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Consider a planar Brownian motion starting at an interior point of the parabolic domain

D ¼ f(x, y) : y . x2g, and let 
D denote the first time the Brownian motion exits from D. The

tail behaviour (or equivalently, the integrability property) of 
D is somewhat exotic since it arises from

an interference of large-deviation and small-deviation events. Our main result implies that the limit of

T�1=3 logPf
D . Tg, T !1, exists and equals �3�2=8, thus improving previous estimates by

Bañuelos et al. and Li. The existence of the limit is proved by applying the classical Schilder large-

deviation theorem. The identification of the limit leads to a variational problem, which is solved by

exploiting a theorem of Biane and Yor relating different additive functionals of Bessel processes. Our

result actually applies to more general parabolic domains in any (finite) dimension.
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1. Introduction

Let (B(t), t > 0) be a Brownian motion taking values in Rdþ1, and let D be an unbounded

Borel subset of Rdþ1. We assume that B starts at a point in the interior of D, and we are

interested in


D :¼ infft > 0 : B(t) =2 Dg,

the first exit time of the Brownian motion from D.

Of course, the distribution of 
D strongly depends on the form of D. Apart from trivial

situations, the example which has attracted the most research attention is when D is a

(possibly generalized) cone. In this case, the exact distribution of 
D is known, from which

it can be deduced that

Pf
D . Tg - cT �k, T !1,

where c ¼ c(D) . 0 and k ¼ k(D) . 0 are constants whose values can be explicitly

formulated in terms of the eigenvalues and eigenfunctions of the Laplacian in D; see

Bañuelos and Smits (1997) for a detailed account of the problem. Throughout the paper, we

adopt the usual notation a(T ) - b(T ), T ! T0, to denote limT!T0
a(T )=b(T ) ¼ 1.
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The cone in dimension 2 can be thought of as the domain above the graph of a function

of the form y ¼ ajxj. As pointed out in Bañuelos et al. (2001), it is a highly non-trivial

matter to find other unbounded domains above graphs of functions for which one can say

something deep about the (tail) distribution of 
D. They studied the natural example of a

parabola in dimension 2:

D :¼ f(x, y) 2 R2 : y . x2g: (1:1)

Their main result says that 
D has a subexponential tail. More precisely, they proved the

following theorem:

Theorem A. Let d ¼ 1 and let D be as in (1.1). There are two constants A1 . 0 and A2 . 0

such that

�A1 < lim inf
T!1

T�1=3 logPf
D . Tg < lim sup
T!1

T�1=3 logPf
D . Tg < �A2: (1:2)

Therefore, the tail behaviour of 
D in the case of a two-dimensional parabola differs very

much from that in the case of a cone.

Recently, Li (2001) has refined the result of Bañuelos et al. (2001) by showing that (1.2)

holds with

A1 ¼ (2�7=334=3)�4=3, A2 ¼ (2�7=33)�4=3: (1:3)

It is our aim to prove that T�1=3 logPf
D . tg has a limit and to determine its value. Our

Theorem 1.1 below will imply that

lim
T!1

T�1=3 logPf
D . Tg ¼ � 3�2

8
: (1:4)

(It is easily verified that (2�7=33)�4=3 , 3�2=8 , (2�7=334=3)�4=3. Thus (1.4) is in agreement

with (1.3). These inequalities also indicate that neither of numerical estimates in Li (2001) is

optimal.)

Actually, one can consider generalized parabolic domains of arbitrary dimension. It was

Li (2001) who studied the generalized parabolic shape in Rdþ1:

D ¼ Dd, p,a :¼ f(x, y) :¼ (x1, . . . , xd , y) 2 Rdþ1 : y . akxk pg, (1:5)

where p . 1, and kxk :¼ [
Pd

i¼1x2
i ]1=2 is the Euclidean norm of x :¼ (x1, . . . , xd) 2 Rd . Of

course, if a ¼ d ¼ 1 and p ¼ 2, then we have the case in (1.1). We mention that the presence

of a is superfluous; it can easily be removed with appropriate changes by means of the

scaling property of Brownian motion. Li’s result is as follows:

Theorem B. For d > 1, a . 0, p . 1 and D ¼ Dd, p,a as in (1.5),

�A3 < lim inf
T!1

T�( p�1)=( pþ1) logPf
D . Tg

< lim sup
T!1

T�( p�1)=( pþ1) logPf
D . Tg < �A4,
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where

A3 :¼
a2( pþ 1)2 p p2�p j

2 p

(d�2)=2

� �1=( pþ1)

2( p� 1)
,

A4 :¼ pþ 1

2

a2 j
2 p

(d�2)=2

( p� 1) p

 !1=( pþ1)

and j(d�2)=2 is the smallest positive zero of the Bessel function J (d�2)=2(�).

Here is our main result:

Theorem 1.1. Let d > 1, a . 0 and p . 1. Let D ¼ Dd, p,a be as in (1.5). We have

lim
T�1

T�( p�1)=( pþ1) logPf
D . Tg ¼ �( pþ 1)
� j

2 p

(d�2)=2
a2

2 pþ3( p� 1) p�1

ˆ2(( p� 1)=2)

ˆ2( p=2)

 !1=( pþ1)

,

(1:6)

where j(d�2)=2 is, as before, the smallest positive zero of the Bessel function J(d�2)=2(�), and

ˆ(�) denotes the usual gamma function.

Since j�1=2 ¼ �=2, Theorem 1.1 immediately yields (1.4) by taking a ¼ d ¼ 1 and p ¼ 2.

The rest of the paper is as follows. In Section 2, we give (an outline of) the proof of

Theorem 1.1. Further technical details are given in Section 3. In Section 4 we give an

extension of Theorem 1.1 by studying exit times from non-polynomial shapes.

Throughout the paper, the letter c with subscripts denotes constants which are finite and

positive.

2. Proof of Theorem 1.1

2.1. Preliminaries

It is easily seen that the asymptotic behaviour of Pf
D . Tg (for T !1) does not depend

on the starting point of the Brownian motion, as long as it is in the interior of D. Without

loss of generality, we assume that a ¼ 1 and that our Brownian motion starts at

(0, . . . , 0, 1) 2 Rdþ1. By definition, for any T . 0,

f
D . Tg ¼ fB(t) 2 D, 8t 2 [0, T ]g:
Therefore, if we write

ªd, p(T ) :¼ Pf
D . Tg,

then
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ªd, p(T ) ¼ PfkW(t)k p , ~WW (t)þ 1, 8t 2 [0, T ]g, (2:1)

where W :¼ (W1, . . . , Wd) is a d-dimensional Brownian motion starting at 0 2 Rd , and ~WW is

a one-dimensional Brownian motion starting at 0, such that W and ~WW are independent.

A few simple observations about the asymptotic order of �log ªd, p(T ) for large T will be

useful here – these were known to Li (2001), who rigorously proved the correct rate

T ( p�1)=( pþ1). The event on the right-hand side of (2.1) is of very small probability: it

is hard for the independent Brownian motions W and ~WW to satisfy the condition

kW(t)k p , ~WW (t)þ 1 for all t 2 [0, T ]. A sufficiently economical way to meet such a

condition is that both kW(t)k p and ~WW (t) should behave like T Æ f (t=T ) for some Æ . 0 and

f : [0, 1]! Rþ. An easy optimization of polynomial degree yields Æ ¼ p=( pþ 1), while

the right choice of the profile function f boils down to a functional optimization problem.

Summarizing the argument, one would expect that

ªd, p(T ) . P kW(t)k < T 1=( pþ1) f 1=p t

T

� 	
, 1 < t < T

�  

3 P ~WW (t) > T p=( pþ1) f
t

T

� 	
, 1 < t < T

�  
(2:2)

. exp �c1

ð1

0

f �2=p(s)ds T ( p�1)=( pþ1)

 !
3 exp � 1

2

ð1

0

_ff 2(s)ds T ( p�1)=( pþ1)

 !
(2:3)

¼ exp(�c2( f )T ( p�1)=( pþ1)):

The function f providing an optimal constant c2( f ) appears via solution of an extremal

problem

B0 :¼ 1

2
inf
f 2A"

0

ð1

0

_ff 2(t)dt, (2:4)

where A
"
0 is the set of all non-decreasing absolutely continuous functions f : [0, 1]! Rþ

such that f (0) ¼ 0 and
Ð 1

0
f �2=p(t)dt < 1. Assuming that the infimum on the right-hand

side of (2.4) is attained at some f�, we minimize c2(v f�) ¼ c1v�2=p þ B0v2 by

taking v ¼ (c1=pB0) p=( pþ1). Hence, f ¼ v f� gives the optimal value c2( f ) ¼
( pþ 1)(c

p
1 B0=p p)1=( pþ1). Since p . 1 by assumption, we have 1=( pþ 1) , 1=2 and

p=( pþ 1) . 1=2. Therefore, on the right-hand side of (2.2), the first probability expression

is a so-called ‘small-ball probability’ for W (i.e., probability that the Brownian motion stays

in a narrow domain for a long time), whereas the second one is a ‘large-deviation probability’

for ~WW (i.e., probability that the Brownian motion reaches a high level in a short time).

Estimation of ªd, p(T ) thus requires a mixture of small-ball and large-deviation techniques.

The rest of this section is devoted to a rigorous proof of Theorem 1.1. To clarify the

presentation, we assume a few technical results whose proofs are postponed to Section 3.
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2.2. Proof of Theorem 1.1: upper bound

To obtain a rigorous upper bound for ªd, p(T ), let 0 ¼ t0 , t1 , t2 , . . . , tN < T and

observe that

ªd, p(T ) < P sup
t2[ t i�1, t i]

kW(t)k , sup
t2[0, ti]

~WW (t)þ 1

 !1=p

, 8i < N

8<
:

9=
;: (2:5)

Let 0 , a1 , . . . , aN . By Anderson’s inequality (see, for example, Lifshits 1995), we have

P sup
t2[ t i�1, ti]

kW(t)k , ai, 8i < N

( )

< P sup
t2[ t i�1, t i]

kW(t)k , ai, 8i < N � 1

( )
3 P sup

t2[0, tN� t N�1]

kW(t)k , aN

( )
,

and, by induction, this leads to

P sup
t2[ ti�1, ti]

kW(t)k , ai, 8i < N

( )
<
YN
i¼1

P sup
t2[0, ti� ti�1]

kW(t)k , ai

( )
:

At this stage, it is convenient to recall from Ciesielski and Taylor (1962) that

P sup
t2[0,1]

kW(t)k , x

( )
- c3 exp � k

2x2

� 	
, x! 0þ, (2:6)

where k :¼ j 2
(d�2)=2 ( j(d�2)=2 denoting, as before, the smallest positive zero of the Bessel

function J(d�2)=2), and c3 ¼ c3(d) is a positive constant depending on d (whose value is

explicitly known). By scaling, for any � 2 (0, 1), there exists c4 ¼ c4(�, d) such that for all

s, y . 0,

P sup
t2[0,s]

kW(t)k , y

( )
< c4 exp � (1� �)ks

2y2

�  
: (2:7)

Accordingly,

P sup
t2[ t i�1, t i]

kW(t)k , ai, 8i < N

( )
< cN

4 exp � (1� �)k
2

XN

i¼1

ti � ti�1

a2
i

 !
:

Going back to (2.5), and by conditioning upon the linear Brownian motion ~WW , we obtain

ªd, p(T ) < cN
4 E exp � (1� �)k

2

XN

i¼1

ti � ti�1

[1þ sup t2[0, t i]
~WW (t)]2=p

 !( )
:
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For the sake of brevity, we write � :¼ 2=p and

S(t) :¼ sup
u2[0, t]

~WW (u), t > 0:

Then we obtain

ªd, p(T ) < cN
4 E exp � (1� �)k

2

XN

i¼1

ti � ti�1

[1þ S(ti)]�

 !( )

¼ cN
4 E exp � (1� �)k

2

XN

i¼1

(
i � 
i�1)T ( p�1)=p

[T�1=2 þ S(
i)]�

 !( )
,

(2:8)

where 
i :¼ ti=T . We now set 
i ¼ (1� �)N�i, 1 < i < N . In view of the monotonicity of

t 7! S(t), we have

XN�1

i¼1


i � 
i�1

[T�1=2 þ S(
i)]�
>
XN�1

i¼1

(1� �)(
iþ1 � 
i)

[T�1=2 þ S(
i)]�

> (1� �)
XN

i¼1

ð
iþ1


i

d


[T�1=2 þ S(
)]�

¼ (1� �)

ð1


1

d


[T�1=2 þ S(
)]�
,

so that

ªd, p(T ) < C N
4 E exp � (1� �)2k

2
T ( p�1)=p

ð1


1

d


[T�1=2 þ S(
)]�

 !( )
: (2:9)

Observe that, for any b . 0,

E exp �b

ð1


1

d


[T�1=2 þ S(
)]�

 !( )

< E exp �b

ð1

2
1

d


[T�1=2 þ S(
)]�

 !
1fT �1=2<�S(2
1)g

( )

þ E exp �b

ð2
1


1

d


[T�1=2 þ S(
)]�

 !
1fT �1=2.�S(2
1)g

( )

< E exp � b

(1þ �) �

ð1

2
1

S(
)�� d


 !( )
þ exp � b
1T 1=p

(1þ ��1) �

 !
: (2:10)

Taking b ¼ (1� �)2kT ( p�1)=p=2 and letting T !1, we arrive at
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lim sup
T!1

T�( p�1)=( pþ1) log ªd, p(T )

< inf
�.0,Ł.0

lim sup
T!1

T�( p�1)=( pþ1) log E exp � (1� �)kT ( p�1)=p

2

ð1

Ł
S(
)�� d


 !( )
: (2:11)

The question is now how to evaluate

E exp �º
ð1

Ł
S��(t)dt

 !( )
,

when º!1 and � 2 (0, 2) is a fixed constant.

To obtain an upper bound for such an expression, we note that by Schilder’s theorem (for

a justification, see (3.3) in Section 3.1),

lim sup
x!0þ

x2=�logP

ð1

Ł
S��(t)dt < x

( )
� BŁ, (2:12)

where

BŁ :¼ 1

2
inf
f 2A"Ł

ð1

0

_ff 2(t)dt:

Here and in the following, _ff denotes the Radon–Nikodym derivative of f , and A
"
Ł is the set

of all non-decreasing functions in the set AŁ defined by

AŁ :¼ f : [0, 1]! Rþ, f (0) ¼ 0, f absolutely continuous,

ð1

Ł
f ��(t)dt < 1

( )
:

Clearly, inf f 2AŁ

Ð 1

Ł
_ff 2(t)dt ¼ inf

f 2A"Ł

Ð 1

Ł
_ff 2(t)dt. (Indeed, for any f 2 AŁ, we can take

g(t) :¼ sups2[0, t] f (s), t 2 [0, 1], to see that g 2 A
"
Ł and

Ð 1

Ł _gg2(t)dt <
Ð 1

Ł
_ff 2(t)dt.)

We now need the following elementary result.

Lemma 2.1. Let X > 0 be a random variable. Let Æ . 0 and B . 0. If

lim sup
x!0þ

xÆ logPfX < xg < �B, (2:13)

then

lim sup
º!1

º�Æ=(Æþ1) log E[e�ºX ] < � (Æþ 1)B1=(Æþ1)

ÆÆ=(Æþ1)
: (2:14)

The proof of Lemma 2.1 is fairly standard: it suffices to write

E[e�ºX ] ¼
Ð 1

0
Pfe�ºX . xgdx, and estimate the integral using Laplace’s method. We omit

the details.

By combining (2.12) and (2.14), with Æ ¼ 2=�, we obtain
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lim sup
º!1

º�2=(2þ�) log E exp �º
ð1

Ł
S��(t)dt

 !( )
< � 2þ �

�

B
�=(2þ�)

Ł

(2=�)2=(2þ�)
: (2:15)

Next, plugging (2.15) into (2.11) with � ¼ 2=p, and letting Ł! 0, we arrive at

lim sup
T!1

T�( p�1)=( pþ1) log ªd, p(T ) < �( pþ 1)
k

2 p

� 	 p=( pþ1)

B
1=( pþ1)
0 , (2:16)

where

B0 :¼ 1

2
inf
f 2A0

ð1

0

_ff 2(t)dt ¼ lim
Ł!0

BŁ: (2:17)

Concerning the limit relation in (2.17), we first note that, for � 2 (0, 2), the infimum B0

is finite since the set A0 contains appropriate power functions. The family of sets AŁ being

non-decreasing with respect to the parameter Ł, the limit limŁ!0 BŁ exists and

lim
Ł!0

BŁ < B0 ,1:

To see why the second identity in (2.17) holds, we take Łn ¼ 1=n, and, for arbitrary � . 0,

we take a sequence of functions f n 2 AŁn
such that

1

2

ð1

0

_ff 2
n(t)dt < BŁn

þ � < lim
Ł!0

BŁ þ �:

The Strassen ball being compact in the space of continuous functions, ( f n) contains a

subsequence uniformly converging to a limit function, say f . By Fatou’s lemma, we have, for

any m, ð1

Łm

f ��(t)dt < lim inf
n!1

ð1

Łm

f ��n (t)dt < 1,

from which it follows that f 2 A0. Moreover,

B0 <
1

2

ð1

0

_ff 2(t)dt < lim
Ł!0

BŁ þ �:

In the limit as �! 0, we obtain B0 < limŁ!0 BŁ, and (2.17) is completely justified.

Now we only need to identify B0. This variational problem leads to an ordinary

differential equation. However, we choose a different way, representing B0 as a solution of

another, (well-investigated) variational problem.

Let R denote a two-dimensional Bessel process (i.e., the Euclidean modulus of an R2-

valued Brownian motion) starting at 0.

Lemma 2.2. Let � 2 (0, 2). Then

lim
x!0þ

x2=� logP

ð1

0

R��(t)dt < x

( )
¼ � 22=��3�

(2� �)2=��1�

ˆ2((2� �)=2�)

ˆ2(1=�)
: (2:18)
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On the other hand, we also have

lim
x!0þ

x2=� logP

ð1

0

R��(t)dt < x

( )
¼ � 1

2
inf
f 2A0

ð1

0

_ff 2(t)dt ¼ �B0, (2:19)

where B0 is defined in (2.17).

By assuming Lemma 2.2 for the moment (see Section 3.3 for its proof), we are ready to

complete the proof of the upper bound in Theorem 1.1. Taking � :¼ 2=p in Lemma 2.2, we

obtain

B0 ¼
� p pˆ2(( p� 1)=2)

8( p� 1) p�1ˆ2( p=2)
:

Plugging this into (2.16) yields

lim sup
T!1

T�( p�1)=( pþ1) log ªd, p(T ) < �( pþ 1)
�k pˆ2(( p� 1)=2)

2 pþ3( p� 1) p�1ˆ2( p=2)

 !1=( pþ1)

,

which is the desired upper bound in Theorem 1.1.

2.3. Proof of Theorem 1.1: lower bound

Take a function h 2 A
"
0 solving the variational problem in (2.12). That is, let h 2 A

"
0 be

such that

1

2

ð1

0

_hh2(t)dt ¼ B0 and

ð1

0

h��(t)dt ¼ 1:

For any � . 0, consider a piecewise linear approximation h� of h such that

1

2

ð1

0

_hh2
�(t)dt < (1þ �)B0 and

ð1

0

h
��
� (t)dt ¼ 1: (2:20)

We bound our probability ªd, p by employing a trick similar to that suggested in (2.2):

ªd, p(T ) > PfkW(t)k p < æT p=( pþ1) h�(t=T ) < 1þ ~WW (t), 8t 2 [0, T ]g

¼ PfkW(t)k < æ1=pT 1=( pþ1) h
1=p

� (t=T ), 8t 2 [0, T ]g

3 PfæT p=( pþ1) h�(t=T ) < 1þ ~WW (t), 8t 2 [0, T ]g,

where the optimal value of the additional parameter æ . 0 is yet to be chosen. For the first

probability on the right-hand side, the small-ball estimate is well known:

lim
T!1

T�( p�1)=( pþ1) logPfkW(t)k < æ1=pT 1=( pþ1) h
1=p

� (t=T ), 8t 2 [0, T ]g ¼ � k
2æ�

, (2:21)
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where k ¼ j 2
(d�2)=2

as in (2.7) – see Li (1999) and related work by Berthet and Shi (2000)

and Lifshits and Linde (2002). For the second probability, we have, by scaling,

PfæT p=( pþ1) h�(t=T ) < 1þ ~WW (t), 8t 2 [0, T ]g

¼ PfæT ( p�1)=2( pþ1) h�(t) < T�1=2 þ ~WW (t), 8t 2 [0, 1]g:

This is essentially a large-deviation probability but, unfortunately, the presence of a non-zero

starting point on the right-hand side prohibits a direct application of classical large-deviation

results. Instead, we offer the following palliative.

Lemma 2.3. Let W be a standard Brownian motion and let a, b, u . 0. Then for every

piecewise linear function f (�) with f (0) ¼ 0,

lim inf
r!1

r�2 logPfrf (t) < ar�b þ W (t), 8t 2 [0, u]g > � 1

2

ðu

0

_ff 2(t)dt:

By assuming Lemma 2.3 for the moment (see Section 3.2 for its proof), we are ready to

complete the proof of the lower bound in Theorem 1.1. With f ¼ h�, r ¼ æT ( p�1)=2( pþ1) in

Lemma 2.3, we obtain

lim inf
T!1

T�( p�1)=( pþ1) logPfæT ( p�1)=2( pþ1) h�(t) # T�1=2 þ ~WW (t), 8t 2 [0, 1]g

> � æ2

2

ð1

0

_hh2
�(t)dt > �(1þ �)æ2 B0: (2:22)

The estimates (2.21) and (2.22) together yield

lim inf
T!1

T�( p�1)=( pþ1) log ªd, p(T ) > � k
2æ�
� (1þ �)æ2 B0:

By letting �! 0 and maximizing the term on the right-hand side via the choice

æ :¼ k
2 pB0

� 	 p=2( pþ1)

,

we obtain:

lim inf
T�1

T�( p�1)=( pþ1) log ªd, p(T ) > �( pþ 1)
k

2 p

� 	 p=( pþ1)

B
1=( pþ1)
0 ,

which yields on the right-hand side the same constant as in the upper bound (2.16). This

implies the lower bound in Theorem 1.1.

3. Technical details

This section contains the technical details which were left incomplete in Section 2 in the

proof of Theorem 1.1. Section 3.1 summarizes the large-deviation theory which we need,
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and provides a justification of (2.12). Sections 3.2 and 3.3 are devoted to the proofs of

Lemmas 2.3 and 2.2, respectively.

3.1. Large deviations

For the sake of completeness, we recall here a small part of large-deviation theory which is

used in the main proof. For further details, see Dembo and Zeitouni (1998) or Lifshits

(1995).

Let P be a centred Gaussian measure in a separable Banach space E. Let j � j denote the

reproducing kernel Hilbert norm associated with P. Then for every measureable A � E, we

have

� 1

2
inf
h2A8
jhj2 < lim inf

r!1

log P(rA)

r2
< lim sup

r!1

log P(rA)

r2
< � 1

2
inf
h2A

jhj2: (3:1)

The set A is called regular if inf h2A8 jhj ¼ inf
h2A
jhj, where A8 and A denote the interior and

the closure of A, respectively. For regular sets, (3.1) yields

lim
r!1

log P(rA)

r2
¼ � 1

2
inf
h2A
jhj2: (3:2)

Let � . 0 and G : E ! R1 be a �-homogeneous functional, i.e.,

G(ºy) ¼ º�G(y), º . 0, y 2 E:

Let A ¼ fy 2 E : G(y) > 1g. If G is upper semicontinuous – or equivalently, if A is closed

– we have, from (3.1),

lim sup
r!1

log P(y 2 E : G(y) > r)

r2=�
¼ lim sup

r!1

log P(r1=�A)

r2=�
< � 1

2
inf
h2A
jhj2: (3:3)

Moreover, if G is continuous, then, as we will see, A is regular, and we obtain from (3.2) that

lim
r!1

log P(y 2 E : G(y) > r)

r2=�
¼ � 1

2
inf
h2A
jhj2: (3:4)

It remains for us to verify that A is regular. For any � . 0 and h 2 A, we have

G((1þ �)h) ¼ (1þ �) �G(h) . 1. Hence, by continuity of G, we have (1þ �)h 2 A8 and

(1þ �)jhj ¼ j(1þ �)hj > inf
‘2A8
j‘j:

Taking the minimum over all h 2 A, and making use of the fact that A ¼ A, we obtain

inf
h2A

jhj ¼ inf
h2A
jhj > inf

‘2A8
j‘j:

Since the inverse inequality is trivial, A is indeed regular.

We need here only one particular case of all these inequalities — which is often referred

to as the Schilder theorem (Schilder 1966) — when P is the Wiener measure on E ¼
C([0, 1], Rd) and
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jhj2 ¼

ð1

0

_hh2(t)dt, if h is absolutely continuous with h(0) ¼ 0,

1, otherwise:

8><
>:

3.2. Proof of Lemma 2.3

We prove Lemma 2.3 by induction over the number of linear pieces in the boundary

function f . Consider first the linear boundary. Let A . 0, H . 1. Then

P Aþ W (t) > Ht, 8t 2 [0, 1] and W (1) > H þ 1

H

�  

>

ð Hþ2=H

Hþ1=H

exp(�y2=2)ffiffiffiffiffiffi
2�
p PfW (t) > Ht � A, 8t 2 [0, 1]jW (1) ¼ ygdy

>
exp(�(H þ 2=H)2=2)ffiffiffiffiffiffi

2�
p

H
PfW (t) > Ht � A, 8t 2 [0, 1]jW (1) ¼ Hg

>
c5 exp(�H2=2)

H
P inf

t2[0,1]
W 0(t) > �A

n o

> c5 H�1 exp � H2

2

� 	
minfA2; 1g,

where W 0(t) :¼ W (t)� tW (1), t 2 [0, 1], is a standard Brownian bridge. Moreover, for our

induction argument, we need a scaled version of the proved inequality. Namely, for every

˜ . 0, we have

P Aþ W (t) > Ht, 8t 2 [0, ˜] and W (˜) > ˜H þ 1

H

�  

> c5(H
ffiffiffiffĩp

)�1 exp � H2˜

2

� 	
min

A2

˜
; 1

�  
,

which is valid under the assumptions A . 0 and H
ffiffiffiffĩp
> 1.

In particular, for ˜ ¼ u, A ¼ ar�b and H ¼ rK, we immediately obtain

lim inf
r!1

r�2 logPfrKt < ar�b þ W (t), 8t 2 [0, u]g > � K2u

2
: (3:5)

Lemma 2.3 is thus proved for linear boundaries f (t) ¼ Kt.

We now justify the induction. Let

f (t) ¼ Kt, 0 < t < ˜,

K˜þ g(t � ˜), ˜ < t < u,

�

where g is a piecewise linear function having one linear piece less than f . Since W has

independent increments, we have
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PfAþ W (t) > rf (t), 8t 2 [0, u]g > p1(r) 3 p2(r),

where

p1(r) :¼ P
a

rb
þ W (t) > rf (t), 8t 2 [0, ˜] and W (˜) > rf (˜)þ 1

Kr

�  
,

p2(r) :¼ P
1

Kr
þ W (t)� W (˜) > r( f (t)� f (˜)), 8t 2 [˜, u]

�  
:

Since f (t) ¼ Kt on [0, ˜], it follows from (3.5) that

lim inf
r!1

r�2 log p1(r) > � K2˜

2
:

On the other hand, p2(r) ¼ f(Kr)�1 þ W (s) > rg(s), 8s 2 [0, u� ˜]g, so that by the

induction assumption,

lim inf
r!1

r�2 log p2(r) > � 1

2

ðu�˜

0

_gg2(s)ds:

Assembling these pieces gives that

lim inf
r!1

r�2 logP
a

rb
þ W (t) > f (t), 8t 2 [0, u]

�  
> � K2˜

2
� 1

2

ðu�˜

0

_gg2(s)ds

¼ � 1

2

ðu

0

_ff 2(t)dt,

and we are done.

3.3. Proof of Lemma 2.2

Recall that R denotes a two-dimensional Bessel process starting at 0. Let � 2 (0, 2) be a

fixed constant, and write Æ :¼ 2�=(2� �).

Our starting point is the following theorem of Biane and Yor (1987), also stated as

Corollary XI.1.12 in Revuz and Yor (1999).

Fact 3.1. The random variables

ð1

0

R��(t)dt and (Æ=�) �
ð1

0

RÆ(t)dt

 !��=Æ

have the same distribution.

A major attraction of this identity in our context is that instead of studying the lower-tail

behaviour of
Ð 1

0
R��(t)dt, we need only study the upper-tail behaviour of

Ð 1

0
RÆ(t)dt. For the

latter problem, we again use the Schilder theorem (see (3.4)) which yields
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lim
y!1

y�2=Æ logP

ð1

0

RÆ(t)dt . y

( )

¼ � 1

2
inf

ð1

0

_hh2(t)dt : h : [0, 1]! R2, h(0) ¼ 0,

ð1

0

jh(t)jÆ dt > 1, h absolutely continuous

( )
:

Next, it is easy to observe that the infimum is attained on the set of real positive increasing

functions and hence equals M�2=Æ, where

M :¼ sup

ð1

0

jh(t)jÆ dt :

ð1

0

_hh2(t)dt < 1, h 2 B

( )
,

with B :¼ fh : [0, 1]! R1
þ absolutely continuous, h(0) ¼ 0g. We thus obtain

lim
y!1

y�2=Æ logP

ð1

0

RÆ(t)dt . y

( )
¼ �M�2=Æ

2
: (3:6)

Recall that the value of M is known: Strassen (1964) showed that M ¼ M S , where

MS :¼ 2(2þ Æ)Æ=2�1

ÆÆ=2

ð1

0

(1� tÆ)�1=2 dt

" #Æ ¼ 2(2þ Æ)Æ=2�1ÆÆ=2ˆÆ(1=2þ 1=Æ)

ˆÆ(1=Æ)
: (3:7)

Strassen proved this result for Æ > 1 but it is easy to verify that it is also valid for Æ 2 (0, 1).

Indeed, in the latter case the functional

Gc(h) :¼
ð1

0

hÆ(t)dt � c

ð1

0

_hh2(t)dt (c . 0)

is concave on B. Strassen’s calculations show that, for some h� 2 B, one has

ð1

0

hÆ
�(t)dt ¼ MS ,

ð1

0

_hh2(t)dt ¼ 1,

and for some c . 0 the derivative of Gc vanishes at h� . Hence, Gc attains its maximum at

h� , or equivalently,

MS ¼ sup

ð1

0

hÆ(t)dt :

ð1

0

_hh2(t)dt ¼ 1, h 2 B

( )
¼ M :

Thus M ¼ MS for every positive Æ.

Now, sequentially using Fact 3.1, (3.6) and (3.7), we obtain
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lim
x!0þ

x2=� logP

ð1

0

R��(t)dt , x

( )
¼ lim

x!0þ
x2=� logP

ð1

0

RÆ(t)dt . (Æ=�)Æx�Æ=�

( )

¼ �M�2=ÆÆ2

2�2
¼ � 2

M2=Æ(2� �)2

¼ � 22=��3�

(2� �)2=��1�

ˆ2((2� �)=2�)

ˆ2(1=�)
,

as claimed in Lemma 2.2.

Now we prove the second part (identity (2.19)) of the Lemma. The upper bound in (2.19)

follows from the Schilder large-deviations theorem (see (3.3)), that is,

lim sup
x!0þ

x2=� logP

ð1

0

R��(t)dt < x

( )
< � 1

2
inf
f 2A0

ð1

0

_ff 2(t)dt ¼ �B0:

The lower bound in (2.19) follows not from the general theory but from Lemma 2.3. Indeed,

take small numbers a . 0, � . 0 and denote by 
a :¼ infft : R(t) ¼ ag the first hitting time

of the Bessel process. Then by the strong Markov property,

P

ð1

0

R��(t)dt < (1þ �)x

( )
> P

ð
a

0

R��(t)dt < �x;

ð
aþ1


a

R��(t)dt < x

( )

¼ P

ð
a

0

R��(t)dt < �x

�  
P

ð1

0

R��(t)dt < xjR(0) ¼ a

( )

> P

ð
a

0

R��(t)dt < �x

�  
P

ð1

0

jaþ W (t)j�� dt < x

( )
: (3:8)

By the scaling property of R, we have, for x , ��1a2��,

P

ð
a

0

R��(t)dt < �x

�  
¼ P

ð
1

0

R��(t)dt < a��2�x

�  

> P

ð1

0

R��(t)dt < a��2�x, 
1 < 1

( )

¼ P

ð1

0

R��(t)dt < a��2�x

( )
,

the last equality following from the fact that f
Ð 1

0
R��(t)dt < a��2�xg � f
1 < 1g for all

x , ��1a2��. Hence, by (2.18),
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lim inf
x!0þ

x2=� logP

ð
a

0

R��(t)dt < �x

�  
> � 22=��3�

(2� �)2=��1�

ˆ2((2� �)=2�)

ˆ2(1=�)
��2=�a2(2��)=�:

(3:9)

We mention that it is possible, by means of stochastic calculus techniques, to show thatÐ 
a

0
R��(t)dt is distributed as f2=(2� �)g2a2��=sup0< t<1 R2(t), so that the ‘lim inf’ expres-

sion on the left-hand side of (3.9) is a true limit and its value is actually 0.

To estimate Pf
Ð 1

0
jaþ W (t)j�� dt < xg, we take a function h� from (2.20) and notice that

for ø 2 faþ W (t) > x�1=�h�(t), 8t 2 [0, 1]g, we haveð1

0

jaþ W (t)j��dt < x

ð1

0

h
��
� (t)dt ¼ x:

Hence, by Lemma 2.3,

lim inf
x!0þ

x2=� logP

ð1

0

jaþ W (t)j��dt < x

( )

> lim inf
x!0þ

x2=� logPfaþ W (t) > x�1=�h�(t), 8t 2 [0, 1]g

> � 1

2

ð1

0

_hh2
�(t)dt

> �(1þ �)B0: (3:10)

Combining (3.8)–(3.10) and choosing � and a sufficiently small, we obtain

lim inf
x!0þ

x2=� logP

ð1

0

R��(t)dt < x

( )
> �B0:

This yields the second part of Lemma 2.2.

4. Slow exit from more general domains

4.1. Domains with regular varying boundary

Let ¸ : Rþ ! Rþ be a non-decreasing continuous function starting at 0 and p-regularly

varying at infinity (with p . 1): for any a . 0, ¸(ar)=¸(r)! a p, r !1. Let ¸ denote

the inverse function of ¸. Then ¸ is (1=p)-regularly varying, so that

�(r) :¼ r�1=p¸ (r)

is a slowly varying function. Let

D ¼ Dd,¸ :¼ f(x, y) :¼ (x1, . . . , xd , y) 2 Rdþ1 : y . ¸(kxk)g, (4:1)
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where kxk is the Euclidean norm of x :¼ (x1, . . . , xd) 2 Rd . Sharp estimates for exit times

from such domains may be found in Li (2001).

We provide the following generalization of Theorem 1.1.

Theorem 4.1. Let d > 1, ¸ and � be as above. Let D ¼ Dd,¸ be as in (4.1). Assume that

lim
T!1

�(��p=( pþ1)(T )T )

�(T )
¼ 1: (4:2)

Then

lim
T!1

logPf
D . Tg
f p(T )

¼ �( pþ 1)
� j

2 p

(d�2)=2

2 pþ3( p� 1) p�1

ˆ2(( p� 1)=2)

ˆ2( p=2)

 !1=( pþ1)

,

where

fp(T ) :¼ T ( p�1)=( pþ1)

�2 p=( pþ1)(T p=( pþ1))
: (4:3)

Remark. The extra assumption (4.2) is verified, for example, by functions �(T ) ¼ c(log T )Æ

(with Æ 2 R) and by functions �(T ) ¼ c expfb(log T )Æg (with Æ 2 [0, 1
2
]).

Proof. We only sketch the proof, starting with that of the lower bound. The splitting

argument now reads

Pf
D . Tg > Pf¸(kW(t)k) < æT p=( pþ1) h�(t=T ) < 1þ ~WW (t), 8t 2 [0, T ]g

¼ Pf¸(kW(t)k) < æT p=( pþ1) h�(t=T ), 8t 2 [0, T ]g

3 PfæT p=( pþ1) h�(t=T ) < 1þ ~WW (t), 8t 2 [0, T ]g

and for the first factor we have

logPf¸(kW(t)k) < æT p=( pþ1) h�(t=T ), 8t 2 [0, T ]g

¼ logPfkW(t)k < ¸ æT p=( pþ1) h�(t=T )
� �

, 8t 2 [0, T ]g

¼ logPfkW(t)k < T�1=2¸ æT p=( pþ1) h�(t=T )
� �

, 8t 2 [0, T ]g

- � kT

2

ð1

0

(¸ )�2 æT p=( pþ1) h�(t)
� �

dt

¼ � k
2æ2=p

T ( p�1)=( pþ1)

ð1

0

h
�2=p

� (t)��2 æT p=( pþ1) h�(t)
� �

dt

- � k
2æ2=p

T ( p�1)=( pþ1)��2 æT p=( pþ1)
� �

:
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The rest of the proof strictly follows that of the lower bound in Theorem 1.1 after (2.21) with

the replacement of k by k��2(T p=( pþ1)). Note that the optimal choice of æ is

æ ¼ æ(T ) :¼ k
2 pB0

� 	 p=2( pþ1)

��p=( pþ1) T p=( pþ1)
� �

,

and (4.2) provides the equivalence �(æT p=( pþ1)) - �(T p=( pþ1)) which considerably simplifies

the calculation.

Now we turn to (a sketch of) the proof of the upper bound. We retain the notation of

Section 2. In particular, we use a partition ft0, . . . , tNg, the supremum S(t), and the

constant k. Take a small constant m . 0 and a large constant M . 0. Introduce three

events

Q� ¼ Q�(T ) :¼ S(t1) <
mT p=( pþ1)

� p=( pþ1)(T p=( pþ1))

( )
,

Q ¼ Q(T ) :¼ mT p=( pþ1)

� p=( pþ1)(T p=( pþ1))
, S(t1) < S(T ) ,

M T p=( pþ1)

� p=( pþ1)(T p=( pþ1))

( )
,

Qþ ¼ Qþ(T ) :¼ S(T ) >
MT p=( pþ1)

� p=( pþ1)(T p=( pþ1))

( )
:

Bounding the parts relating to Q� and Qþ is no problem. Indeed, by the classical large-

deviation estimate for S(T ), we have

lim sup
T!1

logPfQþg
f p(T )

< �M2

2
,

and we can choose M as large as possible. On the other hand, taking t1 ¼ 
1T for any fixed


1 2 (0, 1), we have

lim sup
T!1

1

f p(T )
logPf
D > T ; Q�g

< lim sup
T!1

1

f p(T )
logP kW(t)k < ¸ 1þ mT p=( pþ1)

� p=( pþ1)(T p=( pþ1))

 !
, 8t 2 [0, t1]

( )

¼ � k
1

2m2=p
,

the last inequality being a consequence of (2.6) and (4.2). So this part does not present any

trouble either, as long as we choose m . 0 sufficiently small.

Finally, the estimate relating to the main domain Q follows the scheme of Section 2. Let

ªQ(T ) :¼ Pf
D > T ; Qg:

Similarly to (2.5), we obtain
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ªQ(T ) < P sup
t2[ t i�1, ti]

kW(t)k , ¸ sup
t2[0, ti

~WW (t)þ 1

 !
, 8i < N ; Q

( )
:

Proceeding as in Section 2, we obtain the counterpart of (2.8), namely,

ªQ(T ) < cN
4 E 1Q exp � (1� �)k

2

XN

i¼1

ti � ti�1

[1þ S(ti)]2=p�2(1þ S(ti))

 !( )
:

Note that uniformly for all i < N , we have, on the event Q,

�(1þ S(ti)) - �
T p=( pþ1)

� p=( pþ1)(T p=( pþ1))

 !
- �(T p=( pþ1));

indeed, the first equivalence follows from the definition of Q and the Karamata representation

for slowly varying functions, whereas the second is a consequence of condition (4.2).

Accordingly, for all large T ,

ªQ(T ) < cN
4 E exp � (1� �)2k

2�2(T p=( pþ1))

XN

i¼1

ti � ti�1

[1þ S(ti)]2=p

 !( )
:

Now we simply follow Section 2 but with k replaced by k��2(T p=( pþ1)). In place of (2.9), we

have

ªQ(T ) < cN
4 E exp � (1� �)3kT ( p�1)=p

2�2(T p=( pþ1))

ð1


1

d


[T�1=2 þ S(
)]2=p

 !( )
,

and taking b ¼ (1� �)3kT ( p�1)=p=2�2(T p=( pþ1)) in (2.10), we arrive at the following

counterpart of (2.11):

lim sup
T!1

log ªQ(T )

f p(T )
< inf

�.0,Ł.0
lim sup

T!1

1

f p(T )
log E exp � (1� �)kT ( p�1)= p

2�2(T p=( pþ1))

ð1

Ł
S(
)�2=p d


 !( )
:

We already know from (2.16), via the key estimate (2.15), that the expression on the right-

hand side equals �( pþ 1)(k=2 p) p=( pþ1) B
1=( pþ1)
0 , which yields the desired upper bound. h

4.2. Non-Euclidean norms

Let K be a non-empty connected open set in Rd that contains 0. According to Theorem 7.2

in Port and Stone (1979),

PfW(t) 2 K, 8t 2 [0, T ]g - c exp(�ºT ), T !1,

with some positive constant c and º being the principal eigenvalue of the Laplacian (�1
2
˜) on

K (with zero boundary condition).

We can transform this statement into
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PfW(s) 2 xK , 8s 2 [0, 1]g - c exp � º

x2

� 	
, x! 0þ,

by ordinary scaling arguments. Using the latter relation instead of our formula (2.6), one can

easily obtain the results of this paper for the exit times from a parabolic shape

Dd, p, H :¼ f(x, y) 2 Rdþ1 : y . H(x) pg,
for any norm H(�) in Rd equivalent to the Euclidean. Obviously, 22 will everywhere replace

j 2
(d�2)=2

.

4.3. An open problem: quasi-conic domains

The natural question is what happens if p ¼ 1 and � is an appropriate power of a

logarithmic function (using notation from Section 4.1). The answer should be something

intermediate between the subexponential behaviour of the exit probability treated in the

present paper and the polynomial behaviour which appears for purely conic domains.

The only known results are those of Li (2001), but his upper and lower estimates are still

of different orders of magnitude. It does not seem that our methods are appropriate for a

complete analysis of that case.
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