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We present an extended definition of the second-order stationarity concept. This is based on the theory

of harmonic analysis for semigroups with involution. It provides a spectral representation for a wide

class of processes which are non-stationary in the usual weak sense, and allows miscellaneous spectral

representation results to be unified. Many applications are given to illustrate the concept. Most of

these are already known, but some are new, such as the multiplicative-symmetric processes. We are

less concerned with proving fundamental results than with opening up a new field of investigation for

spectral representation of non-stationary processes.
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1. Introduction

The classical notion of weak stationarity for stochastic processes refers to processes defined

on additive subgroups T of Rd , with d > 1. A zero-mean second-order process X ¼ (X t) t2T
is weakly stationary if some positive definite (p.d.) function R of one variable exists such

that

r(s, t) ¼ E[X tX s] ¼ R(t � s), s, t 2 T:

The covariance kernel then has a spectral (or integral) representation (see Rudin 1962). By

the Karhunen–Loève representation theorem (Karhunen 1947), a stationary stochastic process

can be written as a stochastic integral. To be specific, we have

r(s, t) ¼
ð
¸
ei( t�s)º d�(º) and X t ¼

ð
¸
ei tº dZ(º), (1)

for a positive Radon measure � on some ¸ � Rd and a second-order process Z with

orthogonal increments and power spectrum d�(º).
Weak stationarity says that the covariance kernel, which is a function of two variables, is

invariant under the diagonal shifts. Hence, it may be reduced to a p.d. function of only one

variable. This reduction in dimension offers many advantages and is often necessary for

statistical applications. A whole statistical tool-box has been developed in this regard and
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applied to various domains, such as the estimation of the covariance kernel via the power

spectrum. It allows, for example, conditions for ergodicity of these processes to be stated.

The spectral representation also is of great interest for both theory and applications (see, for

example, Wentzell 1981). It simplifies the study of many problems, for example, linear

prediction problems. The study of the process itself or of its linear transforms is often

simplified using the structure of Z.

Extension to general Abelian groups (T, �) has been carried out by Hannan (1965). If

r(s, t) ¼ R(t � s�1) with R bounded, Bochner’s theorem or Herglotz’s theorem for groups

(see Rudin 1962; Hannan 1965) yields the spectral representations

r(s, t) ¼
ð
~TT

r(t � s�1)d�(r) and X t ¼
ð
~TT

r(t)dZ(r), s, t 2 T,

using the dual group ~TT of characters,

~TT ¼ fr : T ! Cjr(e) ¼ 1, r(s � t) ¼ r(s)r(t), r(t�1) ¼ r(t), jr(t)j ¼ 1g:

The Fourier function basis ft ! ei tº : º 2 ¸g used in the case of subgroups of (Rd , þ) is

simply replaced here by the Karhunen–Loève basis ft ! r(t)jr 2 ~TTg.
Many attempts have been made to extend these methods to other stochastic processes.

One of the approaches leading to exact representations is the first notion of local

stationarity, as defined by Silverman (1957) and studied, for example, by Cramér (1961) and

Michàlek (1986; 1988). Another approach, initiated by Sampson and Guttorp (1992),

consists in identifying non-stationary processes as resulting from stationary processes

through a transformation of the index space, such as the M-stationary processes defined by

Gray and Zhang (1988). Other attempts at generalization are exponentially convex processes

(see Widder 1946; Loève 1948) and symmetric processes (Loève 1948).

Another approach involving approximation is the second notion of local stationarity.

Typically, a locally stationary process is generated by a phenomenon changing slowly in

time or space, and hence can be approximated by a stationary one on small time intervals;

to be specific, for any x 2 T,

r(s, t) ¼ C(x, t � s) if jt � sj < l(x)

2
, s, t 2 T:

The Wigner–Ville spectrum (or time-varying spectrum), defined by Martin and Flandrin

(1985) as
Ð
T
C(º, t)ei tº dº, is associated with these processes. Note that it may take negative

values, whereas the covariance operator has a positive spectrum. Mallat et al. (1998)

determined an approximated Karhunen–Loève basis for representing locally stationary

processes, allowing estimation of covariance. Dahlhaus (1997), among others, studied a

special class of these processes depending on a parameter, the uniform length l(x) � E of

approximated stationarity. Priestley (1988) defined and developed oscillatory processes such

that

X t ¼
ð
R

A(t, º)ei tº dZ(º), t 2 R,

with different assumptions on the function A. These processes are locally stationary (see
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Mallat et al. 1998; Dahlhaus 1997). Moreover, they have an exact spectral representation, but

the non-uniqueness of the so-called evolutionary spectrum jA(t, º)j2 has remained an issue.

All these approaches exhibit similarities and redundancies, as do the proofs of the

associated representation theorems.

We are interested in a unique exact representation of the covariance kernel and of the

process, so we are not concerned with the notion of locally stationary processes. The field

of harmonic analysis on semigroups with involution provides a powerful framework to unify

many of the approaches cited above. To our knowledge, there has hitherto been no reference

to this in the study of stochastic processes and covariance kernels. Potential use of the

theory goes beyond the integral representation of processes; for example, results on moment

problems (see Bisgaard 2001) may be used to solve the well-known problem of extension of

covariance matrices or functions.

The main concern of this paper is the integral representation of a process, defined on

an Abelian semigroup with involution (T, �, � ), whose covariance kernel is written

r(s, t) ¼ R(t � s�). If R is exponentially bounded, then results due to Lindahl and Maserik

(1971) and the Karhunen–Loève theorem together yield

r(s, t) ¼
ð
T�
r(t � s�)d�(r) and X t ¼

ð
T�
r(t)dZ(r)

on the set of semicharacters of T,

T� ¼ fr: T ! Cjr(e) ¼ 1, r(s � t) ¼ r(s)r(t), r(t�) ¼ r(t)g:

We give numerous applications of this notion, considering different involutions in

addition to the classical inversion for groups where T� ¼ ~TT. For example, the random fields

on Rd with orthogonal increments are (Rd , ^, Id)-stationary; the symmetric processes

defined on (T, þ, Id) and characterized by r(s, t) ¼ r(sþ t) have spectral representations

which are Laplace transforms; locally stationary processes are the restriction to the diagonal

of (C, þ, 	)-stationary processes; the M-stationary processes such that r(s, t) ¼ R(t=s) are

(R�þ, 3, 	�1)-stationary and their spectral representations are Mellin transforms.

Apart from specific examples, we generally consider one-dimensional and multi-

dimensional semigroups built on the complex or real fields and on their subsets. Even in

these cases, we consider only such composition laws and involutions as we use later in this

paper. We develop especially results generated by considering the identity involution. This

is of special interest since the identity is an involution for any Abelian semigroup. A great

number of detailed examples illustrate the significant differences from the classical

stationarity theory.

The paper is organized as follows. In Section 2 we present the framework of semigroups

with involution leading to the fundamental result of spectral representation both for positive

kernels and for stochastic processes. We give conditions for a p.d. kernel to be reduced to a

p.d. function via semigroup invariance properties. In Section 3 we investigate the influence

of index set deformation (i.e., of variable change) on semigroup stationarity. We deal with

additive semigroups in Section 4 and multiplicative semigroups in Section 5 with two types

of involution. In Section 6 we derive results for semigroups with a product structure.
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2. Spectral representation

2.1. Bochner-type theorem on semigroups

Let (T, �, �) be an Abelian semigroup with involution (or �-semigroup), that is a non-empty

set equipped with a commutative and associative composition � admitting a neutral element

e, and with an involution s ! s� satisfying (s � t)� ¼ t� � s� and (s�)� ¼ s for all elements

of T.

Note that an involution is a bijective mapping such that e� ¼ e. Any Abelian group is a

�-semigroup, with the involution t� ¼ t�1. Any Abelian semigroup may also be seen as a

�-semigroup, with the identity as involution.

Definition 1. A function r : T ! C is called a semicharacter if

r(e) ¼ 1, r(s � t) ¼ r(s)r(t) and r(t�) ¼ r(t), s, t 2 T:

Semicharacters are semigroup homomorphisms of (T, �, �) into (C, 3, 	). If the involution is

the identity, they are real-valued.

Let T� denote the set of all semicharacters, T̂T the subset of semicharacters r such that

sups2Tjr(s)j < 1, and ~TT the set of characters, that is, of semicharacters with modulus one.

We have ~TT � T̂T � T�:
Note that the characteristic function 1T is a character for any �-semigroup and that the

semicharacters of a group are simply characters, since then

jr(t)j2 ¼ r(t)r(t) ¼ r(t)r(t�1) ¼ r(t � t�1) ¼ r(e) ¼ 1, t 2 T:

Example 1. The idempotent semigroups (T, �, �), such that t � t ¼ t for t 2 T, have very

simple semicharacters. These are precisely the characteristic functions of the sub-semigroups

with involution. Indeed, since r(t) ¼ r(t � t) ¼ r2(t), the semicharacters are f0, 1g-valued.
The set ft 2 Tjr(t) ¼ 1g contains the neutral element e and is stable under � and �. The
converse is clear.

Endowing ~TT, T̂T and T� with pointwise multiplication as binary operation and conjugation

as involution gives them a �-semigroup structure too. Moreover, if a T� is endowed with

the topology inherited from the topology of pointwise convergence on CT, it has a

completely regular Hausdorff space structure and its sub-semigroup T̂T has a compactness

property.

We define p.d. functions following Lindahl and Maserick (1971).

Definition 2. A function R : T ! C is said to be positive definite ifXn
j,k¼1

ck c jR(t k � t�j ) > 0, n 2 N, c j 2 C, t j 2 T, j ¼ 1, . . . , n:

Semicharacters are p.d. functions, since
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Xn
j,k

ck c jr(t k � t�j ) ¼
Xn
j,k

ck c jr(t k)r(t j) ¼
����Xn

j

c jr(t j)
����2 > 0:

In order to state the spectral representation theorems, we need the following definitions.

Definition 3. A function v : T ! Rþ is called an absolute value if v(e) ¼ 1, v(t�) ¼ v(t) and

v(s � t) < v(s)v(t). A function f : T ! C is said to be v-bounded if there exists a constant c

such that j f (t)j < cv(t) for t 2 T: f is said to be exponentially bounded if it is bounded with

respect to at least one absolute value. It is said to be bounded if j f (t)j , c for t 2 T.

Using these assumptions, we obtain the following Bochner-type representations (see Berg et

al. 1984 for (a); Lindahl and Maserick 1971 for (b)).

Theorem 1. (a) For an exponentially bounded p.d. function R on T, there exists a unique

positive Radon measure � with compact support on T� such that

R(t) ¼
ð
T�
r(t)d�(r), t 2 T: (2)

(b) If, moreover, R is bounded, one can replace T� with T̂T in the integral representation

(2).

This theorem says that most p.d. functions are made up of the elementary bricks which are

the semicharacters. For groups, it amounts to the classical Bochner’s or Herglotz’s theorems

(see Rudin 1962; Hannan 1965), since then T� ¼ T̂T ¼ ~TT.

Example 2. A function R is p.d. on the idempotent semigroup ([0, þ1], ^, Id) if and only if

it is non-negative and non-decreasing. Considering the semicharacters rº(t) ¼ 1[º,þ1](t), for

º . 0, and the neutral element e ¼ þ1, (2) says that R is its own spectral measure; in other

words,

R(t) ¼
ð t
0

dR(º) ¼
ðþ1

0

rº(t)dR(º), t 2 [0, þ1]:

2.2. Semigroup stationary processes

Let X ¼ (X t) t2T be a stochastic process defined on an Abelian �-semigroup (T, �, �), with
zero mean and covariance kernel r(s, t) ¼ E[X sX t].

Definition 4. The stochastic process X (or its covariance kernel r) is said to be weakly

(T, �, �)-stationary (or simply semigroup stationary) if, for some function R : T ! C, we

have

r(s, t) ¼ R(t � s�), s, t 2 T: (3)
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If X is (T, �, �)-stationary, the associated function R is p.d. for the �-semigroup

structure, since

Xn
j,k¼1

ck c jR(t k � t�j ) ¼ E
Xn
j¼1

c jX t j

 !2
24 35, t1, . . . , tn 2 T:

Hence, if R is exponentially bounded, Theorem 1 yields

r(s, t) ¼
ð
T�
r(t)r(s)d�(r), s, t 2 T, (�)

and then the Karhunen–Loève theorem gives the spectral representation

X t ¼
ð
T�
r(t)dZ(r), t 2 T, (��)

for X, where Z is a second-order stochastic process with orthogonal increments and basis �.
The set of semicharacters T� is often identified by isomorphism to a known set ¸, that is

to say, T� ¼ frºjº 2 ¸g, and then the spectral representations of both the covariance kernel

r and the process X take the simpler form

r(s, t) ¼
ð
¸
rº(t � s�)d�(º) and X t ¼

ð
¸
rº(t)dZ(º): (4)

The above representations (�) to (4) extend the well-known representations of weakly

stationary processes to different classes of processes which are not weakly stationary in this

usual sense. We will characterize many of them in what follows. We begin with some

examples of idempotent �-semigroup structures.

Example 3. Let � : (�, B) ! C be a centred, second-order random measure with covariance

functional r(A, B) ¼ E(�(A)�(B)). Any algebra B equipped with intersection \ as

composition and with identity as involution, is an idempotent �-semigroup. Thus, � has

orthogonal increments (that is, r(A, B) ¼ R(A \ B)) if and only if � is (B, \, Id)-stationary.
It follows that random fields on Rd have orthogonal increments if and only if they are

(Rd , ^, Id)-stationary, where (s1, . . . , sd) ^ (t1, . . . , td) ¼ (s1 ^ t1, . . . , sd ^ td).

Example 4. Stochastic integrals

X t ¼
ð t
0

f (s)dW (s), t 2 T,

where W is a standard Brownian motion and f a locally square-integrable function, are

([0, þ1], ^, Id)-stationary, with plainly (see Examples 1 and 2)

rº(t) ¼ 1[º,þ1](t), º 2 ¸ ¼ [0, þ1], d�(º) ¼ f 2(º)dº and dZ(º) ¼ f (º)dW (º):

Example 5. Let X ¼ (X t) t2G be a multivariate random process indexed by a binary tree

(G, E), where G is the set of nodes and E is the set of directed edges. Let r denote the root
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of the tree and p(t) the parent of node t. Huang and Cressie (2001) considered a general tree-

structured Markov process evolving from parents to children according to the model

Xr ¼ Vr and X t ¼ X p( t) þ Vt, t 6¼ r, t 2 G,

where Vt are independent zero-mean Gaussian vectors.

Huang and Cressie (2001, p. 87) recommend that we ‘notice the blocky nature of the

correlation function’, and remark that ‘while it is not stationary, en gros it is nearly so’.

Actually, adding a formal new element 1 to G endows T ¼ G [ f1g with an

idempotent �-semigroup structure with binary operation s � t equal to the first common

ancestor of both s and t, the extra element 1 as neutral element and identity as involution.

Such a Markovian process is clearly (T, �, Id)-stationary since

r(s, t) ¼ E(X tX s) ¼ E(X 2
t�s) ¼ R(t � s), s, t 2 T,

for the variance function R of the process.

2.3. Conditions for semigroup stationarity

Semigroup stationarity has also an interpretation in terms of invariance properties of the

covariance kernel under the actions of a semigroup of transformations.

Lemma 1. A kernel r : T3 T ! C is (T, �, �)-stationary if and only if

r(s � a, t � b) ¼ r(s � b�, t � a�), s, t, a, b 2 T: (5)

Proof. The ‘only if’ part results from the equality

(t � b) � (s � a)� ¼ (t � a�) � (s � b�)�:
The converse follows from the usual argument. Since

r(s, t) ¼ r(e � s, t � e) ¼ r(e � e�, t � s�) ¼ r(e, t � s�),
the function R(u) ¼ r(e, u) clearly satisfies (3). h

The relation (s, t)R(a, b) if and only if t � s� ¼ b � a� is an equivalence relation. Its

quotient set Q ¼ T3 T=R, with cosets denoted by [s, t], inherits a �-semigroup structure

by setting [s, t] � [a, b] ¼ [s � a, t � b] and [s, t]� ¼ [s�, t�]. Moreover, the application

[s, t] ! t � s� is a �-semigroup isomorphism between Q and T. Hence, r is semigroup

stationary if and only if r is constant on cosets.

For a group, property (5) reduces to the classical diagonal shift invariance property,

r(s � a, t � a) ¼ r(s, t), s, t, a 2 T:

For a �-semigroup, it can be expressed in the following way.

Proposition 1. Let r : T3 T ! C. The two following statements are equivalent:
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(a) The kernel r is semigroup stationary for some �-semigroup structure on T.

(b) There exists an Abelian �-semigroup (F , �, �) where F ¼ f f a : T ! Tja 2 Tg, with
the usual composition law ( f � g)(t) ¼ f (g(t)) and neutral element f e such that

f a(e) ¼ a, for which

r( f (s), g(t)) ¼ r(g�(s), f �(t)), s, t 2 T, f , g 2 F :

Proof. Let us suppose that r satisfies relation (3) for (T, d, �). Let �a denote the usual

translation of a 2 T defined by �a(t) ¼ t d a for t 2 T. The set F ¼ f�aja 2 Tg endowed

with the composition law �a � �b ¼ �adb and the involution (�a)
� ¼ �a� inherits an Abelian

�-semigroup structure too. Relation (5) can thus be written r(�a(s), �b(t)) ¼ r(��b (s), ��a (t)).
Conversely, if f a � f b ¼ f c and ( f a)

� ¼ f d for two well-defined elements c and d, the

binary operation a d b ¼ c and the involution a� ¼ d endow T with a �-semigroup

structure. The neutral element of T is e. Actually, the transformation f a is the above

translation operation �a, since f a(t) ¼ f a( f t(e)) ¼ f ad t(e) ¼ adt. h

We prove the following general result for transitive (i.e., for all s, t 2 T there exists

u 2 T such that s ¼ t � u) and 2-divisible (i.e., each t 2 T may be written t ¼ s � s for

some s 2 T) semigroups. Note, for example, that (Q, þ) and (C, 3) are both transitive and

2-divisible.

Proposition 2. All bounded positive definite functions on transitive and 2-divisible

semigroups with the identity involution are constant.

Proof. If R is p.d., then jR(t)j2 ¼ jR(t � e)j2 < R(t � t)R(e), hence R � 0 if R(e) ¼ 0. We

can therefore assume without loss of generality that R(e) ¼ 1 if R(e) 6¼ 0. If R is bounded,

set m ¼ sup t2TjR(t)j , þ1. Then

m2 ¼ sup
t2T

jR(t)j2 < sup
t2T

R(t � t) < sup
s2T

jR(s)j ¼ m,

thus m < 1 and jR(t)j < R(e) ¼ 1, t 2 T.

If T is transitive, for all u 2 T, there exists some s 2 T such that e ¼ u � s, and hence

1 ¼ R(e) ¼ R(u � s) < R1=2(u � u)R1=2(s � s) < 1,

which proves that R(u � u) ¼ 1. Moreover, if T is 2-divisible then, for all t 2 T, we have

R(t) ¼ R(u � u) ¼ 1 for some u. h

3. Semigroup stationarity by space deformation

Semigroup stationarity includes the concept of reducibility to stationarity through a

deformation � of the index set.

Reducibility to weak stationarity was introduced by Sampson and Guttorp (1992) in an

application to environmental data, and formalized by Perrin and Senoussi (1999; 2000). The
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processes concerned can be written X t ¼ Y�( t), where the process Y so defined is weakly

stationary. We extend this notion of reducible processes to semigroup stationarity.

Proposition 3. Let T be a given set and (S, d, �) a �-semigroup. Let � : T ! S be a

bijective transformation. Let r be a covariance kernel on T of the form

r(s, t) ¼ R(�(t) d �(s)�), s, t 2 T:

If R is an exponentially bounded positive definity function, then r has a spectral

representation.

Proof. Every bijection � : T ! S from a general set T to a �-semigroup (S, d, �) generates
on T a �-semigroup structure (T, �, �) by setting

s � t ¼ ��1(�(s) d �(t)) and t� ¼ ��1(�(t)�):

The transformation � is clearly a �-semigroup isomorphism. The semicharacters

(respectively p.d. functions) of T are of the form ~rr ¼ r �� (respectively ~RR ¼ R ��) for

some semicharacter r (respectively p.d. function R) of S. Thus the p.d. function ~RR can be

written

~RR(t) ¼ R(�(t)) ¼
ð
S�
r(�(t))d�(r) ¼

ð
T�

~rr(t)d��(~rr), t 2 T,

where �� denotes the image measure of � by the function r ! ~rr ¼ r �� from S� to T�.
h

In particular, if X ¼ (X t) t2T is a process with covariance kernel

r(s, t) ¼ R(�(t) d �(s)�), s, t 2 T,

and if S� ¼ frºjº 2 ¸g for a given set ¸, then the spectral representations (4) take the form

r(s, t) ¼
ð
¸
rº(�(t))rº(�(s))d�(º) and X t ¼

ð
¸
rº(�(t))dZ(º):

The logarithm transform is of particular interest: see the M-stationary processes in

Section 5.1, the M-symmetric processes in Section 5.2 and the H-self-similar processes in

Example 14.

Example 6. A normalized Brownian sheet X is a centred Gaussian field on T ¼ R�þ 3 R�þ
with covariance kernel

r(s, t) ¼ ksk þ ktk � kt � sk
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kskktk

p , s, t 2 T:

The transformation �(s1, s2) ¼ (ln ksk, arctan(s2=s1)) where s ¼ (s1, s2), reduces X to a

weakly stationary random field on S ¼ R3 R, since r(s, t) ¼ R(�(t)��(s)) with

R(u) ¼ cosh(u1=2)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[cosh(u1=2)� cos u2]=2

p
, u ¼ (u1, u2) 2 S:
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Note that not all the covariance kernels are reducible to stationarity by transformations of

the index set. Perrin and Senoussi (1999; 2000) give a necessary and sufficient condition for

a continuous-time process to be reducible to stationarity and examples and counterexamples

of stationary reducible processes; see the earlier paper for the one-dimensional case and the

later one for the multidimensional case.

4. Additive semigroup stationarity

4.1. Determination of semicharacters

We present here the continuous semicharacters of classical semigroups constructed from

(R, þ) and the induced spectral representations for p.d. functions. Non-continuous

semicharacters do exist for these semigroups, for example 1f0g, but they generally play

no part in the spectral representation of continuous covariance kernels (see Theorem 2

below).

4.1.1. Groups

For the group (R, þ, (	)�1) (respectively (Z, þ, (	)�1)) with inversion as involution, the

semigroup stationarity is just weak stationarity. So, for the sake of comparison, we recall

that the semicharacters are characters, have the form r(t) ¼ eiº t, with º 2 ¸ where ¸ ¼ R

(respectively ¸ ¼ — ¼ [��, �[) and that (1) holds for any bounded weakly stationary

covariance kernel and weakly stationary process.

4.1.2. Semigroups with the identity involution

If T is one of the sets N, Z, Qþ, Q, —, Rþ or R, we can easily determine that continuous

characters of the semigroup (T, þ, Id) with the identity involution have the form

rº(t) ¼ eº t, with º 2 R.

We can also easily determine that T̂T ¼ f1Tg if T is Z, Q, R or —, while for N, Qþ or

Rþ we obtain T̂T ¼ frºjrº(t) ¼ e�º t, º 2 Rþg and ~TT ¼ f1Tg.
In the literature, bounded (T, þ, Id)-p.d. functions are generally said to be exponentially

convex (see, for example, Loève 1948; Akhieser 1965; Nussbaum 1972).

Note that if the semicharacters of (R, þ, Id) are written in the convenient equivalent

form rº(t) ¼ º t for º 2 Rþ, then (4) becomes

r(s, t) ¼
ð
Rþ

ºsþ td�(º), s, t 2 R:

The case T ¼ N has direct links to the classical moment problem, since then

r(n, m) ¼ R(nþ m) ¼
ð
[�1,1]

ºnþmd�(º), n, m 2 N: (6)
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4.1.3. Semigroups with index permutation involution

For multidimensional index sets, several involutions may be considered. The extension of

the above results through the product structure will be considered in Section 6 below. Many

other possibilities exist.

For example, the permutation operation (t1, t2)
� ¼ (t2, t1) is a well-defined involution on

T ¼ (R2, þ). For this structure, we obtain T� ¼ frº : T ! Cjrº(t) ¼ º t1º t2 , º 2 Cg,
T̂T ¼ frº : T ! Cjrº(t) ¼ º t1º t2 , jºj < 1g and ~TT ¼ f1Tg. It can be extended to Rd ,

d > 3, for any permutation � of coordinates such that � � � (i) ¼ i, for i ¼ 1, . . . , d.
This involution is also of interest for discrete index-set processes, especially since, as

above in (6), the form of the semicharacters links the spectral representation to the complex

classical multidimensional moment problem.

4.2. Symmetric processes

If X is an (Rd , þ, Id)-stationary process, then r(s, t) ¼ R(sþ t), that is, cov(X s, X t)

¼ var(X (sþ t)=2): Following Michàlek (1988), we will say that such semigroup stationary

processes are symmetric. Note that Loève (1946; 1948) called exponentially convex any

such second-order stochastic process with zero mean and bounded covariance kernel.

Example 7. The sinusoidal signal X n ¼ A cos(	n� �=4), for n 2 Z, where 	 � U(0, �) and
A are independent random variables, is centred if A is centred. Moreover, X is symmetric

since

r(n, m) ¼
E[A2]=2 if n ¼ m,

0 if n ¼ �m,

[1� (�1)nþm]E[A2]=2�(nþ m) if n 6¼ �m:

8<:
Using the semigroup properties of (Qþ, þ, Id), Berg et al. (1984, Theorem 5.11, p. 212)

prove the following result, thus extending and synthesizing earlier results by Widder (1946,

Theorem 21, p. 273), Devinatz (1955) and Akhieser (1965, Theorem 5.5.4 and Problem 17).

Theorem 2. Any continuous (Rd , þ, Id)-p.d. function R has the representation

R(u) ¼
ð
Rd

ehº,ui d�(º), u 2 Rd , (7)

for a uniquely determined positive Radon measure �. And R can be extended to an entire

holomorphic function on Cd .

This result does not require the exponential boundedness assumption of Theorem 1.

Therefore, by the Karhunen–Loève theorem, for any symmetric and continuous (in the mean-

square sense) process X, a second-order stochastic process Z with orthogonal increments and

basis � exists such that
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X t ¼
ð
Rd

ehº, ti dZ(º), t 2 Rd : (8)

Note that Michàlek (1988) obtained a spectral representation for these processes by

enlarging the index set to C (see Section 6 below). He also derived an inversion formula for

the spectral measure.

Example 8. A simple illustration of (8) is given by the continuous process

X t ¼
Xn
i¼1

Uie
hºi , ti, t 2 Rd ,

where º1, . . . , ºn are deterministic points in Rd and U1, . . . , Un are centred and orthogonal

random variables with variances � 2
i ¼ � 2(ºi). Both the second-order stochastic measure

dZ ¼
Pn

i¼1Ui�ºi and its basis measure d� ¼
Pn

i¼1�
2
i �ºi have discrete supports. The

covariance kernel representation (7) of X can be written

r(s, t) ¼
Xn
i¼1

� 2
i e

hºi ,sþ ti, s, t 2 Rd :

Example 9. The link between a stationary process and a symmetric one can sometimes be

given by a standardization procedure. Indeed, taking a Gaussian basis measure � on R in (7)

yields

R(u) ¼ 1ffiffiffiffiffiffi
2�

p
ð
R

eºue�º2=2dº ¼ eu
2=2, u 2 R:

Hence, a zero-mean Gaussian symmetric process X exists with covariance rX(s, t) ¼ R(sþ t)

and standard deviation � (t) ¼ exp(t2). Its normalized process Y defined by Yt ¼ X t=� (t) is
weakly stationary since rY (s, t) ¼ exp(�(s� t)2=2). Figures 1 and 2 show samples of such

processes X and Y.

5. Multiplicative semigroup stationarity

The multiplicative groups are of increasing interest in the theory of stochastic processes

(see, for example, Mandelbrot 200l; Gray and Zhang 1988). We consider here the

multiplicative structure of Rnf0g and of some of its subsets endowed with the inverse or

with the identity involution. The case of C will be studied through product structures in

Section 6 below.

5.1. Groups and M-stationary processes

The triplet (Rnf0g, 3, (	)�1), with the usual product as composition and inverse as

involution, is a group with dual character set
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Figure 1. Three samples of a zero-mean Gaussian symmetric process X with covariance

rX(s, t) ¼ exp[(sþ t)2=2]:

Figure 2. The samples of the stationary transform Y ¼ X=� with covariance rY(s, t) ¼
exp(�(s� t)2=2), corresponding to those in Figure 1.
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(Rnf0g)� ¼ gRnf0gRnf0g ¼ frº : Rnf0g ! Cjrº(t) ¼ jtjiº, º 2 Rg:

We can also prove easily that

(Rþnf0g)� ¼ gRþnf0gRþnf0g ¼ frº: Rnf0g ! Cjrº(t) ¼ t iº, º 2 Rg: (9)

The covariance kernels of (Rþnf0g, 3, (	)�1)-stationary processes satisfy r(s, t) ¼ R(t=s).
These processes were called multiplicative stationary (or M-stationary) by Gray and Zhang

(1988) who studied them thoroughly through the time transformation �(t) ¼ ln t which

reduces them to stationarity. A statistical point of view is developed in Girardin and Rachdi

(2003). Using (9), we obtain the spectral representation of these covariance kernels directly as

Mellin transforms (for details on this transformation, see Jerri 1992), namely

r(s, t) ¼
ð
R

(t=s)iºd�(º):

Example 10. Fractional Brownian motion is a centred Gaussian process indexed by T ¼ Rþ
whose covariance kernel, depending on a parameter a 2 [0, 1], is defined by

r(s, t) ¼ s2a þ t2a � jt � sj2a
2(st)a

:

It is clearly M-stationary, with R(u) ¼ (1þ u2a � j1� uj2a)=(2ua).

In particular, if a ¼ 1=2, its dual stationary transformed process is the classical Wiener

process, (see Samorodnitsky and Taqqu 1994).

Mandelbrot (2001, Chapter 6) presented some important examples of non-random and

random self-affine functions, for which ‘moving on from the clock time to the log time’

results in new insights. He pointed out that the log time makes the law of the iterated

logarithm obvious for the Brownian motion.

5.2. Semigroups and M-symmetric processes

For the semigroup structure (T, 3, Id), all the sets T ¼ Nnf0g, Znf0g, Rþnf0g or Rnf0g
have the same set of semicharacters,

T� ¼ frº : T ! Cjrº(t) ¼ jtjº, º 2 Rg:

If T is Nnf0g or Znf0g, then

T̂T ¼ frº : T ! Cjrº(t) ¼ jtj�º, º 2 Rþg, (10)

while T̂T ¼ f1Tg for Rnf0g and Rþnf0g, since they are both transitive and 2-divisible.

The covariance kernels of (Rþnf0g, 3, Id)-stationary processes satisfy r(s, t) ¼ R(st).

We can call these processes M-symmetric, since the time transformation �(t) ¼ ln t makes

the M-symmetric processes reducible to symmetric processes in the same way as the M-

stationary processes are reducible to stationary processes. The characterization of

semicharacters given in (10) yields the spectral representation
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r(s, t) ¼
ð
Rþ

(st)�ºd�(º), s, t 2 Rþ:

More elaborated products can be considered, as in the following example.

Example 11. Consider (Rþ, �, Id), where s � t ¼ (sþ 1)(t þ 1). Using the transformation

�(t) ¼ ln (1þ t) from (Rþ, �, Id) to (Rþ, þ, Id), the bounded semicharacters of (Rþ, �, Id)
are proven to be rº(t) ¼ (1þ t)�º, for º 2 Rþ (see the proof of Proposition 3). A stochastic

process X is (Rþ, �, Id)-stationary if and only if Y defined by Yu ¼ X eu�1 is symmetric, and

then

rX(s, t) ¼
ð
Rþ

[(sþ 1)(t þ 1)]�ºd�(º), s, t 2 Rþ:

6. Product semigroups

6.1. Semicharacters

Most semigroup structures constructed on C (or R2 or Cn) can be deduced from

isomorphisms with semigroup products of R. Many other semigroup structures constructed

on a set product can be dealt with by the following general result (see Berg et al. 1984,

Exercise 4.2.13).

Proposition 4. Let (T1, �, �) and (T2, d, ?) be two semigroups. Let P ¼ T1 3 T2 be endowed

with the composition (s1, s2) � (t1, t2) ¼ (s1 � t1, s2 d t2) and the involution

(t1, t2)
y ¼ (t�1 , t?2). Then (P, �, y) is also a �-semigroup. Furthermore, there exists a

topological semigroup isomorphism of T�1 3 T�2 onto P�, which maps T̂T1 3 T̂T2 onto bPP and

yields

P� ¼ fr ¼ r1r2jr1 2 T�1 , r2 2 T�2 g: (11)

It is worth considering different involutions on some additive or multiplicative product

structures of the complex field C. We first list the corresponding continuous semicharacters

obtained through Proposition 4 and then show some of their uses.

6.1.1. The additive complex field

Considering (C, þ) ¼ (R, þ)3 (R, þ) is equivalent to representing the complex numbers as

t ¼ t1 þ it2. Hence if the involution is

• inversion, C has its usual group structure, and

(C, þ, (	)�1)� ¼ g(C, þ, (	)�1)(C, þ, (	)�1) ¼ frº : C ! Cjrº(t) ¼ ei(º1 t1þº2 t2), º ¼ (º1, º2) 2 R2g;
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• conjugation, then g(C, þ, 	)(C, þ, 	) ¼ frº : C ! Cjrº(t) ¼ eiº t2 , º 2 Rg, and

(C, þ, 	)� ¼ frº : C ! Cjrº(t) ¼ eº1 t1eiº2 t2 , º ¼ (º1, º2) 2 R2g; (12)

• identity, then g(C, þ, Id)(C, þ, Id) ¼ f1Cg and

(C, þ, Id)� ¼ frº : C ! Cjrº(t) ¼ eº1 t1þº2 t2 , º ¼ (º1, º2) 2 R2g:

6.1.2. The multiplicative complex field

In the same way, considering (C, 3) ¼ (Rþ, 3)3 (—, þ) is equivalent to representing the

complex numbers as t ¼ t1e
i t2 . Hence if the involution is

• inversion, Cnf0g has a group structure and

(Cnf0g, 3, (	)�1)� ¼ g(Cnf0g, 3, (	)�1)(Cnf0g, 3, (	)�1) ¼ frº : C ! Cjrº(t) ¼ tiº11 eiº2 t2 , º1 2 R, º2 2 Zg;
• conjugation, then g(Cnf0g, 3, 	)(Cnf0g, 3, 	) ¼ frº : C ! Cjrº(t) ¼ eiº t2 , º 2 Zg, and

(Cnf0g, 3, 	)� ¼ frº : Cnf0g ! Cjr(t) ¼ tº11 e
iº2 t2 , º1 2 R, º2 2 Zg;

• identity, we can consider the whole field C. But some of its subsets, for example the

unit disk U for which 0 < t1 < 1, or the superior half-plane H for which 0 < t2 , �,
are interesting too. We compute (T, 3, Id)� ¼ frº : T ! Cjrº(t) ¼ tº11 e

º2 t2 , º1,
º2 2 Rg and g(T, 3, Id)(T, 3, Id) ¼ f1Tg if T is C, U or H. But bCC ¼ f1Cg,bUU ¼ frº : U ! Cjrº(t) ¼ tº1, º 2 Rg and bHH ¼ frº : H ! Cjrº(t) ¼ tº11 e

º2 t2, º1 2 R,

º2 2 Zg.

6.2. Spectral representations

Proposition 4 also provides a sufficient condition for the existence of a spectral

representation of random fields indexed by product spaces. Hence a p.d. kernel r on

(P, �, y) that satisfies r(s, t) ¼ R(t � sy), for some exponentially bounded R, has the

spectral representation

r(s, t) ¼
ð
P�
r(t)r(s)d�(r), s, t 2 P, (13)

for r as in (11).

On the other hand, obviously not all the semicharacters are always necessary for such a

representation. The characterization of classes of p.d. functions in the semigroup sense via

the support of their spectral measures is not yet as clear as in classical group theory. This

problem would deserve more investigation, even if in the literature most of the existing

spectral representations seem merely to have been obtained either by restricting a product

semigroup index set to one of its subsets or by extending the index set to some product

structure.
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6.2.1. Induced spectral representations

Let (X t) t2T be a stochastic process whose covariance kernel r satisfies r(s, t)

¼ R(t � s�, t d s?), where R is p.d. for the product semigroup structure (P, �, y) ¼
(T, �, �)3 (T, d, ?). Since r(s, t) ¼ R((t, t) � (s, s)y), the process (X s) can be seen as the

restriction on the diagonal set D ¼ f(t, t), t 2 Tg of a process (Xt) defined on P.

If R is exponentially bounded, r clearly inherits from (13) the spectral representation

r(s, t) ¼
ð
(T3T)�

r(t, t)r(s, s)d�(r), s, t 2 T,

and a spectral representation for the process follows.

Example 12. A Brownian bridge is the restriction to the diagonal set of a zero-mean

([0, 1], ^, Id)3 ([0, 1], _, Id)-stationary Gaussian process (Xt) whose covariance is

E[XsXt] ¼ R((t1, t2) � (s1, s2)
y) ¼ (t1 ^ s1)3 ((1� t2 _ s2)):

Note that R is known to be p.d. by the Schur product theorem.

Such inherited structures concern other subsets than the diagonal set D. Let us consider

some examples.

Many kinds of processes indexed by R can be seen as restrictions of a second-order

(C, þ, 	)-stationary stochastic process X ¼ (X t)t2C. For instance, if rX(s, t) ¼ R(t þ s) for

an exponentially bounded R, the spectral representation (13) of r is obtained through the

characterization of semicharacters given in (12), in the form

r(s, t) ¼
ð
R2

eº1(s1þ t1)eiº2( t2�s2)d�(º1, º2), s, t 2 C:

So a symmetric process can be seen as the restriction of such an X to the positive real line

Rþ and a weakly stationary one as its restriction to the imaginary line iR.

The restriction to the diagonal subset (1þ i)R of such an X yields a process X indexed

by R with covariance kernel such that r(s, t) ¼ R(t þ s, t � s). This is not a semigroup

stationary structure, but r and X inherit from (13) the spectral representations

r(s, t) ¼
ð
C

eº teºsd�(º), s, t 2 R (14)

and

X t ¼
ð
C

eº tdZ(º), t 2 R: (15)

Processes indexed by Z and having such a representation were studied by Cramér (1961)

through links with shift operators.

When the spectral measure � in (14) is supported within the diagonal subset

D ¼ (1þ i)R, the process is an oscillatory process (see Priestley 1988).

The covariance kernels of the form r(s, t) ¼ r1(sþ t)r2(t � s), where r1 is a non-
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negative function and r2 is a weakly stationary p.d. function, are a subclass of the ones

above. They were called locally stationary by Silverman (1957), and exponentially convex

locally stationary if r1 is the Laplace transform of some non-negative function. If R is

exponentially bounded, (14) holds and precisely characterizes the so-called normal

covariances. Michàlek (1988) proved that a normal covariance is exponentially convex

locally stationary if and only if its spectral measure is a product measure.

Example 13. The sinusoidal signal X t ¼ eAt cos(	t þ �), for t 2 R, where � � U(0, 2�), 	
and A are independent random variables, is an exponentially convex locally stationary

process. It is the restriction to the diagonal subset D of the process Xt ¼ eAt1 cos (	t2 þ j)
for t ¼ (t1, t2) 2 C. We have E[Xt] ¼ 0 and

E[XsXt] ¼ E[eA( t1þs1)]E[cos(	(t2 � s2))] ¼ R(t þ s):

Example 14. If X is an H-self-similar stochastic process indexed by Rþ, then Y defined by

Yu ¼ X eu , for u 2 R, is normal. Indeed, the process Z defined by Z t ¼ e tH X e t is weakly

stationary (see Samorodnitsky and Taqqu 1994, Proposition 7.1.4), and

rY(u, v) ¼ e(uþv)H rZ(u, v). Representations (14) and (15) both hold for Y, and Proposition

3 thus provides spectral representations to H-self-similar processes via the logarithm

transform, T ¼ Rþ and S ¼ R; specifically,

rX(s, t) ¼
ð
C

tºsºd�(º) and X t ¼
ð
C

tºdZ(º), s, t 2 R:

6.2.2. Extending spectral representations

The problem of extending a function p.d. in the group sense to a larger group is well

known (see, for example, Rudin 1963). To make it possible, additional assumptions are

generally needed. This also seems to be the case for functions p.d. in the semigroup sense.

For example, we readily obtain the main results of Michàlek (1988) on the extension to

C and spectral representation of a symmetric stochastic process X defined on R with

covariance r(s, t) ¼ R(sþ t) such that R is continuous. By Theorem 4.2, R is holomorphic,

hence

R(t) ¼
X
n>0

t n

n!
R(n)(0), t 2 R,

and then by Loève (1978, Section 37.2), we obtain

X t ¼
X
n>0

t n

n!
X

(n)
0 , t 2 R: (16)

This is not (and cannot be) the spectral representation of X since the X (n)(0) are not

orthogonal. But its extension to C, namely
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Xt ¼ lim
L2

XN
n¼0

tn

n!
X

(n)
0 , t 2 C, (17)

exists, is C-valued and is (C, þ, 	)-stationary, with

rX(s, t) ¼ RX(t þ s) ¼
ð
R

eº(tþs)d�(º), s, t 2 C:

Actually, the decomposition (16) of a given analytic stochastic process X indexed by R is

orthogonal if and only if its covariance kernel can be written r(s, t) ¼ R(st) (see Loève

1978, Theorem of Section 37.5.A). This merely means that X is M-symmetric. In this case,

its extension to C defined by (17) is (C, 3, 	)-stationary with covariance

r(s, t) ¼ R(ts) ¼
ð
N

(ts)nd�(n),

where the support of the spectral measure � is N, with

�(fng) ¼ R(n)(0)

n!
¼ E

X (n)

n!

� �2
" #

, n 2 N:

In these two examples, the holomorphy implied by the symmetry and continuity

assumptions is crucial for extension purposes. Observation of the process on the real line

thus amounts to knowledge of it on the whole complex plane. This clearly relates back to

the problem of characterizing classes of p.d. functions via the supports of their spectral

measures.
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Loève, M. (1946) Fonctions aléatoires à décomposition orthogonale exponentielle. Rev. Sci., 84,

159–162.
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