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For n=0, let 1, be the median of the I'(n+ 1, 1) distribution. We prove that the sequence

{a, =4, — n} decreases from log2 to % as n increases from 0 to oo. The difference, 1 — a,, between

the mean and the median thus increases from 1 — log2 to % This result also proves a conjecture by

Chen and Rubin about the Poisson distributions: if Y, ~ Poisson(u), and 4, the largest # such that
P(Y,<n) :%, then A, — n is decreasing in n. The sequence {a,} is related to a sequence {6,},
introduced by Ramanujan, which is known to be decreasing and of the form 6, =
%+4/(135(n + ky)), where 22—1 <k,= %. We also show that the sequence {k,} is decreasing.
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1. Introduction

Let Y, ~ Poisson(u), and 4, be the largest u such that P(Y, < n) :%. Using the well-
known relation between the Poisson and gamma distributions, we obtain

L= P(Y;, < m)= P(Xui1 > ),

where X, 1 ~T'(n+ 1, 1), so that 4, is the median of the I'(n + 1, 1) distribution.
Chen and Rubin (1986) proved, in our notation, that

n+3<li,<n+l, (1)

and conjectured that

ap=2A,—n
is decreasing in n. By (1),

2

s<a, <L
This result was sharpened by Choi (1994) to

1< a, <log2.

Choi also gave the asymptotic expansion
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a_2+8 64 +27-23+01
"3 4051 5103n% 392543 nt)’

which gives

8 1144 1
A n = n— n = — O — 1,
Un = Cn = Gl = 4657~ 255158 <n4>

so that {a,} is decreasing for sufficiently large n. In the next section, we will show that the
sequence {a,} is in fact decreasing for all n = 0, with ay = log2 and a,, = % This proves
Conjecture 2 of Chen and Rubin (1986).

The analysis of {a,} (or {4,}) is closely related to the problem, set by Ramanujan
(1911), of showing that

1 2 " 1 1

Ee":l—l—%—i—% +...+0n%, where 6, lies between 3 and 3 (2)
which, in his edition of Ramanujan’s notebooks, Berndt (1989) refers to as ‘ultimately
famous’.

A solution was outlined by Ramanujan (1912). Complete proofs were given by Szegd
(1928), who also proved that the sequence {6,} is decreasing, and Watson (1929). In his
first letter to Hardy dated 16 January, 1913, Ramanujan (1962) further claimed that
1 4 8 2
0, = 3 + m, where £, lies between 15 and TR 3)
This was proved by Flajolet et al. (1995). We will use this result in the next section to prove
that the sequence {a,} is decreasing, and in Section 3 we also prove that the sequence {k,}

2

decreases for all n = 0, from ko = 4’45 to koo = 57.

Remark 1. Ramanujan’s claim (3) is given as Exercise 1.2.11.3.13 by Knuth (1968)!

Remark 2. Our interest in the sequence {A,} came from a statistical problem in the analysis
of safety at Swedish nuclear power plants, where, in order to estimate the mean u of a
Poisson distribution, we needed to create an upper 50% confidence limit for u given the
observation n. This confidence limitis A, = n + a,. As a,, > %, and as ~ 0.67 (see Table 1),
the estimate n + 0.67 is conservative for n > 5 if we can show that the sequence {a,} is
decreasing.

2. Monotonicity of {a,}
The values of a, can easily be computed for small n. For n < 10 they are given in Table 1.

Theorem 1. The sequence {a,}, is decreasing in n for all n = 0.
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Table 1. Values of a, and A, for small n

n a, Aa,
0 0.693 147 0.014 800
1 0.678 347 0.004 287
2 0.674 060 0.002 000
3 0.672 061 0.001 152
4 0.670909 0.000 748
5 0.670 161 0.000 524
6 0.669 637 0.000 388
7 0.669 249 0.000298
8 0.668 951 0.000237
9 0.668 715 0.000 192

10 0.668 522 0.000 159

The proof of the theorem consists of a number of steps. The first step is to establish a relation
between o, and Ramanujan’s 0,.

A, n
170,1:] eX-(Hf) dx.
0 n

Proof. As in Knuth (1968), let

Lemma 2.

and
n+a,
L, = J e ! t"dt
n
Then, by (2),
1 1 n
D PXp > =PV, <=n) ==+ (1 —6,) "
n! 2 n!
and
[2 1 1 ]1 n" —n
EZE*P(XHI <”):§* <1n'> :(179,,)56 .

By substituting # = x + n in /,, we obtain

p Ly X n
I, = e’”J e *(n+x)'dx=¢e""- n”J ex<l —|—) dx,
0 0 n

which proves the lemma. U



354 S.E. Alm

The second step is to constructively estimate the integral in Lemma 2. Let y, =1—0,,.
The sequence {y,} is then increasing for all n = 0. By (2), we have an explicit expression
for 6,, and hence for y,. Later, we will need y, for some small values of #, so the first few
are given in Table 2.

Lemma 3. For n =3 with y, =1-0,,

_ ai_’_ at N a3 0.0022
L I T L) SR R

v > a _aiu_ al N a, 0.0114
" " 6n  12n%  40n2 n

Proof. For 0 <x <1,

e + nlo 1+x e <x2+x3 x4+ )
=exp| — ) ) =exp|l -+ = — ——+ ...
Pl Y nios n P 2n  3n 4mn3 ’
0\ 2 3

1+ = N
© (Jr”) <eXp< <2n 3n2>)’
. <_<ﬁ_x_3+i>>

P 2n 3n?2  4n3) )’

Table 2. Values of y, for small n

n Yn=1-—0, Decimal
1
0 5 0.500 000
4 —
1 ¢ 0.640 859
2
2
2 10—e 0.652736
4
3
3 26—¢ 0.657 163
9
4 206 — 3¢* 0.659 462
64 :
 1na5
5 2194 — 12¢7 0.660 867

625
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Now, for 0 <x <1,

xZ 3 2

loxt+ T Y vy xql
A et X
26 2’

—x 1+x n<eX (<X2X3)>
¢ n P 2n  3n?

<1 (x2 x3)+1<x2 x3>
2n  3n? 2 \2n  3n?

¥ X x x° x©

S . S A I
2n+3n2 8n? 6n3+18n4

so that

“

Integrating (4), using a,, >% and n = 3, gives

@, @ d  d
6n 12n2  40m?2 36n3  126n*

_ al N at N > 0.0022
ay — " - ,
6n 12n%  40n? n3

Vn < Oy —

which proves the first part of the lemma.
Further,

e (1:5)" > ex (_<£_x_3+i>>
n P 2n  3n?2  4nd

-1 <x2 x3 +x4>+1<x2 X3 +x4>2 l<x2 x? +x4>3 5)
2n  3n*  4n3 2\2n 3n2  4n? 6 \2n 3n2 4n3)
Integration of (5) and straightforward, but tedious, estimations, using a, < log2 and n = 3,

give

3 a4 o’

a
n> n__n 5 "
Vo= e T 1 T G0

@ G )@ 1
20m3  36m3 7 \72n* 48n3 8 \24n* 12#°
a’ ( 1 17 ) 3lal? 17al! al? al?

9 \3206 28815 T 648016 633617 | 11524° 499270

ai—i— at N > 0.0114
=a,— 2 — :
6n 12n2  40n2 n3

which proves the second part of the lemma. UJ
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The third step is to invert Lemma 3, that is, to give upper and lower bounds for a,
expressed in y,.

Lemma 4. For n = 3,
3 4 5
vy Y Ty;  0.0068
< fn_
=Vt T e T 20w T
ooyt 7y3 0.0079

>y, L -
U =Vt T o T 120m2

Proof. Lemma 3, with C; = 0.0022 and C, = 0.0114, gives

a ot a’ C,
< _n___n_ _ _"n_ —, 6
U S Vn e T o d0mE ©)
a ot a’ C
S M e Bl it 7
U =Vt e T o d0m2 )

On the right-hand side of these expressions, we need to replace the powers of a, by
expressions in y,. It is sufficient to do so with estimates of order C/n* and C/n. From (6)
and (7) we immediately obtain

(13
T e T w2 (12 40 3

—n_ 3 8
+6n n?’ ®)
a1 ((log2)4 (log2)5) ad  Cy
n = Vn £ —. =Vn _n__’ 9
=t e, Ui 40 Tt T ©)
where C3 > 0, and
log2)} C
an<Vn+( g ) :Vn+_5; (10)
6n n
@ o Cs
Oy > Yp+-———=y,+—. (11)
6n 3n n

This gives, with repeated use of (8) and recalling that a, >§ and y, = y; for n =3,

3 3 5 2
a Cs a Cs a Cya
@ <a? (yn +2 n2) < anyn(yn e nZ) ten T T2

A (yy + Vnln + @3) B Gy +7s '%"‘ (%)2)

3
Svet 6n n?
Oli( ?1 + nn + a%,) C7
<7t ’ Zn o (12

and, in the same way, using (9) and recalling that o, < log2 and y, < %,
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2
@02+ yaon i) Co(() 1082 + (og2P)
- 2

35,3
W =Vt 6n n

B2+ yaa,+ad) Gy

3 n
>y, + n 2 (13)

Using (10) and (11), we obtain estimates of ai of order C/n,

C C Csa?
an an <yn + n anyn yn + n + n

Cs ((%)2-1-% log2 + (log 2)2) e

<y + =y +—, (14)
n n
Coy3 +73 -2+ (2)° c
@ >y SOV SEED s Co (15)
n n
and, with the same method estimates of a‘:,,
<oty Cs(y3 + y2ay, + yud? + ad)
n n n
Cs((2)+(9)1022 + Xl0g2)? + (log2)?)
<y (3) (3) 3 =Vi+ﬂ, (16)
n n
CG(R+73 3+ n@+®)°) c
an - Vn 3 33 (3) (3) ')/ +712 (17)
n n
and of a
Cs (@) + (9’1082 + (3’ (log2)? +X(log2)® + (log2)’ ) c
oy 0@ 0m2 + (on2 4 I,
n n
C(r 13 3430+ Q) Cu
% >y, + . =Vat=- (19)

Combining (12) with (14), (16) and (18) gives
Vn C9 Vn Cll 1 ( 5 C13) C7
< fn = £n - _ _2) - =L
a yn+6 (yn+n>+6n(y+ )+6 y+n )

2
1 2 2 S.C
)/n+&+— G|z ) +Cn-z+Ci3—6-C :Vi+&+i (20)
6n? 3 3 n n

and, using (13) with (15), (17) and (19),
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Vn Co Vn s Ci 1 s Cu Cg
> ~10 o i) _ 4y =8
%>Vt 6n (V * )+6 (y”+ n >+6n vnt n n?

1 5
>V,,+y"+ﬁ(clo Vi+Crn-y3+Cu—6-Cs) =y> + n—l——2. (21)

Further, inserting (16)—(21) into (6) and (7), we obtain

)/i+)/f7/2n+C15/n2_j/‘,t-l—Clz/n_yi-l-CM/n G2
6n 12n2 40n2 n3

Yo _ Y n v, L(Cls Cio Cuy )

Oy <Yn+

< fn_
Ynten T 122 T T20m2

and

o > +Vi+)’i/2"+clé/"2_V1+C11/"_V§,+C13/"+_1
n=Vn 6n 122 40n2 P

4 7y3 1 (C C C
Vn Vn + ’y” +— 16 11 13 + Cl )

TVt w1202 T 12002

Finally, computing

- < ().
G D 20 + C, < 0.0068
and
~lo ML 2By 00> —0.0079
G 5 0 C, 0.007
finishes the proof of the lemma.

In order to estimate Aa, =a, — a,y;, using Lemma 4, we first need to estimate
Ayn =Yn = Vn+tl-

Lemma 5.

1364 1

0> Ay = yn— Yns1 > — o
Vn =V TV T T 0525 a(n 1 1)

Pl‘00_ﬁ Yn—Vnr1 = (1 - 0,,) - (1 - 0n+1) = 0n+1 - Gn < 0, and, by (3)’
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4 1 4
135(n+ 1+ kpr1) 3 135(n+ ky)

1
0n+1 —9,[:54-

4 !
135 \n4 1+ ke n+k,

4 1 1 4 341 1
135\n+14+% n+z) 135 315 (n+3E)(n+3)
1364 1
42525 n(n+1)
O
Proof of Theorem 1. Let C; = 0.0068 and C, = 0.0079 denote the constants of Lemma 4

and C, = ;2% denote the constant of Lemma 5. Then, by Lemma 4,

3 4 5

Yo Vn vy G
— > = - J——

Gn = Gl = ¥ +6n 1202 120n2  #wd

3 4 5
_ Vel Vi Va1 C
<V”+‘ T+ ) 212 120+ 12 T 1y

3 3 3 5 5
o _ Ya _yn+l Vn+l LM
Y T T e+ ) T 1200 2
7 1 1 4y
ETT S y?’l“rl 2T 2]~ 2 yan
120 n* (n+1) 12n
_V?’H. 1 1y & G (22)
12 n*  (n+1)? n (n+1)3°

As Ay, =y, — Y1 <0, we obtain, for n =3, using y3 <y, < Yui1 <3,
V=V = AV R vy + 720 > Ay 30 (3P =4 Ay,
Ve =V = AV VRV YV A V) <Ay, 49,
V= Vo = Aya - (Vi £V 7V A V) > Ay 5 (3= BAy,.

Further, for n = 3,

V4$Vn+1<g, 2 )
3 4 n+1

2 - 1 1 - 2
nn+12 n2 (n+12 n2(n+1)
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Inserting these estimates into (22), and using Lemma 5 and the fact that y3 /3 > 14/243, we
obtain

e v 7§ T s 2
6n  6n(n+1) 120 n2 120 "% n(n+ 1)

Ay — Opti > Ayn +

4iny, (3 2 C, C

12n2 12 n*(n+1) nd (n+1)

1 V3 ) 1 ( 2 8)
> . |[ZZ_C - | -Z.c,-—
n(n+1) (6 v +n2(n—|—1) 9 7 243

1 7 C2 C1 C ’}/3 14
+72'_'Vi__3_ st3 ’ (_3__
n(n+1)> 60 n (n+1y nm+1)

3243
1 v ) 1 (2 8 <3>27 S
> - ()|t (2) Lyrarc
n(n+ 1) (6 v) "w\e s \a) e T T2

T L <V_§ _ ﬁ)
B+ 1)\3 243

0.0157 _0.0466+ 0.0369

n(n+1) n’ n(n+1)

so that {a,} is decreasing for n > 3. Checking in Table 1 that {a,} is decreasing also for
n < 3 finishes the proof. UJ

>0 if n>3.17,

3. Monotonicity of {k,}

Theorem 6. The Ramanujan sequence {k,} of (3) is decreasing for all n = 0.

To prove this theorem we will use the technique of Flajolet ef al. (1995) in their proof of (3),
but we need to improve some of their estimates.

First, we need an asymptotic expansion for 6,. Marsaglia (1986) provides a method
which gives an arbitrary number of terms in the expansion, the first being

0_1+ 4 8 16 N 8992 <1> 23)
"3 1351 2835x% 850543 12629925x% 5
Solving for k, in (3) gives
4
(24)

k= e
1350, -5 "

which, after inserting (23), gives the expansion
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k_3+ 32 50752 +0l
"T21  441n 458419512 n)’

which shows that {k,} is decreasing for sufficiently large n, as the difference
32 1
Aky=ky—kp1 = W+ O(;) (25)

obviously is positive for n > ny, for some sufficiently large ny.
In order to specify no, we need constructive bounds in (23) of the type

0 < 1 n 4 8 16 n 8992 n C
" 73 1357 2835n2 850513  12629925x%  nS’

1 4 8 16 8992 C

0, >+ 2

3 1350 283522 85052° | 126299251% | i

which give corresponding bounds for % ,:

i <£+ 32 50752 +&

" 21 441n 458419512 3’
2 32 50752 D

ky > — + 2

21 4410 45841952 T B

Then, Ak, = k, — ko1 > Ay/n> — Ay/n®> >0 if n > ng = A,/ A;. Checking that Ak, > 0
for n < ny can then be done numerically, provided that n, is not too large.
Flajolet et al. (1995) give constructive bounds for the quantity

D(n)y=2-6,,
introduced by Knuth (1968) as an example of asymptotic expansions, namely
Dio(n) — Aio(n) < D(n) < Dio(n) + Aio(n), (26)
where
9
dip 2 8 16 32 17984 13159709
D =) === - _
to() ; k37 1350 283502 850547 | 12629925n% | 969978240047
977069 36669961 N 117191 479 @7
10392624001n° 2829103200017  56582064n% 5613304°°
and the remainder Ay(n) is estimated by
F
Avg(n) < Fy-n¥? 2702 4 22, (28)
n

where
F; = 13.06, F, = 56.59398.

Both constants, F; and F», depend on the coefficients c; in the expansion
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22 RS ‘
log<m> —;Ck'z . (29)

Remark 3. There is a misprint in Flajolet ef al’s (1995, p. 109) asymptotic expansion of
Dyo(n), where the numerator of the term

17984
12629 925n*

is given as 1794.

The estimate of Ajg(n) used in Flajolet er al. (1995) is

1077 57
App(n) < ——+—, for n = 116, (30)
n n

which is insufficient for our needs, as we need an estimate of order
C
Alo(n) < E for n = ny.

This can, however, be obtained by replacing their estimate of the first term in (28) by

K
13.06 - n¥/? . 2712 < 22 for n = 116,
n

with Ko = 13.06-116"3/2.275% < 0.001 189. The numerator 57 in (30) is actually F, =
56.593 98, so that

56.595169
Au(n)<:———;§———. (31)

Unfortunately, performing the analysis outlined above only shows that {k,} is decreasing for
n > n; > 26324, so we need to improve the bound in (31). We will do this by a more careful
estimation of the remainder term, Ajo(n) of (28).

Remark 4. With sufficient computing power, it may be possible to check by brute force, for
example using Maple with sufficient precision, that the first 26 324 values of &, are indeed
decreasing. O

As both terms on the right-hand side of (28) depend on |cj| from (29), it is natural to try
to improve the estimate given in Lemma 4 of Flajolet et al. (1995):
10.967 148 33

T s for all £k = 1.
T

ek

This can be achieved by a slight modification of their proof, and by noting that we only need
an estimate for & > 10.

Lemma 7. For k > 10, we have
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0.4593

—

(3)

Proof. Recall that ¢ are defined, in (29), as the coefficients in the expansion of log f(z),
where

lex| <

22
R ()
and thus, by Cauchy’s formula, can be written
1 fi; log f(2)
Ck ==

T 2mif, ZkH

dz,

where A is a contour encircling the origin, and chosen so that log f(z) is well defined on it.

In Flajolet et al. (1995), A is chosen as D, the boundary of the square |Re(z)| < m,
[Im(z)| < &, that is with side 2m. We will use the slightly larger square |Re(z)| < 6m/5,
[Im(z)| < 6m:/5, with side 127t/5. Figure 1, and the argument principle, show that there are
no poles or zeros of f(z) on A. We will estimate log f(z) separately on the four sides of the
square. Let, for —1 <t =<1,

Az =81 +in),

Atz =Sn(T + 1),

As 1z =Sn(—1 +iv),

Ay z=Sn(r - 1),
and let

a; = max|log f(z)| on A,.

10! i L i i L L i i i
007 04735 -0M3 00T 0072 -GOTIS 0071 -0OWS 007 00635

L[
&
&
&
]
aloboi N ]
&
&
&

Figure 1. A plot of f(z) on A and zoomed close to the origin
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As |z| = $m on A, we obtain, for k > 10,

§|logf(z)|dz< a Jl v 2a Jl dr
A k+1

|2 <+ = (&) IES (gn)k+l o (1 4 g2)k+D/2

__2a Jl dt  2a (63n+6_1)
(gﬂ)k“ 0(1+r2)67(gn)k+1 1024 320

o (826
_(gn)k“ 512 160/’

and, in the same way,

[log f(2)| a; <63n 61 >
———dz < — 4+ — for k> 10
ng, B (em) =T \512 160, o :

so that

for k > 10. (32)

fj; Ilogf(Z)Id _atatata (63_n ﬂ)
A |zfFH (6r)**! 512 7 160)°

As confirmed by Figure 2, |log f(z)| has its maxima in the corners of A. This gives
a; = [log f(Sn(1 +1))| < 2.96941147,
ay = |log f(4n(—1 +1))| < 4.11528807,

az = |log f %n( 1 +1))| = a,

(
(
(
as = |log f(4m(~1 — )| =

From Figure 2, we also see that, by splitting the integral into eight parts, instead of four, we
can improve the estimate of (32) to

|log f(2)| 4a1+4az<63n 61> ai + a; <63n 6l>
< — =+ for k > 10.

e 42 ()" 1024 7320 (en)™ \256 80/ o

5 5

Thus,
1 631 61\ _0.4593
ekl < 5= w(_n —><—k, for k > 10,
2::( ) 11256 80 (én)

which proves the lemma. U
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45 T T T T ! ! !

35

25

2
0 05 1 15 2 25 3 35 4

Figure 2. A plot of |log f(z)| on A, in the order A;, A,, As, A4

Remark 5. There seems to be a mistake in Figure 1 of Flajolet ef al. (1995), as it does
not have winding number 0, as claimed, and does not resemble our plot of f(z) on D (see
Figure 3).

Using the estimate of Lemma 7 instead of the one given in Lemma 4 of Flajolet et al.
(1995) gives a much improved estimate of the remainder Ajg(n).

I 1 i ! i i i L i i i i

5
=1 o 1 2 3 4 5 6 7 ~0.3 =02 01 o ot 02

Figure 3. A plot of f(z) on D from Flajolet ef al. (1995) and zoomed at the origin
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Lemma 8.

0.29596
Aro(n) < 0.0474n%2 2712 4 22272

n
Proof. The lemma is obtained by a straightforward modification of Lemma 5 of Flajolet et
al. (1995), and of the estimate of u;( of their Lemma 6, by simply replacing the estimate of
|C k|~ (|

It is sufficient to bound Ajg(n) by C/n?* provided that the constant C is sufficiently
small; less than the coefficient dy4 of 1/n* in (27).

Lemma 9. For n = 208,
C
Aro(n) <=3,
n
where Ca = 0.0014229.
Proof. n''/2.277"/2 is decreasing for n = 16, so that, for n = ny = 16,

1 0.295 96
Avo(n) < — (0.0474n 1/ 27 m/2 f ZE72 70
n* 0 o

Choosing ny = 208 gives the lemma. O
The next lemma gives the necessary upper and lower bounds for 6,,.

Lemma 10. For n = 208,

) <1+ 48 16 +Q
"3 135n 2835#2 850513 @ n*’
) >l+ 4 8 16 +9
"7 37 135n 2835#2 85051 @ n?
1 4 8 C;
= - =

= —

3+135n 283502 mn3’

with C; = 0.001427, C, = 0.0000005 and C; = gl

Proof. By (26) and Lemma 9,

9
dy C
20, = D(n) < Dig(n) + App(n) < :nii—i_inf'
k=0

Here, dg <0, dy < 0 and nd; + dg < 0, so that
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3 dk 1 dS
D(n) < E _k+_4 dy+ Cph+—|.
c=nk n n

Choosing C > (d4 + Ca + d5/208)/2 proves the first inequality.
Similarly,

Ca

9
d
D(n) > Dio(n) — Arg(n) > >k =8
—0 n n

Here, nds + do > 0 and n®ds + ndg + d; > 0, so that
D ~di, d
(n)>;ﬁ+ﬁ( 4 — Ca).

Choosing C, < (ds — Ca)/2 proves the second inequality, and the third follows immediately
as C, > 0. ]

Proof of Theorem 6. First, assume that n = 208. Using (24), we obtain

4 4
Aky=bkp—bkppy=——r——n— [ — 1
T s, -0 " (135(0”1—%) (n+ ))
4 4 4 0,11 — 0,
=1+ - =1+
135(0, - 1) 135(0,1 — 1) 135 (0, — 1) (6,1 - 1)
4 9n70n+1
-t , 33
135 (6~ ) (0 ) o
Using Lemma 10, we obtain
1 4 8 16
0,— 0,11 < = — — —
S 37135, T 28352 850543 | A
ol 4 8 - 16 LG
37 135(n+1) 2835(n+ 1) 8505(n+1)7  (n+ 1)
B 4 8 2n4l 1637430+l G G
T 135n(n+1) 2835n2(n+ 1) 8505 mP(n+1)y |t (n+ )P
4 16 1 g8—16 1 Ci C,
< - + — -
135n(n+1) 2835n2(n+1) 2835 n*(n+12  n* (n+ 1)
4 16 1 C
- (34)

< - - >
135n(n+1) 2835n2(n+1) m(nt1)
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where
3
208 8 209 208
= N . > .
Co= 2092835 208 ' T (209) ©=0
Further,

1 1
(#=3) (02 -3)
>< 4 8 C3> 4 8 C;
135n 28352 n3 135(n+1) 2835(n+1)2 (n+1)>
_<i>2 1 (1_1_135@) L2 135G
~ \135) n(n+1) 21ln 4n? 21(n+1) 4(n+ 1y

4\* 1
= (ﬁ) At D) 1)(1 — g(n)),

where, recalling that C3 = gl% > 0,

(n)—i+ 2 135G 4 135 C;
= o T 0mr )T 42 Mntnt 1) At 12
A5G 45G (13_5)2 c?
14n2(n+1) ldn(n+ 1) 4 ) n2(n+ 1y

_ 4 2 4 4 L4
2ln 21n(n+1)  63n2 44ln(n+1)  63(n+ 1)

_ 44 (1 1 )2+ 8 46

2ln 63\n n+1 63n(n+1) 44ln(n+1)

— i+ 4 + 10 <i+&

C 2ln 63n2(n+1)2  44ln(n+1) 2ln  n?’

where

C fL+£
€ 63-(209)2  441°

Using the identity

LI
=R g

S.E. Alm
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we obtain
242
N SN PN G LR L
1 — g(n) 2ln - n?> 1 —4/2ln—Cgq/n?
4 1 (4/21 + Cq/n)?
<l+—+—=|C,
+21n+n2< é'_|_1—4/21n—Cg/n2
4 Cy
<1440
+21n+n2’
where
4/21 + C,/208)?
Co=Cq+ @/ </208) 5
1—4/(21-208) — C,/208
Thus,
1 135\° 4 C
0
< (=) . D-{14+—+—), 35
(O =3) - (61 —3) <4> ot (+2ln+n2> o
so that, inserting (34) and (35) into (33),
4 4 1 1 1
Ak, >1——|— _ 16 _ G
135\135 n(n+ 1) 2835 n2(n+1) nd(n+1)
2
135 4 Co
== . D1+ 1=
(4) n(n+1) ( +21n+n2>
4 135Cy 4 G
=1—|1—-=- N1+ ——+—
( 21n 4n? ) ( +21n+n2>
- l+i+9—if 16 74C07135C9745C97135C9C0
N 21n n?2  2ln 44102 21#3 4n? Tn3 4nt
1 /16 135 Cy 1 (4Cy 45Cy 1 135Cy Cy
- _—_(—_¢ (1= 2200
n2<441 0ty )+n3(21+ 7 >+n4 4
A
>F,
where
16 135 Cy
Ay =——C > 0.0236 > 0,
2= ot

so that Ak, > 0 for all n = 208.
It only remains to verify that Ak, >0 also for n < 208. The first few k, and Ak,
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Table 3. Values of %, and Ak, for small n
n kn Ak,
0 0.177778 0.029 680
1 0.148 098 0.021 166
2 0.126 932 0.009370
3 0.117562 0.005 163
4 0.112399 0.003 245
5 0.109 155 0.002 221
6 0.106 933 0.001 613
7 0.105320 0.001 224
8 0.104 096 0.000 960
9 0.103 136 0.000 773
10 0.102363 0.000 635
0.0004 o
° 20-05 | %
0.0002 °. °°o°°
%%OO 1605 " .
20 30 40 Dooo‘:ﬂ 50 80 70 80 20 :00
oo 3e—06
6e—06 | °°Q coo
“0% o 2006 - Do"’oo
46-06 o, °°°o
c°°°°o n°°o°g°
°°o° o,
100 110 120 130 140 150 150 160 170 180 180 200 210

Figure 4. A plot of Ak, for 10 < n =< 210
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(n =< 10) are given in Table 3. For 10 < n < 210, we see from the plot in Figure 4 that
Ak, >0, which finishes the proof. ]

Remark 6. Computations were performed with Maple and Matlab. k&, and Ak, were
computed by Maple with 100 digits’ precision. Figures 1-3 were produced by Matlab, where
the zoom option was most useful for Figures 1 and 3, whereas Figure 4 was produced with
Maple.

Remark 7. Table 3, Figure 4 and (25) indicate that also the sequence {Ak,} is decreasing for
all n.
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