min

¨

X
Xi2 t

fjYi � P(Xi, ¨, X t)j þ (2Æ� 1)[Yi � P(Xi, ¨, X t)]g: (1)

For x 2 t 2 Tn, our piecewise polynomial estimate of the conditional Æth quantile function

gÆ(x) is P(x, ^̈̈ (Æ)
t , X t).

In a different context, asymptotic properties of kernel weighted local polynomial

regression estimates are discussed in Wand and Jones (1995) and Fan and Gijbels (1996).

Chaudhuri (1991a; 1991b) studied the asymptotics of local polynomial quantile regression

estimates. A major technical barrier in studying the asymptotic properties of our piecewise

polynomial quantile regression estimates is the complexity caused by the random nature of

the partitions produced by the adaptive and recursive algorithm. In the proofs given in

Appendix A, we use a well-known combinatorial result of Vapnik and Chervonenkis (1971)

to cope with this problem.

The algorithm we use to analyse data in practice – see Appendix B and Loh (2002) –

yields piecewise polynomial estimates that closely resemble rectangular kernel weighted

local polynomial estimates. The support sets of these rectangular kernels are generated by

our partitioning algorithm. The rectangular nature of the partition sets is a consequence of

the splitting procedure used at each stage of our algorithm, which is based on a single

‘best’ variable. This makes the resulting tree and the partition sets easier to interpret and

comprehend. Further, the rectangular partition sets facilitate numerical computation as well

as asymptotic analysis. The derivation of the large-sample properties of our piecewise

polynomial estimates requires that our partition sets be polyhedrons with a bounded number

of faces, and clearly rectangles in a d-dimensional space satisfy this requirement.

We now state some conditions that are required to guarantee consistency of the piecewise

polynomial estimates of gÆ(x) and its derivatives as the sample size increases. These

conditions are related to the asymptotic behaviour of the partition Tn and regressors Xi, and

they are similar to some of the conditions assumed in Chaudhuri et al. (1994; 1995).

Condition 1. max t2Tn
supx2 tf�(t)g�m jrt(x, X t)j ! 0 in probability as n !1.

Condition 2. Let Nt be the number of Xi that lie in t and Nn ¼ minff�(t)g2m N t : t 2 Tng.

Then log n=Nn ! 0 in probability as n !1.

Condition 3. Let º t be the smallest eigenvalue of N�1
t D t and ºn ¼ minfº t : t 2 Tng. Then

ºn remains bounded away from zero in probability as n !1.
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Condition 1 ensures the asymptotic validity of the polynomial approximation of the

conditional Æth quantile function in each set of the partition Tn. When max

f�(t) : t 2 Tng ! 0 in probability as n !1 (i.e., when the sets in the partition Tn

shrink with increasing sample size), this condition is automatically satisfied if gÆ(x) is

continuously differentiable in C up to order m. Condition 2 guarantees that asymptotically

there will be sufficiently many data points in each t 2 Tn, while Condition 3 ensures that

asymptotically the covariates Xi are properly distributed in each t 2 Tn so that the

optimization problem that arises in piecewise polynomial quantile regression is sufficiently

regular and does not suffer from singularities in the covariate distributions.

The next condition is about the conditional distribution of the response Y given the

regressor X.

Condition 4. The conditional distribution of Y given X ¼ x has a density f (yjx) which

remains uniformly bounded and bounded away from zero as x varies in the set C and y varies

in the interval (gÆ(x)� E, gÆ(x)þ E) for some fixed E . 0. In other words,

0 , inf
x2C

inff f (yjx) : jy� gÆ(x)j , Eg

0 , sup
x2C

supf f (yjx) : jy� gÆ(x)j , Eg

,1:

With these conditions in hand, we can now state the main result on the uniform

consistency of our piecewise polynomial estimate of the conditional quantile function and

its derivatives on the set C. The proof is given in Appendix A.

Theorem 1. The minimization problem defining ^̈̈ (Æ)
t has a solution for each t 2 Tn. Further,

under Conditions 1–4, there exist solutions ^̈̈ (Æ)
t for all t 2 Tn such that

max
t2Tn

sup
x2 t

jDu P(x, ^̈̈ (Æ)
t , X t)� Du gÆ(x)j ! 0

in probability for any u 2 u as n !1.

In the special case of piecewise constant median regression trees, asymptotic consistency

of the estimate of the conditional median function is established in Chaudhuri (2000) under

appropriate regularity conditions. The piecewise polynomial estimates of gÆ(x) and its

derivatives may not be continuous at the boundaries of the sets in the partition. Although

we have not implemented it here, smooth and asymptotically consistent estimates can be

constructed by gluing the polynomial pieces with smooth weighted averaging as in

Chaudhuri et al. (1994, Section 3).

It should be noted that the asymptotic result in Theorem 1 is very general in nature and

is not specific to a particular recursive partitioning algorithm. Each algorithm will have its
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own features with respect to splitting rule, pruning method, cross-validation strategy, etc.

Nevertheless, as long as Conditions 1–3 are satisfied for the partitions generated by the

algorithm, we will have asymptotic convergence of the piecewise polynomial quantile

regression estimates provided that Condition 4 holds for the conditional distribution of the

response given the covariates.

3. Example: Incidence rates of mumps

We illustrate our method with some data on the incidence of mumps in the 48 contiguous

states of the United States (excluding the District of Columbia) from 1953 to 1989. The data

were the focus of a special poster session sponsored by the Statistical Graphics Section of the

American Statistical Association at its 1991 annual meeting. There are 1523 observations and

three predictor variables (some states did not report data for some years). The dependent

variable (y) is the natural logarithm of the number of mumps cases reported per million

population in each state (the population figures are based on the 1970 Census). The predictor

variables are the year (t, coded as actual year minus 1900) and the longitude (x) and the

latitude (z) of each state’s centre. Longitudes are measured in negative degrees west of the

International Date Line. These data were important to public health officials in 1991 because

there were large outbreaks of the disease between 1986 and 1989, especially in those states

that did not require mumps vaccination. Chaudhuri et al. (1994) applied a least-squares

regression tree algorithm to a subset of the data, fitting the observations in each node with a

linear function in t, x and z. Their tree was very large with 19 terminal nodes, indicating the

presence of complex spatio-temporal interactions.

To demonstrate the advantages of quantile regression, we will fit 0.1-, 0.5- and 0.9-

quantile regression trees to the whole data set. The type of polynomial to be fitted in the

nodes is determined by two factors: the complexity of the tree structure and its mean

quantile prediction error as given in equation (1). Because a highly complex tree is difficult

to interpret, simpler trees are usually preferred. Tree complexity, however, can often be

reduced by increasing the degree of the piecewise polynomials. We will use cross-validation

to estimate the prediction error of a tree model. As in Breiman et al. (1984), our algorithm

first grows an overly large tree and then employs cross-validation to prune it to the smallest

possible size (in terms of number of terminal nodes) such that its cross-validation error

estimate is within one estimated standard deviation of the minimum.

Using fivefold cross-validation, we found that the estimated error rates are all very

similar for a wide variety of piecewise polynomial tree models. The tree sizes are, however,

very large for polynomials that are piecewise linear in x, z and t (the 0.1-, 0.5- and 0.9-

quantile trees have 15, 39 and 14 terminal nodes). After some experimentation, we found

that reasonably simple tree structures are given by the polynomial

�0 þ �1 t þ �2 t2 þ �3 t3 þ �4xþ �5x2 þ �6zþ �7z2 þ �8 txþ �9 tzþ �10xz, (2)

which is of second order in x, z and t, but with an additional cubic term in t. The cubic term

is needed to capture the rapid rise and fall in incidence rates in the late 1980s. (We did not fit
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a full third-degree polynomial in x, z and t as this would require too many parameters to be

estimated at each node.)

Figure 1 shows the three trees. The 0.1- and 0.5-quantile trees first split the USA into

two geographical regions according to longitude: a western region consisting of states from

Minnesota westward (longitude < �94:6) and an eastern region for states to its east. The

0.9-quantile tree splits first on year: if the year is greater than 1981, the branch has only

one node, suggesting that the polynomial model (2) is sufficient for the entire country

during 1982–1989. On the other hand, for years from 1953–1981, the 0.9-quantile tree
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Figure 1. Quantile regression trees for the mumps data using 0.1 (top), 0.5 (bottom left), and 0.9

(bottom right) quantiles. Each node is fitted with the polynomial (2). The number beneath each

terminal node is the sample Y-quantile.
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splits the country longitudinally in the middle at North Dakota. The numbers beneath the

terminal nodes of the trees give the respective sample quantiles of log-rates. They show

clearly that the incidence of the disease decreased substantially during the whole time

period.

A display of the spatial distribution of the incidence rates as the years increase is given

in Figure 2, which shows bubble plots of the fitted median incidence rates for four equally

spaced years (states without bubbles did not report for that year). The rates held constant at

least until 1966 but were significantly reduced by 1977. The state of Wisconsin was among

the hardest hit up to 1977.

The tree diagrams and the bubble plots do not reveal the sharp rise and fall in incidence

rates in the late 1980s. To see this, we plot the data and fitted quantile values as functions

of year for nine representative states in Figure 3. The rise and fall in rates is now evident,

especially for the fitted 0.9-quantile curves. Further, the shapes of the fitted 0.1- and 0.9-

quantile curves indicate that there is a fairly substantial degree of heterogeneity in the data

(the incidence rates are plotted on a log scale), both between states and over time.

1955 1966

1977 1988

Figure 2. Bubble plots of mumps incidence rates for four equally spaced years. The area of a bubble

is proportional to the fitted incidence rate for that state and year. States that did not report mumps

incidence have no bubbles.
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Appendix A. Proof of Theorem 1

Before we present the proof of Theorem 1, we state and prove a few preliminary results and

introduce some notation. Recall that s(A) denotes the number of elements of a finite set A.

For any subset H of the set of indices f1, 2, . . . , ng such that s(H) ¼ s(U ) < n, we write

YH to denote the s(U )-dimensional vector (Yi)i2H and ¸h to denote the s(U ) 3 s(U ) matrix

with rows ˆT
i , i 2 H , where the î are defined at the beginning of Section 2.

Proposition 1. For any fixed 0 , Æ , 1, the minimization problem

min
¨

X
X i2 t

fjYi � P(Xi, ¨, X t)j þ (2Æ� 1)[Yi � P(Xi, ¨, X t)]g

Figure 3. Observed and fitted values from the 0.1 (dashed line), 0.5 (solid line), and 0.9 (dash-dotted

line) quantile regression tree models for nine states. The incidence rate axis is on a log scale.
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always has a solution. If the matrix D t ¼
P

xi2 t îˆ
T
i is non-singular, then there exists at least

one set H of s(U ) indices such that Xi 2 t for all i 2 H, and ^̈̈
H ¼ ¸�1

H YH is a solution to

this minimization problem. Further, for any such solution, the s(U )-dimensional vector

�H , t ¼
1

2

X
Xi2 t,i=2H

f1� sgn[Yi � P(Xi, ^̈̈
H , X t)]� 2Æg î

lies in the s(U )-dimensional hyperrectangle [Æ� 1, Æ]s(U ). In other words, each real-valued

coordinate of �H , t will be bounded above by Æ and bounded below by Æ� 1.

Proof. First observe that P(Xi, ¨, X t) ¼ ˆT
i ¨. Therefore we can rewrite the minimization

problem as

min
¨

X
xi2 t

fjYi � ˆT
i ¨j þ (2Æ� 1)(Yi � ˆT

i ¨)g:

Clearly, any solution to this minimization problem will correspond to an element in the

column space of the matrix whose rows are ˆT
i with Xi 2 t. Next notice that, for any fixed

0 , Æ , 1, the function jxj þ (2Æ� 1)x is a continuous function in x, and it tends to 1 as

jxj ! 1. This implies that the minimization problem has a solution which corresponds to a

point in a compact subset of the linear space spanned by the columns of that matrix with

rows ˆT
i . The rest of the proof now follows straightforwardly from Theorems 3.1 and 3.3 of

Koenker and Bassett (1978). h

We note that if Condition 3 is satisfied, the assumption in Proposition 1 that D t is non-

singular holds with large probability for each t 2 Tn asymptotically.

Proposition 2. Let j:j denote the usual Euclidean norm of vectors and matrices and let

F(yjx) be the conditional distribution of Y given X ¼ x. Given any t 2 Tn and s(U )-

dimensional vector ˜ , define the s(U )-dimensional vector

� t(˜) ¼ N�1
t f�(t)g�m

X
xi2 t

[FfˆT
i ˜þ rt(Xi, X t)þ gÆ(Xi)jXig � Æ] î:

Then under Conditions 1–4, min t2Tn
inffj� t(˜)j : j˜j . �f�(t)gmg is bounded away from

zero in probability as n !1 for any � . 0.

Proof. Let c1 . 0 be a constant depending on s(U ) such that j îj < c1 for all 1 < i < n.

Then, for any non-zero ˜ and any t 2 Tn, we have
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ºn < N�1
t j˜j�2˜TD t˜

¼ j˜j�2 N�1
t

X
xi2 t

˜T
îˆ

T
i ˜

<
ºn

2
N�1

t s i : Xi 2 t, j˜j�1jˆT
i ˜j <

ºn

2

� �1=2
( )" #

þ c2
1 N�1

t s i : Xi 2 t, j˜j�1jˆT
i ˜j .

ºn

2

� �1=2
( )" #

<
ºn

2
þ c2

1 pn, t,

where pn, t ¼ N�1
t [sfi : Xi 2 t, j˜j�1jˆT

i ˜j . (ºn=2)1=2g]. This implies that min t2Tn
pn, t >

ºn=2c2
1.

By Condition 4, we can choose a constant c2 . 0 such that c2 < f (yjx) for all x 2 C

and all y 2 (gÆ(x)� E, gÆ(x)þ E). Let

�n ¼ c2

ºn

2

� �1=2

min
t2Tn

min E=2, [�f�(t)gm]
ºn

2

� �1=2
 !

G(t, Xi, ˜) ¼ [FfˆT
i ˜þ rt(Xi, X t)þ gÆ(Xi)jXig

� Ffrt(Xi, X t)þ gÆ(Xi)jXig]j˜j�1(ˆT
i ˜):

Then Conditions 1 and 3 imply that the event

min
t2Tn

min
xi2 t

inf
G(t, Xi, ˜)

f�(t)gm
: j˜j . �f�(t)gm, j˜j�1jˆT

i ˜j .
ºn

2

� �1=2
( )

> �n

occurs with probability tending to one as n !1. Also, it is obvious that G(t, Xi, ˜) > 0 for

all s(U )-dimensional vectors ˜, t 2 Tn and Xi 2 t.

Let us now use Condition 4 again to choose a constant c3 . 0 such that f (yjx) < c3 for

all x 2 C and all y 2 (gÆ(x)� E, gÆ(x)þ E). Then by Condition 1, the event

max
t2Tn

max
x i2 t

sup
j˜j

����Ffrt(Xi, X t)þ gÆ(Xi)jXig � Æ

���� j˜j�1jˆT
i ˜j < max

t2Tn

max
Xi2 t

c1c3 rt(Xi, X t)

occurs with probability tending to one as n !1.

Observe that

j� t(˜)j > f˜T� t(˜)gj˜j�1

¼ N�1
t f�(t)g�mfS1(t, ˜)þ S2(t, ˜)þ S3(t, ˜)g,

where
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S1(t, ˜) ¼
X

Xi2 t,j˜j�1jˆT
i ˜j.(ºn=2)1=2

G(t, Xi, ˜),

S2(t, ˜) ¼
X

Xi2 t,j˜j�1jˆT
i ˜j<(ºn=2)1=2

G(t, Xi, ˜),

S3(t, ˜) ¼
X
Xi2 t

[Ffrt(Xi, X t)þ gÆ(Xi)jXig � Æ]j˜j�1(ˆT
i ˜):

Our previous analysis implies that

max
t2Tn

sup
˜

N�1
t f�(t)g�mS3(t, ˜) ! 0

in probability as n !1. Also, S2(t, ˜) is non-negative for any t 2 Tn and any ,̃ and the

probability of the event

min
t2T n

inf
j˜j.�f�( t)gm

N�1
t f�(t)g�mS1(t, ˜) >

�nºn

2c2
1

tends to one as n !1. Combining these results, we conclude that the event

min
t2Tn

inffj� t(˜)j : j˜j . �f�(t)gmg > �nºn

4c2
1

occurs with probability tending to one as n !1. Since �n and ºn are positive and bounded

away from zero in probability as n !1, this completes the proof. h

For any t 2 Tn, let S(t) denote the collection of sets H such that H � fi : Xi 2 tg and

s(H) ¼ s(U ). Note that, by Condition 2, S(t) is a non-empty collection for each t 2 Tn

with probability tending to one as n !1. Also, for any such H , let ^̈̈
H and �H , t be as

defined in Proposition 1. Define ¨(Æ)
t to be the s(U )-dimensional vector with typical

component f�(t)g[u](u!)�1 Du gÆ(X t) for u 2 U. In other words, gÆ(Xi) ¼ ˆT
i ¨

(Æ)
t þ

rt(Xi, X t). Also, for H 2 S(t), define

�H , t(˜) ¼
X

Xi2 t,i=2H

[FfˆT
i ˜þ rt(Xi, X t)þ gÆ(Xi)jXig � Æ] î:

Proposition 3. As n !1,

max
t2Tn

max
H2S( t)

fNt � s(U )g�1f�(t)g�mj�H , t ��H , t(¨
(Æ)
t � ^̈̈

H )j!P 0:

Proof. Recall that each set in Tn is a polyhedron in d-dimensional Euclidean space having at

most M faces. A combinatorial result of Vapnik and Chervonenkis (1971) – see Dudley

(1978, Section 7) – implies that there exists a collection V of subsets of the set

fX1, X2, . . . , Xng such that s(V) < (2n)M(dþ2), and for any polyhedron t with at most M
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faces there is a set t� 2 V with the property that Xi 2 t if and only if Xi 2 t�. For any

ø . 0, let p(ø, X1, X2, . . . , Xn) denote the conditional probability of the event

max
t2Tn

max
H2S( t)

fNt � s(U )g�1f�t)g�M j�H , t ��H , t(¨
(Æ)
t � ^̈̈

h)j . ø

given X1, X2, . . . , Xn. Observe that for any t� 2 V and H 2 S(t�), the difference

�H , t��H , t�(¨(Æ)
t � ^̈̈

H ) is a sum of s(U )-dimensional random vectors that are conditionally

independently distributed and each of them has conditional mean zero given the Xi in t� and

the Yi for which i 2 H . It follows from Bernstein’s inequality (Shorack and Wellner 1986)

that there exist constants c4 . 0 and c5 . 0 such that by Condition 2, the event

p(ø, X1, X2, . . . , Xn) < c4(2n)M(dþ2) ns(U )exp(�c5 Nnø
2)

occurs with probability tending to one as n tends to 1. Since N n=log n !1 in probability

as n !1, this completes the proof. h

Proof of Theorem 1. The first assertion made in the statement of the theorem follows

immediately from Proposition 1. The second assertion will follow if we can show that

max t2Tnf�(t)g�mj ^̈̈ (Æ)
t �¨(Æ)

t j tends to zero in probability as n !1. Now Proposition 1

implies that for any � . 0, the event

max
t2Tn

f�(t)g�mj ^̈̈ (Æ)
t �¨(Æ)

t j . �

is contained in the event[
t2Tn

[
H2S( t)

fj ^̈̈ H �¨(Æ)
t j . �f�(t)gm and �H , t 2 [Æ� 1, Æ]s(U )g:

The proof now follows from Propositions 2 and 3. h

Appendix B. Algorithmic and computational details

The method used in Section 3 to obtain the quantile regression trees is an extension of the

GUIDE algorithm for piecewise linear least-squares regression trees described in Loh (2002).

GUIDE differs from regression tree algorithms such as CART (Breiman et al. 1984) in many

significant ways. The most important difference is that GUIDE does not use greedy search to

split each node. Greedy search has two undesirable features. Firstly, it is computationally

intensive – for each candidate split of a node into two subnodes, a quantile regression model

is fitted to the data in each subnode. Since the number of candidate splits increases with the

sample size and with the number of predictor variables, this procedure can be time-

consuming to carry out. The second disadvantage of greedy search is that it is biased towards

selecting variables that have more candidate splits. This problem was recognized long ago for

classification trees (Doyle 1973; Loh and Shih 1997) and was confirmed for regression trees

by Loh (2002) in simulation experiments.

To avoid the computational cost and selection bias of greedy search, GUIDE breaks the
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split selection procedure into two steps – first it chooses the variable to split the node, and

then it chooses the split point (if the variable takes ordered values) or split set (if the

variable takes categorical, i.e. unordered, values). The entire algorithm is described in detail

for least-squares regression in Loh (2002). We briefly summarize the steps in the context of

quantile regression here:

1. Fit a quantile regression model to the data in the node using the algorithm in Koenker

and D’Orey (1987) and compute the residuals.

2. For each predictor variable, cross-tabulate the signs of the residuals (positive versus

non-positive) against the grouped values of the variable and compute a chi-square p-

value.

3. If there are categorical predictor variables, adjust the chi-square p-values with a

bootstrap bias correction.

4. Select the variable with the smallest adjusted p-value to split the node.

5. If the selected variable takes ordered values, search for the best split point for the

variable over a grid of 100 empirical q-quantiles, with q ¼ i=101, i ¼ 1, . . . , 100.

6. If the selected variable is categorical, search for the subset of categorical values that

best separates the two groups of signed residuals in terms of binomial variance.

The bootstrap adjustment is needed to overcome the tendency for the regressor variables

(which are used for split selection as well as for fitting the quantile regression model in the

node) to have larger p-values than the categorical variables (which are used for split selection

only). These steps are performed recursively to produce an overly large tree, which is pruned

to a smaller size using the cost-complexity pruning algorithm of Breiman et al. (1984) with

fivefold cross-validation.

Much of the computation saved is due to fitting only one quantile regression model at

each node. Further, the use of residuals permits all kinds of quantile regression models to

be fitted. Thus we can fit piecewise-constant (as in CART), piecewise-linear or piecewise-

polynomial (as in the mumps example) models.
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