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Concentration and deviation inequalities are obtained for functionals on Wiener space, Poisson space
or more generally for normal martingales and binomial processes. The method used here is based on
covariance identities obtained via the chaotic representation property, and provides an alternative to the
use of logarithmic Sobolev inequalities. It enables the recovery of known concentration and deviation
inequalities on the Wiener and Poisson space (including those given by sharp logarithmic Sobolev
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1. Introduction

The purpose of the present paper is to further explore topics in concentration and deviation
inequalities, in particular in infinite-dimensional settings. Deviation and concentration have
attracted a lot of attention in recent years, well summarized in Ledoux (1996b, 1999) where
the reader will find up-to-date information and references. Among the various methods used
to obtain these results, one that we would like to emphasize is based on covariance
representations. This method has already been used in the Gaussian or more generally
infinitely divisible cases in Bobkov ef al. (2001a) and Houdré (2002). Here we tackle the
infinite-dimensional case in a similar fashion, recovering the results recently obtained in
Bobkov and Ledoux (1998) and Ané and Ledoux (2000) using (modified) logarithmic
Sobolev inequalities, and also the stronger results of Wu (2000) obtained from sharp
logarithmic Sobolev inequalities (see Corollaries 4.3 and 5.1). We also show that our
method covers the discrete cube and extends the concentration inequalities of Bobkov and
Ledoux (1998) to infinite dimensions (see Proposition 7.8 and Corollary 7.7).

In the next section, we briefly review the notion of the normal martingale and recall
elements of its structure theory. Section 3 is devoted to concentration inequalities for
normal martingales having the chaos representation property. This is then specialized in
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698 C. Houdré and N. Privault

Section 4 to ‘deterministic’ structure equations that simultaneously cover the Poisson and
Wiener cases. The general case of Poisson random measure on a metric space is treated in
Section 5, and the gradient of Carlen and Pardoux (1990) is also used in Section 6 for the
Poisson process on R.. Section 7 is devoted to the case of the binomial process, and
includes functionals on the infinite discrete cube under non-symmetric Bernoulli measures.

2. Preliminaries: normal martingales

Let (M;)icr, be a normal martingale, ie. one with deterministic angle bracket
d(M,, M;) =dt. Let (F,)er, be the filtration generated by (M;)cm, and let F =
\er. F;. The multiple stochastic integral 7,(f,) is then defined as

o0 1y %)
[”(f”):"!H "’Jfn(f1»-~-,tn)dMn~~~thn, foe PR n=1,
0 Jo 0

where L2(R,)°" is the set of symmetric square-integrable functions on R, with
E[L,(fu)Im(gm)] = n!l{nzm}<fn’ gm>L2(R.)°”~ (2.1)

We assume that (M,),cr, has the chaos representation property, i.e. every I € LX(Q, F, P)
has a decomposition as F =" ,I,(f,). Let D: Dom(D) — L*(Q X Ry, dP X dt) denote
the closable gradient operator defined as

D,F = Z nl,_1(fu(x, 1)), dP X dt-a.e.,

n=1

with F =35 I,(f,). The Clark formula is a consequence of the chaos representation
property for (M,);cr., and states that any F € Dom(D) C L*(Q, F, P) has a representation

F =E[F] +J E[D,F | F,1dM,. (2.2)
0
It admits a simple proof via the chaos expansion of F:

e o0 Iy 15
F:E[F]+Zn!J J J Ffultty ..oy t)dM,, - dM,
n=1 0

0 Jo
o0 00 00
=E[F]+ nj Lioa(fuly )1, )dM,, = E[F] + J E[D,F | F,1dM,.
n=1 0 0
Let (P;)/er, denote the Ornstein—Uhlenbeck semigroup, defined as

00
PF = Ze_mln(fn)a
n=0

with F = 3% 1,(f).

Proposition 2.1. Let F, G € Dom(D). Then
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cov(F, G)=E U D,FE[D,G | f,]dt] , (2.3)
0
and
cov(F, G) = EU J e_sDuFPSDquuds]. (2.4)
0 Jo

Proof. The first identity is a consequence of the Clark formula. By orthogonality of multiple
integrals of different orders and continuity of P, on L*(Q), it suffices to prove the second
identity for F = I,(f,) and G = [,(g,). But

o.0)

1
E[In(fn)ln(gn)] — I’l!<fn, gn>L2(Ri) — ;E[J

D,FD, Gdu}
0

=E U e’SJ D, FPD, Gduds} .
0 0

O

If (My)er, is in LY, F, P) then the chaos representation property implies that there
exists a square-integrable predictable process (¢;);cg. such that

d[Mt, Ml‘] - dt + ¢thf’ t e R+. (25)

This last equation is called a structure equation; see Emery (1989). Let i, = 1(4,—0) and
Jo=1—i,=114,20, 1t € R. The continuous part of (M,),cr, is given by dM¢{ = i,dM, and
the eventual jump of (M;),cr, at time ¢t € Ry is given by AM, = ¢, on {AM, # 0}, t € R}
(Emery 1989, p. 70). The following are examples of normal martingales with the chaos
representation property (Emery 1989):

(a) (@1)er. is deterministic. Then (M;)cr. can be presented as
th - itdB[ + ¢t(dNt - itdt), te R+, M() = O, (26)

with 4, = (1 — it)/qf)%, t € Ry, where (B/),cr, is a standard Brownian motion, and
(Ni)wr, a Poisson process independent of (B;).cr,, with intensity vt:fot Ads,
reR,.

(b) Azéma martingales where ¢, = fM,, B € [—2, 0).

If (¢/)rem, is a deterministic function, then i,D; is still a derivation operator, and we have
the product rule

D/(FG) = FD,G + GD,F + ¢,D,FD,G, teR; 2.7)

see Proposition 1.3 in Privault (1999). In fact D, can be written as

D =25A% +i,D, 2.8)

1



700 C. Houdré and N. Privault

where Af’ is the finite difference operator defined on random functionals by addition at time ¢
of a jump of height ¢, to (M,)er, . If ¢, # 0, this implies

t

a
Die” :%(e‘p’D’F — 1), 2.9)

and in the limit ¢, — 0, D, becomes a derivation: D,e’ = e’ D,F.
In the deterministic case, an Ornstein—Uhlenbeck process (X;);cr, can be associated with
the semigroup (Ps)cr,, and this implies the continuity of .

Lemma 2.2. Assume that (¢,).cr, is a deterministic function. For F € Dom(D), we have
| PDF || 1~@.2®.) < |1 DF || i~@.2®, ) teR,. (2.10)

Proof. Let (M;);cr, be defined as in (2.6) on the product space Q= Q; X Q, of
independent Brownian motion (B;).cgr, and Poisson process (N;);cr,. The exponential vector

= 1
dN) =D IS,

f € L"(R;)N L*(R,), has the probabilistic interpretation

e =exp( [ 17080 + [ itogt + porronanes - 5 | w7 as).

Let (X{)er, and (X})er, be respectively the classical Ornstein—Uhlenbeck process on
Wiener space, and the Ornstein—Uhlenbeck process on Poisson space (Surgailis 1984). We
have

E[e( /)X, XD [ (X], XD)]

=E [eXp (J iof (5)dX1(s) + J Jslog(1 + () (5))dX5(s)

0 0

Joojs @ds> C1(0), Xz(o))}

1 (.
75[0 B (s)ds = o Ps)

= exp (JO ise” " f(5)dX \(s) + JO Jslog(1 + e~ "p(s)f ()dX 5(s)
1 oo. —t OO- 7t.f(s)

— EL ise” ' f(s)ds — Jo Jse m s)

= &)XY, X9) = Pe( /).

This identity extends to linear combinations of exponential vectors by linearity, and to L?(2)
by density and continuity of P;. This implies that



Concentration and deviation inequalities 701
||PIDFHL°C(Q,L2(R+)) g ||PI|DF|L2(R,)||L"C(Q) $ ||DF||L°°(Q,L2([R+))’ t € R+,

for all ¥ € Dom(D). Ol

Before proceeding to general concentration inequalities for normal martingales with the
chaos representation property, we note that some infinite-dimensional inequalities can be
obtained from their finite-dimensional analogues. For example, if (M,),cr, is a standard
Brownian motion, then D is a derivation operator whose action on cylindrical functionals of
the form F = f(Ii(ey), ..., (Ii(ey)), ei, ..., e, € L*(R;), f bounded and continuously
differentiable on R”, is given by

DF =Y edif(ier, ... Li(e)), 1€ Ry,
i=1

We also have the relations
|DF| 2w,y = [VfI|(I1(er), - .., Ii(e,)) almost surely,
and
| DF | 1.2,y = [1.f lILip-

Applying the Gaussian isoperimetric inequality of Borell (1975) and Sudakov and Tsirel’son
(1974) to F = f(li(e1), ..., Ii(ey)) with [DF|~q r®,) <1 leads to concentration
inequalities. By density of the cylindrical functionals this result extends to Wiener functions
F in the domain of D and satisfying the condition ||DF||;~q 2w,y < 1. In a similar way,
the Gaussian concentration inequalities obtained in Pisier (1986), Ledoux (1999) or Bobkov
et al. (2001a) extend to infinite dimensions.

3. Concentration inequalities in the general case

In this section we work in the general framework of normal martingales with the chaos
representation property. To do so we extend some arguments due to Houdré (2002).

Lemma 3.1. Let F € Dom(D) be such that E[e"F1] < oo, and ¢*¥ € Dom(D), 0 < s < t,,
for some ty > 0. Then

t
E[e'FElFD] < exp (J h(s)ds), 0=<1t=<t, (3.1
0
where h is defined as

h(s):J | Dy F || |le ™ D, || odu, s € [0, t]. (3.2)
0

Proof. Let us first assume that E[F] = 0. We have
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o.¢]

E[Fe'1=E U

E[D,F ‘ ]:u]E[DueSF |]:u]du:|
0

—E U D,e*"E[D,F | ]—',,]du}
0

(o)
$Ek””‘HQJNWM7WDﬂ“ﬂwmA 0<s<1
0

In the general case, letting L(s) = E[e*" “ElFD], we have

t&d _ tE[(F _ E[F])es(F—E[F])] S
h E[es(F—ELFD]

log(Ee"" 7)) |

o L(s) 0

Given F € L*(Q) we denote by 5 the process
nr(t) = E[D.F | Fl, te Ry,

i.e. we have

00

F =E[F] + J nr(dM,.
0

A modification of the above proof to

E[Fe''1=E U

0

oe}

DueSF'lF(u)du] < E[e” |l D’ || pry 177 || 2w, )]

= E[eSF]”e_SFDeSF”L“(Q,LZ(RQ)HWF”L“(Q,Lz([&))a

also shows that (3.1) holds with

h(s) = |nrll 1~@.2@.plle™" D™ || @ 2. -

Various deviation inequalities can be obtained from this function; however, it will not be used
any further since it does not directly involve the norm of DF.

In the next lemma we apply the semigroup correlation identity (2.4). We refer to Ledoux
(2000) for other applications of semigroups, in particular to logarithmic Sobolev
inequalities.

Lemma 3.2. Let (P)cr. satisfy (2.10). Let F € Dom(D) be such that E[e""1] < oo, and
ef e Dom(D), 0 < s =< ty, for some ty > 0. Then

t
E[e/FEFD] < exp (J h(s)ds), 0<1t<1, 3.3)
0

where h is any of the functions

h(s) = | DF|| ;~@.2@®.plle”*" De* || 1x0.2R. ), s € [0, fo], (34)
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h(s) =

estDesF

DF

IDF |30 s € [0, to]. (3.5)

oo

Proof. Again assume first that E[F] = 0. If the Ornstein—Uhlenbeck semigroup satisfies

(2.10), then

E[Fe”] = “
< E |:€SF|CSFD65F|L2(R+)J

< E[e"]le™ De"" || 120, 2®.))

0

lo'e) o0
e_”J Due“FPUDuqudu}
0

{o.¢]

CU||PUDF||L2(R+)dU:|
0

‘J CiUPUHDFHLZ(RJr)dU
0

o0

{o¢]

= E[eSF] ||eiSFDeSF||Lx(Q’L2(R+))J efv HDF” LOG(Q,LZ(R+))dU

0

= E[eSF]He_SFDeSFHL*(Q,LZ([RL))||DF||L°°(Q,L2(R+))~

A similar argument shows that

[ oo o.¢]
E[Fe'']1=E J e_”J Due”FP,,DuqudU]
LJo 0
i —sF sF 00
wlle ™ De _
=<E]|e T OOJO € U|DFPUDF|L1([R)dU‘|
[ e—sFDesF 00 B
<E|e” —F OJO e U|DF||L2(R+)|PUDF||L2(R+)dU]
R eﬁs‘F[)esF 00 B
= E[C F] e ge—— ||DF||L”°(Q,L2(R+)) € UPU||DF||L2(R+)dU
DF 00 0 00
R eﬁsFDesF 00 B
<E[e”]|————|| IDFli=@.r®.y| ¢ °IDF|i~@ r®,)dv
DF - 0
—sF sF
sl € De 2
=B =5 || PPl ere),
The remainder of the proof is as in Lemma 3.1. O

From these lemmas a general concentration inequality follows:

Proposition 3.3. Let F € Dom(D) be such that E[e""l] <oo, and e € Dom(D),
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0 < s =< tg, for some ty > 0. Let h be the function defined either in (3.2), or (if (¢;)ier, is
deterministic) in (3.4) or (3.5). Then

P(F —E[F] = x) < exp (—J hl(s)ds>, 0 < x < h(ty),
0
where h™' is the inverse of h.

Proof. From Lemma 3.1 we have, for all x € R,
e”P(F — E[F] = x) < E[e//FlFD] < #0, 0<t< 1,

with
t
H(t) = J h(s)ds, 0=r=<1t.
0
For any 0 <z < ¢, we have d(H(t) — tx)dt = h(t) — x, hence

(%)
min (H(t) —tx=HMh'(x)—xh '(x) = J h(s)ds — xh~ ' (x)
0

0<r<

= stdh‘l(s) —xh (x) = —th_l(s)ds.
0 0

4. Concentration and deviation inequalities for deterministic
structure

In this section we work with (¢;).cr, a deterministic function, i.e. (M;),cr, is written as in
(2.6). This covers the Gaussian case for ¢ = 0, and also the general Poisson case, as shown
Section 5.

Proposition 4.1. Let F € Dom(D) be such that E[e*!F1] < oo, for some ty > 0. Then
P(F —E[F] = x) < exp (—J h‘l(s)ds>, 0 < x < h(ty),
0

where h™' is the inverse Of any of the following functions:

h(f) = J 5 ||\DuF|\ (@19l 1Pl 1)y 4 tJ i|| D F|% du, 4.1)

h(t) = | DF|| o, 2@, |0~ €PN = Dl <0, 2. ), 4.2)

h(t) = ‘(pD (e"Pr — ||DuF||2L°<(Q,L2(R+))a 1 € [0, 1] (4.3)
o0
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Proof. In the deterministic case, e~ De’ € [2(Q X R,), with

e Dyl = %(e"ﬁnDuF — ) +igDF,  ueR,, (4.4)
u
which can also be written as

1
e—tFDuetF — _(e[¢1¢DuF -1, (4.5)

bu
by replacing ¢, ' (e’?*P«F — 1) with its limit as ¢, — 0, i.e. tD,F, if ¢, = 0. All that remains
is to apply Proposition 3.3. O

Note that the inequalities given by (4.1), (4.2) and (4.3) are not comparable. Using the
bound

g (e PeF — 1) < 1| D, Fle"PuPuF,

for all values of ¢, € R, Proposition 4.1 also holds for the functions
o = o] DI
0

and
h(t) = 1| DF|| j~0.2®. ) |€"" P I DF || 10 2w, s t € [0, ]

We will show in the rest of this paper many instances where we can estimate 4 and A~'.

Proposition 4.2. Let F € Dom(D) be such that E[e"F1] < oo, for some ty>0, and
¢uD,F < K(u) a.s., u € Ry, for some function K: R, — R. Then

P(F —E[F] = x) < exp (—th_l(s)ds> , 0 <x < h(ty),
0

where h™ is the inverse of
1

h(t) = H X0 (e — 1)” HDFHZLMQ,B(R,))’ t € [0, to].

Proof. Since the function x — (e* — 1)/x is positive and increasing on R, we have

effFDuetF 1

0= _ WuDF _ 1y < (KW _ 1), e Ry,
bF ¢uDuF(e ) 0 (e ) uelR,
and
eftFD etF 1
u < K(u) _ 1 R..
D,F K(u) © » e

All that remains is to apply Proposition 3.3 and Lemma 3.2. U
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The following corollary is the main result of this section. It unifies the Poisson and
Brownian cases, and in particular enables the recovery of the classical inequality (4.7) in
the case ¢ = 0, i.e. on Wiener space — see Pisier (1986) and Proposition 3.1 of Wu (2000),
which is proved from sharp logarithmic Sobolev inequalities on Poisson space.

Corollary 4.3. Let F € Dom(D) be such that ¢DF < K a.s. for some k=0 and
HDF||L°°(Q,L2(R+)) < 0. Then, fOl" X = 0,

2
P(F —E[F]=x) <exp| — IPFlli @@,y g K
K2 DF 2
I DF |10, 2@m. )
K
< exp —ﬁlog ), (4.6)
||DF||L°°(Q,L2(R+))

with g(u) = (1 + u)log(1 + u) —u, u = 0. If K = 0 (decreasing functionals) we have

2

X
P(F —E[F] = x) < exp| — . . (4.7)
2| DF || .2, )

Proof. We first assume that F € Dom(D) is a bounded random variable. The function 4
defined in Proposition 4.2 satisfies

1 _
h(t) < E(etK - 1)||DF||L°2°(Q,L2(R+))’

hence

1 1 ,
=K <<x tx IDFHL%(Q,B([RQ))) log( + xK”DF”L’C(Q LZ([RQ))) - x>,

and (4.6) holds for all x = 0 since F is bounded. If K = 0, the above proof remains valid if
all terms are replaced by their limits as K — 0. If F € Dom(D) is not bounded the
conclusion holds for F, = max(—n, min(F, n)) € Dom(D), n=1, and (F,).en and
(DF,),en converge to F and DF in L*(Q) and L*(Q X R,) respectively, with

2 2
| DFull1~0.2®.y < IPFl1~@.12R. ) 0

The bounds (4.6) and (4.7) respectively imply E[e*/Flog<IF1] < oo for some a > 0, and
E[e*""] < oo for all a < (2||DF HzLx(Q’ 2,)) - In particular, if F is F7-measurable with
DF < K for some K = 0, and if moreover ¢, = ¢p € R, is constant in t € R, then

P(F —E[F] = x) < exp(—(p—ig(%)) < exp<—%10g<l —i—%))
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since || DF|| <, i2@,) < KT. This improves (as in Wu 2000) the inequality

P(F —E[F] = x) < exp (—4;[{ log(l + fé)) (4-8)

obtained from Proposition 6.1 in Ané and Ledoux (2000) which relies on modifed (and not
sharp) logarithmic Sobolev inequalities on Poisson space.

Corollary 4.4. Let ¢, =¢p € R,, t €R,, be constant. Let F € Dom(D) be such that
|DF||c < K and | DF || p g, 1) < 0o. Then

DF .
P(F — E[F] = x) < exp <_ I DF || @, 1= g( x¢ ))

»’K | DF || 1w, .12

20K |DF|| pw, .22/ )

with g(u) = (1 + u)log(l + u) — u, u =0, and we have E[e"F1°2:|F1] < 0o for some A > 0.
If $: =0, t € Ry, and F € Dom(D) is such that || DF|| o, 1) < 00, then

2
P(F —E[F]=x)= — . 4.
( L] =x) exp( 2|DF|L2(R+,LX(Q))> 9

Proof. The function defined in (4.1) of Proposition 4.1 satisfies
h(t) < ¢~ (" = D||DF || pw. 12>

which allows the proof of Corollary 4.3 to work. In the limiting case ¢ = 0, (4.1) gives
h(1) = t||DF|| 2, .1y hence —h~'(1) = —t||DFHZzz(R+’L%(Q)). Again we may first obtain
(4.9) when F' is bounded and treat the general case via an approximation argument. O

Corollary 4.4 is weaker than Corollary 4.3 — however, it only relies on the Clark formula
(i.e. on (4.1) and Lemma 3.1), not on the use of semigroups. For this reason it can be

stated for any derivation operator D which can be used in the Clark formula. In particular,
it transfers immediately to the Poisson space for the operator D; see Section 6.

5. Difference operator on Poisson space
Let X be a o-compact metric space and let Q¥ denote the set of Radon measures
i=N
Q¥ = {a) => e (I CX, i # 4, Vi# j, NeNU {oo}},
i1

where ¢, denotes the Dirac measure at t € X. Given 4 € B(X), let 74 = o(w(B): B € B(X),
B C A). Let o be a diffuse Radon measure on X, let P denote the Poisson measure with
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intensity o on Q¥ and let Lé (X) = L*(X, 0). The multiple Poisson stochastic integral 7,(f,)
is then defined as

Li(fu)(@) = L fultr, s @) = o(dn) - (o(dn) —o(dn),  fu € LX),

with A, = {(t1, ..., t,) € X" : t; # t;, Vi # j}, and the isometry formula
E[L, (/i) Im(gm)] = ”!I{n:m} (fns gm>L§(X)°"

holds true (see Nualart and Vives 1995). Moreover, every square-integrable random variable
F € [*(Q¥, P) admits the Wiener—Poisson decomposition

F=Y"L(f
n=0

in series of multiple stochastic integrals. The linear closable operator
D: X(QY, P)— 2(QYX X, P ® o)
is defined via
D 1L(f) () = nl,1(fn(x, D)), P(dw) ® o(df)-a.e., n € N.
It is known — see Ito (1988) or Proposition 1 in Nualart and Vives (1995) —
D, F(w) = F(wU{t}) — F(w), dP X dt-a.e., F' € Dom(D),

where by convention we identify w € Q¥ with its support. Since there exists a measurable
map 7: X — R, bijective almost everywhere, such that the Lebesgue measure is the image
of o by t (Dieudonné 1968, p. 192), Corollaries 4.3 and 4.4 can be restated. Again we
recover Proposition 3.1 of Wu (2000) in the setting of Poisson random measures on a metric
space, without using (sharp) logarithmic Sobolev inequalities:

Corollary 5.1. Let F € Dom(D) be such that DF < K a.s., for some K =0, and
HDF”LOC(Q’LZ(X)) < 0. Then

2
P(F —E[F]=x)<exp| — IDFllz@.0 g K
K? IDF|;
L(Q,L2(X))

< exp - log{ 1+ =
< - ez )
2K IDF [ 1@.12x))

with g(u) = (1 +w)log(1 +u) —u, u= 0. If k =0 (decreasing functionals) we have

2
X
P(F—E[F]=x)<exp| ————5—|. (5.1
ZHDF||L°<(Q,L2(X))

In particular, if = fo(y)W(dy) then ||DF||L°°(Q,L2(X)) = HfHLZ(X), and if f = K a.s. then
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f*(o(dy) X
P<J f)(w(dy) —o(dy)) = x) <exp| — JX = g X
X

>

| r2wo@
X
which covers Proposition 2 in Reynaud-Bouret (2001). If /' < 0 a.s., then

x2

P(J SON(dy) - o(dy) = x) O R
¥ 2JXf2(y)0(dy)

If F= fo(y)w(dy), then ||DF||L1(X’LOC(Q)) = ||fHL1(X)9 and we obtain

J FWlody)
X

P(fo(y)(wmy) ~ody) = x) < exp ¢ J
> |f(Do(dy)
X

If f =0 a.s., this can be written as

_ =) =expf  EUL X
P([ roron - =+) exp< H ﬂmg(Em)).

By way of an application, we consider as in Reynaud-Bouret (2001) a family
(¥ ,)uen C L*(X) of functions with values in [0, K], with o(X) < oo, and the functional

F = supJ W, (x)w(dx).
X

aeN

Then
0 < D.F = sup (J W, (x)w(dx) + lI’a(x)> - supJ W, (x)w(dx),
aeN \J X aeN J X
hence
0=D,F=s=supW,(x) =K,
aeN
and

P(F — E[F] = x) < exp (—O(X) g (KUX(X)) ) .
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Moreover,
0 efo(X)
E[F]=) — sup(Wa(x1) + ... + Wa(x))o(dx) -+ o(dxy)
n=1 n: X" aeN
0 =0 (X)
| sup IIIa(xl)o(dxl) e O(dxn)
=1 " JxnaeN
20 o—0(X)
| HDxlF”OOO(dxl) o O(dxn)
) n. Xn
N eia(X) n—1
= || DF|| px.@) ZT(C’(X))
n=1 :
S | DF || 11 x,1(0)(1 — e 7).
o(X) ’
Hence
o(X)
| DF || 11x. @) < T omElF]
and

X | — o™
P(F — E[F] = x) < exp ( ﬁmﬂg (%) ) .

6. Local gradient on Poisson space

In the Poisson case, if X = R, and o is the Lebesgue measure, then a local gradient can
be introduced (Carlen and Pardoux 1990; Elliott and Tsoi 1993; Privault 1994a). let (T})i=1
denote the jump times of the canonical Poisson process (N;)cr,, and let v = Ty — Ty,
k =1, denote its interjump times, with 7y = 0. Let S denote the set of smooth random
functionals F of the form

F:f(rl,...,fn), nZla

where f is of class C! on R” and has compact support. Let D denote the closable gradient
defined as
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DF ==Y N 5,(00cf(T1, ..., 7,), tER,FeES.
k=1

Then the relation E[D,F |F,] = E[D,F|F,], holds t € R, and the Clark formula can be
written for F € Dom(D) as

F = E[F]+ JOOE[D,F | F (N, — 1); (6.1)
0

see Theorem 1 in Privault (1994a).

Corollary 6.1. Let F € Dom(D). We have

2
P(F —E[F] = x) < exp| ———— , (6.2)
2|DF 2w, 1)

and

22
P(F —B[F] = x) < exp( ———— . (6.3)
4|DF |1~ @.2w,)

Proof. For (6.2) we note that the Wiener space proof of Corollary 4.4 is valid on Poisson
space since D satisfies the chain rule of derivation and the Clark formula (6.1).

Concerning (6.3), we construct the exponential random variables (7;);=; as half sums of
squared independent Gaussian random variables. Let F = f(zy, ..., 7,), and consider the
Wiener functional ®F given by

2 2 2 2
X7+ ¥ X, +y )
OF = (17u ,
/ 2 2
where xi, ..., X;, V1, --., V» denote two independent collections of normal random variables

that may be constructed as Brownian single stochastic integrals. Using the fact that F and
OF have same law, and the relation

20|DF[}g., = |DOF |}, (6.4)

(see Lemma 1 in Privault 1994b), the application on Wiener space of Corollary 4.3 to @ F
yields (6.3). O

The bounds (6.2) and (6.3) imply the exponential integrability E[e“’] < oo for all
a < 2| DF|[ ;2@ 1~y and @ < (4| DF|[j«q 2@.)) "' Tespectively. The above results
can be obtained from logarithmic Sobolev inequalities, i.e. by application of Corollary 2.5
Ledoux (1999) to Theorem 0.7 in Ané (2000); see (4.4) in Ledoux (1999) for a formulation
in terms of exponential random variables.
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7. Discrete settings

The covariance representations (2.3) and (2.4) which lead to the concentration and deviation
inequalities of the previous sections have versions in discrete settings. Our purpose is now
to explore the consequences of such representations. We consider the discrete structure
equation

Yi=1+4 oY, keN, (7.1)

i.e. (@x)ken 1s a deterministic sequence of real numbers and (Y;)=; is a sequence of centred
independent random variables. Since (7.1) is a second-order equation, there is a family
(Xp)g=1 of independent Bernoulli {—1, 1}-valued random variables such that

@k + Xiy /@7 +4
= , k=1.
2
The family (Xj)ien is constructed as a family of canonical projections on Q = {—1, 1}V,

under the measure P determined by condition (7.1) and the fact that E[Y;] =0 (which
implies that E[Y%C] =1), i.e.

Y

1
pk—P(Xk—l)—P<Yk_ qk>_2—@k , keN,
Pr 2,/@% +4
and
1
qk:P(Xk:—l):P<Yk:_ &>:§+7‘Pk , keN.
Ik 2¢/p% +4

Let J,(f,) denote the multiple stochastic integral of f;, € /2(N)°" (the space of square-
summable symmetric functions on N"), defined as

L= > Sk k)i o Y,

where
ANy ={lki, ..., k) eN" k;#k, 1 <i<j=<n},
with the isometry
E[Ju(fi)m(gm)] = nV ey (A, Sns &m)enyen-
We have
Ju(fn) = n! i ST T fulkrs o k)Y e Y (7.2)
k=0 0=k, <k, 0=k <k

Let S, = Zlgig (Xk + 1)/2 be the random walk associated with (X4)s=0 (see also Holden et
al. 1992; Leitz-Martini 2000). If py = p and ¢ =g, k€N, then J,(1jpn") is the
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Krawtchouk polynomial K,(Sy; N + 1, p) of order n, with parameter (N + 1, p) (see
Privault and Schoutens 2002). The set P of polynomials in X, X,, X, ... is dense in

L*(Q, P), hence any F € L*(Q, P) can be represented as a series of multiple stochastic
integrals:

F=>"Jufn),  fr€ PN, k=0, Jo(fo) = E[F].
n=0

Definition 7.1. We densely define the linear gradient operator D: [*(Q) — L*(Q X N) as

Didu(f) = nJu 1 (ful(x, a5, k), fu € A(N)", n €N,

We have, for (ki, ..., k) € Ay,

n n
Dy (H ka> = Liethbay 1] Yoo
i i=1

kit k
hence the probabilistic interpretation of Dy is
Dy F(S.) = \/pqu<F(S. + I{X’:,l}l{kg.}) - F(S - I{Xizl}l{kg.})).

When restricted to cylindrical functionals of the form F = f(X}, ..., X,), the gradient D is
the finite difference operator

DkF = \/pqu(f(Xla sy Xk—la +19 Xk-l—l) vy Xn) _f(X19 ey Xk—la _19 Xk+la vy Xn))’
which (in the symmetric case py = qx = %, k € N) is the operator considered in Bobkov et al.

(2001a). The operator D does not satisfy the same product rules as in the continuous-time
case (2.7); instead we have the following:

Proposition 7.2. Let F, G: Q — R. Then

X,
Di(FG) = FDyG + GDyF — —=X_D,FD,G, k=0,
PkYk
and
DkeF = — X/ Prqx el (exp - X Dy F — 1) (7.3)
\/ PkYk

Proof. Let Fi =F(S. + I{Xk:,l}l{kg.}) and F; =F(S. — I{szl}l{kg.}), k = 0. We have
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Dy(FG) = \/Piqe(F G|, — F; Gy)
= 1y ) PRG(F(G] — )+ G(Ff — F) + (Ff — F)XG} — G))

) VPRGHE(G = G) + G(F = Fi) = (F = Fi)(G = Gy)

= I{szfl} (FDkG + GDyF + DkFDkG)

4k

1o (FDkG + GDyF — DkFDkG).

Pk
We have

Dre™ =1y, _1yv/Prae(e” — e+ l{Xk:—l}\/kak(er —ef)

1

1
+ 1y nvrgee’ [ ex DyF — 1
{X=—1}V P9k ( PW k )

Xk
= —Xi\/Prqx el (exp — Dy F — 1).
v Pk4k

O

The next result is the predictable representation of the functionals of (S,),=0. Let
f}v:()‘(Xo, ...,XN), N e N.

Proposition 7.3. We have the Clark formula

F =E[F]+ Y E[DiF |F11% F e [X(Q).
k=1

Proof. For F = J,(f,) we have, using (7.2) (see Privault and Schoutens 2002),

F = Ju(fy) = nlTu(fula,) = 1Y Ju i (fuls sy () Vi
k=1

E[DiJu(fu) | Fr-11Yi-

00
k=1

This identity also shows that F — E[D.F | F._;] has norm equal to one as an operator from

L*(Q) into L*(Q X N):
2 2
||E[D-F|]'—-71]||iz(gxr\1) =|F - E[F]||2LZ(Q) < |F = E[F]ll 2@ +E[FF = 1 F1 720>
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hence the Clark formula extends to F € L*(Q). O

The Clark formula implies the covariance identity

cov(F, G)=E
k=1

DkFE[DkG|]-'k1]], (7.4)
and we also have, as in the continuous-time case,

cov(F, G) = E[ZJ e SDyFP,D,Gds |, (7.5)

k=170

where (P;);cr, denotes the semigroup
PF = Zeim']n(fn)s teRy, F= Zjn(fn)
n=0 n=0

The next result shows that the semigroup (F;),cr, admits a representation by a probability
kernel and an Ornstein—Uhlenbeck type process which (in the symmetric case py = q; = %,
k € N) is in fact the Brownian motion on {—1, 1}V considered in Ané and Ledoux (2000).
Proposition 7.4. For F € [*(Q, Fy),
PF@) = | FOuY e 0@, oo (7.6)
Q

where qY(w, ') is the kernel

i=N
7' (@, o) =[]0+ Y(@)Vi(w), o o Q.
i=1

Proof. Since L*(Q, Fy) is finite (2¥*!-dimensional) it suffices to consider the functional
Yi, ... Yy, with (ky, ..., k) € A,. We have, for o' € Q, ke N,

E[Yi()(1 + e ' Yi() Yi(@")]

= Dk i];(l +e7’y /ZzYk(w')> — Gy /Z(l - Gt\/ZYk(w')> =e "Yi(w"),

which implies, by independence of (Xj)zens,

P(Yy, ... Vi) @) =e "Yi, (@) ... Yi (@) =E[Yy ... Yi,qV(, 0], o' € Q.

The Ornstein—Uhlenbeck process ((X})ken)rer. associated with (P).cr, satisfies

PX;=11X0=1)=p+e g PX!=—1|X%=1)=q( —e,
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PXL=1]X%=-1)=p(l —e"), PXi=-1|XY=-D=qi+e'p, keN.
In other words, the hitting time 7, _; € R U {400} of —1 starting from +1 has distribution
Pt 1 <t =q(—e), teR,,

while the hitting time 7_;; of +1 starting from —1 has distribution
Pt < )= p(l —e), 1€ Ry
The covariance identity (7.5) and the representation (7.6) imply the inequality
| PsDF || 1~@.e0vy < [|1Ps| DF legy | 2~@ < [DFlix@emy, s € Ry,

for F' € Dom(D), hence the next proposition can be proved in a way similar to Proposition
3.3.

Proposition 7.5. Let FF € Dom(D). Then
t
E[e""#ID] < exp (J h(s)ds), 0s<t=<t, (7.7)
0

where h is any of the following functions:

h(s) =Y [IDeFloolle™" Dee™ ||, (7.8)
=0
h(s) = || DF || x@.eqvplle ™" De || 1<@.e0v), (7.9)
e—sFDesF )
h(S) = T ||DF||L”C(Q,/,'2(N))’ s € [0, t()]. (710)
o0

Although D does not satisfy the same product rule as in the continuous case, from (7.3)
we still have the bound

e Dye’’| < W(exp( _;qu |DkF|> - 1>, keN, (7.11)

which gives the following corollary to Proposition 7.5.

Corollary 7.6. Let F € Dom(D). Then
t
E[e/—ElF)] < exp (J h(s)ds), 0=st=<1, (7.12)
0

where h is any of the following functions:



Concentration and deviation inequalities 717

>0 s
h(s) =S | DiFllullv/7rar DiF|) - 1] , 7.13
©) ;;%” el H pqu<exp<x/ﬁza;' ¢ '> )‘Lm 713

h(s) = || DF || 1~@.e2vy , (7.14)

L(Q,6(N))

‘W(exp (\/%|D.F|) - 1)

1 N 2
- D.F|) —1 DF|2.. , EARNCA
h(s) H\/pquDkF <eXp<\/m| s |) )HJ Iz @.e0v) s €0, 1] (7.15)

Again, the inequalities given by (7.13), (7.14) and (7.15) are not comparable. The bound

N <exp (LD,CFO - 1> < 5| Dy F| exp( |DkF|>, keN,

v Pk4k
also shows that Corollary 7.6 holds with

S
v/ P4k

- s
h(s) =5y | DeF|2 |lexp |mﬂH,
; > v PkGk -
and
S
h(s) = s|| DF || (@, llexp |D.F.|D.F|| 1~ s € [0, to].

prq.

The following corollary is obtained with the same proof as in the Poisson space.

Corollary 7.7. Let F € Dom(D) be such that (1/\/prqi)|Di F| < K, k € N, for some K = 0,
and || DF || ;e < oo. Then

2
P(F —E[F]=x)<exp| — I PPl @ v K
p e g\ op
| HL’C(Q,(Z(N))

= exp X log 1 + XK
< - e a— I B
2K | DF || 7=(@.20v)

with g(u) = (1 + u)log(l +u) —u, u = 0.

Proof. Use the inequality

7SFD sF 1 —sX sK 1
O$l=—xk\/pqu exp( 5 kaF)—l $e s
Dy F DyF NI K
and apply Corollary 7.6. O

If pp = p and g; =g, for all k € N, the conditions (1/,/pq)|DvF|<p, k€N, and
IDF || qny < o give
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2
oo cen () <o)

which is relation (13) obtained on {0, 1}" in Bobkov and Ledoux (1998). In particular, if F
is Fy-measurable, then

P(F —E[F] = x) < exp(—Ng<ﬁiN>) < exp(—% (log(l +/%) - 1))

Finally, we obtain a Gaussian concentration inequality for functions of (S,),cn, using the
covariance identity (7.4). We refer to Bobkov (1995), Ledoux (1996a), Bobkov et al
(2001b) and Houdré and Tetali (2001) for other and better versions of this inequality
obtained by different methods.

Proposition 7.8. Let F: Q — R be such that

e 1
—— |DF||DyF H < K2.

Then

2
P(FE[F]Bx)sexp<2x?), x; = 0.

Proof. Using the inequality
le™ —e?| < ét|x — y|(e™ +¢e?), x, yER, (7.16)
we have
Dy | = VBrgEle™ — e = LB Fi — Fyle e )

1 . :
=~ t|DyFl(e™r + i) <
5 UDRFI(e™r 4 eh) < 5

— D F|E[eT|X;, i+ k
(pk/\qk)|k|[| # k]

= (E[e"|DiF||X,, i # K],
e D [e™ | Dy F | # k]

and
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E[Fe] =Y "E[E[DiF | Fy 11D4e"] < Y || DeF || B[ e’ ]
k=0 k=0

o0
1
<ty —— ||DyF||E[E[eT | D F| |X;, i # k
kEZOZ(quk)H i F || E[E[e" | Dy F| | # k1l

- 1
=tE|e" Y ————||DiF| | DiF
l B rrrn il
- 1
< tE[e”" ——|DyF DFOOH.
("] ;2(1%/\!]1{)' D] o0
We can conclude as in the proof of Corollary 4.4. O
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