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We propose a multivariate generalization of signed-rank tests for testing elliptically symmetric white

noise against ARMA serial dependence. These tests are based on Randles’s concept of interdirections

and the ranks of pseudo-Mahalanobis distances. They are affine-invariant and asymptotically

equivalent to strictly distribution-free statistics. Depending on the score function considered (van

der Waerden, Laplace, . . .), they allow for locally asymptotically maximin tests at selected densities

(multivariate normal, multivariate double exponential, . . .). Local powers and asymptotic relative

efficiencies with respect to the Gaussian procedure are derived. We extend to the multivariate serial

context the Chernoff–Savage result, showing that classical correlogram-based procedures are

uniformly dominated by the van der Waerden version of our tests, so that correlogram methods are

not admissible in the Pitman sense. We also prove an extension of the celebrated Hodges–Lehmann

‘.864 result’, providing, for any fixed space dimension, the lower bound for the asymptotic relative

efficiency of the proposed multivariate Spearman type tests with respect to the Gaussian tests. These

asymptotic results are confirmed by a Monte Carlo investigation.
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1. Introduction

Much attention has been devoted in the past ten years to multivariate extensions of the

classical, univariate theory of rank and signed-rank tests; see Oja (1999) for an insightful

review of the abundant literature on this subject. Emphasis in this literature, however, has

been put, essentially if not exclusively, on invariance and robustness rather than on

asymptotic optimality issues. Hallin and Paindaveine (2002) recently showed that invariance

and asymptotic efficiency, in this context, are not irreconcilable objectives, and that locally

asymptotically optimal procedures (in the Le Cam sense), in the context of multivariate one-

sample location models, can be based on the robust tools that have been developed in the

area, such as Randles’s interdirections, and (pseudo-)Mahalanobis ranks.
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Although the need for non-Gaussian and robust procedures in multivariate time series

problems is certainly as strong as in the context of independent observations, little has been

done to extend this strand of statistical investigation beyond the traditional case of linear

models with independent errors. A similar phenomenon has been observed in the

development of univariate rank-based methods which, for quite a long period, were

restricted to non-serial models (involving independent observations) – despite the serial

nature of some of the earliest nonparametric and rank-based procedures, such as the tests

based on runs or turning points.

A rank-based test for randomness against multivariate serial dependence of the ARMA

type was proposed by Hallin et al. (1989), but suffers the same lack of invariance with

respect to affine transformations as all methods based on componentwise rankings – the

reader is referred to the monograph by Puri and Sen (1971) for an extensive description, in

the non-serial context, of this approach. The purpose of this paper is to attack the same

problem from an entirely different perspective, in the light of the non-serial contributions of

Möttönen and Oja (1995), Möttönen et al. (1997; 1998), Hettmansperger et al. (1994;

1997), Randles (1989), Peters and Randles (1990) and Jan and Randles (1994), to name but

a few. Basically, we show that tests of randomness that are locally and asymptotically

optimal, in the Le Cam sense, against ARMA dependence can be based on the tools

developed in some of these papers, namely interdirections and pseudo-Mahalanobis ranks,

which jointly provide a multivariate extension of (univariate) signed ranks.

Testing for randomness or white noise, of course, is the simplest of all serial problems

one can think of. In view of the crucial role of white noise in most time series models, it is

also an essential one, as most hypothesis testing problems, in time series analysis, more or

less reduce to testing whether some transformation (possibly involving nuisances) of the

observed process is white noise.

The paper is organized as follows. Section 2 introduces the main technical assumptions,

states the local asymptotic normality result used throughout, and provides the locally and

asymptotically maximin parametric procedures for the problem under study. Section 3

presents the class of multivariate serial rank statistics to be used later in the paper. Section

4 provides the asymptotic relative efficiencies of the proposed procedures with respect to

their Gaussian counterparts, and multivariate serial extensions of two classical results by

Chernoff and Savage (1958) and by Hodges and Lehmann (1956), respectively. In Section 5,

we investigate finite-sample performance via a Monte Carlo study. Proofs are presented in

the appendices.

2. Local asymptotic normality and parametric optimality

2.1. Main assumptions

The testing procedures we propose here constitute a multivariate generalization of the

classical univariate signed-rank methods. As such, they require some symmetry condition:

throughout, we will restrict our attention to elliptically symmetric white noise. Let

X(n) :¼ (X
(n)
1 , . . . , X(n)

n ) be an observed k-dimensional series of length n. Denote by � a
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symmetric positive definite k 3 k matrix, and by f : Rþ0 ! Rþ a non-negative function. We

say that X(n) is a finite realization of an elliptic white noise process with scatter matrix � and

radial density f, if and only if its probability density at x ¼ (x1, . . . , xn) 2 Rnk is of the formQn
t¼1 f (x t; �, f ), where

f (x1; �, f ) :¼ ck, f

1

(det�)1=2
f (kx1k�), x1 2 Rk : (1)

Here kxk� :¼ (xT��1x)1=2 denotes the norm of x in the metric associated with �. The

constant ck, f is the normalization factor (øk�k�1; f )�1, where øk stands for the (k � 1)-

dimensional Lebesgue measure of the unit sphere S k�1 � Rk , and � l; f :¼
Ð1

0
rlf (r)dr. The

following assumption is thus required on f :

Assumption 1. The radial density f satisfies f . 0 almost everywhere, and �k�1; f ,1.

Note that the scatter matrix � in (1) need not be (a multiple of) the covariance matrix of

the observations, which may not exist, and that f is not, strictly speaking, a probability

density; see Hallin and Paindaveine (2002) for a discussion. Moreover, � and f are

identified up to an arbitrary scale transformation only. More precisely, for any a . 0, letting

�a :¼ a2� and f a(r) :¼ f (ar), we have f (x; �, f ) ¼ f (x; �a, f a). This will not be a

problem in what follows, where estimated scatter matrices are always defined up to a

positive factor a (see Assumption 4 below).

Under Assumption 1, ~ff k(r) :¼ (�k�1; f )�1 r k�1 f (r) is a probability density over Rþ0 . More

precisely, ~ff k is the density of kXk, where X is a random k-vector with density f (�; Ik , f )

(Ik denotes the k-dimensional identity matrix). Denote by ~FFk the distribution function

associated with ~ff k .

Whenever LAN is needed, or when Gaussian procedures are to be used, or, more

generally, whenever finite second-order moments are required, Assumption 1 has to be

strengthened as follows:

Assumption 19. The radial density f satisfies Assumption 1, and in addition �kþ1; f ,1.

Null hypotheses of elliptical white noise will be tested against alternatives of multivariate

ARMA( p, q) dependence. As usual, denoting by L the lag operator, consider the

multivariate ARMA( p, q) model

A(L)X t ¼ B(L)� t, (2)

where A(L) :¼ Ik �
P p

i¼1Ai L
i and B(L) :¼ Ik þ

Pq
i¼1Bi L

i for some k 3 k real matrices

A1, . . . , A p, B1, . . . , Bq such that jA pj 6¼ 0 6¼ jBqj. Writing

Ł :¼ ((vec A1)T, . . . , (vec A p)T, (vec B1)T, . . . , (vec Bq)T)T 2 Rk2( pþq),

we denote by H(n)(Ł, �, f ) the hypothesis under which the observed n-tuple X
(n)
1 , . . . , X(n)

n is

a finite realization of some solution of (2), where f� t, t 2 Zg is elliptic white noise with

scatter parameter � and radial density f. Writing H(n)(Ł, �, �) for the hypothesis
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S
�
S

fH(n)(Ł, �, f ) (where unions are taken over the largest sets that are compatible with

the assumptions), our objective is to test H(n)(0, �, �) against
S

Ł 6¼0H(n)(Ł, �, �).
Under some further regularity assumptions on the radial density f, the local asymptotic

normality (for fixed � and f ) of ARMA models follows from a more general result in Garel

and Hallin (1995). The elliptic version of these assumptions, which essentially guarantee the

quadratic mean differentiability of f 1=2, takes the following form (for a discussion, see

Hallin and Paindaveine 2002).

Considering the space L2(Rþ0 , � l) of all functions that are square-integrable with respect

to the Lebesgue measure with weight rl on Rþ0 (i.e. the space of measurable functions

h : Rþ0 ! R satisfying
Ð1

0
[h(r)]2 rl dr ,1), denote by W1,2(Rþ0 , � l) the subspace

containing all functions of L2(Rþ0 , � l) admitting a weak derivative that also belongs to

L2(Rþ0 , � l). The following assumption is strictly equivalent to the quadratic mean

differentiability of f 1=2 (see Hallin and Paindaveine 2002, Proposition 1), but has the

important advantage of involving univariate quadratic mean differentiability only.

Assumption 2. The square root f 1=2 of the radial density f is in W1,2(Rþ0 , �k�1); denote by

( f 1=2)9 its weak derivative in L2(Rþ0 , �k�1), and let j f :¼ �2( f 1=2)9= f 1=2.

Assumption 2 guarantees the finiteness of the radial Fisher information

I k, f :¼ (�k�1; f )�1
Ð1

0
[j f (r)]2 r k�1 f (r)dr:

Whenever ranks and rank-based statistics come into the picture, they will be defined from

score functions K1 and K2; suitable score functions will be required to satisfy the following

conditions:

Assumption 3. The score functions K‘ : ]0, 1[! R, ‘ ¼ 1, 2, are continuous, satisfyÐ 1

0
jK‘(u)j2þ� du ,1 for some � . 0, and can be expressed as differences of two

monotone increasing functions.

The score functions yielding locally and asymptotically optimal procedures, as we shall see,

are of the form K1 :¼ j f � � ~FF�1
� k and K2 :¼ ~FF�1

� k , for some radial density f �. Assumption 3

then takes the form of an assumption on f �:

Assumption 39. The radial density f � satisfies Assumption 2, and �kþ1þ�; f � ,1 for some

� . 0. The associated function j f � is continuous, satisfies
Ð1

0
jj f � (r)j2þ� r k�1 f �(r)dr ,1

for some � . 0, and can be expressed as the difference of two monotone increasing

functions.

The assumption of being the difference of two monotone functions, which characterizes the

functions with bounded variation, is extremely mild. In most cases ( f � normal, double

exponential, . . .), j f � itself is monotone increasing, and, without loss of generality, this will

be assumed to hold for the proofs. The multivariate t distributions considered below, however,

are an example of non-monotone score functions j f � satisfying Assumption 39.

Finally, the matrix � in practice is never known, and has to be estimated from the
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observations. We assume that a sequence of statistics �̂�(n) is available, with the following

properties:

Assumption 4. The sequence �̂�(n) is invariant under permutations and reflections with respect

to the origin in Rk of the observations;
ffiffiffi
n
p

(�̂�(n) � a�) is OP(1) as n!1 under

H(n)(0, �, f ) for some a . 0. The corresponding pseudo-Mahalanobis distances

((X
(n)
i )T(�̂�(n))�1X

(n)
i )1=2 are quasi-affine-invariant in the sense that, if Y

(n)
i ¼MX

(n)
i for all

i, where M is an arbitrary non-singular k 3 k matrix, denoting by �̂�(n)
X and �̂�(n)

Y the

estimators computed from (X
(n)
1 , . . . , X(n)

n ) and (Y
(n)
1 , . . . , Y(n)

n ) respectively, we have

((Y
(n)
i )T(�̂�(n)

Y )�1Y
(n)
i )1=2 ¼ d 3 ((X

(n)
i )T(�̂�(n)

X )�1X
(n)
i )1=2,

for some positive scalar d that may depend on M and the sample (X
(n)
1 , . . . , X(n)

n ).

In the sequel, we write �̂� and Xi instead of �̂�(n) and X
(n)
i . Note that quasi-affine invariance of

pseudo-Mahalanobis distances implies strict affine invariance of their ranks.

Under Assumption 19, f has finite second moments, and the empirical covariance matrix

n�1
Pn

i¼1XiX
T
i satisfies Assumption 4. The resulting pseudo-Mahalanobis distances are then

equivalent to the classical ones, and are of course strictly affine-invariant. However, if (as in

Assumption 1) no assumption is made about the moments of the radial density, the

empirical covariance matrix may not be
ffiffiffi
n
p

-consistent. Other affine-equivariant estimators

of scatter then have to be considered, such as that proposed by Tyler (1987). For the k-

dimensional sample (X1, X2, . . . , Xn), this estimator is defined as �̂�(n)
Tyl :¼ ((C

(n)
Tyl)

TC
(n)
Tyl)
�1,

where C
(n)
Tyl is the (unique for n . k(k � 1)) upper triangular k 3 k matrix with positive

diagonal elements and a ‘1’ in the upper left-hand corner that satisfies

1

n

Xn

i¼1

C
(n)
TylXi

kC(n)
TylXik

0
@

1
A C

(n)
TylXi

kC(n)
TylXik

0
@

1
AT

¼ 1

k
Ik : (3)

See Tyler (1987) and Randles (2000) for the invariance and consistency properties of this

empirical measure of scatter. Unless otherwise stated, we use this estimator throughout (under

the notation �̂�(n) or �̂�) to compute pseudo-Mahalanobis distances.

2.2. Local asymptotic normality

Writing A(n)(L) :¼ Ik �
P p

i¼1 n�1=2A
(n)
i Li and B(n)(L) :¼ Ik þ

Pq
i¼1 n�1=2B

(n)
i Li, consider the

sequence of experiments associated with the (sequence of) stochastic difference equations

A(n)(L)X t ¼ B(n)(L)� t,

where the parameter vector �(n) :¼ ((vec A
(n)
1 )T, . . . , (vec A(n)

p )T, (vec B
(n)
1 )T, . . . ,

(vec B(n)
q )T)T 2 Rk2( pþq) is such that supn(�(n))T�(n) ,1. With the notation above, this

sequence of parameters characterizes a sequence of local alternatives H(n)(n�1=2�(n), �, f ).

Let dt(�) ¼ d
(n)
t (�) :¼ kX tk� and Ut(�) ¼ U

(n)
t (�) :¼ ��1=2X t=dt(�), where ��1=2

denotes an arbitrary symmetric square root of ��1. Writing j f for �2(D f 1=2)= f 1=2,
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where D f 1=2 denotes the quadratic mean gradient of f 1=2, define, as in Garel and Hallin

(1995), the f -cross-covariance matrix of lag i as

ˆ(n)
i;�, f :¼ (n� i)�1

Xn

t¼iþ1

j f (X t)X
T
t�i

¼ (n� i)�1��1=2
Xn

t¼iþ1

j f (dt(�))d t�i(�)Ut(�)UT
t�i(�)

 !
�1=2:

The maximum lag we will need is � :¼ max( p, q). Considering the k2�3 k2( pþ q) matrix

M :¼ Ik2 p Ik2 q

0k2(�� p)3(k2 p) 0k2(�� q)3(k2 q)

� 	
,

let d(n) :¼M�(n). Note that d(n) ¼ ((vec D
(n)
1 )T, . . . , (vec D(n)

� )T)T 2 Rk2�, where

D
(n)
i :¼

A
(n)
i þ B

(n)
i if i ¼ 1, . . . , min( p, q)

A
(n)
i if i ¼ qþ 1, . . . , �

B
(n)
i if i ¼ pþ 1, . . . , �:

8<
:

When A(n) ¼ A, B(n) ¼ B, hence �(n) ¼ �, are constant sequences, we also write Di instead of

D
(n)
i .

Local asymptotic normality, for given � and f, then takes the following form:

Proposition 1. Suppose that Assumptions 19 and 2 hold. Then, the logarithm L
(n)

n�1=2�( n)=0;�, f of

the likelihood ratio associated with the sequence of local alternatives H(n)(n�1=2�(n), �, f )

with respect to H(n)(0, �, f ) is such that

L
(n)

n�1=2�( n)=0;�, f
(X) ¼ (d(n))T˜(n)

�, f �
1

2
(d(n))T

�̂, f d(n) þ oP(1),

as n!1, under H(n)(0, �, f ), with the central sequence

˜(n)
�, f :¼ ((˜(n)

�, f )T
1 , . . . , (˜(n)

�, f )T
�)T,

where

(˜(n)
�, f )i :¼ (n� i)1=2 vecˆ(n)

i;�, f

and

ˆ(n)
�, f :¼

�kþ1; f I k, f

k2�k�1; f

I� � (� � ��1):

Moreover, ˜(n)
�, f , still under H(n)(0, �, f ), is asymptotically N k2�(0, �̂, f ):

Proof. The result is a very particular case of the local asymptotic normality result in Garel

and Hallin (1995). The required quadratic mean differentiability of x 7! f 1=2(kxk) follows

from Assumption 2 (see Hallin and Paindaveine 2002). Note that the causality and

invertibility conditions are trivially satisfied. One can also verify that local asymptotic
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normality in this purely serial model only requires the finiteness of radial Fisher information,

rather than the stronger condition
Ð 1

0
[j f ( ~FF�1

k (u))]4 du ,1 as for the more general model

considered in Garel and Hallin (1995), which includes a linear trend. h

2.3. Parametric optimality

The above local asymptotic normality property straightforwardly allows for building locally

and asymptotically optimal testing procedures, under fixed � and f, for the problem under

study. More precisely, the test that rejects the null hypothesis H(n)(0, �, f �) whenever

Q
par
�, f � :¼ (˜(n)

�, f � )
Tˆ�1

�, f �˜
(n)
�, f �

¼ k2�k�1; f �
�kþ1; f �I k, f �

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

j f �(dt(�))j f � (d~tt(�))d t�i(�)d~tt�i(�)UT
t (�)U~tt(�)UT

t�i(�)U~tt�i(�) . �2
k2�,1�Æ, (4)

where �2
k2�,1�Æ is the Æ-upper quantile of a chi-square distribution with k2� degrees of

freedom, is locally asymptotically maximin, at asymptotic level Æ, for H(n)(0, �, f �) against

alternatives of the form
S

Ł 6¼0H(n)(Ł, �, f �): see Le Cam (1986, Section 11.9).

This procedure is, of course, highly parametric; in particular, it is only valid if the

underlying radial density is f �. This can be improved by replacing the exact asymptotic

variance of ˜
(n)
�, f � with an estimate. Consider, for instance, the Gaussian case f �(z) ¼

�(z) :¼ exp(�z2=2), and the test statistic

Q
par

N :¼ (˜(n)
I k ,�)T ^̂̂�1

I k ,�˜
(n)
I k ,�, (5)

where

^̂̂
I k ,� :¼ I� � ^̂̂(1)

I k ,�,

with

^̂̂(1)
I k ,� :¼ (n� 1)�1

Xn

t¼2

vec(X tX
T
t�1)(vec(X tX

T
t�1))T:

Note that Q
par

N is affine-invariant. The ergodic theorem (see Hannan 1970, Theorem 2, p. 203)

yields ^̂̂
I k ,� ¼ Î k ,�; f þ oP(1) under H(n)(0, Ik , f ), where

Î k ,�; f :¼
1

k2
E2[( ~FF�1

k (U ))2]Ik2�

is the asymptotic variance of ˜(n)
I k ,� under H(n)(0, Ik , f ), so that Q

par

N is asymptotically

equivalent, under H(n)(0, �, �) and under contiguous alternatives, to the Gaussian version of

(4). Here and throughout this paper U is a random variable uniform over ]0, 1[.

The following result is easy to derive.

Proposition 2. Suppose that Assumptions 19 and 2 hold. Consider the test �(n)

N that rejects the
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null hypothesis H(n)(0, �, �) whenever Q
par

N exceeds the Æ-upper quantile �2
k2�,1�Æ of a chi-

square distribution with k2� degrees of freedom. Then:

(i) Q
par

N is asymptotically chi-square with k2� degrees of freedom under H(n)(0, �, �),
and asymptotically non-central chi-square, still with k2� degrees of freedom but with

non-centrality parameter

1

k2
E2[ ~FF�1

k (U )j f ( ~FF�1
k (U ))]

X�
i¼1

tr(�1=2DT
i �
�1Di�

1=2),

under H(n)(n�1=2�, �, f ):
(ii) The sequence of tests �(n)

N has asymptotic level Æ.

(iii) The sequence of tests �(n)

N
is locally asymptotically maximin, at asymptotic level Æ,

for H(n)(0, �, �) against alternatives of the form
S

Ł 6¼0H(n)(Ł, �, �).

3. Test statistics and their asymptotic distributions

3.1. Group invariance, interdirections and pseudo-Mahalanobis ranks

We briefly review the invariance features of the problem under study, justifying the (invariant)

statistics used later: interdirections and pseudo-Mahalanobis ranks. Denote by Z t(�) ¼
Z

(n)
t (�) :¼ ��1=2X t, t ¼ 1, . . . , n, the standardized residuals associated with the null

hypothesis of randomness. Under H(n)(0, �, �), the vectors Ut(�) ¼ U
(n)
t (�) ¼

Z
(n)
t (�)=kZ(n)

t (�)k are independent and uniformly distributed over the unit sphere S k�1.

The notation ẐZ t will be used for the residuals Z
(n)
t (�̂�(n)) associated with the estimator �̂�(n)

considered in Assumption 4.

The interdirection c
(n)

t,~tt
associated with the pair (ẐZ t, ẐZ~tt) in the n-tuple of residuals

ẐZ1, . . . , ẐZn is defined (Randles 1989) as the number of hyperplanes in Rk passing through

the origin and k � 1 of the n� 2 points ẐZ1, . . . , ẐZ t�1, ẐZ tþ1, . . . , ẐZ~tt�1, ẐZ~ttþ1, . . . , ẐZn, that

separate ẐZ t and ẐZ~tt: obviously, 0 < c
(n)

t,~tt
< (n�2

k�1). Interdirections are invariant under linear

transformations, so that it does not matter whether they are computed from the residuals

ẐZ t, the residuals Z t(�), or the observations X t themselves. Finally, let pt,~tt ¼ p
(n)

t,~tt
:¼

c
(n)

t,~tt
=(n�2

k�1) for t 6¼ ~tt, and pt, t :¼ 0:
Interdirections provide affine-invariant estimations of the Euclidean angles between the

unobserved residuals Z t(�), that is, they estimate the quantities ��1 arccos(UT
t (�)U~tt(�)):

The following consistency result is proved in Hallin and Paindaveine (2002), using a U-

statistic representation.

Lemma 1. Let (X1, X2, . . .) be an independent and identically distributed (i.i.d.) process of

k-variate random vectors with elliptically symmetric density (1). For any fixed v and w in Rk ,

denote by Æ(v, w) :¼ arccos(vTw=(kvkkwk)) the angle between v and w, and by c(n)(v, w) the

interdirection associated with v and w in the sample X1, X2, . . . , Xn: Then, c(n)(v, w)=(n�2
k�1)

converges in quadratic mean to ��1Æ(��1=2v, ��1=2w) as n!1.
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The ranks of pseudo-Mahalanobis distances between the observations and the origin in

Rk are the other main tool used in this paper. Let Rt(�) ¼ R
(n)
t (�) denote the rank of dt(�)

among the distances d1(�), . . . , dn(�); write R̂Rt and d̂d t for Rt(�̂�) and dt(�̂�) respectively,

where �̂� is the estimator considered in Assumption 4. It will be convenient to refer to R̂Rt as

the pseudo-Mahalanobis rank of X t. The following result is proved in Peters and Randles

(1990):

Lemma 2. For all t 2 N, (R̂Rt � Rt(�))=(nþ 1) is oP(1) as n!1, under H(n)(0, �, �).

For each � and n, consider the group of transformations G(n)
� ¼ fG

(n)
g g, acting on (Rk)n,

such that Gg(X1, . . . , Xn) :¼ (g(d1(�))�1=2U1(�), . . . , g(dn(�))�1=2Un(�)), where g : Rþ !
Rþ is continuous, monotone increasing, and such that g(0) ¼ 0 and limr!1 g(r) ¼ 1. The

group G(n)
� is a generating group for the submodel H(n)(0, �, :). Interdirections clearly are

invariant under the action of G(n)
� , and so are the ranks Rt(�). Lemma 2 thus entails the

asymptotic invariance of the pseudo-Mahalanobis ranks R̂Rt=(nþ 1).

Another group of interest is the group of affine transformations acting on (Rk)n – more

precisely, the group G(n) ¼ fG(n)
M g, where jMj . 0, and GM(X1, . . . , Xn) :¼ (MX1, . . . ,

MXn). This group of affine transformations is a generating group for the submodel

H(n)(0, :, f ); unlike the componentwise ranks considered in Hallin et al. (1989),

interdirections and pseudo-Mahalanobis ranks clearly are invariant under this group (see

Assumption 4).

For k ¼ 1, interdirections (or more precisely, the cosines cos(�pt,~tt)) reduce to signs, and

pseudo-Mahalanobis ranks to the ranks of absolute values. The statistics we consider next

are thus a multivariate generalization of the signed-rank statistics of the serial type

considered in Hallin and Puri (1991).

3.2. A class of statistics based on interdirections and pseudo-

Mahalanobis ranks

Denoting by K1 and K2 : ]0, 1[! R two score functions, consider quadratic test statistics of

the form

Q
(n)
K :¼ k2

E[K2
1(U )]E[K2

2(U )]

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

K1

R̂Rt

nþ 1

� 	
K1

R̂R~tt

nþ 1

� 	
K2

R̂Rt�i

nþ 1

� 	
K2

R̂R~tt�i

nþ 1

� 	
cos(�pt,~tt)cos(�pt�i,~tt�i): (6)

The form of Q
(n)
K , of course, is closely related to that of (4). Exact variances (� (n)

K )2 can be

substituted in (6) for the asymptotic ones; see Hallin and Puri (1991, p. 12) for an explicit

form of (� (n)
K )2:

Specific choices of the scores K1 and K2 yield a variety of statistics generalizing some

well-known univariate ones. If we let K1(u) ¼ K2(u) ¼ 1 for all u, (6) reduces to the

quadratic ‘multivariate sign’ test statistic
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Q
(n)
S :¼ k2

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

cos(�pt,~tt)cos(�pt�i,~tt�i), (7)

a serial version of Randles’s multivariate sign test statistic (Randles 1989) but also a multi-

variate extension of the quadratic generalized runs statistics proposed in Dufour et al. (1998).

Linear scores K1, K2 yield

Q
(n)
SP :¼ 9k2

(nþ 1)4

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

R̂Rt R̂R~tt R̂Rt�i R̂R~tt�i cos(�pt,~tt)cos(�pt�i,~tt�i), (8)

a multivariate version of the Spearman autocorrelation type test statistics. This is the serial

version of Peters and Randles’s Wilcoxon-type test statistic (see Peters and Randles 1990).

When local asymptotic optimality is required under some specified radial density f �, the

adequate score functions K1 and K2 are K1 ¼ J k, f � :¼ j f � � ~FF�1
� k and K2 ¼ ~FF�1

� k , yielding

Q
(n)
f � :¼

k2�k�1; f �
�kþ1; f �I k, f �

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

J k, f �
R̂Rt

nþ 1

� 	
J k, f �

R̂R~tt

nþ 1

� 	

~FF�1
� k

R̂Rt�i

nþ 1

� 	
~FF�1
� k

R̂R~tt�i

nþ 1

� 	
cos(�pt,~tt)cos(�pt�i,~tt�i): (9)

Particular cases are:

• the van der Waerden test statistic, associated with Gaussian densities ( f �(r) :¼ �(r)),

Q
(n)
vdW :¼

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

k

R̂Rt

nþ 1

� 	s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

k

R̂R~tt

nþ 1

� 	s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

k

R̂Rt�i

nþ 1

� 	s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1

k

R̂R~tt�i

nþ 1

� 	s
cos(� pt,~tt)cos(�pt�i,~tt�i), (10)

where �k stands for the chi-square distribution function with k degrees of freedom;

and

• the Laplace statistic,

Q
(n)
L :¼ k

k þ 1

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

~FF�1
� k

R̂Rt�i

nþ 1

� 	
~FF�1
� k

R̂R~tt�i

nþ 1

� 	
cos(� pt,~tt)cos(�pt�i,~tt�i),

(11)

associated with double exponential radial densities ( f �(r) :¼ exp(�r); ~FF� k(r) ¼
ˆ(k, r)=ˆ(k), where ˆ stands for the incomplete gamma function, defined by

ˆ(k, r) :¼
Ð r

0
s k�1 exp(�s)ds). Note that, as usual in time series problems, the Laplace

statistic (11) does not coincide with the sign test statistic (7).

Before investigating the asymptotic behaviour of (6) and describing the associated

asymptotic tests, let us point out that, for small samples, Q
(n)
K allows for particularly

pleasant permutational procedures. Exact permutational critical values can be obtained from
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enumerating the 2n possible values s1X1, . . . , snXn (s :¼ (s1, . . . , sn) 2 f�1, 1gn), which

are equally probable under the null. What makes these exact procedures so pleasant is that

the (at most) 2n corresponding possible values of the test statistics can be based on a

unique evaluation of the interdirections and the (pseudo-)Mahalanobis ranks. Indeed,

denoting by pt,~tt(s) the interdirection associated with the pair (stX t, s~ttX~tt) in the n-tuple

s1X1, . . . , snXn, it can easily be verified that

cos(� pt,~tt(s)) ¼ st s~tt cos(� pt,~tt): (12)

It follows that the value of the test statistic Q
(n)
K (s) computed at s1X1, . . . , snXn is simply

k2

E[K2
1(U )]E[K2

2(U )]

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

st s~tt s t�i s~tt�i K1

R̂Rt

nþ 1

� 	
K1

R̂R~tt

nþ 1

� 	

K2

R̂Rt�i

nþ 1

� 	
K2

R̂R~tt�i

nþ 1

� 	
cos(� pt,~tt)cos(�pt�i,~tt�i):

3.3. Asymptotic behaviour of statistics based on interdirections and

pseudo-Mahalanobis ranks

We now turn to the asymptotic behaviour of Q
(n)
K as n!1, both under the null hypothesis

of randomness and under local alternatives of ARMA dependence. Proofs are given in

Appendix A.

The following lemma provides an asymptotic representation result for Q
(n)
K :

Lemma 3. Suppose that Assumptions 1–4 hold. Then, under H(n)(0, �, f ),

Q
(n)
K ¼ ~QQn)

K;�, f þ oP(1)

as n!1, where

~QQ(n)
K;�, f :¼

k2

E[K2
1(U )]E[K2

2(U )]

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

K1( ~FFk(dt(�)))K1( ~FFk(d~tt(�)))

3 K2( ~FFk(d t�i(�)))K2( ~FFk(d~tt�i(�)))UT
t (�)U~tt(�)UT

t�i(�)U~tt�i(�):

Let Dk(K; f ) :¼
Ð 1

0
K(u) ~FF�1

k (u)du and Ck(K; f ) :¼
Ð 1

0
K(u)J k, f (u)du, where K denotes

some score function defined over ]0, 1[. When K is a density over Rþ0 rather than a score

function, we write Dk( f 1, f 2) and Ck( f 1, f 2) for Dk( ~FF�1
1k ; f2) and Ck(J k, f1

; f 2)

respectively; for simplicity, we also write Ck( f ) and Dk( f ) instead of Ck( f , f ) and

Dk( f , f ). We then have the following results.

Proposition 3. Suppose that Assumptions 1–4 hold. Then, under H(n)(0, �, �), Q
(n)
K is

asymptotically chi-square with k2� degrees of freedom, as n!1. Under

H(n)(n�1=2�, �, f ), and provided that Assumption 1 is strengthened into Assumption 19,
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Q
(n)
K is asymptotically non-central chi-square, still with k2� degrees of freedom but with non-

centrality parameter

1

k2

D2
k(K2; f )

E[K2
2(U )]

C2
k(K1; f )

E[K2
1(U )]

X�
i¼1

tr(�1=2DT
i �
�1Di�

1=2):

Proposition 4. Suppose that Assumptions 1–4 hold. Consider the test �(n)
K (or �(n)

f � ) that

rejects the null hypothesis H(n)(0, :, :) whenever Q
(n)
K (or Q

(n)
f � ) exceeds the Æ-upper quantile

�2
k2�,1�Æ of a chi-square distribution with k2� degrees of freedom. Then:

(i) the sequences of tests �(n)
K and �(n)

f � have asymptotic level Æ;

(ii) provided that Assumption 1 is strengthened into Assumption 19, the sequence of tests

�(n)
f � is locally asymptotically maximin, at asymptotic level Æ, for H(n)(0, �, �) against

alternatives of the form
S

Ł 6¼0H(n)(Ł, �, f �).

4. Asymptotic performance

4.1. Asymptotic relative efficiencies

We now turn to asymptotic relative efficiencies of the tests �(n)
K with respect to the Gaussian

test �(n)

N . For the sake of simplicity, we suppress superfluous superscripts, writing �K , �N ,

etc. for �(n)
K , �(n)

N , etc.

Proposition 5. Suppose that Assumptions 19–4 hold. Then, the asymptotic relative efficiency

of �K with respect to the Gaussian test �N , under radial density f, is

ARE
(ser)
k, f �K=�Nð Þ ¼ 1

k2

D2
k(K2; f )

E[K2
2(U )]

C2
k(K1; f )

E[K2
1(U )]

:

For the f �-scores procedures, this yields

ARE
(ser)
k, f � f �=�N
� �

¼ 1

k2

D2
k( f �, f )

Dk( f �)
C2

k( f �, f )

Ck( f �)
:

These ARE values directly follow as the ratios of the corresponding non-centrality

parameters in the asymptotic distributions of �K (� f �) and �N under local alternatives (see

Propositions 2 and 3).

4.2. A generalized Chernoff–Savage result

Denote by ARE
(loc)
k, f (� f �=�N ) the asymptotic relative efficiency, under radial density f, for the

multivariate one-sample location problem, of the generalized signed-rank test associated with

radial density f �, with respect to the corresponding Gaussian procedure �N , namely the

Hotelling T 2 test. Then Hallin and Paindaveine (2002) show that
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ARE
(loc)
k, f � f �=�N
� �

¼ Dk( f )

k2

C2
k( f �, f )

Ck( f �)
:

It directly follows from the Cauchy–Schwarz inequality that

ARE
(ser)
k, f � f �=�N
� �

< ARE
(loc)
k, f

� f �
�N

� 	
, (13)

with equality if and only if the radial densities f and f � are of the same density type, that is,

if and only if f (r) ¼ º f �(ar) for some º, a . 0.

As in the univariate case (see Hallin 1994), the van der Waerden procedure is uniformly

more efficient than the Gaussian procedure. More precisely, we show the following

generalization of the serial Chernoff–Savage result of Hallin (1994).

Proposition 6. Denote by �vdW and �N the van der Waerden test based on the test statistic

(10), and the Gaussian test based on (5), respectively. For any f which satisfies Assumptions

19 and 2,

ARE
(ser)
k, f �vdW=�Nð Þ > 1,

where equality holds if and only if f is normal.

Some numerical values of ARE
(ser)
k, f (�vdW=�N ) are provided in Table 1, where it appears

that the advantage of the van der Waerden procedure over the Gaussian parametric

procedure grows with the dimension k of the observation, and with the importance of the

tails of underlying densities (an ARE value of 1.535 is reached for a 10-variate Student

density with 3 degrees of freedom). Note that the multivariate extension of the Chernoff

and Savage (1958) theorem presented in Hallin and Paindaveine (2002) for the location

problem appears, via inequality (13), as a corollary of Proposition 6. Interestingly enough,

although Proposition 6 is stronger than its location model counterpart, its proof is simpler

than the direct proof of its (weaker) location model counterpart (see Appendix B for the

proof).

4.3. A multivariate serial version of Hodges and Lehmann’s ‘.864 result’

Although it is never optimal (there is no density f � such that Q f � coincides with QSP), the

Spearman-type procedure �SP, based on (8), exhibits excellent asymptotic efficiency

properties, especially for relatively small dimensions k. To show this, we extend the ‘.856

result’ of Hallin and Tribel (2000) – the serial analogue of the celebrated ‘.864 result’ of

Hodges and Lehmann (1956) – by computing, for any dimension k, the lower bound for the

asymptotic relative efficiency of �SP with respect to the Gaussian procedure �N . More

precisely, we prove the following result (see Appendix B for the proof).

Proposition 7. Denote by �SP the Spearman procedure based on the test statistic (8). Then,

denoting by Jr the Bessel function of the first kind of order r, and writing
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c(r) :¼ minfx . 0j(
ffiffiffi
x
p

Jr(x))9 ¼ 0g ¼ min x . 0





x J rþ1(x)

Jr(x)
¼ r þ 1

2

( )
,

the lower bound for the asymptotic relative efficiency of �SP with respect to �N is

inf
f

ARE
(ser)
k, f (�SP=�N ) ¼ 9(2c2(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1
p

=2)þ k � 1)4

210 k2c4(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1
p

=2)
, (14)

where the infimum is taken over all radial densities f satisfying Assumptions 19 and 2.

Table 1. AREs of some � f�� tests for randomness (upper line) and for location (lower line), with

respect to the corresponding Gaussian tests, under k-dimensional Student (3, 4, 5, 6, 8, 10, 15 and 20

degrees of freedom) and normal densities, respectively, for k ¼ 1, 2, 4, 6 and 10

Degrees of freedom of the underlying t density

k f � 3 4 5 6 8 10 15 20 1

1 t5 1.828 1.415 1.250 1.162 1.072 1.026 0.972 0.948 0.885

1.955 1.423 1.250 1.165 1.080 1.038 0.991 0.970 0.915

t8 1.670 1.356 1.228 1.161 1.091 1.056 1.015 0.997 0.952

1.878 1.393 1.238 1.163 1.091 1.056 1.018 1.001 0.961

t15 1.532 1.285 1.185 1.132 1.080 1.054 1.026 1.014 0.985

1.786 1.345 1.207 1.143 1.083 1.055 1.026 1.014 0.987

N 1.356 1.176 1.106 1.071 1.038 1.024 1.010 1.005 1.000

(vdW) 1.639 1.257 1.144 1.093 1.048 1.030 1.013 1.007 1.000

2 t5 1.953 1.485 1.296 1.195 1.090 1.036 0.973 0.944 0.868

2.097 1.495 1.296 1.198 1.100 1.051 0.995 0.969 0.903

t8 1.774 1.419 1.272 1.193 1.111 1.069 1.020 0.999 0.942

2.015 1.462 1.283 1.196 1.111 1.070 1.024 1.004 0.953

t15 1.614 1.336 1.221 1.160 1.098 1.067 1.032 1.017 0.981

1.910 1.407 1.249 1.173 1.102 1.068 1.032 1.018 0.984

N 1.400 1.204 1.125 1.085 1.047 1.030 1.013 1.007 1.000

(vdW) 1.729 1.301 1.171 1.112 1.059 1.037 1.016 1.009 1.000

4 t5 2.122 1.584 1.364 1.245 1.120 1.055 0.977 0.942 0.845

2.289 1.595 1.364 1.248 1.131 1.073 1.004 0.973 0.889

t8 1.918 1.509 1.336 1.242 1.143 1.091 1.030 1.002 0.928

2.203 1.561 1.350 1.246 1.143 1.092 1.034 1.009 0.943

t15 1.729 1.411 1.277 1.204 1.128 1.089 1.044 1.024 0.975

2.084 1.499 1.311 1.220 1.132 1.090 1.044 1.025 0.979

N 1.458 1.242 1.153 1.106 1.061 1.039 1.018 1.010 1.000

(vdW) 1.853 1.364 1.212 1.142 1.077 1.049 1.022 1.012 1.000
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Some numerical values are presented in Table 2 and Figure 1, along with the

corresponding bounds for the location model. Note that the sequence of lower bounds (14)

is monotonically decreasing for k > 2; as the dimension k tends to infinity, it tends to

9=16 ¼ 0:5625.

Table 1. (continued )

Degrees of freedom of the underlying t density

k f � 3 4 5 6 8 10 15 20 1

6 t5 2.231 1.649 1.410 1.280 1.143 1.070 0.983 0.943 0.831

2.412 1.662 1.410 1.284 1.155 1.090 1.013 0.978 0.881

t8 2.013 1.570 1.381 1.278 1.167 1.108 1.038 1.006 0.918

2.328 1.628 1.397 1.281 1.167 1.109 1.043 1.014 0.936

t15 1.806 1.464 1.316 1.236 1.150 1.106 1.054 1.030 0.970

2.202 1.564 1.356 1.254 1.155 1.107 1.054 1.031 0.975

N 1.493 1.267 1.172 1.122 1.071 1.047 1.022 1.013 1.000

(vdW) 1.935 1.408 1.242 1.164 1.092 1.059 1.027 1.016 1.000

10 t5 2.363 1.732 1.471 1.328 1.175 1.094 0.995 0.949 0.814

2.562 1.746 1.471 1.331 1.189 1.117 1.030 0.989 0.872

t8 2.131 1.648 1.440 1.325 1.200 1.133 1.052 1.014 0.905

2.482 1.714 1.458 1.329 1.200 1.135 1.058 1.023 0.927

t15 1.905 1.533 1.370 1.279 1.182 1.130 1.068 1.040 0.963

2.355 1.649 1.417 1.302 1.188 1.132 1.068 1.040 0.969

N 1.535 1.299 1.197 1.142 1.086 1.058 1.029 1.017 1.000

(vdW) 2.041 1.467 1.283 1.195 1.112 1.074 1.035 1.021 1.000

Table 2. Some numerical values, for various values of the space dimension k, of the lower bound for

the asymptotic relative efficiency of the Spearman autocorrelation rank-based procedure �SP and the

Wilcoxon-type procedure for location �W with respect to the corresponding Gaussian test �N , in the

serial and location case, respectively

k inf f ARE
(ser)
k, f (�SP=�N ) inf f ARE

(loc)
k, f (�W=�N )

1 0.856 0.864

2 0.913 0.916

3 0.878 0.883

4 0.845 0.853

6 0.797 0.811

10 0.742 0.765

+1 0.563 0.648
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The reader is referred to the proof of Proposition 7 in Appendix B for an explicit form,

and a graph, of the densities achieving the infimum.

4.4. Asymptotic performance under heavy-tailed densities

The tests we are proposing can be expected to exhibit better performance than the traditional

Gaussian ones under heavy-tailed densities. In order to evaluate the impact of heavy tails on

asymptotic performances, we consider the particular case of a multivariate Student density

with �� degrees of freedom. Recall that a k-dimensional random vector X is multivariate

Student with � degrees of freedom if and only if there exist a vector � 2 Rk and a symmetric

k 3 k positive definite matrix � such that the density of X can be written as

ˆ((k þ �)=2)

(��)k=2ˆ(�=2)
(det�)�1=2 f�(kx� �k�),

with f �(r) :¼ (1þ r2=�)�(kþ�)=2. Fixing �� . 2, consider the test � f�� associated with the

radial density f ��. Since j f�� (r) ¼ (k þ ��)r=(�� þ r2), and since the distribution of kXk2=k

under H(n)(0, Ik , f��) is Fisher–Snedecor with k and �� degrees of freedom, the test statistic

Q f�� is

(k þ ��)(k þ �� þ 2)(�� � 2)

��
X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

Tt

�� þ T2
t

T~tt

�� þ T2
~tt

T t�iT~tt�i

3 cos(� pt,~tt) cos(� pt�i,~tt�i)

Figure 1. Plot of the values of the lower bound (14) for the asymptotic relative efficiency of the

Spearman procedure �SP with respect to the Gaussian test �N , for space dimension k ¼ 1, 2, . . . , 30

(lower dotted curve). The upper dotted curve is associated with the corresponding lower bound for the

ARE of the multivariate Wilcoxon procedure for location �W with respect to the Hotelling test. The

horizontal lines correspond to the asymptotic values of these lower bounds (0.5625 and 0.648,

respectively).
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where, denoting by Gk,� the Fisher–Snedecor distribution function (k and � degrees of

freedom),

Tt :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kG�1

k,��
R̂Rt

nþ 1

� 	s
:

Table 1 reports the AREs of the tests � f5
, � f8

, and � f15
, as well as those of the van der

Waerden tests �vdW, with respect to the Gaussian test �N , under k-variate Student densities

with various degrees of freedom �, including the Gaussian density obtained for � ¼ 1.

Inspection of Table 1 reveals that � f�� (�vdW), as expected, performs best when the

underlying density itself is Student with �� degrees of freedom (normal). In that case, the

AREs for the serial and non-serial cases coincide. All tests, however, exhibit good

performance, particularly under heavy-tailed densities. Note that the van der Waerden test

performs uniformly better than the Gaussian test, which provides an empirical confirmation

of Proposition 6.

Since Dk( f��) ¼ k��=(�� � 2) and Ck( f ��) ¼ k(k þ ��)=(k þ �� þ 2), we obtain that

ARE
(ser)
k, f��

� f��=�N
� �

¼ (k þ ��)��
(k þ �� þ 2)(�� � 2)

, (15)

a quantity that increases with k, and tends to ��=(�� � 2) as k !1. The advantage of � f��
over the Gaussian test thus increases with the dimension k of the observations. Table 3

presents some of these limiting ARE values.

4.5. The multivariate sign and Spearman tests

In view of their simplicity, the multivariate sign test against randomness (S) and the

multivariate Spearman (SP) test, which are the serial counterparts of Randles’s multivariate

sign test and Peters and Randles’s Wilcoxon-type multivariate signed-rank test respectively,

are worthy of special interest.

Table 4 provides the asymptotic relative efficiencies, still with respect to the Gaussian

tests, and under the same densities as in Table 1, of these tests, based on the statistics (7),

(8) and (11), respectively. Because of its relation to the sign test (S), the multivariate

Laplace test (L) also has been included in this study.

Table 3. Limiting AREs, as the dimension k of the observation space tends to infinity, of some � f��
tests for randomness with respect to the Gaussian procedure, under the corresponding k-dimensional

Student and normal densities, respectively; see (15)

Degrees of freedom �� of the underlying t density

3 4 5 6 8 10 12 15 20 1

3.000 2.000 1.667 1.500 1.333 1.250 1.200 1.154 1.111 1.000
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For the multivariate sign test (S), the following closed-form expressions are obtained:

ARE
(ser)
k, f�

S=�Nð Þ ¼ 16

k2(�� 1)2

ˆ
k þ 1

2

� 	

ˆ
k

2

� 	 ˆ
�þ 1

2

� 	

ˆ
�

2

� 	
2
6664

3
7775

4

, (16)

Table 4. AREs with respect to the Gaussian procedure of the sign test for randomness (S), the

Laplace test for randomness (L), Randles’s multivariate sign test for location (S(loc)), the Spearman test

for randomness (SP), and Peters and Randles’s Wilcoxon-type multivariate signed-rank test for

location (W ), under various k-variate Student and normal densities (k ¼ 1, 2, 4, 6, 10)

Degrees of freedom of the underlying t density

k Test 3 4 5 6 8 10 15 20 1

1 S 0.657 0.563 0.519 0.494 0.467 0.453 0.435 0.427 0.405

L 1.477 1.106 0.954 0.873 0.788 0.745 0.695 0.672 0.613

S(loc) 1.621 1.125 0.961 0.879 0.798 0.757 0.710 0.690 0.637

SP 1.299 1.139 1.070 1.032 0.992 0.972 0.948 0.938 0.912

W 1.900 1.401 1.241 1.164 1.089 1.054 1.014 0.997 0.955

2 S 1.000 0.856 0.790 0.752 0.711 0.689 0.662 0.650 0.617

L 1.777 1.354 1.176 1.080 0.979 0.927 0.866 0.838 0.765

S(loc) 2.000 1.388 1.185 1.084 0.984 0.934 0.877 0.851 0.785

SP 1.305 1.152 1.089 1.055 1.022 1.006 0.990 0.983 0.970

W 1.748 1.317 1.184 1.123 1.066 1.041 1.015 1.005 0.985

4 S 1.266 1.084 1.000 0.952 0.900 0.872 0.838 0.823 0.781

L 1.926 1.498 1.314 1.213 1.105 1.049 0.981 0.951 0.869

S(loc) 2.250 1.561 1.333 1.220 1.107 1.051 0.986 0.958 0.884

SP 1.189 1.050 0.994 0.966 0.941 0.930 0.922 0.920 0.924

W 1.533 1.171 1.064 1.018 0.979 0.964 0.954 0.952 0.961

6 S 1.373 1.176 1.085 1.033 0.977 0.946 0.910 0.893 0.847

L 1.955 1.539 1.359 1.258 1.150 1.093 1.025 0.994 0.910

S(loc) 2.344 1.626 1.389 1.271 1.153 1.094 1.027 0.997 0.920

SP 1.115 0.982 0.929 0.903 0.879 0.870 0.865 0.865 0.880

W 1.422 1.090 0.994 0.953 0.921 0.911 0.908 0.911 0.938

10 S 1.467 1.256 1.159 1.104 1.043 1.011 0.972 0.954 0.905

L 1.950 1.559 1.387 1.290 1.185 1.129 1.061 1.030 0.944

S(loc) 2.422 1.681 1.436 1.313 1.192 1.131 1.062 1.031 0.951

SP 1.039 0.909 0.857 0.831 0.808 0.799 0.795 0.797 0.823

W 1.315 1.007 0.919 0.882 0.855 0.848 0.851 0.857 0.907
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ARE
(ser)
k,� S=�Nð Þ ¼ 4

k2

ˆ
k þ 1

2

� 	

ˆ
k

2

� 	
2
6664

3
7775

4

: (17)

The asymptotic relative efficiencies of the corresponding one-sample location tests with

respect to Hotelling’s test, namely Randles’s multivariate sign test (S(loc)) and Peters and

Randles’ Wilcoxon-type multivariate signed-rank test (W ), are also provided in Table 4, thus

allowing for a comparison between the serial and the non-serial cases.

5. Simulations

The following Monte Carlo experiment was conducted in order to investigate the finite-

sample behaviour of the tests proposed in Section 3 for k ¼ 2: N ¼ 2500 independent

samples (�1, . . . , �400) of size n ¼ 400 were generated from bivariate standard Student

densities with 3, 8 and 15 degrees of freedom, and from the bivariate standard normal

distribution. The simulation of bivariate Student variables �i was based on the fact that (for �
degrees of freedom; ¼ d stands for equality in distribution) �i ¼dZi=

ffiffiffiffiffiffiffiffiffi
Yi=�

p
, where

Zi - N 2(0, I2) and Yi - �2
� are independent. Autoregressive alternatives of the form

X t � (mA)X t�1 ¼ � t, X0 ¼ 0, (18)

were considered, with

A ¼ 0:05 0:02

�0:01 0:04

� 	
and m ¼ 0, 1, 2, 3:

For each replication, the following seven tests were performed at nominal asymptotic

probability level Æ ¼ 5%: the Gaussian test �N , � f5
, � f8

, � f15
, �vdW, the sign test for

randomness (S) and the Spearman type test (SP). Tyler’s estimator of scatter was used

whenever pseudo-Mahalanobis ranks had to be computed. The estimator was obtained via the

iterative scheme described in Randles (2000). Iterations were stopped as soon as the

Frobenius distance between the left- and right-hand sides of (3) fell below 10�6.

Rejection frequencies are reported in Table 5. Note that the corresponding standard errors

are (for N ¼ 2500 replications) 0.0044, 0.0080, and 0.0100 for frequencies (size or power)

of the order of p ¼ 0:05 ( p ¼ 0:95), p ¼ 0:20 ( p ¼ 0:80), and p ¼ 0:50, respectively.

All tests apparently satisfy the 5% probability level constraint (a 95% confidence interval

has approximate half-length 0.01). Power rankings are essentially consistent with the ARE

values given in Tables 1 and 4. For instance, under Gaussian densities, the powers of the

� f�� tests are increasing with ��, as expected, whereas the asymptotic optimality of � f��
under the Student distribution with �� degrees of freedom is confirmed.
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Appendix A: Proofs of results in Section 3

The main task here is to prove Lemma 3. Let us first establish the following ‘serial’ result

about interdirections.

Lemma 4. Let i 2 f1, . . . , �g and s, ~ss, t, ~tt 2 fiþ 1, . . . , ng be such that at least one of the

eight indices t � i, ~tt � i, t, ~tt, s� i, ~ss� i, s and ~ss is distinct from the seven others. Let

g : X 7! g(X1, . . . , Xn) be even in all its arguments. Then, letting

Ct,~tt;i :¼ cos(�pt,~tt)cos(�pt�i,~tt�i)� UT
t (Ik)U~tt(Ik)UT

t�i(Ik)U~tt�i(Ik), (19)

we have E[g(X)Cs,~ss;iC t,~tt;i] ¼ 0 under H(n)(0, Ik , �), provided that this expectation exists.

Similarly, defining

Dt,~tt;i :¼ UT
t (Ik)U~tt(Ik)UT

t�i(Ik)U~tt�i(Ik),

we have E[g(X)Dt,~tt;i] ¼ 0 for t 6¼ ~tt under H(n)(0, Ik , �), provided that this expectation exists.

Proof. Define bt :¼ sgn(X t1) and Yt :¼ btX t, where sgn(z) :¼ I[z . 0]� I[z , 0] is the sign

function and X t1 the first component of X t. Under H(n)(0, Ik , �), the bt are i.i.d. Bernoulli

with P[bt ¼ +1] ¼ 1
2
, and are independent of the Yt. Denote by pY

t,~tt
the interdirection

associated with (Yt, Y~tt) within the Y-sample; also write Ut and UY
t for Ut(Ik) ¼ X t=kX tk and

Table 5. Estimated sizes and powers of the Gaussian test �N , � f5
, � f8

, � f15
, �vdW, the sign test for

randomness (S) and the Spearman type test (SP), under various values of the autoregression matrix

mA (cf. (18)) and various densities; simulations are based on 2500 replications

autoregression matrix mA autoregression matrix mA

Test Density 0 A 2A 3A Density 0 A 2A 3A

�N 0.0424 0.1564 0.5480 0.9244 0.0444 0.1472 0.5584 0.9212

�vdW 0.0384 0.1596 0.5592 0.9276 0.0424 0.1540 0.5812 0.9360

� f15
0.0404 0.1540 0.5524 0.9228 0.0448 0.1664 0.6100 0.9492

� f8
N 0.0432 0.1472 0.5348 0.9088 t8 0.0476 0.1716 0.6044 0.9512

ł f5
0.0456 0.1340 0.4880 0.8776 0.0488 0.1660 0.5868 0.9456

S 0.0436 0.1180 0.3620 0.7316 0.0436 0.1320 0.4172 0.8040

SP 0.0412 0.1504 0.5516 0.9232 0.0452 0.1596 0.5732 0.9368

�N 0.0440 0.1476 0.5492 0.9208 0.0356 0.1456 0.5352 0.8736

�vdW 0.0440 0.1568 0.5640 0.9272 0.0448 0.1964 0.7028 0.9764

� f15
0.0460 0.1544 0.5772 0.9328 0.0468 0.2212 0.7684 0.9876

� f8
t15 0.0452 0.1520 0.5688 0.9312 t3 0.0480 0.2360 0.7884 0.9924

ł f5
0.0428 0.1404 0.5420 0.9148 0.0460 0.2436 0.8020 0.9948

S 0.0436 0.1276 0.3900 0.7648 0.0436 0.1600 0.5420 0.9084

SP 0.0420 0.1540 0.5600 0.9252 0.0488 0.1892 0.6848 0.9720
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Yt=kYtk, respectively. Finally, let CY
t,~tt;i :¼ cos(�pY

t,~tt
)cos(�pY

t�i,~tt�i
) � (UY

t )TUY
~tt (UY

t�i)
TUY

~tt�i
.

Without loss of generality, suppose that t is distinct from t � i, ~tt � i, ~tt, s� i, ~ss� i, s and ~ss.

Then, using the fact that g(X) is a function of the Ym,

E[g(X)Cs,~ss;iC t,~tt;ijX1, . . . , X t�1, Yt, X tþ1, . . . , Xn]

¼ g(X)bsb~ssbs�ib~ss�iC
Y
s,~ss;ib~tt bt�ib~tt�iC

Y
t,~tt;iE[btjYt] ¼ 0,

in view of the symmetry properties (12) of interdirections. The second assertion is proved in

the same way. h

We are now ready to prove Lemma 3.

Proof of Lemma 3. Without loss of generality, we may assume that � ¼ Ik . In this proof, we

will write dt, Rt and Ut for dt(Ik), Rt(Ik) and Ut(Ik), respectively. Decompose Q
(n)
K � ~QQ(n)

K;I k , f

into

k2

E[K2
1(U )]E[K2

2(U )]

X�
i¼1

T
(n)
1;i þ T

(n)
2

 !
,

where

T
(n)
1;i :¼ (n� i)�1

Xn

t,~tt¼iþ1

K1

R̂Rt

nþ 1

� 	
K1

R̂R~tt

nþ 1

� 	
K2

R̂Rt�i

nþ 1

� 	
K2

R̂R~tt�i

nþ 1

� 	

3 (cos(�pt,~tt)cos(�pt�i,~tt�i)� UT
t U~ttU

T
t�iU~tt�i),

and

T
(n)
2 :¼

X�
i¼1

(n� i)�1
Xn

t,~tt¼iþ1

K1

R̂Rt

nþ 1

� 	
K1

R̂R~tt

nþ 1

� 	
K2

R̂Rt�i

nþ 1

� 	
K2

R̂R~tt�i

nþ 1

� 	
� K1( ~FFk(dt)

�

3 K1( ~FFk(d~tt))K2( ~FFk(d t�i))K2( ~FFk(d~tt�i))

	
UT

t U~ttU
T
t�iU~tt�i:

Let us show that, under H(n)(0, Ik , f ) (throughout this proof, all convergences and

mathematical expectations are taken under H(n)(0, Ik , f )), there exists s . 0 such that T
(n)
1;i

and T
(n)
2 !

Ls

0 for all i as n!1. Slutzky’s classical argument then concludes the proof.

Let us start with T
(n)
2 . Define

T
(n)
K; f :¼ ((T

(n)
K; f )T

1 , . . . , (T
(n)
K; f )T

�)T,

S
(n)
K :¼ ((S

(n)
K )T

1 , . . . , (S
(n)
K )T

�)T,

ŜS
(n)
K :¼ ((ŜS

(n)
K )T

1 , . . . , (ŜS
(n)
K )T

�)T,

where

Testing multivariate elliptic white noise against ARMA dependence 807



(T
(n)
K; f )i :¼ (n� i)�1=2

Xn

t¼iþ1

vec(K1( ~FFk(dt))K2( ~FFk(d t�i))UtU
T
t�i),

(S
(n)
K )i :¼ (n� i)�1=2

Xn

t¼iþ1

vec K1

Rt

nþ 1

� 	
K2

Rt�i

nþ 1

� 	
UtU

T
t�i

� 	

and

(ŜS
(n)
K )i :¼ (n� i)�1=2

Xn

t¼iþ1

vec K1

R̂Rt

nþ 1

� 	
K2

R̂Rt�i

nþ 1

� 	
UtU

T
t�i

� 	
:

Note that

kS(n)
K � T

(n)
K; f k

2
L2 ¼

X�
i¼1

Xn

t¼iþ1

(c
(n)
t;i )2E K1

Rt

nþ 1

� 	
K2

Rt�i

nþ 1

� 	
� K1( ~FFk(dt))K2( ~FFk(d t�i))

� 	2
" #

,

where c
(n)
t;i ¼ (n� i)�1=2 for all t ¼ iþ 1, . . . , n. Proposition 2.1 in Hallin and Puri (1991)

thus implies that kS(n)
K � T

(n)
K; f kL2 ¼ o(1) as n!1 – incidentally, the same result also

implies that, for all i ¼ 1, . . . , � and for all t ¼ iþ 1, . . . , n,

E K1

Rt

nþ 1

� 	
K2

Rt�i

nþ 1

� 	
� K1( ~FFk(dt))K2( ~FFk(d t�i))

� 	2
" #

¼ o(1) (20)

as n!1. Using Lemma 4, we similarly obtain

kŜS(n)
K �S

(n)
K k

2
L2 ¼

X�
i¼1

Xn

t¼iþ1

(n� i)�1E K1

R̂Rt

nþ1

� 	
K2

R̂Rt�i

nþ1

� 	
� K1

Rt

nþ 1

� 	
K2

Rt�i

nþ 1

� 	 !2
2
4

3
5:

Consequently, kŜS(n)
K � S

(n)
K kL2 is o(1) if

K1

R̂Rt

nþ 1

� 	
K2

R̂Rt�i

nþ 1

� 	
� K1

Rt

nþ 1

� 	
K2

Rt�i

nþ 1

� 	
!L

2

0, as n!1: (21)

Lemma 2 establishes the same convergence as in (21), but in probability. We have seen above

that K1(Rt=(nþ 1))K2(Rt�i=(nþ 1))� K1( ~FFk(dt))K2( ~FFk(d t�i)) tends to zero in quadratic

mean, so that [K1(Rt=(nþ 1))K2(Rt�i=(nþ 1))]2 is uniformly integrable. In view of

Assumption 4, the same conclusion holds for [K1(R̂Rt=(nþ 1))K2(R̂Rt�i=(nþ 1))]2, and (21)

follows. Consequently, kŜS(n)
K � T

(n)
K; f kL2 ¼ o(1) as n!1.

On the other hand, kT(n)
K; f k

2
L2 ¼ �E[K2

1(U )]E[K2
2(U )] for all n, so that the sequence

kŜS(n)
K kL2 is bounded. Finally, in view of Cauchy–Schwarz,

kT (n)
2 kL1 ¼ k(ŜS(n)

K )TŜS
(n)
K � (T

(n)
K; f )TT

(n)
K; f kL1

< kŜS(n)
K þ T

(n)
K; f kL2kŜS(n)

K � T
(n)
K; f kL2 ¼ o(1) as n!1:

Turning to T
(n)
1;i , write T

(n)
1;i ¼ (n� i)�1

Pn
t,~tt¼iþ1 rt,~tt;i, where
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rt,~tt;i :¼ K1

R̂Rt

nþ 1

� 	
K1

R̂R~tt

nþ 1

� 	
K2

R̂Rt�i

nþ 1

� 	
K2

R̂R~tt�i

nþ 1

� 	
Ct,~tt;i

and Ct,~tt;i is defined in (19). It follows from Lemma 4 that

k(n� i)T
(n)
1;i k

2
L2

¼ E
Xn

t,~tt¼iþ1

rt,~tt;i

 !2
2
4

3
5 ¼ 4E

Xn

t,~tt¼iþ1
t,~tt

r2
t,~tt;i

0
BB@

1
CCAþ Xn

s,~ss¼iþ1
s,~ss

Xn

t,~tt¼iþ1
t,~tt,(s,~ss) 6¼( t,~tt)

rs,~ss;i rt,~tt;i

0
BB@

1
CCA

2
664

3
775

¼ 4
(n� i)(n� i� 1)

2
� (n� 2i)

� 	
E[r2

iþ1,3iþ1;i]þ (n� 2i)E[r2
iþ1,2iþ1;i]

� �
,

so that it is sufficient to prove that

E[r2
iþ1,3iþ1;i] ¼ o(1) and E[r2

iþ1,2iþ1;i] ¼ o(n) (22)

as n!1. Writing K‘; t for K‘(R̂Rt=(nþ 1)) (‘ ¼ 1, 2), Hölder’s inequality yields

E[r2
iþ1,3iþ1;i] < (E[jK1;iþ1 K1;3iþ1 K2;1 K2;2iþ1j2þ�])2=(2þ�)(E[jCiþ1,3iþ1;ij2(2þ�)=�])�=(2þ�)

and

E[r2
iþ1,2iþ1;i] < (E[jK1;iþ1 K1;2iþ1 K2;1 K2;iþ1j2þ�])2=(2þ�)(E[jCiþ1,2iþ1;ij2(2þ�)=�])�=(2þ�),

where � . 0 is as in Assumption 3. Now, Lemma 1 and the boundedness of Ciþ1,3iþ1;i yield

that E[jCiþ1,3iþ1;ij2(2þ�)=�] ¼ o(1) as n!1. On the other hand, since the R̂Rt are the ranks of

an exchangeable n-tuple (see Assumption 4), we obtain that

n(n� 1)(n� 2)(n� 3)

(nþ 1)4
E[jK1;iþ1 K1;3iþ1 K2;1 K2;2iþ1j2þ�]

¼ 1

(nþ 1)4

Xn

j1, j2, j3, j4¼1
all 6¼





K1

j1

nþ 1

� 	
K1

j2

nþ 1

� 	
K2

j3

nþ 1

� 	
K2

j4

nþ 1

� 	




2þ�

<
1

nþ 1

Xnþ1

j¼1





K1

j

nþ 1

� 	




2þ�

0
@

1
A

2

1

nþ 1

Xnþ1

j¼1





K2

j

nþ 1

� 	




2þ�

0
@

1
A

2

¼ O(1) (23)

as n!1. Indeed, the two sums in the upper bound (23) are Riemann sums, forÐ 1

0
jK1(u)j2þ� du and

Ð 1

0
jK2(u)j2þ� du respectively, and these two integrals are finite from

Assumption 3. Consequently, E[jK1;iþ1 K1;3iþ1 K2;1 K2;2iþ1j2þ�] ¼ O(1) as n!1. Working

along the same lines, one can show that E[jCiþ1,2iþ1;ij2(2þ�)=�] ¼ o(1) and

E[jK1;iþ1 K1;2iþ1 K2;1 K2;iþ1j2þ�] ¼ O(n) as n!1; (22) follows. h

Proof of Proposition 3. From Lemma 3, we have, under H(n)(0, �, f ),
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Q
(n)
K ¼ (T

(n)
K;�, f )T(ˆK;�, f )�1T

(n)
K;�, f þ o

(n)
P (1) ¼ ~QQ(n)

K;�, f þ o
(n)
P (1),

where

T
(n)
K;�, f :¼ ((T

(n)
K;�, f )T

1 , . . . , (T
(n)
K;�, f )T

�)T,

(T
(n)
K;�, f )i :¼ (n� i)�1=2vec

Xn

t¼iþ1

K1( ~FFk(dt(�)))K2( ~FFk(d t�i(�)))��1=2Ut(�)UT
t�i(�)�1=2

 !

and

ˆK;�, f :¼
1

k2
E[K2

1(U )]E[K2
2(U )]I� � (� � ��1):

The proof of the first part of Proposition 3 follows, since T
(n)
K;�, f under H(n)(0, �, f ) is

asymptotically N k2�(0, ˆK;�, f ).

It is also easy to see that, still under H(n)(0, �, f ), T
(n)
K;�, f and the local log-likelihood

L
(n)

n�1=2�=0;�, f
are jointly multivariate normal, with asymptotic covariance

1

k2
Dk(K2; f )Ck(K1; f )[I� � (� � ��1)]M	;

Le Cam’s third lemma thus implies that T
(n)
K;�, f under H(n)(n�1=2�, �, f ) is asymptotically

N k2�(k�2 Dk(K2; f )Ck(K1; f )[I� � (� � ��1)]M	, ˆK;�, f ). This establishes the second part

of Proposition 3. h

Appendix B: Pitman non-admissibility of correlogram-based
methods and lower bounds for the efficiency of Spearman
procedures

Proof of Proposition 6. The asymptotic relative efficiency of the van der Waerden test, with

respect to the Gaussian procedure, under radial density f, is

ARE
(ser)
k, f �vdW=�Nð Þ ¼ 1

k4
D2

k(�, f )E2[ ~

�1
k (U )J k, f (U )],

where, letting �(r) :¼ exp(�r2=2), ~

k stands for the distribution function associated with
~��k(r) :¼ (�k�1;�)�1 r k�1�(r)I [r.0]. Without loss of generality, we restrict ourselves to the

radial densities f satisfying Dk(�, f ) ¼ E[ ~

�1
k (U ) ~FF�1

k (U )] ¼ k. Indeed, writing f a(r) :¼
f (ar), a . 0, we have ~FF�1

ak (u) ¼ a�1 ~FF�1
k (u) and j f a

(r) ¼ aj f (ar), so that Dk(�, f a) ¼
a�1 Dk(�, f ) and ARE

(ser)
k, f a

(�vdW=�N ) ¼ ARE
(ser)
k, f (�vdW=�N ).

Thus, we only have to show that, for any k 2 N0 and any f such that Dk(�, f ) ¼ k,

Hk( f ) :¼ E[ ~

�1
k (U )J k, f (U )] > k,

with equality at f ¼ � only. This variational problem takes a simpler form after the following

change of notation. First rewrite the functional H as
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Hk( f ) ¼
ð1

0

~

�1
k ( ~FFk(r))j f (r) ~ff k(r)dr

¼ 1

�k�1; f

ð1
0

~

�1
k ( ~FFk(r))(� f 9(r))r k�1 dr

¼
ð1

0

1

~��k( ~

�1
k ( ~FFk(r)))

~ff k(r)þ k � 1

r
~

�1

k ( ~FFk(r))

" #
~ff k(r)dr:

For any radial density f satisfying Assumption 1, the function R : z 7! ~FF�1
k � ~

k(z) and its

inverse R�1 : r 7! ~

�1
k � ~FFk(r) are continuous monotone increasing transformations,

mapping Rþ0 onto itself, and satisfying limz#0 R(z) ¼ limr#0 R�1(r) ¼ 0 and limz!1 R(z) ¼
limr!1 R�1(r) ¼ 1. Similarly, any continuous monotone increasing transformation R of Rþ0
such that

lim
z#0

R(z) ¼ 0 and lim
z!1

R(z) ¼ 1 (24)

characterizes a non-vanishing radial density f over Rþ0 via the relation R ¼ ~FF�1
k � ~

k . The

variational problem just described thus consists in minimizing

Hk(R) ¼
ð1

0

1

~��k(z)

~��k(z)

R9(z)
þ k � 1

R(z)
z

" #
~��k(z)dz (25)

¼
ð1

0

1

R9(z)
þ k � 1

R(z)
z

� �
~��k(z)dz,

with respect to R : Rþ0 ! Rþ0 continuous and monotone increasing, under the constraints

(24), since ~ff k(r) ¼ d ~FFk(r)=dr ¼ ~��k(z)=(dR=dz), and ~ff k(r)dr ¼ d ~FFk(r) ¼ ~��k(z)dz. The

constraint Dk(�, f ) ¼ k now takes the form

Dk(�, R) ¼
ð1

0

zR(z) ~��k(z)dz ¼ k: (26)

This problem is very similar to its one-sample location counterpart, which is solved in Hallin

and Paindaveine (2002). While both problems share the same functional Hk(R), the situation

here is a lot simpler, due to the fact that the constraint (26) is linear in R (while the

associated constraint in the location case is quadratic in R). This allows for the following

simple solution.

Let R be the class of monotone increasing and continuous functions R : Rþ0 ! Rþ0 such

that (24) holds and Dk(�, R) ¼ k. Then the following lemma clearly follows from the

convexity of R and Hk(R):

Lemma 5. Let R1 belong to the class R. Then R1 is the unique solution of the minimization

problem under study if and only if

H9k(0) :¼ d

dw
(Hk((1� w)R1 þ wR2))jw¼0 > 0, for any R2 2 R:
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Now it is easy to verify that

H9k(0) ¼
ð1

0

� R92(z)� R91(z)

(R91(z))2
� (k � 1)z(R2(z)� R1(z))

(R1(z))2

� �
~��k(z)dz

¼
ð1

0

(R2(z)� R1(z))
~��9k(z)

(R91(z))2
� 2 ~��k(z)R 01(z)

(R91(z))3
� (k � 1)z ~��k(z)

(R1(z))2

" #
dz,

so that, if R1(z) :¼ z for all z . 0,

H9k(0) ¼
ð1

0

(R2(z)� z) ~��9k(z)� (k � 1) ~��k(z)

z

� �
dz

¼ 1

�k�1;�

ð1
0

(R2(z)� z)z k�1�9(z)dz

¼ 1

�k�1;�

ð1
0

(R2(z)� z)z k�1[�z�(z)]dz ¼ k � Dk(�, R2),

which equals zero if R2 belongs to R. Lemma 5 therefore establishes the result. h

We now turn to the proof of the multivariate extension of the Hallin and Tribel (2000)

result.

Proof of Proposition 7. First note that, from Proposition 5,

ARE
(ser)
k, f �SP=�Nð Þ ¼ 9

k2
E2[U ~FF�1

k (U )]E2[UJ k, f (U )]:

As in the proof of Proposition 6, it is clear (by considering f a(r) :¼ f (ar), a, r . 0) that we

may assume that E[U ~FF�1
k (U )] ¼ 1. Therefore, the problem reduces to the variational problem

inf
f 2C

E[UJ k, f (U )], with C :¼ f f jE[U ~FF�1
k (U )] ¼ 1g: (27)

Integrating by parts, we obtain

E[UJ k, f (U )] ¼
ð1

0

~FFk(r)j f (r) ~ff k(r)dr ¼
ð1

0

( ~ff k(r))2 þ k � 1

r
~FFk(r) ~ff k(r)

� �
dr,

so that (27) in turn is equivalent to

inf
~ff 2~CC

ð1
0

( ~ff k(r))2 þ k � 1

r
~FFk(r) ~ff k(r)

� �
dr, (28)

where ~CC is the set of all ~ff defined on Rþ0 such thatð1
0

~ff k(r)dr ¼
ð1

0

r ~ff k(r) ~FFk(r)dr ¼ 1: (29)
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Substituting y, _yy and t for ~FFk, ~ff k and r respectively, the Euler–Lagrange equation associated

with the variational problem (28)–(29) takes the form

2t2 €yy� (k � 1� º2 t2)y ¼ 0, (30)

where º2 stands for the Lagrange multiplier associated with the second constraint in (29).

Letting y ¼ t1=2u, equation (30) reduces to the Bessel equation

t2 €uuþ t _uuþ º2

2
t2 � 2k � 1

4

� 	
u ¼ 0,

so that, denoting by Jr and Yr respectively the Bessel functions of the first and second kind

of order r, the general solution of (30) is given by

y(t) ¼ Æt1=2 J rk
(øt)þ �t1=2Yrk

(øt),

where rk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1
p

=2 and ø :¼
ffiffiffiffiffiffiffiffiffiffi
º2=2

p
. Since y(0þ) ¼ 0, it is clear that � ¼ 0. On the

other hand, _yy > 0 implies that _yy is compactly supported in Rþ0 , with support [0, a], say.

It follows from the constraints (29) and the continuity of _yy that the extremals of the

variational problem under study are the solutions of (30) that satisfy

y(a) ¼ 1, _yy(a) ¼ 0,

ða

0

ty(t) _yy(t)dt ¼ a

2
� 1

2

ða

0

(y(t))2 dt ¼ 1: (31)

By using the identities xJ 9r(x) ¼ rJr(x)� xJ rþ1(x) and xJ 9r(x) ¼ �rJr(x)þ xJ r�1(x), it is

easily verified that the constraints (31) take the form

Æa1=2 J rk
¼ 1, (32)

Æa�1=2 rk þ
1

2

� 	
J rk
� (øa)J rkþ1

� �
¼ 0 (33)

Æ2 a2

2
(J rk

)2 þ a2

2
(J rkþ1)2 � a

ø
rkJ rk

J rkþ1

� �
¼ a� 2, (34)

where all Bessel functions are evaluated at øa.

Equations (32) and (33) allow J rk
(øa) and J rkþ1(øa) to be computed with respect to a,

Æ, ø and rk . Substituting these values in (34) yields 2k � 1 ¼ 4r2
k ¼ 1þ 16ø2a� 4ø2a2,

or

a ¼ 8(øa)2

2(øa)2 þ k � 1
:

Since (33) implies that øa ¼ c(rk) (where c(rk) is defined in Proposition 7), we obtain

ø ¼ øa

a
¼ 2(øa)2 þ k � 1

8(øa)
¼ 2c(rk)2 þ k � 1

8c(rk)
: (35)

To conclude, note that, integrating by parts and using (30),
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inf
f

E[UJ k, f (U )] ¼
ð1

0

( _yy(t))2 þ k � 1

t
y(t) _yy(t)

� �
dt

¼
ð1

0

�2t _yy(t)€yy(t)þ k � 1

t
y(t) _yy(t)

� �
dt ¼

ð1
0

º2 ty(t) _yy(t)dt ¼ º2 ¼ 2ø2,

so that inf f ARE
(ser)
k, f (�SP=�N ) ¼ 36k�2ø4. This completes the proof of Proposition 7. h

Remark. As an immediate corollary, we also obtain that the infimum in Proposition 7 is

reached (for fixed k) at the collection of radial densities f for which ~FFk is in

f ~FFk,� (r) :¼ ~FFk,1(� �1 r)g, with

~FFk,1(r) :¼
ffiffiffiffiffiffiffiffiffiffi
ør

c(rk)

r
J rk

(ør)

J rk
(c(rk))

I 0 , r <
c(rk)

ø

� �
þ I r .

c(rk)

ø

� �
,

where ø is as obtained in (35). Recall that rk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1
p

=2. This also justifies the somewhat

mysterious definition of c(rk) in Proposition 7. See Figure 2 for the graphs of the associated

densities ~ff k,1 for several values of the space dimension k.
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Figure 2. Densities ~ff k,1 at which the infimum of the AREs of Spearman autocorrelation type tests

with respect to the Gaussian test is reached, for dimensions k ¼ 1, 2, 4, 10, 30, 50, 200 and 105,

respectively.
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