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A conservative cascade is an iterative process that fragments a given set into smaller and smaller

pieces according to a rule which preserves the total mass of the initial set at each stage of the

construction almost surely and not just in expectation. Motivated by the importance of conservative

cascades in analysing multifractal behaviour of measured Internet traffic traces, we consider wavelet-

based statistical techniques for inference about the cascade generator, the random mechanism

determining the redistribution of the set’s mass at each iteration. We provide two estimators of the

structure function, one asymptotically biased and one not, and prove consistency and asymptotic

normality in a range of values of the argument of the structure function less than a critical value.

Simulation experiments illustrate the asymptotic properties of these estimators for values of the

argument both below and above the critical value. Beyond the critical value, the estimators are shown

not to be asymptotically consistent.
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1. Introduction

A multiplicative cascade is an iterative process that fragments a given set into smaller and

smaller pieces according to some geometric rule and, at the same time, distributes the total

mass of the given set according to another rule. The limiting object generated by such a

procedure generally gives rise to a singular measure or multifractal – a mathematical

construct that is able to capture the highly irregular and intermittent behaviour associated

with many naturally occurring phenomena, such as fully developed turbulence (see

Kolmogorov 1941; Mandelbrot 1974; Frisch and Parisi 1985; Meneveau and Srinivasan

1987; and references therein), spatial rainfall (Gupta and Waymire 1993), the movements of

stock prices (Mandelbrot 1998) and Internet traffic dynamics (Riedi and Lévy Véhel 1997;

Feldmann et al. 1998).

The generator of a cascade determines the redistribution of the set’s total mass at every

iteration; it can be deterministic or random. Cascade processes with the property that the

generator preserves the total mass of the initial set at each stage of the construction almost

surely and not just in expectation are called conservative cascades and are the main focus

of this paper. Originally introduced by Mandelbrot (1990) (also in the turbulence context),
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conservative cascades have recently been considered in Feldmann et al. (1998) for use in

describing the observed highly irregular small-time scaling behaviour of measured Internet

traffic traces. In particular, Feldmann et al. (1998) build on empirical evidence that

measured Internet traffic is consistent with multifractal behaviour by illustrating that ‘data

networks appear to act as conservative cascades!’. They demonstrate that multiplicative and

measure-preserving structure becomes most apparent when analysing measured Internet

traces at a particular layer within the well-defined protocol hierarchy of today’s Internet

Protocol (IP) based networks, namely the Transport Control Protocol (TCP) layer and at the

level of individual TCP connections, and that this structure can often be recovered at the

aggregate level (i.e., when considering the superposition process consisting of all IP packets

generated by all active TCP connections) and tends to cause aggregate Internet traffic to

exhibit multifractal-like behaviour. Well short of providing a physical explanation for the

all-important networking question of why packets within individual TCP connections

conform to a conservative cascade, the work of Feldmann et al. (1998) is empirical in

nature and relies on a number of heuristics for inferring multifractal behaviour from traces

of measured Internet traffic. However, to provide a more solid statistical basis for empirical

studies of multifractal phenomena, progress in the area of statistical inference for

multiplicatively generated multifractals is crucial.

In this paper we contribute to the effort of providing rigorous techniques for multifractal

analysis by investigating wavelet-based estimators for conservative cascades (i.e., for the

class of multifractal processes generated by conservative cascades) and studying their large-

sample properties. In this context, the special appeal of relying on wavelet-based inference

techniques lies in the wavelet’s natural abilities to detect and analyse various scaling-related

properties of an underlying signal or time series. Moreover, in contrast to time-domain-

based methods for investigating multifractal scaling behaviour, wavelet-based techniques

lend themselves in a natural way to a systematic investigation of certain underlying non-

stationarity features in the data (see, for example, Abry and Veitch 1998), and we will

allude to this ability towards the end of this paper.

Irrespective of the method used, the inference problem for conservative cascades consists

of deducing from a single realization of the cascade process the distribution of the cascade

generator that was presumably used to generate the sample or signal at hand. Intuitively, the

generator’s distribution can be inferred from the degree of variability and intermittency

exhibited locally in time by the signal under consideration. It can be expressed

mathematically in terms of the local Hölder exponents which in turn characterise the

singularity behaviour of a signal locally in time. Moreover, since the local Hölder exponent

at a point in time t0 describes the local scaling behaviour of the signal as we look at

smaller and smaller neighbourhoods around t0, a wavelet-based analysis that fully exploits

the time- and scale-localization ability of wavelets proves convenient and is tailor-made for

our purpose. On the one hand, we exploit here the fact that the singularity behaviour of a

process can (under certain assumptions) be fully recovered by studying the singularity

behaviour in the wavelet domain; that is, by investigating the (possibly) time-dependent

scaling properties of the wavelet coefficients associated with the underlying process in the

fine-time scale limit. On the other hand, using Haar wavelets, the discrete wavelet transform

of a conservative cascade can be explicitly expressed in terms of the cascade’s generator
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(see, for example, Gilbert et al. 1999) and hence provides a promising setting for relating

the local scaling behaviour of the sample to the distribution of the underlying conservative

cascade generator. In particular, we relate the distribution of the generator to an invariant of

the cascade, namely the structure function or modified cumulant generating function – also

known as the Mandelbrot–Kahane–Peyrière (MKP) function (Holley and Waymire 1992) –

and study the statistical properties (i.e., asymptotic consistency, asymptotic normality,

confidence intervals) of two wavelet-based estimators of this function.

Although the results in this paper have been largely motivated by our empirical

investigations into the multifractal nature of measured Internet traffic (Feldmann et al. 1998;

Gilbert et al. 1999), we have clearly benefited from the recent random cascade work of

Ossiander and Waymire (2000). Compared to the conservative cascades considered in this

paper, random cascades are multiplicative processes with generators that preserve the total

mass of the initial set only in expectation and not almost surely. This apparently minor

difference ensures independence within and across the different stages of a random cascade

construction but gives rise to subtle dependencies inherent in conservative cascades.

Ossiander and Waymire (2000) study the large-sample asymptotics of estimators that are

defined in the time domain rather than in the wavelet domain and allow for a rigorous

statistical analysis of the scaling behaviour exhibited by random cascades (for related work,

see Troutman and Vecchia 1999). While the large-sample properties of the time-domain-

based estimators considered in Ossiander and Waymire (2000) and of the wavelet-based

estimators studied in this paper are very similar, their potential advantages, disadvantages

and pitfalls when implementing and using them in practice require further studies. However,

in combination, these different estimators provide a set of statistically rigorous techniques

for multifractal analysis of highly irregular and intermittent data that are assumed to be

generated by certain types of multiplicative processes or cascades.

The rest of the paper is organized as follows. Sections 2–4 contain the basic facts about

conservative cascades, their wavelet transforms, and some related quantities that are needed

later in the paper. Section 5 discusses the critical constants, and Section 6 is concerned with

certain martingales and leads into Section 7 where subcritical asymptotics (that is,

asymptotics for values of the argument below the critical value) and strong consistency of

our two wavelet-based estimators are established. (Subcritical) asymptotic normality of the

estimators is explained and illustrated with some simulated data in Section 8, and Section 9

deals with some supercritical asymptotics when the value of the argument exceeds the

critical value. The values of the estimators at large values of the argument of the structure

function are uninformative and misleading, thus providing some practical guidance for

properly interpreting the plots associated with the estimation procedure. We conclude in

Section 10 with some interesting observations and open problems.

2. The conservative cascade

We now summarize the basic facts about the conservative cascade.

Consider the binary tree. Nodes of the tree at depth l will be indicated by
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( j1, . . . , jl) 2 f0, 1g l. Alternatively, we consider successive subdivisions of the unit interval

[0, 1]. After subdividing l times we have equal subintervals of length 2� l indicated by

I( j1, . . . , , jl) ¼
Xl

k¼1

jk

2k
,
Xl

k¼1

jk

2k
þ 1

2 l

" !
, ( j1, . . . , jl) 2 f0, 1g l: (2:1)

An infinite path through the tree is denoted by

j ¼ ( j1, j2, . . .) 2 f0, 1g1,

and the first l entries of j are denoted by

jjl ¼ ( j1, . . . , jl):

We will sometimes write, when convenient,

jjl, j lþ1 ¼ ( j1, . . . , jl, j lþ1):

The conservative cascade is a random measure on the Borel subsets of [0, 1] which may

be constructed in the following manner. Suppose we are given a random variable W, called

the cascade generator, which has range [0, 1] and which is symmetric about 1
2

so that

W ¼d 1� W . The symmetry implies that E(W ) ¼ 1
2
. We assume the random variable is not

almost surely equal to 1
2
. There is a family of identically distributed random variables

fW ( jjl), j 2 f0, 1g1, l > 1g,

each of which is identically distributed as W. These random variables satisfy the conservative

property

W ( jjl, 1) ¼ 1� W ( jjl, 0): (2:2)

Random variables associated with different depths of the tree are independent, and random

variables of the same depth which have different antecedents in the tree are likewise

independent. Dependence of random variables having the same depth is expressed by (2.2).

The conservative cascade is the random measure 	1 defined by

	1(I( jjl)) ¼
Yl

i¼1

W ( jji): (2:3)

Note the conservative property entails that

	1(I( jjl, 0))þ 	1(I( jjl, 1)) ¼ 	1(I( jjl)), (2:4)

so that the weight of two offspring equals the weight of the parent. This impliesX
jj l

	1(I( jjl)) ¼ 1: (2:5)
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3. Wavelet coefficients

We compute the wavelet transform

d� l,n ¼
ð1

0

ł� l,n(x)	1(dx), n ¼ 0, . . . , 2 l � 1; l > 1, (3:1)

using the Haar wavelets

ł� l,n(x) :¼ 2 l=2, if 2n=2 lþ1 < x , (2nþ 1)=2 lþ1,

�2 l=2, if (2nþ 1)=2 lþ1 < x , (2nþ 2)=2 lþ1:

�
(3:2)

We have, by examining where the Haar wavelet is constant, that

d� l,n ¼ 2 l=2 	1
2n

2 lþ1
,

2nþ 1

2 lþ1

� �� �
� 	1

2nþ 1

2 lþ1
,

2nþ 2

2 lþ1

� �� �� �
:

Now suppose that
P l

k¼1 jk=2k ¼ n=2 l. Then we have from (2.3),

d� l,n ¼ 2 l=2
Yl

i¼1

W ( jji)W ( jjl, 0)�
Yl

i¼1

W ( jji)W ( jjl, 1)

" #

¼ 2 l=2
Yl

i¼1

W ( jji)[W ( jjl, 0)� W ( jjl, 1)];

using the conservative property (2.2), this is

d� l,n ¼ 2 l=2
Yl

i¼1

W ( jji)[2W jjl, 0)� 1], (3:3)

for n ¼ 0, 1, . . . , 2 l � 1. Sometimes where convenient, we will also write

d� l,n ¼ d(�l, jjl) ¼ 2 l=2
Yl

i¼1

W ( jji)[2W jjl, 0)� 1]: (3:4)

4. Notation

Before continuing the analysis, in this section we present some notation for ease of

reference. We seek to estimate the distribution of the cascade generator W, and this will be

accomplished if we estimate

c(q) :¼ 2E(W q), q . 0; (4:1)

equivalently, we could estimate the structure function

�(q) ¼ 1þ log2 E(W q) ¼ log2 c(q): (4:2)

The structure function will be estimated using estimators constructed from the process
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Z(q, l) ¼
X

jj l

Yl

i¼1

W ( jji)qj2W ( jjl, 0)� 1jq, (4:3)

noting from (3.3) that

Z(q, l) ¼ 1

2ql=2

X2 l�1

n¼0

jd� l,njq: (4:4)

Our analysis rests on the process M(q, l), which we will show to be a martingale and which

is defined as

M(q, l) ¼ 1

c(q) l

X
jj l

Yl

i¼1

W ( jji)q, q . 0, l > 1; (4:5)

note that the normalization makes

E(M(q, l)) ¼ 1:

Where no confusion can result, we sometimes, for convenience, write c ¼ c(q). The

following constant functions are also needed:

b(q) ¼ Ej2W � 1jq, (4:6)

a(q) ¼ c(2q)

c2(q)
¼ E(W 2q)

2(E(W q))2
, (4:7)

ar(q) ¼ c(rq)

cr(q)
¼ 21�rE(W rq)

(E(W q))r
: (4:8)

Note that a(q) ¼ a2(q). Finally, we need three variances:

� 2
1(q) :¼ 1

c2
var(W q þ (1� W )q), (4:9)

� 2
2(q) :¼ 1

b2
var(j2W � 1jq), (4:10)

� 2
3(q) :¼ 1

b2
var

W
q
1

c
j2W2 � 1jq þ (1� W1)q

c
j2W3 � 1jq � j2W1 � 1jq

� �
, (4:11)

where Wi, i ¼ 1, 2, 3 are independent and identically distributed (i.i.d.), having the

distribution of the cascade generator.

It is convenient to define W ¼ e�Y so that the Laplace transform of Y is

�(q) :¼ Ee�qY ¼ E(W q) (4:12)

and

ar(q) ¼ 21�r�(rq)

�r(q)
:
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5. Critical constants

We now define the quantity

q� :¼ supfq . 0 : a(q) , 1g (5:1)

so that for q , q� we have a(q) , 1. It will turn out that when q , q� , the sequence

fM(q, l), l > 1g is an L2-bounded and uniformly integrable martingale, and this is the

easiest case to analyse. It is always the case that q� > 1, which follows from the fact that

a(1) ¼ E(W 2)

2(E(W ))2
¼ E(W 2)

2(1
2
)2
¼ 2E(W 2)

so that

a(1) ¼ 2 var(W )þ 1
4

� �
¼ 2E W � 1

2

� �
2 þ 1

2
< 2 � 1� 1

2

�� ��2 þ 1
2
¼ 1:

Let W be the cascade generator and define

X q ¼
W q

EW q
, q . 0,

so that EXq ¼ 1. The Mandelbrot–Kahane–Peyrière (MKP) condition (see Kahane and

Peyrière, 1976) is satisfied for q if

E(Xq log2 X q) , 1 (5:2)

if and only if

q

E(W q)
E(W q log W )� log E(W q) , log 2 (5:3)

if and only if

q(log�)9(q)� log�(q) , log 2: (5:4)

Define

¸� :¼ fq : E(Xq log2 X q) , 1g:

Then ¸� is an interval and we define the second critical constant

q� :¼ sup¸�: (5:5)

Why is q� considered a critical quantity? It turns out that the martingale

fM(q, l), l > 1g converges as l!1 to

M(q, 1) ¼ 0, if q > q�,
something non-degenerate, if q , q�:

�
The associated martingale is uninformative asymptotically when q . q�.

The two critical constants are related numerically by the inequality

max(1, q�=2) < q� < q�: (5:6)
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To see why the inequality q� < q� in (5.6) is true, it suffices to show that if q . 0 satisfies

a(q) , 1, then the MKP condition is satisfied for this q. However, if a(q) , 1, then

log 2 . log�(2q)� 2 log�(q) ¼ log�(2q)� log�(q)� log�(q)

¼
ð2q

q

(log�)9(s)ds� log�(q),

and since log� is convex, (log�)9 is increasing and the foregoing is bounded below by

(log�)9(q)

ð2q

q

ds� log�(q) ¼ q(log�)9(q)� log�(q):

The conclusion that

log 2 . q(log�)9(q)� log�(q)

is equivalent to the MKP condition holding by (5.4).

On the other hand, suppose that q� ,1. Since a(q�) ¼ 1, we have, in the same way as

above,

log 2 ¼ log�(2q� )� 2 log�(q� ) ¼ 2(log�(2q� )� log�(q�))� log�(2q� )

¼ 2

ð2q�

q�
(log�)9(s)ds� log�(2q�)

< 2(log�)9(2q�)

ð2q�

q�
ds� log�(2q� )

¼ 2q� (log�)9(2q�)� log�(2q� ):

Therefore, the MKP condition does not hold for 2q�, and so q� < 2q� .

Example 1. Suppose W is uniformly distributed on [0, 1]. In this case E(W q) ¼ 1=(1þ q)

and so

a(q) ¼ 1

2
1þ q2

2qþ 1

 !
and

q� ¼ 1þ
ffiffiffi
2
p
8 2:4:

Likewise, q� satisfies the equation

log(1þ q)� q

1þ q
¼ log 2

and so q� 8 3:311.
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Example 2. Suppose, more generally, that W has the beta distribution with mean 1
2

(i.e., the

shape parameters Æ and � are equal). Then

E(W q) ¼ ˆ(2Æ)ˆ(Æþ q)

ˆ(Æ)ˆ(2Æþ q)
(5:7)

and q� satisfies

4�Æ
ffiffiffi
�
p

ˆ(Æþ 2q)ˆ(2Æþ q)2 � ˆ(Æþ 1
2
)ˆ(2Æþ 2q)ˆ(Æþ q)2 ¼ 0:

Example 3. Suppose W has the two-point distribution concentrating mass 1
2

at p, 1� p for

some 0 < p , 1
2
. Then

E(W q) ¼ 1
2
( pq þ (1� p)q) (5:8)

and

a(q) ¼ 1� 2 pq(1� p)q

( pq þ (1� p)q)2
:

Note in this case that a(q)"1 as q"1 so q� ¼ q� ¼ 1.

Example 4. If W does not have a two-point distribution but nevertheless has an atom of size

p1 , 1
2

at 1 (and hence by symmetry there is an atom of the same size at 0) we have q� ,1
(and, hence, also q� ,1). To see this, we express condition (5.3), when q . 1, in the

equivalent form

E(W q log2 W q)

E(W q)log2(2E(W q))
. 1: (5:9)

Note that if W does not have a two-point distribution, then for q . 1, we have

P[W q , W ] . 0 and E(W q) , E(W ) ¼ 1
2
, so log2(2E(wq)) , 0, which explains the sign

reversal in (5.9) compared with (5.3).

By the dominated convergence theorem the numerator in (5.9) converges to 0 as q!1,

while the denominator converges to P[W ¼ 1]log2(2P[W ¼ 1]) 6¼ 0. Hence, (5.9) fails for

large q.

Based on the experience of Examples 3 and 4, it is natural to wonder how common it

can be that q� ¼ 1. This is discussed in the next proposition.

Proposition 5.1. Unless W has a two-point distribution, it must be the case that q� ,1.

Proof. Because of Example 3, we may assume that W does not have atoms at 0 and 1. Let

p 2 [0, 1
2
) be the leftmost point of the support of the distribution of W. Then 1� p is the

rightmost point of the support of the distribution of W. For 0 , r , 1, we have

Ł(r) :¼ P[W > r(1� p)] . 0:

Since the distribution of W is not a two-point distribution, limr!1 Ł(r) , 1
2
. Thus, we can find

and fix a value of 0 , r , 1 such that
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Ł(r) , 1
2
, 0 , r , 1:

For this value of r, it is convenient to set

�(r) :¼ � ¼ r(1� p):

Apply Jensen’s inequality with the convex function g(x) ¼ x log x, x . 0, to obtain

E
W q

c(q)
log2

W q

c(q)

� �
� 1[W>�]

� �
¼ Ł(r)E

W q

c(q)
log2

W q

c(q)

����W > �

 !

> Ł(r)E
W q

c(q)

����W > �

 !
log2 E

W q

c(q)

����W > �

 !

¼ E
W q

2E(W q)
1[W>�]

� �
� log2 E

W q

2E(W q)

����W > �

 !
: (5:10)

Also we have

lim
q!1

E
W q

c(q)
1[W>�]

� �
¼ 1

2
: (5:11)

To verify (5.11), note that

1
2
¼ E

W q

c(q)

� �
¼ E

W q

c(q)
1[W>�]

� �
þ E

W q

c(q)
1[W,�]

� �
,

and

0 < lim
q!1

E(W q1[W,�])

E(W q1[W>�])
< lim

q!1

1

P[W > �]
E

W

�

� �q

1[W=�,1] ¼ 0,

by dominated convergence. Thus from (5.10) and (5.11), we conclude that

lim inf
q!1

E
W q

c(q)
log2

W q

c(q)
� 1[W>�]

� �
>

1

2
� log2

1

2Ł(r)

� �
¼: h . 0, (5:12)

because Ł(r) , 1
2
.

We also claim that

lim
q!1

E

���� W q

c(q)
log

W q

c(q)

����1[W,�]

 !
¼ 0: (5:13)

To verify (5.13), note the expectation is the same as

E

���� W q

c(q)
log

W q

c(q)

����1[W q=c(q),�q=c(q)]

 !
:

Provided that
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lim
q!1

�q

c(q)
¼ 0, (5:14)

we obtain for any E , e�1, by the monotonicity of jx log xj in (0, e�1), that the expectation is

bounded by jE log2 Ej for q so large that �q=c(q) , E. So it remains to check (5.14), or

equivalently to check

lim
q!1

E
W q

�q

� �
¼ 0:

However, by Fatou’s lemma

lim inf
q!1

E
W q

�q

� �
> E lim inf

q!1

W

�

� �q

1[W>�]

 !
¼ 1,

since P[W . �] . 0 (otherwise, the definition of p would be contradicted).

Our conclusion from (5.12) and (5.13) is that, for all large q,

E
W q

c(q)
log2

W q

c(q)

� �� �
¼ E

W q

c(q)
log2

W q

c(q)

� �� �
1[W>�] þ E

W q

c(q)
log2

W q

c(q)

� �� �
1[W,�] . 0:

Thus

E
W q

2EW q
log2

W q

E(W q)
� log2 2

� �
¼ 1

2
EXq log2 X q �

1

2
. 0,

and so the MKP condition (5.3) fails for all large q. Therefore, q� ,1. h

We need the following properties of the function ar(q).

Proposition 5.2.

(i) For any fixed r . 1, the function ar(q) (and therefore a(q)) is strictly increasing in

q . 0.

(ii) For any fixed q . 0, the function log ar(q) is strictly convex in the region r . 1.

(iii) If q satisfies the MKP condition, then

d

dr
log ar(q)

����
r¼1

, 0,

and there exists r0 2 (1, 2) such that

ar0
(q) , a1(q) ¼ 1: (5:15)

(iv) If the MKP condition fails for q and the inequalities in (5.2)–(5.4) are reversed to

become strictly greater than, we have
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d

dr
log ar(q)

����
r¼1

. 0, (5:16)

and there exists 0 , r1 , 1 and ar1
(q) , a1(q) ¼ 1.

Proof. (i) Recall the definition of � from (4.12). For fixed r . 1, if we differentiate with

respect to q, we get

�(rq)

�r(q)

� �
9 ¼ �r(q)r�9(rq)� �(rq)r�r�1(q)�9(q)

�2r(q)
:

This is positive if and only if

�(q)�9(rq) . �(rq)�9(q)

or

�9(rq)

�(rq)
.

�9(q)

�(q)
:

Since r . 1, it suffices to show �9=� is strictly increasing, which is true if its derivative is

strictly positive. The derivative is

�(q)� 0(q)� (�9(q))2

�2(q)
,

which is strictly positive if and only if

�(q)� 0(q) . (�9(q))2, (5:17)

that is, if and only if

E e�qY
� �

E Y 2e�qY
� �

. E Y e�q=2Y � e�q=2Y
 � �

2

which follows from the Cauchy–Schwarz inequality.

(ii) Fix q . 0 and check that

d2

dr2
(log ar(q)) ¼ q2

�2(rq)
[� 0(rq)�(rq)� (�9(rq))2],

which is positive by (5.17).

(iii) For fixed q . 0,

d

dr
log ar(q) ¼ q(log�)9(qr)� log 2� log�(q),
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so that

d

dr
log ar(q)

����
r¼1

¼ 1

ar(q)

d

dr
ar(q)

� �����
r¼1

¼ q(log�)9(q)� log�(q)� log 2 , 0:

Since a1(q) ¼ 1, we have

d

dr
ar(q)

����
r¼1

, 0, a1(q) ¼ 1:

Hence there exists r0 2 (1, 2) such that

ar0
(q) , a1(q) ¼ 1:

(iv) if

d

dr
log ar(q)

����
r¼1

¼ 1

ar(q)

d

dr
ar(q)

� �����
r¼1

¼ q(log�)9(q)� log�(q)� log 2 . 0,

then since log a1(q) ¼ 0, there exists r1 , 1 such that

log ar1
(q) , 0 or ar1

(q) , 1:

h

6. The associated martingale

In this section we study the properties of the process fM(q, l), l > 1g defined in (4.5) for

each fixed q . 0. We define the increasing family of �-fields

F l :¼ �fW ( jjl), jjl 2 f0, 1g lg

generated by the weights up to and including depth l.

Proposition 6.1. For each q . 0, the family

f(M(q, l), F l), l > 1g

is a non-negative martingale with constant mean 1 such that M(q, l) converges almost surely

to a limiting random variable M(q, 1):

M(q, l)!a:s: M(q, 1), E(M(q, 1) < 1:

If the MKP condition fails for q, then

P[M(q, 1) ¼ 0] ¼ 1,

and if q satisfies the MKP condition, then E(M(q, 1)) ¼ 1 so that

P[M(q, 1) . 0] ¼ 1:
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Proof. The martingale property is easily established:

E(M(q, l þ 1)jF l) ¼
X

jj l, j lþ1

E

Q l
i¼1 W q( jji)

cl

W q( jjl, j lþ1)

c
jF l

� �

¼
X

jj l

Yl

i¼1

W q( jji)
cl

X
j lþ1

E
W q( jjl, j lþ1)

c

� �

¼ M(q, l)2 � E(W q)

c
¼ M(q, l):

By the martingale convergence theorem (Neveu 1975; Resnick 1998) a non-negative

martingale always converges almost surely. The last statements follow by the methods of

Kahane and Peyrière (1976). See also Propositions 6.2 and 6.3 below. h

Example 5. Recall the example of the two-point distribution of Example 3 in Section 4. In

this case we have M(q, l) ¼ 1 for all q . 0 and l > 1. For verifying this, the key observation

is that

W q þ (1� W )q ¼ pq þ (1� p)q: (6:1)

Recall (5.8) and then observe, for l . 1, that

M(q, l) ¼
X

jj l

Yl

i¼1

W q( jji)
c

� �
¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� �X
jl

W q( jjl � 1, jl)

c

¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� �
W q( jjl � 1, 0)þ W q( jjl � 1, 1)

c
,

and since W ( jjl � 1, 1) ¼ 1� W ( jjl � 1, 0) we apply (6.1) to obtain

¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� �
pq þ (1� p)q

c

¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� �
¼ M(q, l � 1):

One can easily see that M(q, 1) ¼ 1 and the assertion is shown. h
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Define M(q, 0) ¼ 1 and let the martingale differences be

d(q, l) :¼ M(q, l)� M(q, l � 1), l > 1:

For l . 1 we have from the definition of M(q, l) that

d(q, l) ¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� �
W q( jjl � 1, 0)þ (1� W ( jjl � 1, 0))q

c
� 1

� 	

¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� �
[�( jjl)]:

(6:2)

We can now easily see that E(d(q, l)jF l�1) ¼ 0. For the conditional variance, note that

E(�( jjl)) ¼ 0 and recall expression (4.9),

� 2
1(q) ¼ var(�( jjl) ¼ 1

c2
var(W q þ (1� W )q):

So the conditional variance of d(q, l) is

E(d2(q, l)jF l�1 ¼ E
X
jj l�1

Yl�1

i¼1

W q( jji)
c

�( jjl)

0@ 1A2

jF l�1

0B@
1CA

¼
X
jj l�1

pj l�1

Yl�1

i¼1

W q( jji)
c

� �Yl�1

i¼1

W q(pji)
c

� �
E(�( jjl)�(pjl)):

Since �(pjl))?�( jjl)) if pjl 6¼ jjl, we have

E(d2(q, l)jF l�1) ¼
X
jj l�1

Yl�1

i¼1

W q( jji)
c

� � !2

� 2
1(q)

¼
X
jj l�1

Yl�1

i¼1

W 2q( jji)
c(2q)

 !
al�1(q)� 2

1(q)

¼ M(2q, l � 1)al�1(q)� 2
1(q):

Thus the conditional variance of M(q, l) is

Xl

i¼1

E(d2(q, i)jF i�1) ¼
Xl

i¼1

M(2q, i� 1)ai�1(q)� 2
1(q): (6:3)
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Furthermore,

E(d2(q, l)) ¼ E(E(d2(q, l)jF l�1)) ¼ EM(2q, l � 1)al�1(q)� 2
1(q) ¼ al�1(q)� 2

1(q)

and thus

var(M(q, l)) ¼
Xl

i¼1

E(d2(q, i)) ¼ � 2
1(q)

Xl

i¼1

ai�1(q): (6:4)

This leads to the following facts.

Proposition 6.2. If q , q� so that a(q) , 1, the martingale f(M(q, l), F l), l > 0g is

L2-bounded and hence uniformly integrable. It follows that

E(M(q, 1) ¼ 1, M(q, l) ¼ E(M(q, 1)jF l), (6:5)

and M(q, l)! M(q, 1) almost surely and in L2. Moreover, if q� < q , q�, then the

martingale f(M(q, l), F l), l > 0g is Lp-bounded for some 1 , p , 2 and hence still

uniformly integrable, (6.5) still holds and M(q, l)! M(q, 1) almost surely and in Lp.

Remark. The proof will show that when q� < q , q�, we may take p ¼ r0, where r0 is

given in Proposition 5.2(iii); see (5.15).

Proof. Suppose first that q , q� . We have from (6.4) that

sup
l>0

E(M(q, l)� 1)2 ¼ sup
l>0

var(M(q, l))

¼ lim
l!1
"
Xl

i¼1

E(d2(q, i)

¼
X1
i¼1

ai�1(q)� 2
1(q) ,1:

The rest follows from standard martingale theory (see, for example, Neveu 1975, p. 68;

Resnick 1998).

Now let q , q� and we consider uniform integrability without L2 boundedness. Suppose

1 , p < 2, and for two paths j1 and j2 denote by mj1,j2
the largest i < l such that

j1ji ¼ j2ji. We have
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E(M(q, l)) p¼ 1

c(q) lp
E
X
j1j l

X
j2j l

Yl

i¼1

W q(j1ji)W q(j2ji)

0@ 1A p=2

<
1

c(q) lp

Xl

k¼0

E
X
j1j l
j2j l

mj1,j2
¼k

Yl

i¼1

W q(j1ji)W q(j2ji)
0BBB@

1CCCA
p=2

<
1

clp(q)

Xl

k¼0

E
X
jjk

Yk

i¼1

W 2q(jji)
0BBBB@

�
X

j
(1)

kþ1
,..., j

(1)

l

j
(2)

kþ1
,..., j

(2)

l

j
(1)

kþ1
6¼ j

(2)

kþ1

Yl

i¼kþ1

W q( j1, ... , jk , j
(1)
kþ1, ... , j

(1)
l ji)W q( j1, ... , jk , j

(2)
kþ1, ... , j

(2)
l ji)

1CCCCA
p=2

<
1

clp(q)

Xl

k¼0

X
jjk

E(W pq)k

�E
X

j
(1)

kþ1
,..., j

(1)

l

j
(2)

kþ1
,..., j

(2)

l

j
(1)

kþ1
6¼ j

(2)

kþ1

Yl

i¼kþ1

W q( j1, ... , jk , j
(1)
kþ1, ... , j

(1)
l ji)W q( j1, ... , jk , j

(2)
kþ1, ... , j

(2)
l ji)

0BBBB@
1CCCCA

p=2

<
Xl

k¼0

c( pq)

cp(q)

� �k
1

c( l�k) p(q)

� E
X

j
(1)

kþ1
,..., j

(1)

l

j
(2)

kþ1
,..., j

(2)

l

j
(1)

kþ1
6¼ j

(2)

kþ1

Yl

i¼kþ1

W q( j1, ... , jk , j
(1)
kþ1, ... , j

(1)
l ji)W q( j1, ... , jk , j

(2)
kþ1, ... , j

(2)
l ji)

0BBBB@
1CCCCA

p=2

¼
Xl

k¼0

ap(q)k 1

c( l�k) p(q)
E(W (1�W ))q(EW q)2( l�k�1)22( l�k�1) �2
� �

p=2

¼ (E(W (1�W ))q) p=22 p=2

c(q)

 !Xl

k¼0

ap(q)k :

Wavelet analysis of conservative cascades 113



Here a product over the empty set is equal to 1. By Proposition 5.2(iii) there is a p 2 (1, 2)

such that ap(q) , 1. For this p the martingale f(M(q, l), F l), l > 0g is Lp-bounded, and the

rest follows, once again, from standard martingale theory. h

The distribution of M(q, 1) satisfies a simple recursion which can be used to derive

additional information.

Proposition 6.3. Suppose fM(q, 1), M1(q, 1), M2(q, 1)g are i.i.d. with the same dis-

tribution as M(q, 1), the martingale limit. Let W have the distribution of the cascade

generator and suppose W and fM(q, 1), M1(q, 1), M2(q, 1)g are independent. Then

M(q, 1)¼d W q M1(q, 1)

c(q)
þ (1� W )q M2(q, 1)

c(q)
(6:6)

and, for any q . 0,

P[M(q, 1) ¼ 0] ¼ 0 or 1, (6:7)

so that E(M(q, 1)) ¼ 1 implies P[M(q, 1) ¼ 0] ¼ 0:

Proof. We write

M(q, 1) ¼ lim
l!1

X
jj l

Yl

i¼1

W q( jji)
cl

¼ lim
l!1

X
j2,..., j l

Yl

i¼1

W q(0, j2, . . . , ji)

cl
þ
X

j2,..., j l

Yl

i¼1

W q(1, j2, . . . , ji)

cl

0@ 1A

¼ lim
l!1

W q(0)
X

j2,..., j l

Yl

i¼2

W q(0, j2, . . . , ji)

cl
þ (1� W (0))q

X
j2,..., j l

Yl

i¼2

W q(1, j2, . . . , ji)

cl

0@ 1A
¼d W q(0)

M1(q, 1)

c
þ (1� W (0))q M2(q, 1)

c
:

We now verify (6.7). Define

p0 ¼ [M(q, 1) ¼ 0],

pW (0) ¼ P[W ¼ 0] ¼ P[W ¼ 1]:

Then, since c(q) 6¼ 0,

p0 ¼ [M(q, 1) ¼ 0] ¼ P[W q M1(q, 1)þ (1� W )q M2(q, 1) ¼ 0]

¼ P[A, W ¼ 0]þ P[A, W ¼ 1]þ P[A, 0 , W , 1]:

where A ¼ W qM1(q, 1) þ (1�W )qM2(q, 1) ¼ 0. From this we conclude that
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p0 ¼ 2 pW (0) p0 þ (1� 2 pW (0)) p2
0,

so that

p0(1� 2 pW (0)) ¼ p2
0(1� 2 pW (0)):

If 0 , pW (0) , 1
2
, then p0 ¼ p2

0 and p0 ¼ 0 or 1. If pW (0) ¼ 1
2
, then P[W ¼ 0] ¼

P[W ¼ 1] ¼ 1
2

and W has a two-point distribution, and hence from Example 5 we know

M(q, l) ¼ 1 which implies M(q, 1) ¼ 1. h

7. Estimation: subcritical consistency

We propose two estimators of the structure function which depend on scaled summed

powers of the wavelet coefficients fZ(q, l), l > 1g. These are

�̂�1(q) ¼ �̂�1(q, l) ¼ log2 Z(q, l)

l
¼ log2

P2 l�1
n¼0 jd� l,njq � ql=2

l
, (7:1)

�̂�2(q) ¼ �̂�2(q, l) ¼ log2

Z(q, l þ 1)

Z(q, l)

� �
¼ log2

P2 lþ1�1
n¼0 jd�( lþ1),njq

2q=2
P2 l�1

n¼0 jd� l,njq

 !
: (7:2)

Analysis depends on showing that scaled versions of Z(q, l) are well approximated by the

martingale, and this is discussed next. Recall notational definitions (4.1), (4.2), (4.3) and

(4.6).

Proposition 7.1. For q . 0,

Z(q, l)

clb
� M(q, l)!P 0:

If q 6¼ q� the convergence is almost sure, and if q , q� the convergence is in L2. Thus

Z(q, l)

clb
! M(q, 1) (7:3)

in the appropriate sense, depending on the case.

Proof. Begin by writing

Z(q, l)

clb
� M(q, l) ¼

X
jj l

Yl

i¼1

W q( jji)
c

j2W ( jjl, 0)� 1jq
b

� 1

� 	

¼
X

jj l

Yl

i¼1

W q( jji)
c

�( jjl, 0), (7:4)

where �( jjl, 0)?�(pjl, 0) if jjl 6¼ pjl. Also E�( jjl, 0) ¼ 0 and recall expression (4.10),

Wavelet analysis of conservative cascades 115



� 2
2(q) :¼ E�2( jjl, 0) ¼ 1

b2
var(j2W � 1jq):

If q , q� , so a(q) , 1, then, similarly to the calculations leading to (6.3) and (6.4), we find

E
Z(q, l)

clb
� M(q, l)

� �2

¼
X

jj l

X
pj l

E
Yl

i¼1

W q( jji)
c

Yl

i¼1

W q(pji)
c

�( jjl, 0)�(pjl, 0)

 !

¼ � 2
2(q)

(2EW 2q) l

c2 l(q)
¼ � 2

2(q)al(q)

! 0

as l!1 since a(q) , 1. This shows the L2 convergence.

For q . 0, the same method shows

E
Z(q, l)

clb
� M(q, l)

� �2

jF l

 !
¼ � 2

2(q)M(2q, l)al(q)

¼ � 2
2(q)

X
jj l

Yl

i¼1

W 2q( jji)
c2(q)

¼: � 2
2(q)V (q, l), (7:5)

and we need to show V (q, l)! 0 almost surely as l!1. If the MKP condition fails, then

M(q, l)! 0 as l!1 and

V (q, l) < (M(q, l))2 ! 0:

If the MKP condition holds, then from Proposition 5.2(iii) there exists r0 2 (1, 2) such that

ar0
(q) , 1, and for p ¼ r0=2 2 (1=2, 1) we have by the triangle inequality

0 < V (q, l) p <
X

jj l

Yl

i¼1

W 2 pq( jji)
c2 p(q)

¼ (ar0
(q)) l M(r0q, l)!a:s: 0, (7:6)

as l!1, since M(r0q, 1) ,1 almost surely.

So in all cases V (q, l)! 0. For any � . 0, E . 0 we have
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P

���� Z(q, l)

clb
� M(q, l)

���� . EjF l

" #
¼ P

���� Z(q, l)

clb
� M(q, l)

���� . EjF l

" #
1[V (q, l)� 2

2
(q).�]

þ P

���� Z(q, l)

clb
� M(q, l)

���� . EjF l

" #
1[V (q, l)� 2

2
(q)<�]

< 1[V (q, l)� 2
2
(q).�] þ E�2E

Z(q, l)

clb
� M(q, l)

� �2

jF l

 !
3 1[V (q, l)� 2

2
(q)<�]

¼ 1[V (q, l)� 2
2
(q).�] þ E�2V (q, l)� 2

2(q)1[V (q, l)� 2
2
(q)<�]

< 1[V (q, l)� 2
2
(q).�] þ

�2

E2
:

Take expectations and use V (q, l)!a:s: 0 and the arbitrariness of � to conclude that

Z(q, l)

clb
� M(q, l)!P 0,

as l!1.

For almost sure convergence, when q , q�, we obtain from (7.6) that

V (q, l) < (ar0
(q)1= p) l M1= p(r0q, l)

and so
P

l V (q, l) ,1 almost surely. Thus, for any E . 0,

X
l

P

���� Z(q, l)

clb
� M(q, l)

���� . EjF l

" #
< E�2

X
E

Z(q, l)

clb
� M(q, l)

� �2

jF l

 !

¼ (const:)
X

l

V (q, l) ,1,

and by a generalization of the Borel–Cantelli lemma (Neveu 1975, p. 152) we have

Z(q, l)

clb
� M(q, l)!a:s: 0:

For q . q�, we prove almost sure convergence from Proposition 5.2(iv) in a similar way.

h

We use the comparison result in Proposition 7.1 to obtain consistent estimators of the

structure function �(q) in the subcritical case, by which we mean the case where the MKP

condition holds.

Proposition 7.2. Define �̂�i(q) for i ¼ 1, 2 by (7.1) and (7.2). Provided q , q�, so that the

MKP condition holds, both estimators are almost surely consistent for �(q):
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�̂�i(q)!a:s: �(q), i ¼ 1, 2,

as l!1.

Proof. In (7.3), take logarithms to the base 2 to obtain

log2 Z(q, l)� l log2 c(q)� log2 b! log2 M(q, 1) (7:7)

almost surely as l!1. Divide through by l to get consistency of �̂�1(q). Note from (7.7) that

log2 Z(q, l þ 1)� log2 Z(q, l)� (l þ 1� l)�(q)! 0

almost surely, which proves consistency of �̂�2(q). h

8. Subcritical asymptotic normality of estimators

In this section we discuss second-order properties of the estimators �̂�i(q), i ¼ 1, 2, defined

in (7.1) and (7.2). The asymptotic normality for �̂�1(q) requires a bias term which cannot be

eliminated. This drawback is overcome by using �̂�2(q), whose definition in terms of

differencing removes the bias term. However, take note of the suggestive remarks at the end

of this section about mean square error.

For this section it is convenient to write EF l and PF l for the conditional expectation and

conditional probability with respect to the �-field F l.

We first consider the asymptotic normality of �̂�1(q). Begin by writing

Z(q, l)

clb
� M(q, l) ¼

X
jj l

Yl

i¼1

W q( jji)
c

j2W ( jjl, 0)� 1jq
b

� 1

� 	
(8:1)

¼:
X

jj l
Z( jjl), (8:2)

where

EF l (Z( jjl)) ¼ 0

EF l (Z( jjl))2 ¼
Yl

i¼1

W 2q( jji)
c(2q)

 !
al(q)� 2

2(q),

and recall that � 2
2(q) is defined in (4.10). Therefore,X

jj l
EF l (Z( jjl))2 ¼ M(2q, l)al(q)� 2

2(q): (8:3)

Our strategy for the central limit theorem is to regard Z(q, l)=clb� M(q, l) as a sum of

random variables which are conditionally independent given F l and then apply the Lyapunov

condition (Resnick 1998) for asymptotic normality in a triangular array.
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Proposition 8.1. If 2q , q�, then, as l!1,

PF l
Z(q, l)=clb� M(q, l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M(2q, l)al(q)� 2
2(q)

p < x

" #
! P[N (0, 1) < x] a:s:, (8:4)

where N (0, 1) is a standard normal random variable. Taking expectations in (8.4) yields

P
Z(q, l)=clb� M(q, l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M(2q, l)al(q)� 2
2(q)

p < x

" #
! P[N (0, 1) < x]: (8:5)

Proof. By Proposition 5.2(iii) there exists � . 0 such that both 2qþ � , q� and

a1þ�=2(2q) , 1: (8:6)

Asymptotic normality in (8.4) will be shown if we establish the Lyapunov conditionP
jj l EF l jZ( jjl)j2þ�

(M(2q, l)al(q))(2þ�)=2
! 0 a:s:, (8:7)

where the denominator comes from (8.3). The numerator on the left-hand side of (8.7) is

bounded above by

EF l

X
jj l

����Yl

i¼1

W q( jji)
c

����2þ����� j2W ( jjl, 0)� 1jq
b

� 1

����2þ�

¼ c1

X
jj l

Yl

i¼1

W q(2þ�)( jji)
c((2þ �)q)

 !
cl((2þ �)q)

cl(2þ�)(q)

¼ c1 M((2þ �)q, l)(a2þ�(q)) l,

where

c1 ¼ E

���� j2W ( jjl, 0)� 1jq
b

� 1

����2þ�:
So the ratio in (8.7), apart from constants, is bounded by

M((2þ �)q, l)(a2þ�(q)) l

M(2q, l)1þ�=2(a2(q))(1þ�=2) l
( M((2þ �)q, 1)(a2þ�(q)) l

M(2q, 1)1þ�=2(a2(q))(1þ�=2) l
:

Note that the two random variables M((2þ �)q, 1) and M(2q, 1) are non-zero with

probability 1 by Proposition 6.1. Check that

a2þ�(q)

(a2(q))1þ�=2
¼ a1þ�=2(2q) , 1:

So the Lyapunov ratio is asymptotic to a finite non-zero random variable times (a1þ�=2(2q)) l,

where a1þ�=2(2q) , 1, and the result is proven. h
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Remark 8.1. In the denominator of (8.5) we may replace M(2q, l) by its limit M(2q, 1).

This follows since almost surely 0 , M(2q, 1) ,1 for 2q , q� and thus

Z(q, l)=clb� M(q, l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, l)al(q)� 2

2(q)
p ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, l)

M(2q, 1)

s0@ 1A) (N (0, 1), 1)

by Billingsley (1968). The desired result is obtained by multiplying components.

Remark 8.2. Set

Nl :¼
Z(q, l)=clb� M(q, l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M(2q, l)al(q)� 2
2(q)

p : (8:8)

Then in R2, as l!1,

(Nl, Nlþ1)) (N1(0, 1), N2(0, 1)),

where Ni(0, 1), i ¼ 1, 2, are i.d.d. standard normal random variables.

To see this, write, for any x, y 2 R,

P[Nl < x, N lþ1 < y] ¼ EPF lþ1 [Nl < x, Nlþ1 < y]

¼ E1[Nl<x] P
F lþ1 [Nlþ1 < y]:

By Proposition 8.1,

PF lþ1 [Nlþ1 < y] ¼ �(y)þ E l(y) a:s:,

where �(y) is the standard normal cdf and where E l(y)!L1
0 and jE l(y)j < 2. So

P[Nl < x, Nlþ1 < y] ¼ E1[Nl<x](�(y)þ E l(y))

¼ E1[Nl<x]�(y)þ o(1)

from the dominated convergence theorem, and hence we obtain

P[Nl < x, N lþ1 < y]! �(x)�(y):

We now describe how this central limit behaviour transfers to �̂�1(q):

Corollary 8.1. Under the assumptions in force in Proposition 8.1, we have

(�̂�1(q)� �(q))� l�1 log2 bM(q, l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, 1)al(q)� 2

2(q)
p

=(l log 2 � M(q, l))
) N (0, 1): (8:9)

Remark 8.3. The bias term l�1 log2(bM(q, l)) cannot be neglected.

Proof. For brevity, write

d(q) :¼ M(2q, 1)al(q)� 2
2(q), (8:10)
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and using the notation of (8.8) we have

Z(q, l) ¼ clb Nl

ffiffiffiffiffiffiffiffiffi
d(q)

p
þ M(q, l)

 �
:

Since

�̂�1(q) ¼ 1

l
log2 Z(q, l),

we have

l�̂�1(q) ¼ l log2 cþ log2 bþ log2 Nl

ffiffiffiffiffiffiffiffiffi
d(q)

p
þ M(q, l)

 �
and thus

l(�̂�1(q)� �(q)) ¼ log2 bM(q, l)þ log2 1þ Nl

ffiffiffiffiffiffiffiffiffi
d(q)
p

M(q, l)

 !
:

Since by (5.6) and assumption 2q , q� we have q , q� , we know that d(q)! 0. Therefore,

Nl

ffiffiffiffiffiffiffiffiffi
d(q)
p

=M(q, l)! 0, and the desired result follows by using the relation log(1þ x) ( x for

x#0. h

The bias term in (8.9) is an unpleasant feature and thus we consider how to remove it by

differencing. Consider the asymptotic normality of �̂�2(q). It is possible to proceed from

Proposition 8.1, but it is simpler to proceed with a direct proof.

Proposition 8.2. Suppose 2q , q�. Then

�̂�2(q)� �(q)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, 1)al(q)� 2

3(q)
p

=(log 2 � M(q, 1))
) N (0, 1), (8:11)

where � 2
3(q) is defined in (4.11).

Proof. Begin by observing that

Z(q, l þ 1)

clþ1b
� Z(q, l)

clb

¼
X

jj l

Yl

i¼1

W q( jji)
c

 !
W q( jjl, 0)

c

j2W ( jjl, 0, 0)� 1jq
b

þ W q( jjl, 1)

c

j2W ( jjl, 1, 0)� 1jq
b

�

� j2W ( jjl, 0)� 1jq
b

	

¼:
X

jj l

Yl

i¼1

W q( jji)
c

 !
H( jjl),

where we have set
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H( jjl) ¼ W q( jjl, 0)

c

j2W ( jjl, 0, 0)� 1jq
b

þ W q( jjl, 1)

c

j2W ( jjl, 1, 0)� 1jq
b

� j2W ( jjl, 0)� 1jq
b

:

(8:12)

We have that

EF l H( jjl) ¼ 1

2
þ 1

2
� 1 ¼ 0

and

EF l H2( jjl) ¼ � 2
3(q):

It follows that, conditionally on F l, we may treat

Z(q, l þ 1)

clþ1b
� Z(q, l)

clb

as a sum of i.i.d. random variables with (conditional) variance

EF l
Z(q, l þ 1)

clþ1b
� Z(q, l)

clb

� �2

¼
X

jj l
EF l

Yl

i¼1

W q( jji)
c(q)

 !
H( jjl)

 !2

¼
X

jj l

Yl

i¼1

W 2q( jji)
c(2q)

 !
al(q)EH2( jjl)

¼ M(2q, l)al(q)� 2
3(q):

As in the proof of Proposition 8.1, we may check the Lyapunov condition and conclude that

Z(q, l þ 1)=clþ1b� Z(q, l)=clbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, 1)al(q)� 2

3(q)
p ) N (0, 1),

or equivalently

(c�1 Z(q, l þ 1)=Z(q, l)� 1)Z(q, l)=clbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, 1)al(q)� 2

3(q)
p ) N (0, 1),

and since Z(q, l)=clb)! M(q, 1) we have

(c�1 Z(q, l þ 1)=Z(q, l)� 1)M(q, 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M(2q, 1)al(q)� 2

3(q)
p ) N (0, 1): (8:13)

Since

c�1 Z(q, l þ 1)

Z(q, l)
� 1!P 0,

it follows that
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�̂�2(q)� �(q) ¼ log2 c�1 Z(q, l þ 1)

Z(q, l)

� �

¼ log(1þ (c�1 Z(q, l þ 1)=Z(q, l)� 1))

log 2

( c�1 Z(q, l þ 1)=Z(q, l)� 1

log 2

in probability. Combine this with (8.13) to complete the proof. h

For statistical purposes, the result (8.11) contains unobservables so, as in Troutman and

Vecchia (1999) and Ossiander and Waymire (2000), consideration needs to be given to

replacing quantities which are not observed by observable estimators. We assume that the

random measure 	1 is observed, or equivalently that the wavelet coefficients fd� l,ng are

known. This means we have the quantities fZ(q, l)g.
Define the following observable quantity

D2(q, l) ¼
X

jj l

Yl

i¼1

W 2q( jji) W q( jjl, 0)j2W ( jjl, 0, 0)� 1jq
Z(q, l þ 1)

þ W q( jjl, 1)j2W ( jjl, 1, 0)� 1jq
Z(q, l þ 1)

�

� j2W ( jjl, 0)� 1jq
Z(q, l)

	2

¼:
X

jj l

Yl

i¼1

W 2q( jji)V 2( jjl)

¼:
X

jj l

Yl

i¼1

W 2q( jji) Aþ B

Z(q, l þ 1)
� C

Z(q, l)

� 	2

: (8:14)

Note that in this notation,

H( jjl) ¼ Aþ B

cb
� C

b
,

where H( jjl) is defined in (8.12). Recall also that EH2( jjl) ¼ � 2
3(q): In terms of the wavelet

coefficients, we have

D2(q, l) ¼
X

jj l

jd(�l, ( jjl, 0))jq2�q( lþ1)=2

Z(q, l þ 1)
þ jd(�l, ( jjl, 1))jq2�q( lþ1)=2

Z(q, l þ 1)
� jd(�l, ( jjl)jq2�ql=2

Z(q, l)

" #2

,

(8:15)

showing that D2(q, l) is an observable statistic.

Corollary 8.2. Suppose that 2q , q�. Then
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�̂�2(q)� �(q)

D(q, l)=log 2
) N (0, 1) (8:16)

as l!1:

Proof. Because of (8.11), it suffices to show

D2(q, l)

M(2q, 1)al(q)� 2
3(q)=M2(q, 1)

!P 1,

as l!1. This is equivalent to showing

[Z2(q, l)=c2 l(q)b2(q)]D2(q, l)

M(2q, l)al(q)� 2
3(q)

!P 1:

After some simple algebra, this ratio is the same asP
jj l
Q l

i¼1[W 2q( jji)=c(2q)]

M(2q, l)� 2
3(q)

Aþ B

bc

Z(q, l)=clb

Z(q, l þ 1)=clþ1b

 !
� C

b

" #2

:

Since M(2q, l)! M(2q, 1), it suffices to show that the numerator converges in probability

to M(2q, 1)� 2
3(q). Due to (7.3), we write the numerator as

X
jj l

Yl

i¼1

W 2q( jji)
c(2q)

Aþ B

bc
� C

b

� 	2

þop(1)2
Aþ B

bc
� C

b

� �
þ op(1)2 Aþ B

bc

� �2
 !

¼ I þ II þ III :

As in Theorem 3.5 of Ossiander and Waymire (2000),

I ! M(2q, 1)E
Aþ B

bc
� C

b

� �2

¼ M(2q, 1)� 2
3(q),

as desired. The terms II and III can readily be shown to go to 0. h

Figure 1 shows normal quantile–quantile plots of �̂�i(q)� �(q), i ¼ 1, 2, from simulated

cascade data with beta-distributed cascade generator with shape parameter 1 (this makes the

distribution uniform). In Figure 1(a) q ¼ 0:75, and in Figure 1(b) q ¼ 0:25. Each plot

presents four graphs as the depth l increases to 16. Note the better agreement of �̂�2(q) to

normality compared with �̂�1(q):
We conclude this section with a remark on mean square error. Examining Corollary 8.1

and Proposition 8.2 yields that, in the region 2q , q�, the conditional mean square error of

�̂�1(q) is of the form

O(1)
p (al(q))

l2
þ

O(2)
p (1)

l2

while that of �̂�2(q) is O(3)
p (al(q)):
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9. Supercritical asymptotics: lack of consistency

A critical issue with both the wavelet-based estimator and the moment-based ones used in

Ossiander and Waymire (2000) is that the asymptotic properties of the estimators are only

valid in a certain range of q-values. For the wavelet estimators we require q , q� for

consistency, and for the asymptotic normality results we require 2q , q�. We now show

that the range q . q� is uninformative for our estimators, and in fact our estimators are

misleading when extended to inference for values beyond q�. A reliable estimate of q�
would be valuable information. In place of such an estimate it is likely that a graphical

procedure is possible based on the following.

Let �̂�_i (q) (i ¼ 1, 2) have the same definition as �̂�i(q) except that sum is replaced by max.

Thus we can define, by analogy with (4.3),

Z_(q, l) ¼
_
jj l

Yl

i¼1

W ( jji)qj2W ( jjl, 0)� 1jq:

Note that

Z_(q, l) ¼ (Z_(1, l))q:

For large values of q, namely for q > q�, Z(q, l) is sufficiently well approximated by its

largest summand Z_(q, l): Figure 2 presents a density plot of simulated values of

Z(q, l)=Z_(q, l) as the depth l increases from 10 to 18; note that the densities concentrate

most mass around the point 1. The cascade generator is a beta distribution with shape

Figure 1. Normal quantile–quantile plots of (a) �̂�1(q)� �(q) and (b) �̂�2(q)� �(q)
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parameter 10. Based on the idea of approximating Z(q, l) by Z_(q, l), since

log Z_(q, l) ¼ q log Z_(1, l) is linear in q, we anticipate that �̂�1(q) should also be linear in

q, rendering �̂�1(q) largely uninformative for inference purposes in the q > q� region. A rough

estimate of q� would be provided by the q-value where the plots of �̂�1(q) start to look linear.

Computer simulations offer strong support for these remarks. Figure 3 shows overlaid

simulated values for �̂�i(q), �̂�_i (q), i ¼ 1, 2, for large values of q. In the range of q-values

beyond q� 8 3:3, it is remarkable how linear the plots for �̂�1(q) and �̂�_1 (q) look and also

how closely �̂�_1 (q) approximates �̂�1(q). Note that the values in the plots have been multiplied

by �1 to make the plots increasing and that the cascade generator is a beta distribution

with shape parameter 1.

We now assume that q� ,1 and examine this supercritical phenomenon when q > q�
in more detail. We will prove the asymptotic linearity of the estimator �̂�1(q) for q > q�. In

particular, the estimator �̂�1(q) is not consistent when q . q�, and neither is the estimator

�̂�2(q).

We start by introducing new notation. Let

U (q, l) ¼ c(q) l M(q, l) ¼
X

jj l

Yl

i¼1

W ( jji)q, q . 0, l > 1, (9:1)

U�(l) ¼ max
jj l

Yl

i¼1

W ( jji), l > 1, (9:2)

and define, for q . 0,

Figure 2. Density plots of Z(q, l)=Z_(q, l), l ¼ 10, 12, . . . , 18
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m(q) ¼ lim sup
l!1

1

l
log2 U (q, l), m(q) ¼ lim inf

l!1

1

l
log2 U (q, l), (9:3)

as well as

m� ¼ lim sup
l!1

1

l
log2 U�(l), m� ¼ lim inf

l!1

1

l
log2 U�(l): (9:4)

It is immediate that, for all q . 0 and 0 < Ł < q,

(U�(l))q < U (q, l) < (U�(l))ŁU (q� Ł, l) < 2 l(U�(l))q: (9:5)

In particular, for every q . 0,

m(q)� 1 < qm� < m(q), m(q)� 1 < qm� < m(q) (9:6)

almost surely.

Note that it follows from Proposition 6.1 that, for 0 , q , q�,

m(q) ¼ m(q) ¼ �(q): (9:7)

Since by the triangle inequality, for all 0 , r , 1 and q . 0,

Figure 3. Plots of �̂�i(q), �̂�_i (q) for q� 8 2:4
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(U (q, l))r , U (rq, l), (9:8)

we see that

m(rq) > rm(q): (9:9)

For a q > q� and 0 , r , q�=q we hence get

m(q) <
1

r
m(rq) ¼ 1

r
�(rq),

and letting r"q�=q we conclude that, for every q > q�,

m(q) < q
�(q�)

q� : (9:10)

On the other hand, it follows from (9.5) that, for all q . 0 and 0 < Ł < q,

m(q) < Łm� þ m(q� Ł):

Using (9.6), we obtain

m(q1) < Ł
m(q2)

q2

þ m(q1 � Ł)

for all q1, q2 . 0 and 0 < Ł < q1. In particular, if 0 , q1 , q�, then for every 0 , q3 , q1

we choose Ł ¼ q1 � q3 and conclude, using (9.7), that

m(q2)

q2

>
m(q1)� m(q3)

q1 � q3

¼ �(q1)� �(q3)

q1 � q3

:

Therefore, for all q . 0,

m(q)

q
> sup

0, p,q�
�9( p): (9:11)

However,

sup
0, p,q�

�9( p) ¼ sup
0, p,q�

E(W p log2 W )

E(W p)
>

E(W q� log2 W )

E(W q� )

¼ 1

q� (1þ log2 E(W q�)) ¼ �(q�)
q�

by the definition of q�. Substituting into (9.11) immediately gives us

m(q) > q
�(q�)

q� (9:12)

for all q . 0. Comparing (9.12) with (9.10), we see that

m(q) ¼: lim
l!1

1

l
log2 U (q, l) ¼ q

�(q�)
q� (9:13)

128 S. Resnick, G. Samorodnitsky, A. Gilbert and W. Willinger



for any q > q�. Moreover, using (9.6) with q!1 and (9.13), we immediately conclude that

m� :¼ lim
l!1

1

l
log2 U�(l) ¼ �(q�)

q� : (9:14)

Remark 9.1. For non-conservative cascades, for which the random variables

fW ( jjl), j 2 f0, 1g1, l > 1g
are i.i.d., a statement analogous to (9.14) is equivalent to the so-called first birth problem;

see, for instance, Kingman (1975). For the particular case of uniformly distributed W in the

context of conservative cascades, see also Mahmood (1992).

We are now ready to establish the asymptotic behaviour of the estimator �̂�1(q) ¼ �̂�1(q, l)

in the supercritical case.

Theorem 9.1. Let q > q�. Then, as l!1 ,

�̂�1(q, l)! q
�(q�)

q� a:s: (9:15)

In particular, the estimator �̂�1(q, l) is not a consistent estimator of �(q) if q . q�:

Proof. Denote

m Z(q) ¼ lim sup
l!1

1

l
log2 Z(q, l)

and

m Z(q) ¼ lim inf
l!1

1

l
log2 Z(q, l):

Since Z(q, l) < U (q, l) for all q and l, we immediately conclude by (9.13) that

m Z(q) < m(q) ¼ q
�(q�)

q� : (9:16)

For the corresponding lower bound on m Z(q), note that since P(W 6¼ 1
2
) . 0 and

P(W ¼ 0) , 1
2

(otherwise q� ¼ 1), there is a Ł . 0 such that

p1 :¼ P(j2W � 1j > Ł) . 0, p2 :¼ P(min(W , 1� W ) > Ł) . 0:

Let 0 , E , 1. Note that it follows from (9.14) that for all l large enough,

P(U�(l) > 2(1�E) l�(q�)=q� ) >
1

2
: (9:17)

For l > 1 let

Nl ¼ cardfjjl : W ( jji) > Ł for all i ¼ 1, . . . , lg:
By definition N0 ¼ 1. Observe that, for all l > 0,

Nlþ1 ¼ Nl þ Ml,
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where, given N0, N1, . . . , Nl, the distribution of Ml is binomial with parameters Nl and p2.

Therefore, (Nl) is a supercritical branching process with progeny mean m ¼ 1þ p2 . 1 and

extinction probability 0. By Theorem I.10.3 in Athreya and Ney (1972, p. 30),

lim
l!1

Nl

(1þ p2) l
¼ N̂N . 0 a:s: (9:18)

Now let 0 , � , 1. It follows by the definition of (Nl) that, for every l > 1,

Z(l, q) > Ł[� l]q max
k¼1,...,N[� l]

U�k (l � [�l])qj2W
( l)
k � 1jq, (9:19)

where

(U�k (l � [�l]), k > 1) are i.i.d. with the law of U�(l � [�l])

and

(W
( l)
k , k > 1) are i.i.d. with the law of W .

The two sequences are independent, and also independent of N[� l]. All the random variables

defined above can be assumed to be defined, for all l and k, on the same probability space

(�, F , P).

We introduce several events. Let d ¼ (1þ p2)1=2 . 1. Put

�1 ¼ fNl > dl for all l large enoughg:
It follows from (9.18) that P(�1) ¼ 1. Furthermore, let

�( l)
2 ¼

[d[� l]

k¼1

fj2W
( l)
k � 1j > Ł and U�k (l � [�l]) > 2(1�E)( l�[� l])�(q�)=q�g,

l > 1. Note that by (9.17) we have P(�( l)
2 ) > 1� e�c� l for some c . 0 and all l > 1, and so,

letting

�2 ¼ lim inf
l!1

�( l)
2 ,

we see by the Borel–Cantelli lemma that P(�2) ¼ 1. Therefore, P(�1 \�2) ¼ 1 as well.

However, for every ø 2 �1 \�2 we have, by (9.19),

Z(l, q) > Ł[� l]q2q(1�E)( l�[� l])�(q�)=q�Łq

for all l large enough, which implies that

m Z(q) > q� log2 Łþ (1� E)(1� �)q
�(q�)

q� a:s:

Letting �! 0 and E! 0, we conclude that

m Z(q) > q
�(q�)

q� : (9:20)

Now (9.15) follows from (9.16) and (9.20).
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Finally, it follows from Proposition 5.2(iv) that

�(q) . q
�(q�)

q�

for all q . q�. Hence, the estimator �̂�1(q, l) is not a consistent estimator of �(q) if q . q�.h

Here is an immediate corollary.

Corollary 9.1. The estimator �̂�2(q, l) is not a (strongly) consistent estimator of �(q) if

q . q�:

Proof. Notice that, for every l > 1,

�̂�1(q, l) ¼ 1

l

Xl�1

j¼0

�̂�2(q, j),

where Z(q, 0) ¼ 1. Therefore if, for some q . q�, �̂�2(q, l)! �(q) almost surely as l!1,

then so does �̂�1(q, l), which contradicts Theorem 9.1. h

An estimator related to �̂�2(q, l) is

�̂�3(q, l) ¼ log2

U (q, l þ 1)

U (q, l)

� �
:¼ log2 R(q, l), l > 1:

Since

1

l
log2 U (q, l) ¼ 1

l

Xl�1

j¼0

�̂�3(q, j), (9:21)

where U (q, 0) ¼ 1, (9.13) and the same argument as that of Corollary 9.1 show that �̂�3(q, l)

is not a strongly consistent estimator of �(q) if q . q� (even though it is a strongly consistent

estimator of �(q) if q , q�). We can say more, however. Note that 0 , R(q, l) , 2 for all q

and l. Furthermore,

ER(q, l) ¼ c(q) ¼ 2�(q), for all q and l:

Therefore if, for some q . q�, �̂�3(q, l) converges almost surely to some limit �3(q) as

l!1, then 2�3(q) must have a finite expectation equal to 2�(q). On the other hand, by (9.13)

and (9.21) we must have �3(q) equal to q�(q�)=q� almost surely. This contradiction shows

that �̂�3(q, l) cannot converge almost surely as l!1 if q . q�.
We conjecture that the same is true for �̂�2(q, l), in the sense that it does not converge

almost surely as l!1 if q . q�. A possibility is that �̂�2(q, l) converges in probability

and is weakly consistent for q . q�. Whether or not this is true remains an open question.
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10. Concluding remarks

While Ossiander and Waymire’s estimator for �(q) is consistent for random cascades, we

also check empirically by simulation that it is an appropriate time-domain method for

conservative cascades. By time-domain estimator we mean

�̂�time(q) ¼ 1

l
log2

X
jj l
j	1(I( jjl))jq

0@ 1A,

where 	1(�) is the random measure defined in (2.3). We show in Figure 4 that the time-

domain estimator gives equally good results compared with the two wavelet estimators. The

cascade generator is a beta distribution with shape parameter 1. The plot is for q-values

below q� 8 3:3. Note that the �-values are multiplied by �1.

One of the advantages of the wavelet method is its ability to filter deterministic trends

because different wavelet families have different vanishing moments; that is, they are

orthogonal to low-degree polynomials. The Haar wavelets are ‘blind’ to additive constants.

Figure 5 illustrates the failure of the time-domain method to cope with the presence of an

Figure 4. Plots of the two wavelet estimators and the time-domain estimator for �(q) with

q , q� 8 3:3
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additive constant. The cascade is generated with a beta distribution of shape parameter 1

and then a fixed constant 0.1 is added to the cascade. The wavelet estimators give the same

values regardless of the presence of the additive constant.

Do our wavelet methods work with other wavelet families? One reason for using other

wavelets is that the Haar wavelets have only one vanishing moment and can remove only an

additive constant. Other wavelet families with higher vanishing moments can remove

higher-degree deterministic trends. Empirical simulated evidence (shown in Figure 6)

suggests that other wavelets do indeed work. Figure 6 shows that �̂�1 works quite well in the

case of the D4 wavelet and the presence of an additive linear trend (slope 0.1, intercept 0).

Note that the D4 wavelet has four vanishing moments and is hence blind to cubic

polynomials). The time-domain method performs poorly, as does �̂�2. Theoretical

investigations are necessary to confirm the validity of the wavelet method for wavelets

other than the Haar.

An alternative estimation scheme suggested by an astute referee has coincidentally been

implemented in Kulkarni et al. (2001) in a study of models of TCP connection traces via

products of on–off processes. The idea is to use the specific structure of the conservative

cascade to obtain a sample of Ws by taking ratios at successive levels. Theoretically, this

procedure should have good properties from the point of view of asymptotic variance. In

Figure 5. Plots of the wavelet and time-domain estimators for a cascade with an additive constant
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practice the data are culled to ensure independence, resulting in the data set being reduced

by half, and this can be a problem. We have preferred to modify a traditional structure

function approach by using wavelets.
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