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A fundamental question regarding combining procedures concerns the potential gain and how much

one needs to pay for it in terms of statistical risk. Juditsky and Nemirovski considered the case where

a large number of procedures are to be combined. We give upper and lower bounds for

complementary cases. Under an l1 constraint on the linear coefficients, it is shown that for pursuing

the best linear combination of n� procedures, in terms of rate of convergence under the squared L2
loss, one can pay a price of order O(log n=n1��) when 0 , � , 1

2
and a price of order O((log n=n)1=2)

when 1
2
< � , 1. These rates cannot be improved or essentially improved in a uniform sense. This

result suggests that one should be cautious in pursuing the best linear combination, because one may

end up paying a high price for nothing when linear combination in fact does not help. We show that

with care in aggregation, the final procedure can automatically avoid paying the high price for such a

case and then behaves as well as the best candidate procedure.
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1. Introduction

New ideas on combining different procedures for estimation, coding, forecasting and

learning have recently been considered in statistics and several related fields, leading to a

number of very interesting results. The common theme behind these ideas is to

automatically share the strength of the individual procedures in some sense. In the context

of machine learning, it has been shown that, with an appropriate weighting method, a

combined procedure can behave close to the best procedure in terms of a certain cumulative

loss; see, for example, Vovk (1990), Littlestone and Warmuth (1994), Cesa-Bianchi et al.

(1997) and Cesa-Bianchi and Lugosi (1999). The focus has been on deriving mixed

strategies with optimal performance without any probabilistic assumptions on the generation

of the data. In the field of forecasting, combined forecasts have been shown to work better

in various examples; see Clemen (1989) for a review of work in that direction. In

information theory, the study of universal coding in the spirit of adaptation results in very

interesting and powerful techniques also useful in other related fields such as machine

learning and statistics; see Merhav and Feder (1998) and Barron et al. (1998) for reviews.

In statistics, several methods have recently been proposed for linearly combining regression

estimators. These include a model selection criterion based method by Buckland et al.

(1997), cross-validation based ‘stacking’ by Wolpert (1992) and Breiman (1996) (an earlier
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version is in Stone 1974), a bootstrap based method by LeBlanc and Tibshirani (1996), a

stochastic approximation based method by Juditsky and Nemirovski (2000), and

information-theoretic based methods to combine density and regression estimators by Yang

(2000a; 2000b; 2001) – see also Catoni (1997, 1999) – using an idea of Barron (1987).

Juditsky and Nemirovski proposed algorithms and derived interesting theoretical upper and

lower bounds for linear aggregation in pursuing the best performance among the linearly

combined estimators (with coefficients subject to an appropriate constraint). Yang (2000b;

2001) shows that with proper weighting, a combined procedure has a risk bounded above by

a multiple of the smallest risk over the original procedures plus a small penalty.

The above-mentioned theoretical works in statistics are pulling in two related but different

directions: one aiming at automatically achieving the best possible performance among the

given collection of candidate procedures, and the other aiming at improving the

performance of the original procedures. For the latter, the hope is that an aggregated

procedure (through a convex or linear combination of the original procedures with data-

dependent coefficients) will significantly outperform each individual candidate procedure.

Clearly the second direction is more aggressive. If one could identify the best linearly

combined procedure, pursuing the best performance among the candidate procedures might

be too conservative. However, since the best coefficients are unknown, one may need to pay

a ‘price’ for it in terms of statistical risk.

Suppose that we have Mn candidate regression procedures and consider the squared L2
risk as a performance measure in estimating the regression function. In Yang (2000b; 2001)

it is shown that a suitable data-dependent convex combination of these procedures results in

an estimator that (under certain conditions) has a risk within a multiple of the smallest risk

among the candidate procedures plus a small penalty of order logMnð Þ=n. Thus, in terms

of rate of convergence, with Mn candidate procedures to be combined, one only needs to

pay the price basically of order (logMn)=n for performing nearly as well as the best

candidate procedure (which, of course, is unknown to the statistician). As long as Mn does

not increase exponentially fast in n, the discrepancy (logMn)=n is of order log n=n, which
does not affect the rate of convergence for typical nonparametric regression. As a

consequence, when polynomially many nonparametric procedures are suitably combined, the

estimator automatically converges at the best rate offered by the individual procedures. For

the more aggressive goal of pursuing the best linear combination of the candidate

procedures, under the constraint that the l1 norm of the linear coefficients is bounded above

by 1, Juditsky and Nemirovski (2000) proposed algorithms and showed that with Mn

estimators to be combined, the aggregated estimator has a risk within a multiple of

((logMn)=n)
1=2 of the smallest risk over all the linear combinations of the estimators.

Furthermore, they showed that, in general, this order ((logMn)=n)
1=2 cannot be overcome

uniformly by any combining methods. Thus, compared to combining for attaining the best

performance, one has to pay a much higher price, ((logMn)=n)
1=2, for searching for the

best linear combination of the original procedures.

The work of Juditsky and Nemirovski (2000) is targeted at the case where Mn is large;

for example, their results are applied to restore a certain neural network class with Mn of a

polynomial order in n. They derived the above-mentioned lower bound when Mn and n have

the relationship C1 logMn < n < C2Mn logMn (where the constants C1 and C2 depend on
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the variance of the error and the upper bound, assumed known, on the supremum norm of

the regression function f ). The relationship implies that Mn is of order at least n=log n: It is
unclear what happens when Mn is of a smaller order. For such a case, the order

((logMn)=n)
1=2 may no longer be a valid lower bound. In the extreme case with Mn fixed

(Mn does not grow as n ! 1), one would expect a penalty of order close to the parametric

rate n�1 instead of order n�1=2. In this paper, we show that when Mn is of order n�, one

only needs to pay a price of order log n=n1�� for 0 < � , 1
2
, and of order (log n=n)1=2 for

� > 1
2
. The rate cannot be improved uniformly beyond a logarithmic factor for the first case,

and cannot be improved for the second one. Thus the rate ((logMn)=n)
1=2 given by Juditsky

and Nemirovski (2000) is still optimal as long as Mn is of order (n)1=2 or higher.

Note that the order of the penalty increases dramatically as � increases from 0, but after

� > 1
2
it stays at the rate (log n=n)1=2 as long as � , 1: In fact, under the l1 constraint on

the linear coefficients, there cannot be too many (relative to Mn) large coefficients and

combining sparsely selected procedures with suitably large coefficients achieves the optimal

performance (see the proof of Theorem 1 and the Remark 7 in the next section for details).

This phenomenon is closely related to the advantage of sparse approximations as observed

in wavelet estimation (see Donoho and Johnstone 1998), neural networks and subset

selection (Barron 1994; Yang and Barron 1998; Barron et al., 1999).

In applications, one does not know if the best linear combination can substantially

improve the estimation accuracy so that the high price of order, for example, (log n)=n1=2 is

worthwhile. Accordingly, it is not clear which direction to take when combining the

candidate procedures. Fortunately, we show, that, with some care in combining, an estimator

can be aggressive and conservative automatically in the right way. For convenience in

discussion, we will call the conservative goal combining for adaptation, and the aggressive

goal combining for improvement.

The paper is organized as follows. In Section 2, we derive general risk bounds for

combining Mn procedures. In Section 3, we study a combined procedure suitable for

different purposes at the same time. In Section 4, we give an illustration using linear and

sparse approximations. We briefly mention a generalization of the main results in Section 5.

Some proofs of the results are given in Section 6.

2. Risk bounds on linear aggregation

Consider the regression model

Yi ¼ f (X i)þ � � �i, i ¼ 1, . . . , n,

where (X i, Yi)
n
i¼1 are independent and identically distributed copies from the joint

distribution of (X , Y ) with Y ¼ f (X )þ � � �. The explanatory variable X (which could be

high-dimensional) has an unknown distribution PX unless otherwise stated. The variance

parameter � 2 . 0 is unknown and the random variable � is assumed to have a known density

function h(x) (with respect to Lebesgue or a general measure �) with mean 0 and variance 1.

We further assume that X and � are independent. The goal is to estimate the regression

function f based on the data Z n ¼ (X i, Yi)
n
i¼1.
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Let � be a regression estimation procedure producing an estimator f̂f i(x) ¼ f̂f i(x; Z
i) for

each sample size i > 1: Let k � k denote the L2 norm with respect to the distribution of X ,

that is, kgk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
g2(x)PX (dx)

p
. Let R( f ; n; �) ¼ Ek f � f̂f nk2 denote the risk of the

procedure � at the sample size n under the squared L2 loss.

Our strategy of linearly combining a list of procedures depends on the following method

of combining for adaptation. It serves as a building block for the main results in this paper.

Through a suitable discretization of the linear coefficients together with a sparse

approximation, the problem of combining for improvement becomes the problem of

combining for adaptation over a (much) larger class of procedures.

2.1. A three-stage algorithm to combine procedures for adaptation

Let ˜ ¼ f� j, j > 1g be a collection of regression procedures, and let f̂f j,i(x) ¼ f̂f j,i(x; Z
i)

denote the estimator of f based on � j given the observations Z i, for i > 1. The index set

f j > 1g is allowed to degenerate to a finite set. Let � j be positive numbers summing to

one,
P1

j¼1� j ¼ 1. These will be used as prior weights on the procedures. The following

algorithm, called ‘adaptive regression by mixing’ (ARM), for combining candidate

procedures for adaptation, is essentially as given in Yang (2001).

Step 1. Split the data into three parts, Z (1) ¼ (X i, Yi)
n1
i¼1, Z (2) ¼ (X i, Yi)

n1þn2
i¼n1þ1 and

Z (3) ¼ (X i, Yi)
n
i¼n1þn2þ1. Let n3 ¼ n� n1 � n2:

Step 2. Obtain estimates f̂f j,n1 (x; Z
(1)) of f based on Z (1) for each procedure � j.

Step 3. Estimate the variance � 2 for each procedure by

�̂� 2
j ¼

1

n2

Xn1þn2

i¼n1þ1

(Yi � f̂f j,n1 (X i))
2:

Step 4. For each j, evaluate predictions. For n1 þ n2 þ 1 < k < n, predict Yk by

f̂f j,n1 (X k). For n1 þ n2 þ 1 < k < n, compute

Ej,k ¼

Yk
i¼n1þn2þ1

h((Yi � f̂f j,n1 (X i))=�̂� j)

�̂� k�n1�n2
j

:

Step 5. Let

Wj,k ¼
� j E j,kX

l>1

� l El,k

and compute the final weight

Wj ¼
1

n3

Xn
k¼n1þn2þ1

Wj,k

The final estimator is
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~ff n(x) ¼
X1
j¼1

Wj f̂f j,n1 (x): (1)

The combined estimator has the theoretical property given in Proposition 1 below, under

the follwing conditons:

A1. The regression function and the estimators are uniformly bounded: there exists a

constant A . 0 such that k f k1 < A and k f̂f j,ik1 < A with probability one for all

i, j.

A2. The variance parameter � is bounded above and below by known positive constants

� , 1 and � . 0, respectively.

A3. The known error distribution h has a finite fourth moment and is such that, for each

pair 0 , s0 , 1 and T . 0, there exists a constant Bs0,T (depending on s0 and T )

such that ð
h(x) log

h(x)

s�1h((x� t)s�1)
dx < Bs0,T ((1� s)2 þ t2),

for all s0 < s < s�1
0 and �T , t , T :

The constants A and B in the above assumptions are involved in the derivation of the risk

bounds, but they need not to be known in our aggregation process, though knowledge of A

may be needed to ensure that the k f̂f j,ik1 are uniformly bounded from above. Assumption

A3 is satisfied by Gaussian, double exponential, t (with degrees of freedom greater than 2)

and many other smooth distributions supported on the whole real line. For any distribution

with a compact support, however, the assumption cannot be satisfied directly. For such a

case, as far as the rate of convergence for regression estimation is concerned, one can

artificially add a weak Gaussian noise to the response and the assumption may become

satisfied.

For simplicity in notation, assume that n is a multiple of 4, and then take n1 ¼ n=2 and

n2 ¼ n3 ¼ n=4. We assume that the estimators �̂� j in step 3 are bounded above and below

by the constants � and � (otherwise one needs to clip the estimator to be in that range).

Proposition 1. Assume conditions A1–A3 hold. Then the above convexly combined estimator
~ff n satisfies

Ek f � ~ff nk2 < C inf
j

� 2

n
1þ log

1

� j

� �
þ Ek f � f̂f j,n=2k2

 !
,

where the constant C depends only on A, � , � , and h: In particular, if there are M n

procedures to be combined with uniform prior weight, then

Ek f � ~ff nk2 < C
� 2 logMn

n
þ inf

j
Ek f � f̂f j,n=2k2

� �
:

Remark 1. In the ARM algorithm, the second stage is used to estimate � 2: Here the

estimators are derived in terms of predictions based on the individual regression procedures.

Aggregating regression procedures 29



The use of these variance estimators does not get in the way of estimating the regression

function f in terms of rate of convergence. One can also use common model-independent

estimators of � 2 (see, for example, Rice 1984). Then one does not need this stage, and

accordingly, the risk of the variance estimators will appear in the risk bound on estimating f :

Remark 2. As discussed in Yang (2001), the estimator ~ff n depends on the order of

observations. For an improvement, one can randomly permute the order of observations a

number of times and average the corresponding estimators.

Remark 3. In the definition of the final estimator ~ff n(x) ¼
P1

j¼1Wj f̂f j,n=2(x), we use f̂f j,n=2(x)

instead of f̂f j,n(x) to have a cleaner risk bound. But f̂f j,n(x) should be a slightly better choice

in terms of accuracy.

Remark 4. The constant C can be taken to be proportional to (2(1þ � 2=� 2)þ 13A2)Bs0,T ,

where s0 ¼ �=� and T ¼ A.

Proof of Proposition 1. The result is proved in Yang (2001) for the case where there are

finitely many, say J, candidate procedures with equal prior weight � j ¼ 1=J for 1 < j < J :
The proof for the general case can be done similarly.

2.2. Linearly combining a finite number of procedures

Now let ˜ ¼ f�1, �2, . . . , �Mn
g denote a finite collection of candidate procedures to be

aggregated. The number of procedures, Mn, changes according to the sample size n. In

particular, we will consider the case where Mn is of order n� for some 0 < � , 1: When

the sample size increases, one is allowed to consider more candidate procedures (possibly

more and more complicated).

As in Juditsky and Nemirovski (2000), the coefficients for linear combination are suitably

constrained. Let Fn ¼ f
P

1< j<Mn
Ł j f̂f j,n(x) :

P
1< j<Mn

jŁ jj < 1g be the collection of linear

combinations of the original estimators in ˜ with coefficients whose absolute values sum to

no more than 1. The hope behind the consideration of the linear aggregation is that a

certain combination of the original estimators might have a much better performance than

the individual ones. Advantages of such combining have been empirically demonstrated in

several related fields (see Bates and Granger 1969; Breiman 1996). Let k � kMn

1 denote the

l1 norm on RMn , that is, kŁkMn

1 ¼
P

1< j<Mn
jŁ jj: Define

R�( f ; n; ˜) ¼ inf
kŁkM n

1
<1

E

����� f �
X

1< j<Mn

Ł j f̂f j,n

�����
2

:

This is the smallest risk over all the estimators in the linear aggregation class Fn: Obviously,
R�( f ; n; ˜) < inf1< j<Mn

R( f ; n; � j):
Let us now describe our strategy of linear combining. There are two main steps. First, we

discretize (with suitable accuracy) the coefficients for linear combinations and then treat the
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set of all the corresponding linearly discretely combined estimators as a new collection of

candidate estimators. For a suitable discretization, some results on metric entropy are very

helpful. In the second step, we combine these estimators for adaptation using the ARM

algorithm described in the previous subsection. When Mn is large, however, an additional

difficulty arises and sparse combining solves the problem.

We consider first the case where Mn , (n)1=2: Let G ¼ fŁ ¼ (Ł1, . . . , ŁMn
) :PMn

i¼1jŁij < 1g be the Mn-dimensional unit ball under the l
M n

1 distance. Let NE be an E-
net in G under the l

M n

1 distance, that is, for each Ł 2 G, there exists Ł9 2 NE such that

kŁ� Ł9kMn

1 ¼
PMn

i¼1jŁi � Ł
9

ij < E: We choose a best En-net of size of 2k points (which

minimizes the maximum approximation error at the given size), where k is chosen so that

k ¼
�
Mn(log(n=Mn)þ 2 log 2)

2 log 2

�
:

For simplicity in notation, let f̂f 1, . . . , f̂f M n denote the original estimators at the sample size

n: Let FE n be the set of the linear combinations of the estimators f̂f 1, . . . , f̂f M n with

coefficients in NEn : Then we combine all the estimators in FE n using the ARM algorithm with

uniform prior weight 1=jNEn j. Let f̂f n denote the combined estimator and �� denote this final

procedure.

Now consider the other case: Mn > (n)1=2: It turns out that the method above leads to a

suboptimal rate of convergence. For this case, due to the l1 constraint, the number of large

coefficients is small relative to Mn when Mn � (n)1=2: An appropriate search of the large

coefficients can result in optimal rate of convergence, as will be seen.

For each fixed subset I � f1, . . . , Mng of size m� ¼ d(n=log n)1=2e, consider a best E-net
in BI ¼ fŁI :

P
i2 I jŁij < 1g under the lm

�

1 distance with size of 2k points, where

k ¼ d(m�(log(n=m�)þ 2 log 2))=2 log 2e. Then (with uniform prior weight) combine the

corresponding linear combinations of the procedures in I . Then combine these (combined)

procedures over all possible choices of I – there are (Mn

m� Þ many such I altogether – with

uniform prior weight. Let �� denote this final procedure.

2.3. An upper bound for linear combining

Theorem 1. Assume that conditions A1–A3 are satisfied. For any given collection of

estimation procedures ˜ ¼ f� j, 1 < j < Mng, the combined procedure �� constructed in the

previous subsection satisfies

R( f ; n; ��) < C

R� f ;
n

2
; ˜

� �
þ Mn log(1þ n=Mn)

n
when Mn ,

ffiffiffi
n

p
,

R� f ;
n

4
; ˜

� �
þ logMnffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p when Mn >

ffiffiffiffiffi
n,

p

8>>><
>>>:

where C is a constant depending on A, � , � , and h: In particular, if M n < C0n
� for some

� . 0 and C0 . 0, then
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R( f ; n; ��) < C9

R� f ;
n

2
; ˜

� �
þ log n

n1��
when 0 < � , 1

2
,

R� f ;
n

4
; ˜

� �
þ � log n

n

� �1=2

when 1
2
< � , 1,

8>>><
>>>:

(2)

where the constant C9 depends on A, � , � , C0, and h.

Remark 5. The technical condition A2 is used for deriving a risk bound for the built-in

variance estimation in step 3 of the three-stage combining algorithm in Section 2.1. It can be

dropped if one has a good alternative estimator available (e.g., by the nearest-neighbour

method), and then the risk of the estimator appears in the performance bound; see Yang

(2000b, Section 6) for details. Under mild continuity assumptions, it typically does not affect

the rate of convergence of the combined procedure.

Remark 6. The discretization-based combined estimator is computationally very costly. Thus

the combining method is difficult to implement for applications.

Note that for both parametric and nonparametric regression, for a good procedure,

R( f ; n; �) and R( f ; n=2; �) are usually of the same order. Thus it is typically the case that

R�( f ; n; ˜) and R�( f ; n=2; ˜) converge at the same rate. From the result, when � > 1
2
,

the penalty term for pursuing the best linear combination of n� procedures is of order

log n=nð Þ1=2 (independent of �). This rate is obtained by Juditsky and Nemirovski (2000)

with a weaker assumption on the errors (finite variance), while requiring the knowledge of

A: When � , 1
2
, our result above shows that the penalty is smaller in order, resulting in a

possibly much faster rate of convergence. For an extreme example, when Mn is fixed, the

price we pay is only of order log n=n.

Proof of Theorem 1. Consider first the case where Mn , (n)1=2: Note that an E-net in G

yields a suitable net in the set Fn of the linear combinations of the original estimators: for

any estimator f̂f ¼
PMn

i¼1Łi f̂f
i with Ł 2 G, there exists Ł9 2 NE such that

����� f̂f �
XMn

i¼1

Ł9i f̂f
i

����� ¼
�����
XMn

i¼1

(Łi � Ł9i) f̂f
i

����� < AkŁ� Ł9kMn

1 < AE: (3)

By Proposition 1, for any f with k f k1 < A, we have

Ek f � f̂f nk2 <
C log(jNEj)

n
þ C inf

f̂f 2FE

R( f ; f̂f ; n=2),

where C depends only on A, � , � , and h: Since FE is an (AE)-net in Fn, by the triangle

inequality, for any f , we have inf f̂f 2FE
R( f ; f̂f ; n=2) < 2 inf f̂f 2Fn

R( f ; f̂f ; n=2)þ 2A2E2: It

follows that
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Ek f � f̂f nk2 <
C log(jNEj)

n
þ 2C inf

f̂f 2Fn

R( f ; f̂f ; n=2)þ 2A2CE2: (4)

To obtain the best upper bound (in order), we need to minimize log(jNEj)=nþ 2A2E2 when

discretizing G: Note that the logarithm of the smallest size of NE is the covering entropy of

the set G under the l
M n

1 distance; see Kolmogorov and Tikhomirov (1959) for properties of

metric entropy. For this case, the metric entropy is easy to compute. The following result is

given in terms of the entropy number, that is, the worst-case approximation error with the

best net of size 2k points. Let Ek denote the entropy number of G. From Edmunds and

Triebel (1989, Proposition 3.1.3), when k > Mn, we know that Ek < c2�k=Mn for some

constant c independent of k and Mn (note that the results of Edmunds and Triebel are much

more general than what is needed here, and they can be useful for considering linear

combining under other l p ( p 6¼ 1) constraints). Take

k ¼
�
Mn(log(n=Mn)þ 2 log 2)

2 log 2

�

(note that k > Mn). Then

log(jNEj)
n

þ 2A2E2 <
Mn(log(n=Mn)þ 2 log 2)

2n
þ log 2

n
þ (Ac)2Mn

2n
<

c9Mn log(1þ n=Mn)

n
,

where c9 depends only on A and c: The upper bound in Theorem 1 for Mn , (n)1=2 then

follows.

Now consider the other case: Mn > (n)1=2: Note that for kŁkMn

1 < 1, k
PMn

i¼1Łi f̂f
ik < A:

Then by a sampling argument (see Lemma 1 in Barron 1993), for each m, there exist a

subset I � f1, . . . , Mng of size m and Ł9I ¼ (Ł9i, i 2 I) such that k
PMn

i¼1Łi f̂f
i�P

i2 IŁ9i f̂f
ik < A=(m)1=2: With the choice of m� ¼ d(n=log n)1=2e, we have k

PMn

i¼1Łi f̂f
i�P

i2 IŁ9i f̂f
ik < A(log n=n)1=4: Consider an E-net in BI ¼ fŁI :

P
i2 I jŁij < 1g under the lm

�
1

distance. Again by Edmunds and Triebel (1989), taking k ¼ d(m�(log(n=m�)
þ 2 log 2))=2 log 2e, the best E-net has approximation accuracy E < c=2(m�=n)1=2:
Then as in (3), we know that there exists Ł 0I in this E-net such that

k
P

i2 IŁ9i f̂f
i �
P

i2 IŁ 0i f̂f
ik < Ac=2(m�=n)1=2: Thus for each f̂f 2 Fn, there exist

I� � f1, . . . , Mng of size m� and Ł 0I such that�����
XMn

i¼1

Łi f̂f
i �
X
i2 I�

Ł 0i f̂f
i

����� <
A(log n)1=4

n1=4
þ Ac

2n1=4(log n)1=4
<

c 0(log n)1=4

n1=4
,

where c 0 depends only on A and c: Notice that, in general, I� depends on f and therefore it

should be sought adaptively. Applying Proposition 1 twice, we have that

R( f ; n; ��) < C R� f ;
n

4
; ˜

� �
þ (log n)1=2

n1=2
þ m� log(n=m�)

n
þ
log(Mn

m� )

n

 !

< C9 R� f ;
n

4
; ˜

� �
þ logMnffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n log n
p

� �
,
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where the constants C and C9 depend on A, � , � , and h: This completes the proof of

Theorem 1. h

Remark 7. In the above derivation, when Mn . (n)1=2, combining a small number (relative to

Mn) of procedures together with subset search yields a price of order (log n=n)1=2 for Mn of

a polynomial order in n, which is the optimal rate based on Theorem 2 (to be given in the

next subsection) in that case. Similar ideas on sparse subset selection are given in Barron

(1994), Yang and Barron (1998) and Barron et al. (1999).

2.4. A lower bound for linear combining

How good are the upper bounds derived in the previous subsection? Juditsky and

Nemirovski (2000) show that when Mn and n satisfy

C1 logMn < n < C2Mn logMn (5)

for some constants C1 and C2 (i.e., Mn is no smaller than order n= log n but not too large),

the order log n=nð Þ1=2 cannot be improved in a minimax sense. We show in general that the

rates given in Theorem 1 cannot be improved up to possibly a logarithmic factor for some

cases. In particular, the lower rate (log n=n)1=2 derived by Juditsky and Nemirovski (2000) for

the case (5) continues to hold as long as Mn is of order at least (n)1=2.

For simplicity, consider the case where X 1, X2, . . . are independent and uniformly

distributed on [0, 1]: Let fji(x), i > 1g be the orthonormal trigonometric basis functions on

[0, 1]. Take � j, j > 1 to be the procedure that always estimates f by j j(x):

Theorem 2. Assume that the errors are normally distributed with variance 1. Consider

Mn ¼ bC0n
�c for some � . 0 and C0 . 0. For the Mn procedures ˜Mn

¼ f� j,

1 < j < Mng, for any aggregated procedure �(n) based on ˜Mn
, one can find a regression

function f with k f k1 <
ffiffiffi
2

p
satisfying

R( f ; n; �(n))� R�( f ; n; ˜Mn
) > C

1

n1��
when 0 < � < 1

2
,

log n

n

� �1=2

when 1
2
, � , 1,

8>>><
>>>:

where the constant C does not depend on n or f .

Thus no aggregation method can achieve the smallest risk over all the linear combinations

within an order smaller than the ones given above in accordance with � uniformly over all

bounded regression functions. Note that the lower rate matches the upper rate when � . 1
2
and

the upper and lower rates differ only in logarithmic factors when 0 < � < 1
2
:

It is worth noting how the price (in rate) for combining for improvement changes

according to Mn: In the beginning, it basically increases linearly in Mn, but after Mn

reaches (n)1=2, it increases much more slowly in a logarithmic fashion. Accordingly, it stays

at rate (log n=n)1=2 as long as Mn increases polynomially in n.
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In a different direction, Yang (2000b; 2001) shows that one only needs to pay a penalty

of order (logMn)=n to pursue the less ambitious goal of achieving the best performance

among the original Mn procedures (see also Proposition 1 above). Observing the dramatic

difference between the two penalties, one naturally faces the question whether one should

combine for adaptation or for improvement. If one of the original procedures happens

to behave best (or close to best) among all the linear combinations, or at least one of

the original procedures converges at a rate faster than (log n)=n1�� (for 0 < � , 1
2
) or

(log n=n)1=2 (for � > 1
2
), if one aggregates to improve performance, one could be

unfortunately paying too high a price for nothing but adversely affecting the convergence

rate in estimating f . In terms of rate of convergence, combining for improvement is worth

the effort for certain only if R�( f ; n=2; ˜) plus the penalty in (2) is of a smaller order

than (logMn)=nþ inf j R( f ; n=2; � j). In applications, since the risks are of course

unknown, one does not know in advance whether to combine for adaptation or for

improvement. An indiscriminate choice can lead to a much worse rate of convergence. In

the next section we show that one can actually handle the two goals optimally at the same

time.

Finally, we briefly mention an interesting observation in the proof of Theorem 2 (to be

given in Section 6). It is well known that metric entropy plays a determining role in rate of

convergence for function estimation. Both local entropy (Le Cam 1975; Birgé 1986) and

global entropy (Yang and Barron 1999, and references therein) have been used for obtaining

upper rates and lower rates of convergence. Here, in the proof of Theorem 2, we see the

advantage of each over the other in different scenarios. See the proof of the theorem and

Remark 12 in Section 6 for more details.

3. Multi-direction aggregation

We now show that, when combining the procedures properly, one can have the potential of

obtaining a large gain in estimation accuracy yet without losing much when there happens

to be no advantage in considering sophisticated linear combinations.

Let us consider a slightly different setting than that of the previous section. Suppose that

we have a countable collection of candidate procedures ˜ ¼ f�1, �2, . . .g: We may combine

some or all of the procedures. We consider three different approaches to combining the

procedures in ˜.
The first approach is to combine the procedures for adaptation. Here one intends to

capture the best performance in terms of rate of convergence among the candidate

procedures. Let ��A denote this combined procedure based on ˜ using the three-stage ARM

algorithm given in Section 2. Since ˜ is not (necessarily) a finite collection, one cannot use

the uniform prior weight for combining. The prior weight � j is taken to be ce�log� j, where

log� is defined by log� x ¼ log(xþ 1)þ 2 log log(xþ 1) for x . 0, and the constant c is

chosen to normalize the weights to sum to 1. Based on Proposition 1, we have that, for any

f with k f k1 < A,
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R( f ; n; ��A) < C1 inf
j

log( jþ 1)

n
þ R( f ; n=2; � j)

� �
¼: C1R

�
1 ( f ; n; ˜), (6)

where the constant C1 depends on A, � , � , and h: In the rest of the paper, unless otherwise

stated, a constant C (with or without subscript) may depend on A, � , � , and h: For

convenience, we may use the same symbol C for different such constants in different places.

From (6), if one procedure, say � j� behaves best, then the penalty is of order n�1: If the best

estimator changes according to n, then inf j((log( jþ 1))=nþ R( f ; n=2; � j)) is a trade-off

between complexity and estimation accuracy.

The second approach targets the best performance among all the l1-constrained linear

combinations of the original procedures up to different orders. For each integer L > 1, let

�L denote the combined (for improvement) procedure based on the first L procedures

�1, . . . , �L as used for Theorem 1. Then combine (for adaptation) the procedures

f�1, �2, . . .g with prior weight ce�log� L for L > 1: Let ��B denote this combined procedure.

Let ˜L denote the set of the first L procedures in ˜: Let

łn(L) ¼

L log(1þ n=L)

n
1 < L ,

ffiffiffi
n

p
,

log Lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p L >
ffiffiffi
n

p
:

8>><
>>:

By Theorem 1 and Proposition 1, we have that, for any f with k f k1 < A,

R( f ; n; ��B) < C2 inf
L

R� f ;
n

2
; ˜L

� �
þ łn(L)

� �
¼: C2R

�
2 ( f ; n; ˜): (7)

The third approach recognizes that in many cases, when combining a lot of procedures,

the best linear combination may concentrate on only a few of them. For such a case,

working with these important procedures only leads to a much smaller penalty when

combining for improvement. This calls for additional care in aggregation and it can be done

as follows. For each integer L . 1, 1 < k , L, and a subset S of f1, 2, . . . , Lg of size k,

let � Sð Þ be the combined (for improvement) procedure based on f� j : j 2 Sg as for

Theorem 1. Then let �L,k be the combined (for adaptation) procedure based on all such

�(S) with uniform prior weight 1=(Lk ) – there are (Lk ) many such procedures. Then let �(L)

be the combined (for adaptation) procedure based on �L,1, . . . , �L,L�1 using the uniform

prior weight 1=(L� 1): Let ��C denote the combined (for adaptation) procedure based on

�(L), L > 2 with prior weight c9 exp(�log� L), where the constant c9 is chosen such thatP1
L¼2c9e

�log� L ¼ 1. Let ˜S denote the collection of procedures f� j : j 2 Sg: Based on

Proposition 1 and Theorem 1, we have that, for any f with k f k1 < A,

R( f ; n; ��C) < C3 inf
L>2

inf
1<k<L�1

inf
jSj¼k,S�f1,2,...,Lg

R� f ;
n

16
; ˜S

� �
þ łn(k)þ

log(Lk )

n

 ! !
(8)

¼: C3R
�
3 ( f ; n; ˜):

Now we combine these three procedures ��A, �
�
B, and ��C with equal prior weight 1

3
for
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adaptation. And let �F denote the final combined procedure. Note that it is still a linear

combination of the original procedures. We have the following result.

Corollary 1. Assume conditions A1–A3 are satisfied. Then, for each f with k f k1 < A, we

have

R( f ; n; �F) < Cmin(R�1 ( f ; n=2; ˜), R�2 ( f ; n=2; ˜), R�3 ( f ; n=2; ˜)),

where R�1 ( f ; n; ˜), R�2 ( f ; n; ˜) and R�3 ( f ; n; ˜) are given in (6), (7) and (8), respectively.

This result characterizes good performance of the final estimator simultaneously in three

directions in terms of rate of convergence. First of all, the final estimator converges as fast as

any original procedure. Secondly, when linear combinations of the first Ln procedures (for

some Ln . 1) can improve estimation accuracy dramatically, one pays a price of order at

most łn(Ln) for the better performance. When Ln is small, the gain is substantial. When a

certain linear combination of a small number of procedures performs well, the final estimator

can also take advantage of that. In summary, the final estimator can behave both aggressively

(combining for improvement) and conservatively (combining for adaptation), whichever is

better.

4. Aggregating estimators based on linear approximation

In this section, we illustrate the spirit of multi-direction aggregation through an example

with linear and sparse approximations. We assume that x 2 0, 1½ �d (1 < d < 1):
Let f� j : j ¼ 1, 2, . . .g be a countable collection of linear approximation systems. For

each j, � j ¼ fj j,1(x), j j,2(x), . . .g is a chosen collection of linearly independent functions

in L2[0, 1]d . Bases that are orthonormal (or at least have some frame properties) have

traditionally been emphasized, but non-orthogonal and/or over-complete bases have recently

been advocated and studied. Relaxation of orthogonality enables one to consider, for

example, trigonometric expansions with fractional frequencies and neural network models.

Considering different bases at the same time provides much more flexibility and gives great

potential to improve estimation accuracy, especially in high-dimensional settings. See

Barron and Cover (1991), Mallat and Zhang (1993), Barron (1994), Donoho and Johnstone

(1994), Johnstone (1999), Juditsky and Nemirovski (2000), Yang and Barron (1998), and

Barron et al. (1999) for work in these directions.

For a fixed j, the (squared L2) approximation error of f using the first N terms (together

with a constant term if needed) is

�( j,N )( f ) ¼ inf
fa lg

����� f � a0 �
XN
l¼1

alj j, l

�����
2

:

This uses an individual approximation system. The approximation error of f using

(unrestricted) linear combinations of the first N terms of each of the first L systems is
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�L,N ( f ) ¼ inf
fa0,a j, lg

����� f � a0 �
XL
j¼1

XN
l¼1

a j, lj j, l

�����
2

:

This is a mixed linear approximation using the first L systems. The approximation error of f

based on the sparse (unrestricted) linear approximation using k out of the first L systems is

�k
L,N ( f ) ¼ inf

S�f1,...,Lg,jSj¼k
inf

fa0,a j, lg

����� f � a0 �
X
j2S

XN
l¼1

a j, lj j, l

�����
2

:

In addition, consider the approximation error of f using the l1 constrained linear

combinations:

�L
N ( f ) ¼ inf

fa j, lg

����� f � a0 �
XL
j¼1

XN
l¼1

a j, lj j, l

�����
2

,

where the coefficients a j, l and a0 are such that the l1 norm is upper bounded by 1. For

different functions, one of the approximations above can be advantageous over the others.

With various assumptions on the approximation errors and with appropriate handling of the

estimation errors, results for the adaptive estimation of f can be derived.

For simplicity in illustration, we now focus on approximations based on orthonormal

basis functions, where the relationship between the approximation error and the linear

coefficients is often clear.

Suppose d ¼ 1 and assume that X i ¼ (X i1, X i2, . . .) has independent, uniformly

distributed components X ij, j > 1 (or after suitable transformation). We assume that the

true regression function is additive, that is, for x ¼ (x1, x2, . . .),

f (x) ¼ c0 þ f 1(x1)þ f 2(x2) þ . . . , (9)

where f i has mean zero (with respect to the Lebesgue measure on [0, 1]) for i > 1 and we

assume that k f k1 < A for some known constant A . 0:
To estimate the additive component f j(xj), a linear approximation system � j ¼

fj j,1(xj), j j,2(xj), . . .g is used. Assume that the basis functions are orthonormal with mean

zero, and in addition, sup j, lkj j, lk1 < A9 for some constant 1 , A9 , 1.

We consider several estimators. Let ĉc0 ¼ n�1
Pn

i¼1Yi: For a given j, let ~ff ( j,N )(xj) be the

projection estimator of f j(xj) based on the first N basis functions in � j. That is,
~ff ( j,N )(xj) ¼

PN
l¼1Ł̂Ł j, lj j, l(xj), where Ł̂Ł j, l ¼ n�1

Pn
i¼1Yij j, l(X ij): Then let f̂f ( j,N )(x) ¼ ĉc0 þ

~ff ( j,N )(xj), clipped to [�A, A] if necessry. Let f̂f L,N (x) ¼ ĉc0 þ
PL

j¼1
~ff j,Nð Þ(xj), also clipped

to [�A, A] if required. For a given L, N , and a subset S � f1, . . . , Lg, define

f̂f L,N ,S(x) ¼ ĉc0 þ
P

j2S
~ff j,Nð Þ(xj), again clipped to [�A, A].

Now we consider combining several estimators based on the different approximations.

First we combine the estimators f̂f ( j,N ) over j and N for adaptation with prior weight

proportional to e�log j��log N�
: Let �1 denote the combined procedure. Its risk is bounded

from above by a multiple of

38 Y. Yang



inf
j,N

�( j,N )( f )þ
N

n
þ log j

n
þ log N

n

� �
; (10)

see the proof of Corollary 2 in Section 6.

Next, we combine f̂f L,N over L and N for adaptation with prior weight proportional to

e�log L��log N�
. Let �2 denote the combined procedure. Then the risk of �2 is bounded from

above by a multiple of

inf
L,N

�L,N ( f )þ
LN

n
þ log L

n
þ log N

n

� �
: (11)

We also combine the sparse approximation based estimators f̂f L,N ,S over L, N , Sð Þ with

prior weights proportional to e�log L��log N��log(L�1)�log(Lk ) (L > 2). The combined procedure,

�3, has a risk bounded from above by a multiple of

inf
L,N

inf
1<k<L�1

�k
L,N ( f )þ

kN

n
þ log L

n
þ log N

n
þ k log L

n

� �� �
: (12)

For the use of the l1-constrained combined approximation, let the basis functions

themselves (together with 1) be the initial estimators and consider linearly combining them

(as in Theorem 1): a0 þ
PL

j¼1

PN
l¼1a j, lj j, l, with the coefficients bounded from above by 1

in l1 norm. Then we combine the estimators over L and N for adaptation (with prior weight

proportional to e�log L��log N�
) and let �4 denote this combined procedure. The resulting risk

bound for �4 is a multiple of

inf
L,N

�L
N ( f )þ łn(LN þ 1)þ log L

n
þ log N

n

� �
: (13)

Let �F denote the final procedure combining �1, �2, �3, �4 together (for adaptation with

equal prior weight). Based on the aforementioned risk bounds, one can derive rate of

convergence for the final aggregated procedure �F under various assumptions on the

approximation errors.

Suppose that f j(xj) ¼
P1

l¼1Ł j, lj j, l(xj) for j > 1 and assume the coefficients satisfy the

following condition, denoted B0:

X1
j¼1

j2�
X1
l¼1

l2sŁ2j, l

 !
, 1, (14)

for some s . 0 and � . 0: When the true regression function is actually univariate in one

variable, say xj0, then Ł j, l ¼ 0 for all j and l except j ¼ j0: Let B1 denote this condition.

Under condition B0, we have �L,N ( f ) ¼ O(N�2s þ L�2�); see the proof of Corollary 2 in

Section 6. Let B2 denote the condition under which the earlier sparse approximation satisfies

the requirement that there exist constants 0 , 	 , 1 and c . 0 such that, for any L, there

exists a subset S of size k < cL	 with �k
L,N ( f ) ¼ O(N�2s þ L�2�) (i.e., a small fraction of

terms can yield the same approximation error rate). Another condition, denoted B3, is that
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jc0j þ
X1
j¼1

X1
i¼1

jŁ j,ij < 1: (15)

Corollary 2. Assume that the errors are normally distributed with � 2 bounded above and

below by known constants. Assume also that k f k1 < A for a known constant A . 0 and

sup j, lkj j, lk1 < A9 for some constant 1 , A9 , 1. If f satisfies condition B0, we have

R( f ; n; �F) ¼ O
�
n�2s=(1þs(2þ1=�))

�
: (16)

If f satisfies conditions B0 and B1, we have

R( f ; n; �F) ¼ O
�
n�2s=(1þ2s)

�
: (17)

If f satisfies conditions B0 and B2, we have

R( f ; n; �F) ¼ O
�
n�2s=(1þs(2þ	=�))

�
: (18)

If f satisfies conditions B0 and B3, we have

R( f ; n; �F) ¼ O
�
min

�
(log n=n)1=2, n�2s=(1þs(2þ1=�))

��
: (19)

Note that the procedure �F does not require knowledge of the constants s and �. Thus
the rate n�2s=(1þs(2þ1=�)) is adaptively achieved. When s or � is very small, the rate of

convergence is very slow. If f is in fact univariate in one variable, a (possibly much) better

rate of convergence n�2s=(1þ2s) is automatically achieved by the aggregated procedure (the

same rate also holds (under B0) if f depends on x only in a finite number of variables).

The sparse approximation helps when 	 is small in condition B2. Under B0 and B3, a good

rate O((logn=n)1=2) is guaranteed regardless of how unfavourable s and � are.

Remark 8. In the construction of sparse linear combining, sparseness is in terms of the

number of procedures being combined. One can also consider sparseness in terms of the

number of terms in the linear approximation within each approximation system. See Yang

and Barron (1998) for such a treatment in density estimation based on model selection.

Remark 9. For an integer j0 and positive constants s and C, let F ( j0, s, C) denote the set of

functions f with Ł j, l ¼ 0 for j 6¼ j0 and
P1

l¼1 l
2sŁ2j0, l < C. Then for each f 2 F ( j0, s, C),

instead of the rate in (17), we in fact have that R( f ; n; �F) ¼ o(n�2s=(1þ2s)). But the rate

o(n�2s=(1þ2s)) cannot occur uniformly over F ( j0, s, C).

Remark 10. If f happens to be ‘parametric’ in the sense that it can be expressed as a linear

combination of finitely many basis functions (possibly across different systems), then the

convergence rate of the final procedure is O(log n=n), possibly losing a logarithmic factor.

Remark 11. With a proper modification of the combining method, condition (B3) can be

relaxed to jc0j þ
P1

j¼1

P1
i¼1jŁ j,ij , 1 without affecting the rate of convergence.
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5. Generalization

The main results in this paper can be generalized with little difficulty in two directions

based on an analysis similar to that in Yang (2001). Firstly, the error distribution h need not

be known completely. It suffices to assume that h is in a countable collection of candidate

error distributions. This gives more flexibility for handling errors with different degrees of

heavy-tailedness. Secondly, one need not require that the random errors have a constant

variance function. Assume instead that for each � j, in addition to having an estimator f̂f j,n
of the regression function, we also have an estimator �̂�2

j,n of the variance function. The

procedures can share variance estimators if so desired. The procedures can be combined for

estimating f using both the regression estimators and the variance estimators (see Yang

2001). A recent work on variance estimation is Ruppert et al. (1997), where a local

polynomial method is proposed with a theoretical justification.

6. Proofs of the results

We need a lemma on minimax lower bound for the proof of Theorem 2. Let d be a

distance (metric) on a space S. For D � S, we say G is an E-packing set in D (E . 0) if

G � D and any two distinct members in G are more than E apart in the distance d: Now let

F be a class of regression functions. The distance d here is L2 distance.

Definition 1 Global metric entropy. The packing E-entropy of F is the logarithm of the largest

E-packing set in F. The packing E-entropy of F is denoted M(E):

Definition 2 Local metric entropy. The local E-entropy at f 2 F is the logarithm of the largest

(E=2)-packing set in B( f , E) ¼ f f 9 2 F : k f 9� f k < Eg. The local E-entropy at f is denoted

by M(Ej f ). The local E-entropy of F is defined as M loc(E) ¼ max f 2FM(Ej f ):

Both global (for references, see Yang and Barron 1999) and local entropies (Le Cam

1975; Birgé 1986) have been used for deriving minimax upper and/or lower bounds. Here

we focus on the lower bounds. Assume that M loc(E) is lower-bounded by M loc(E), a

continuous function. Let

M loc(En) ¼ nE2n þ 2 log 2:

Assume M(E) is bounded from above by M(E) and from below by M(E), with M(E) and M(E)
both being continuous. Let En be determined by

M(
ffiffiffi
2

p
En) ¼ nE2n (20)

and En be determined by

M(En) ¼ 4nE2n þ 2 log 2: (21)
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The following lemma is useful for deriving minimax lower bounds using either global or

local metric entropy.

Lemma 1. Assume the random errors in the regression model are normally distributed with

variance 1: The minimax risk for estimating f in F is lower-bounded as follows:

min
f̂f

max
f 2F

Ek f � f̂f k2 > E2n
32

,

min
f̂f

max
f 2F

Ek f � f̂f k2 > E2n
8
,

where the minimization (or infimum) is over all regression estimators based on Z n ¼
(X i, Yi)

n
i¼1:

The first bound in the lemma is from Yang and Barron (1999, Section 7) and the second one

is from Yang and Barron (1997, Section 4). Earlier general results in terms of local entropy

are given in Birgé (1986).

Proof of Theorem 2. For each Mn ¼ dC0n
�e, consider the class of regression functions

F ¼ f fŁ(x) ¼ Ł1j1(x) þ . . . þ ŁMn
jMn

(x) : kŁkMn

1 < 1g: It is obvious that R�( f ; n; ˜Mn
)

¼ 0 for f 2 F: Thus to prove Theorem 2, it suffices to show that

min
f̂f
max f2FEk f � f̂f k2 > Cª(n) for some constant C . 0 not depending on n, where

ª(n) ¼ (log n=n)1=2 for 1
2
, � , 1 and ª(n) ¼ n�(1��) for 0 < � < 1

2
: Since the basis

functions are orthonormal, the L2 distance on F is the same as the l2 distance on the

coefficients ¨ ¼ fŁ : kŁkMn

1 < 1g: Thus the entropy of F under the L2 distance is the same

as the that of ¨ under the l
M n

2 distance. To apply Lemma 1, we bound the local entropy of F
or ¨ from below. Note that by the Cauchy–Schwarz inequality, the l

M n

1 and l
M n

2 norms have

the relationship kŁkMn

1 < (Mn)
1=2kŁkMn

2 : Thus for E < M�1=2
n , taking f � 0, we have

B( f , E) ¼ f fŁ 2 F : k fŁk < Eg ¼ f fŁ : kŁkMn

1 < 1, kŁkMn

2 < Eg ¼ f fŁ : kŁkMn

2 < Eg:

Consequently, for E < M�1=2
n , the E=2ð Þ-packing of B( f , E) under the L2 distance is

equivalent to the E=2ð Þ-packing of BE ¼ fŁ: kŁkMn

2 < Eg under the l
M n

2 distance. Since a

maximum E=2ð Þ-packing set is an E=2ð Þ-covering set, the union of the balls with radius E=2
and centred at points in a maximum packing set in BE should cover BE: It follows that the

size of the maximum packing set is at least the ratio of volumes of the balls BE and BE=2,

which is 2Mn : Thus we have shown that the local entropy M loc(E) of F under the L2 distance

is at least M loc(E) ¼ Mn log 2 for E < M�1=2
n : For Mn ¼ dC0n

�e for some 0 < � < 1
2
, solving

M loc(En) ¼ nE2n þ 2 log 2 gives En of order n�(1��)=2: Note that for such �, by possibly

reducing M loc(E) by a constant factor, En obtained this way can be made smaller than M�1=2
n

(as required in the earlier derivation). Thus, by Lemma 1, we have identified a minimax lower

rate for F when 0 < � < 1
2
: That is,

min
f̂f

max
f 2F

Ek f � f̂f k2 > C1n
�(1��)
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for some constant C1 independent of n: For � . 1
2
, we use the global entropy to derive the

minimax lower bound. It is known from Schütt (1984) that the entropy number satisfies

c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(1þ Mn=k)

k

r
< Ek < c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(1þ Mn=k)

k

r

for constants c1 and c2 independent of Mn and k when logMn < k < Mn: We can choose En
and En both of order logn=nð Þ1=4 to satisfy (20) and (21). This gives the minimax lower rate

for F when � . 1
2
, that is,

min
f̂f

max
f 2F

Ek f � f̂f k2 > C2(log n=n)
1=2

for some constant C2 independent of n: Finally, with the trigonometric basis, the functions in

F satisfy k f k1 < (2)1=2: The theorem follows. h

Remark 12. Both the global and the local entropies are useful here for different cases. For

� . 1
2
, the application of global entropy gives the right rate of convergence. However, if one

intends to use the minimax lower bound in terms of the local entropy, the above derivation of

a local entropy bound does not work because for the critical E of order (log n=n)1=4, it is of a
higher order than M�1=2

n and accordingly B( f , E) 6¼ f fŁ : kŁkMn

2 < Eg. On the other hand, for

0 < � < 1
2
, the application of the local entropy method gives a rate that agrees with the upper

bound up to a logarithmic factor. If one uses the global entropy, the lower bound by Lemma 1

differs substantially in rate from the upper bound. For general relationship between global

and local entropies, see Yang and Barron (1999, Section 7).

Remark 13. In the derivation of the lower bounds in Theorem 2, we choose very special

(non-random) original estimators. This is, of course, not a typical situation where one would

consider combining estimation procedures. In applications, the candidate estimators (or many

of them) are most likely somewhat highly correlated (they are estimating the same target),

but probably not too highly correlated (otherwise one can gain little even by ideal

combining). For such cases, the actual price paid by a good aggregation method is smaller

than that given in Theorem 2, but probably not too much smaller.

Proof of Corollary 2. We first examine the approximation errors under the different

conditions. Assume that condition B0 is satisfied. For a given j, the approximation error of

f j(xj) using the first N terms satisfies

�( j,N )( f j) ¼
����� f j �

XN
l¼1

Ł j, lj j, l

�����
2

¼
X1

l¼Nþ1

Ł2j, l <
X1

l¼Nþ1

l2sŁ2j, l
(N þ 1)2s

¼ 1

(N þ 1)2s

X1
l¼Nþ1

l2sŁ2j, l:

Thus, under condition B0 on f , we have �( j,N )( f j) ¼ o((N þ 1)�2s) as N ! 1 for each

j > 1. The approximation error of f (x) using the basis functions 1, j j, l(xj), with 1 < j < L

and 1 < l < N, satisfies
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�L,N ( f ) ¼
����� f � c0 �

XL
j¼1

XN
l¼1

Ł j, lj j, l

�����
2

¼
X1
j¼Lþ1

X1
l¼1

Ł2j, l þ
XL
j¼1

X1
l¼Nþ1

Ł2j, l

<
1

(Lþ 1)2�

X1
j¼Lþ1

j2�
X1
l¼1

l2sŁ2j, l þ
1

(N þ 1)2s

XL
j¼1

j2�
X1

l¼Nþ1

l2sŁ2j, l:

Thus the approximation error is �L,N ( f ) ¼ O (N þ 1)�2s þ (Lþ 1)�2�
	 


:
Under conditions B0 and B3, from the above upper bound on �L,N ( f ), we know that the

approximation error using the l1-constrained linearly combined approximation is bounded

from above by the same order,

�L
N ( f ) ¼ O(N�2s þ L�2�): (22)

We next examine the risks of the individual estimators. By orthonormality of the basis

functions, for any f with k f k1 < A,

Ek f � f̂f ( j,N)k2 < Ek f � ĉc0 � ~ff j,Nð Þk2 ¼ �( j,N)( f )þ E(ĉc0 � c0)
2 þ

XN
l¼1

E(Ł̂Ł j, l � Ł j, l)
2,

Ek f � f̂f L,Nk2 < E

����� f � ĉc0 �
XL
j¼1

~ff ( j,N )

�����2 ¼ �L,N ( f )þ E(ĉc0 � c0)
2 þ

XL
j¼1

XN
l¼1

E(Ł̂Ł j, l � Ł j, l)
2,

Ek f � f̂f L,N ,Sk2 < E

����� f � ĉc0 �
X
j2S

~ff ( j,N)

�����
2

¼
X
j=2S

X1
l¼1

Ł2j, l þ
X
j2S

X1
l¼Nþ1

Ł2j, l þ E(ĉc0 � c0)
2 þ

X
j2S

XN
l¼1

E Ł̂Ł j, l � Ł j, l

� �2
:

It is straightforward to bound the variances of the estimators of the coefficients. Clearly

E(ĉc0 � c0)
2 ¼ n�1var(Y1) < n�1(A2 þ � 2), and, by expanding squares, we have that

E(Ł̂Ł j, l � Ł j, l)
2 is bounded from above by

1

n
E ��1j j, l(X 1 j)þ c

0
j j, l(X 1 j)þ Ł j, l((j j, l(X 1 j))

2 � 1)þ
X

( j9, l9) 6¼( j, l)

Ł j9, l9j j, l(X1 j)j j9, l9(X 1 j9)

 !2

¼ 1

n
� 2þ c2

0
þŁ2j, lE((j j, l(X 1 j))

2� 1)2þ
X

( j9, l9) 6¼( j, l)

Ł2j9, l9þ2c
0
Ł j, lE(j j, l(X1 j)((j j, l(X1 j))

2�1))

 !

<
1

n
(� 2þ A2þ A2((A9)2þ1)2þ2A2A9((A9)2þ1)),

where the inequality follows from the boundness assumptions on the basis functions and f .

Now from (10), (11), (12), (13) and the above upper bounds on the approximation and

estimation errors, we have that, under conditions B0 and B1, with the choice of N of order

n1=(2sþ1), the quantity in (10) is bounded in order from above by
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inf
N

N�2s þ N

n

� �
¼ O

�
n�2s=(1þ2s)

�
;

under condition B0, with the choice of N of order n1=(1þs(2þ1=�)) and L of order

n(s=�)=(1þs(2þ1=�)), the quantity in (11) is bounded in order from above by

inf
L,N

(N þ 1)�2s þ (Lþ 1)�2� þ LN

n

� �
¼ O

�
n�2s=(1þs(2þ1=�))

�
;

under conditions B0 and B2, with the choice of N of order n1=(1þs(2þ	=�)), L of order

n(s=�)=(1þs(2þ	=�)) and k of order L	, the risk of �3 is bounded in order from above by

inf
L,N

N�2s þ L�2� þ L	N

n
þ L	log L

n

� �
¼ O

�
n�2s=(1þs(2þ	=�))

�
;

under conditions B0 and B3, with the choice of, for example, L ¼ O(n1=(4�)) and

N ¼ O(n1=(4s)), together with (22), the quantity in (13) is bounded in order from above by

inf
L,N

(�L
N ( f )þ łn(LN þ 1)) ¼ O

�
n�1=2 þ łn

�
n1=(4�)þ1=(4s)

��
¼ O(log n=n)1=2,

where, for the last equality, we use the fact that łn(n
�) is bounded in order from above by

(log n=n)1=2 for any 0 , � , 1. The corollary follows.
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