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For j ¼ 1, . . . , J, let K j : R ! R be measurable bounded functions and X j, n ¼
Ð
R
a j(n� c jx)M(dx),

n > 1, be Æ-stable moving averages where Æ 2 (0, 2), c j . 0 for j ¼ 1, . . . , J , and M(dx) is an Æ-
stable random measure on R with the Lebesgue control measure and skewness intensity � 2 [�1, 1].

We provide conditions on the functions a j and K j, j ¼ 1, . . . , J , for the normalized partial sums

vector N
�1=2
j

PN j

n¼1(K j(X j,n) � EK j(X j,n)), j ¼ 1, . . . , J , to be asymptotically normal as N j ! 1.

This extends a result established by Tailen Hsing in the context of causal moving averages with

discrete-time stable innovations. We also consider the case of moving averages with innovations that

are in the stable domain of attraction.
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1. Introduction

Our goal is to extend Hsing’s (1999) result on the convergence of bounded functionals of

infinite-variance moving averages. This extension is used in Pipiras et al. (2003) to establish

asymptotic normality of some wavelet-based estimators in linear fractional stable motion.

We first recall Hsing’s result and then describe our extension. Hsing (1999) considered

moving average sequences

X n ¼
X1
j¼1

a jEn� j, n > 1, (1:1)

where fa jg j>1 is a sequence of weights and fEngn2Z is a sequence of independent and

identically distributed (i.i.d.) symmetric Æ-stable standard random variables with Æ 2 (0, 2).

Recall that a random variable E is Æ-stable with Æ 2 (0, 2) if its characteristic function has

the form

E exp fiŁEg ¼ exp �� ÆjŁjÆ(1� i�sign(Ł)tan(Æ�=2))þ i�Łf g if Æ 6¼ 1,

exp �� jŁj(1þ i�(2=�)sign(Ł)ln jŁj)þ i�Łf g if Æ ¼ 1

�
where Ł 2 R, � . 0 is a scale parameter, � 2 R is a shift parameter and � 2 [�1, 1] is a

skewness parameter. It is called symmetric (SÆS, in short) if � ¼ 0 and � ¼ 0, and standard

Bernoulli 9(5), 2003, 833–855

1350–7265 # 2003 ISI/BS



if � ¼ 1. Hsing (1999) obtained conditions on the weight sequence fa jg j>1 for the

normalized partial sums

SN

N 1=2
:¼ 1

N 1=2

XN
n¼1

K(X n)� EK(X n)ð Þ, (1:2)

where K is a bounded function, to converge in distribution to a Gaussian law, as N ! 1.

His result (Hsing 1999, Theorem 1) is stated below. The following notation is used:

X n,1, l ¼
Xl

j¼1

a jEn� j, l > 1,

and

SN , l ¼
XN
n¼1

(K(X n,1, l)� EK(X n,1, l)), l > 1:

Theorem 1.1. Let Æ 2 (0, 2) and fX ngn>1 be a SÆS moving average sequence defined by

(1.1). Suppose that K in (1.2) is a bounded function. Suppose also thatX1
j¼1

ja jjÆ=2 , 1 (1:3)

and

lim
l!1

E K(X1)� K(X 1,1, l)ð Þ2¼ 0: (1:4)

Then

lim
l!1

lim sup
N!1

N�1 var(SN � SN , l) ¼ 0

and

N�1=2SN �!d N (0, � 2),

where

� 2 ¼ lim
N!1

N�1 var(SN ) ¼ lim
l!1

lim
N!1

N�1 var(SN , l):

We extend this result in the following ways:

• We drop condition (1.4).

• We replace the discrete noise En by a (more general) continuous-time one.

• We consider both symmetric and skewed noise.

• We consider two-sided moving averages, since in the stable case, these are not

equivalent to one-sided ones.
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• We develop a multivariate extension which will be used in Pipiras et al. (2003) to

prove the asymptotic normality of wavelet-based estimators.

• Assuming that K is smooth, we show that the result extends to discrete-time moving

averages with innovations that are in the domain of attraction of an Æ-stable distribution.

These extensions of Theorem 1.1 are formulated and proved in Sections 2 and 3 below.

2. Results

Consider Æ-stable moving average sequences fX j,ngn>1, j ¼ 1, . . . , J , given by

X j,n ¼
ð
R

a j(n� c jx)M(dx), (2:1)

where Æ 2 (0, 2), c j . 0, a j 2 LÆ(R, dx) and, in addition, a j ln ja jj 2 L1(R, dx) when Æ ¼ 1,

and M is an Æ-stable random measure on R with the Lebesgue control measure m(dx) ¼ dx

and the skewness intensity �(x) � � 2 [�1, 1]. Heuristically, M(dx), x 2 R, can be viewed as

a sequence of independent Æ-stable random variables with the scale parameter dx and the

skewness parameter �. The representation (2.1) means that the characteristic function of

fX j,n, j ¼ 1, . . . , Jgn>1 can be expressed as

E exp i
Xq
p¼1

Ł pX j p,n p

( )
¼ exp �

ð
R

���� f (Ł, n, j, x)

����Æ 1� i� sign( f (Ł, n, j, x))tan
Æ�

2

� �
dx

( )
if Æ 6¼ 1, and

E exp i
Xq
p¼1

Ł pX j p,n p

( )

¼ exp �
ð
R

���� f (Ł, n, j, x)

���� 1þ i�
2

�
sign( f (Ł, n, j, x))ln j f (Ł, n, j, x)j

� �
dx

( )
if Æ ¼ 1, where Ł ¼ (Ł1, . . . , Łq) 2 Rq, n ¼ (n1, . . . , nq) 2 Nq, j ¼ ( j1, . . . , jq) 2 f1, . . . ,
Jgq and

f (Ł, n, j, x) ¼
Xq
p¼1

Ł pa j p(n p � c j p x), x 2 R:

For more information on stable measures and stable processes, see Samorodnitsky and Taqqu

(1994). In the wavelet setting considered in Pipiras et al. (2003), the indices c j (usually taken

equal to 2� j) correspond to ‘scale’ and n to ‘shift’.

Definition 2.1. We will say that the moving average fX j,ngn>1 is causal if a j(x) ¼ 0 for

x , x0 , and non-causal if a j(x) ¼ 0 for x . x0, where x0 2 R. When fX j,ngn>1 is either

causal or non-causal, we will say that it is one-sided. We will also call the moving average

fX j,ngn>1 two-sided if it is not one-sided.
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Now, fix n j, j ¼ 1, . . . , J , and let N j be positive integers such that

N j �
N

nj

, (2:2)

as N ! 1. For j ¼ 1, . . . , J, set

S j,N j

N
1=2
j

¼ 1

N
1=2
j

XN j

n¼1

(K j(X j,n)� EK j(X j,n)), (2:3)

where K j is some measurable function. For j ¼ 1, . . . , J and n > 1, define also the truncated

integrals

X j,n, l1, l2 ¼
ðc�1

j (n� l1þ1)

c�1
j
(n� l2)

a j(n� c jx)M(dx), �1 < l1 < l2 < 1, (2:4)

and X j,n, l1, l2 ¼ 0 for l1 . l2. This ordering of the indices is motivated by the fact that, after a

change of variables,

X j,n, l1, l2 ¼
ð l2
l1�1

a j(z)M d(c�1
j (n� z))

� �
, (2:5)

so the indices l1 � 1 and l2 refer to the range of the weights a j(z). It is best henceforth to

view X j,n, l1, l2 as represented by (2.5); for example, one has

X j,n ¼ X j,n,�1,m�1 þ X j,n,m,1, for all m 2 Z: (2:6)

Define also the corresponding partial sums

S j,N j, l1, l2 ¼
XN j

n¼1

(K j(X j,n, l1, l2 )� EK j(X j,n, l1, l2 )), �1 < l1 < l2 < 1:

The following result is our first extension of Hsing’s Theorem 1.1. It is proved in Section 3

below.

Theorem 2.1. Let Æ 2 (0, 2) and fX j,ngn>1, j ¼ 1, . . . , J , be Æ-stable moving averages

defined by (2.1). Suppose that, for each j ¼ 1, . . . , J , the kernel a j in (2.1) satisfies the

condition X1
m¼�1

ðm
m�1

ja j(x)jÆ dx
� �1=2

, 1: (2:7)

Suppose also that, for each j ¼ 1, . . . , J , the function K j in (2.3) is bounded if fX j,ngn>1 is

one-sided, and is bounded and twice differentiable with bounded derivatives if fX j,ngn>1 is

two-sided. Then, for j ¼ 1, . . . , J,

lim
( l1, l2)!(�1,1)

lim sup
N!1

N�1
j var(S j,N j

� S j,N j , l1, l2 ) ¼ 0 (2:8)

and
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N
�1=2
j S j,N j

� �J

j¼1
�!d N (0, �): (2:9)

The entries of the covariance matrix � ¼ (� jk) j,k¼1,...,J can be obtained as

� jk ¼ lim
N!1

E
S j,N j

N
1=2
j

Sk,Nk

N
1=2
k

(2:10)

¼ lim
( l1, l2)!(�1,1)

lim
N!1

E
S j,N j , l1, l2

N
1=2
j

Sk,Nk , l1, l2

N
1=2
k

, 1: (2:11)

If J ¼ 1, c1 ¼ 1, � ¼ 0 and a1(x) ¼
P1

k¼1ak1[k�1,k)(x), x 2 R, ak 2 R in (2.1), then

X 1,n ¼
Ð
R
a(n� x)M(dx) ¼

P1
k¼1akEn�k for some sequence fEkg of i.i.d. SÆS random

variables. Condition (2.7) becomes
P1

k¼1jak jÆ=2 , 1, which is (1.3) in Hsing’s Theorem

1.1 above. Observe, however, that Theorem 1.1 also requires condition (1.4). This condition

is missing in Theorem 2.1 because, in fact, it always holds (and it can therefore be removed

from Theorem 1.1). This is shown by the following results which are also used in the proof

of Theorem 2.1.

Lemma 2.1. For Æ 2 (0, 2), let X n, n > 0, be Æ-stable random variables such that X n ! X 0

almost surely. Then, for any bounded measurable function K,

lim
n!1

E(K(X0)� K(X n))
2 ¼ 0: (2:12)

Proof. Let f n and �n, n > 0, be the density and characteristic functions of X n, respectively.

For any E . 0, there is a bounded and continuous function ~KK such that

E(K(X 0)� ~KK(X 0))
2 ¼

ð
R

(K(x)� ~KK(x))2 f 0(x)dx , E:

Indeed, K(x) can be approximated uniformly by a continuous function on a compact interval,

and this interval can be chosen large enough so that the measure of its complement is

arbitrarily small. By using the Fourier inversion formula, we have

f n(x) ¼
1

2�

ð
R

e�i tx�n(t)dt, x 2 R, n ¼ 0, 1, . . . : (2:13)

Since X n ! X 0 a.s., we have X n ! X0 in distribution. Hence, �n(t) ! �0(t), t 2 R, and

ªn ! ª0, �n ! �0 and � n ! �0, where ªn, �n and � n, n > 0, are shift, skewness and scale

parameters of X n. Since supn>0j�n(t)j < exp f�CjtjÆg, where C depends on ª0, �0 and �0

only, it follows from (2.13) that f n(x) ! f 0(x) for x 2 R. Then, by Scheffé’s theorem (see,

for example, Billingsley 1995), ð
R

j f 0(x)� f n(x)jdx ! 0: (2:14)

By using (2.14) and since K and ~KK are bounded functions, we have that, for large enough n,
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E(K(X n)� ~KK(X n))
2 ¼

ð
R

(K(x)� ~KK(x))2 f n(x)dx

< C

ð
R

j f 0(x)� f n(x)jdxþ
ð
R

(K(x)� ~KK(x))2 f0(x)dx , E:

Then, by using the inequality (aþ bþ c)2 < 3a2 þ 3b2 þ 3c2 and the decomposition

K(X0)� K(X n) ¼ K(X 0)� ~KK(X0)þ ( ~KK(X 0)� ~KK(X n))þ ~KK(X n)� K(X n), we obtain that,

for large enough n,

E(K(X 0)� K(X n))
2 < 6Eþ 3E( ~KK(X0)� ~KK(X n))

2:

Since X n ! X0 a.s. and the function ~KK is bounded and continuous, the dominated con-

vergence theorem implies that E( ~KK(X 0)� ~KK(X n))
2 ! 0. The conclusion follows because

E . 0 is arbitrarily small. h

Corollary 2.1. Condition (1.4) in Theorem 1.1 always holds.

Proof. This follows from Lemma 2.1 since, by Kolmogorov’s three-series theorem,

X 1,1, l ! X 1 a.s. as l ! 1. h

In the following result, we extend Theorem 1.1 to two-sided moving averages with

innovations that are in the domain of attraction of an Æ-stable distribution, Æ 2 (0, 2), if K

is bounded and is twice differentiable with bounded derivatives. We will assume that the

innovations E j satisfy the assumption

L1(z) :¼ zÆP(E j < �z) � c�L(z), (2:15)

L2(z) :¼ zÆP(E j > z) � cþL(z), (2:16)

as z ! 1, where c�, cþ > 0, c� þ cþ . 0 and L is a slowly varying function at infinity (for

definition, see, for example, Bingham et al. 1987). The function L, for example, can behave

like a constant or a logarithm for large z. When 1 , Æ , 2, we will suppose that EE j ¼ 0. We

will also use the notation

X n, l1, l2 ¼
Xl2
j¼ l1

a jEn� j, l1 < l2,

SN , l1, l2 ¼
XN
n¼1

(K(X n, l1, l2 )� EK(X n, l1, l2 )), l1 < l2:

Theorem 2.2. Let

X n ¼
X1
j¼�1

a jEn� j, n > 1,
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be a moving average with a sequence of i.i.d. innovations fE jg satisfying assumptions above

with Æ 2 (0, 2), and let SN , N > 1, be the partial sums defined by (1.2). Suppose thatX1
j¼�1

ja jjÆ=2 L
1

ja jj

� �� �1=2

, 1, when Æ 6¼ 1, (2:17)

and

X1
j¼�1

ja jj1=2 L
1

ja jj

� �� �1=2

þ
X1
j¼�1

ja jj1=2
����ªþ H

1

ja jj

� �����1=2 , 1, when Æ ¼ 1, (2:18)

where H and ª are defined in (2.20) and (2.21) below, and that K in (1.2) is a bounded

function with its first two derivatives bounded. Then

lim
( l1, l2)!(�1,1)

lim sup
N!1

N�1 var(SN � SN , l1, l2 ) ¼ 0 (2:19)

and

N�1=2SN �!d N (0, � 2),

where

� 2 ¼ lim
N!1

N�1 var(SN ) ¼ lim
( l1, l2)!(�1,1)

lim
N!1

N�1 var(SN , l1, l2 ):

The function H and the constant ª in (2.18) of Theorem 2.2 are defined as

H(z) ¼
ð z
0

xL1(x)

1þ x2
dx�

ð z
0

xL2(x)

1þ x2
dx (2:20)

and

ª ¼
ð
R

x

1þ x2
þ sign(x)

ðjxj
0

2u2

(1þ u2)2
du

 !
G(dx), (2:21)

where G denotes the distribution function of E j. They appear in the representation of a

characteristic function of a random variable in the domain of attraction of a 1-stable random

variable (see Aaronson and Denker 1998). Observe also that H � 0 and ª ¼ 0 when E j (or its
distribution function G) is symmetric.

Remark 2.1. Conditions (2.17) and (2.18) are equivalent toX1
j¼�1

ja jjÆ=2 ~LL(1=ja jj)
� �1=2

, 1,

where
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~LL(z) ¼ L(z) if Æ 6¼ 1,

L(z)þ jH(z)þ ªj if Æ ¼ 1:

�
(2:22)

The function ~LL is slowly varying at infinity because the functions H (see Lemma 3 in

Aaronson and Denker 1998) and L are slowly varying at infinity.

Remark 2.2. When 1 , Æ , 2, suppose � ¼ EE j 6¼ 0 and
P

jja jj , 1 so that the process X n

is well defined. Theorem 2.2 continues to hold since one can replace K(x) by

K1(x) ¼ K(x� �
P

ja j).

3. Proofs

The following three elementary lemmas play an important role. The first lemma is implicit

in Hsing (1999) and the second and third lemmas amplify Lemma 3 in Hsing (1999). We

will use the notation f ( j) ¼ d j f =dx j for the jth derivative of a function f .

Lemma 3.1. Let X, Y be two random variables such that EX 2 , 1 and EY 2 , 1. Also let

fF ngn2Z be a monotone sequence of � -algebras, that is, for n1 < n2, either F n1 � F n2 or

F n1 � F n2 . Then, for all n, m 2 Z such that n 6¼ m, we have

E (E(X jF n)� E(X jF n�1))(E(Y jFm)� E(Y jF m�1))f g ¼ 0: (3:1)

Proof. Consider the case when F n1 � F n2 for n1 < n2 and take, for example, n , m.

Denote the left-hand side of (3.1) by I. Since the random variable E(X jF n)� E(X jF n�1) is

F n-measurable and n , m, it is also measurable with respect to F m�1 and Fm. Then, by the

definition of conditional expectation,

I ¼ E (E(X jF n)� E(X jF n�1))E(Y jFm)f g � E (E(X jF n)� E(X jF n�1))E(Y jF m�1)f g

¼ E (E(X jF n)� E(X jF n�1))Yf g � E (E(X jF n)� E(X jF n�1))Yf g ¼ 0: h

Lemma 3.2. Let g(x) ¼ EG(xþ X ), where x 2 R and X is an Æ-stable standard random

variable with Æ 2 (0, 2), scale parameter � . 0, skewness parameter � 2 [�1, 1] and shift

parameter � ¼ 0. If G is a bounded function, then g is infinitely differentiable and, for all

x 2 R and j ¼ 0, 1, . . . ,

jg( j)(x)j < Cj� � j if Æ 6¼ 1,

Cj� � j(1þ jln � j þ jln � j2) if Æ ¼ 1,

�
(3:2)

where the constant C j does not depend on � and �.

Proof. Relation (3.2) holds for j ¼ 0 since G is bounded. Now suppose j > 1. We have

X ¼ � Z, where Z is an Æ-stable random variable with scale parameter 1, skewness

parameter � and shift parameter � ¼ 0 when Æ 6¼ 1, and � ¼ �(2=�)ln � when Æ ¼ 1. Let

f (z) and �(z) be the density and characteristic functions of Z, respectively. By using the
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Fourier inversion formula and the integration by parts formula twice, we can express f ( j) as

in Hsing (1999):

f ( j)(z) ¼ (�i) j

2�

ð
R

e�i tz� j(t)dt, (3:3a)

f ( j)(z) ¼ � (�i) j

2�z2

ð
R

e�i tz�(2)
j (t)dt, (3:3b)

where � j(t) ¼ t j�(t), t 2 R.

When Æ ¼ 1, relation (3.3a) implies that j f ( j)(z)j < ~CC j for all z, where ~CC j does not

depend on � and �. By computing �(2)
j and using relation (3.3b), we can conclude that

j f ( j)(z)j < ~CC j(1þ jln� j þ jln � j2)z�2. Hence, when Æ ¼ 1,

j f ( j)(z)j < C j(1þ jln � j þ jln � j2)
1þ z2

, z 2 R: (3:4)

Similarly, in the case Æ 6¼ 1, one obtains

j f ( j)(z)j < C j

1þ z2
, z 2 R, (3:5)

where the constant C j does not depend on �.
Since, by (3.4) and (3.5), f ( j) 2 L1(R), we conclude as in Lemma 3 of Hsing (1999) that

g( j)(x) ¼ d j

dx j

ð
R

G(xþ � z) f (z)dz

¼ d j

dx j

ð
R

G(y) f (� �1(y� x))dy

¼
ð
R

G(y)
d j

dx j
f (� �1(y� x))
� �

dy

¼ (�1) j� � j

ð
R

G(xþ � z) f ( j)(z)dz, (3:6)

where in the last step we used the fact that
d j

dx j
( f (� �1(y� x))) ¼ (�1) j� � j f ( j)(� �1(y� x))

and a change of variables. Inequality (3.2) follows from (3.6) by using (3.4) when Æ ¼ 1 and

(3.5) when Æ 6¼ 1, since G is bounded. h

Lemma 3.3. Let h(x) ¼ EH(xþ X ), where x 2 R and X is a random variable. If H is

bounded and differentiable up to order r with its derivatives bounded, then for all x 2 R, all

random variables X and j ¼ 0, 1, 2, . . . , r,
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jh( j)(x)j < C j, (3:7)

where C j ¼ supx2R jH ( j)(x)j.

Proof. Let X be any random variable and FX denote its distribution function. If H is a

bounded and twice differentiable function with its first r derivatives bounded, then one can

show by using relation (16) in Lemma 3 of Hsing (1999) that, for j ¼ 0, 1, . . . , r,

h( j)(x) ¼
ð
R

H ( j)(xþ z)dFX (z):

Inequality (3.7) follows, since the functions H ( j) are bounded. h

Proof of Theorem 2.1. We will consider the case J ¼ 2 only. To show (2.9) with (2.10) and

(2.11), it is then enough to verify that, for all fixed b1, b2 2 R, the random variables

b1N
�1=2
1 S1,N1

þ b2N
�1=2
2 S2,N2

converge in distribution to a Gaussian law as N ! 1, whose

variance can be expressed as

lim
N!1

E b1
S1,N1

N
1=2
1

þ b2
S2,N2

N
1=2
2

 !2

¼ lim
( l1, l2)!(�1,1)

lim
N!1

E b1
S1,N1, l1, l2

N
1=2
1

þ b2
S2,N2, l1, l2

N
1=2
2

 !2

:

We will do this as in the proof of Theorem 1 in Hsing (1999), by arguing first that, for all

�1 < l1 < l2 < 1,

b1
S1,N1, l1, l2

N
1=2
1

þ b2
S2,N2, l1, l2

N
1=2
2

�!d N (0, � 2
l1, l2

) (3:8)

with

� 2
l1, l2

¼ lim
N!1

E b1
S1,N1, l1, l2

N
1=2
1

þ b2
S2,N2, l1, l2

N
1=2
2

 !2

, (3:9)

and then verifying that, for j ¼ 1, 2, the limit relation (2.8) holds.

To prove (3.8) with (3.9), suppose that n1 < n2 in (2.2) and assume for simplicity that

N j ¼ N=n j and EK j(X j,1, l1, l2 ) ¼ 0 for j ¼ 1, 2. Since N2 < N1, the sequence in (3.8) can

be written as

N
�1=2
2

XN2

n¼1

b1n
1=2
1

n
1=2
2

K1(X1,n, l1, l2 )þ b2K2(X2,n, l1, l2 )

 !
þ N

�1=2
1

XN1

n¼N2þ1

b1K1(X 1,n, l1, l2 ): (3:10)

Now consider the random variables X j1,n, l1, l2 and X j2,n9, l1, l2 in (2.4), where j1, j2 ¼ 1, . . . , J .
These are independent when n� n9 . n0 for some fixed large enough n0 because the

corresponding kernel functions a j1 (n� c j1 x) for c�1
j1
(n� l2) < x , c�1

j1
(n� l1 þ 1) and

a j2 (n9� c j2 x) for c�1
j2
(n9� l2) < x , c�1

j2
(n9� l1 þ 1) have disjoint supports (see Samor-

odnitsky and Taqqu 1994, Theorem 3.5.3). It follows, using the so-called ‘m-dependent

central limit theorem’, that each of the two terms in (3.10) converges in distribution to a

Gaussian law with the corresponding limiting variances. By summing the second term from
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N 92 to N1 where the difference N 92 � N2 is large enough but of fixed length, we observe that

these two terms are also asymptotically independent. This then implies the convergence (3.8)

with (3.9).

We show (2.8) with, for example, j ¼ 1. The proof below involves the random sequence

X 1,n,m1,m2
, n > 1, �1 < m1 < m2 < 1. Since

X 1,n,m1,m2f gn,m1,m2
¼d c

�1=Æ
1

ð n�m1þ1

n�m2

a1(n� x)M(dx)

( )
n,m1,m2

, (3:11)

after a change of variables, we can suppose without loss of generality that c1 ¼ 1 in (2.4). We

will also assume for simplicity that n1 ¼ 1, N1 ¼ N and use the notation a1 ¼ a, K1 ¼ K,

S1,N ¼ SN , X 1,n ¼ X n,

X 1,n,m1,m2
¼ X n,m1,m2

¼
ð n�m1þ1

n�m2

a(n� x)M(dx)

and

S1,N , l1, l2 ¼ SN , l1, l2 ¼
XN
n¼1

(K(X n, l1, l2 )� EK(X n, l1, l2 )), �1 < l1 < l2 < 1:

Recall that our goal is to establish

lim
( l1, l2)!(�1,1)

lim sup
N!1

N�1 var(SN � SN , l1, l2 ) ¼ 0: (3:12)

We will prove (3.12) for causal moving averages, non-causal moving averages and two-sided

moving averages separately.

Causal moving averages. We assume for simplicity that x0 ¼ 0 in Definition 2.1 of a

causal moving average X n, that is, a(x) ¼ 0 for x , 0. We may also suppose without loss of

generality that
Ð 1
0
ja(x)jÆ dx 6¼ 0. We need to establish (3.12), which now becomes

lim
l!1

lim sup
N!1

N�1 var(SN ,1,1 � SN ,1, l) ¼ 0: (3:13)

The proof uses ideas due to Hsing (1999). Let Fk�1, k 2 Z, be � -algebras generated by

the ‘causal’ random variables
Ð k
�1 f (x)M(dx), f 2 LÆ(R, dx). Then, for instance, X n,1, l

¼
Ð n
n� l

a(n� x)M(dx), l > 1, is measurable with respect F n�1. Using the relations

E(K(X n,1,1)jF n�1) ¼ K(X n,1,1),

E(K(X n,1,1)jF�1) ¼ EK(X n,1,1)

and, for any l > 1,

E(K(X n,1, l)jF n�1) ¼ K(X n,1, l),

E(K(X n,1, l)jF n�( lþ1)) ¼ EK(X n,1, l),

we can express
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SN ,1,1 ¼
XN
n¼1

(K(X n,1,1)� EK(X n,1,1))

and

SN ,1, l ¼
XN
n¼1

(K(X n,1, l)� EK(X n,1, l))

as telescoping sums,

SN ,1,1 ¼
XN
n¼1

X1
m¼1

E(K(X n,1,1)jF n�m)� E(K(X n,1,1)jF n�(mþ1))
� �

,

SN ,1, l ¼
XN
n¼1

Xl

m¼1

E(K(X n,1, l)jF n�m)� E(K(X n,1, l)jF n�(mþ1))
� �

:

We obtain

SN ,1,1 � SN ,1, l ¼
XN
n¼1

X1
m¼1

Un,m, l,

where

Un,m, l ¼ E(K(X n,1,1)jF n�m)� E(K(X n,1,1)jF n�(mþ1))
� �
� E(K(X n,1, l)jF n�m)� E(K(X n,1, l)jF n�(mþ1))
� �

1f1<m< lg: (3:14)

By Lemma 3.1, the random variables Un,m, l satisfy

cov(Un,m, l, Un9,m9, l) ¼ 0 unless n� m ¼ n9� m9:

By writing

E(SN ,1,1 � SN ,1, l)
2 < 3E

XN
n¼1

Un,1, l

 !2

þ3E
XN
n¼1

Xl

m¼2

Un,m, l

 !2

þ3E
XN
n¼1

X1
m¼ lþ1

Un,m, l

 !2

,

and then using the decorrelation of fUn,m, lg and the Cauchy–Schwarz inequality, we obtain

E(SN ,1,1 � SN ,1, l)
2 < 3QN ,1, l þ 3QN ,2, l þ 3QN ,3, l,

where
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QN ,1, l ¼
XN
n¼1

EU2
n,1, l,

QN ,2, l ¼
XN
n¼1

Xl

m¼2

Xl

m9¼2

(EU2
n,m, l)

1=2(EU2
n9,m9, l)

1=2,

QN ,3, l ¼
XN
n¼1

X1
m¼ lþ1

X1
m9¼ lþ1

(EU 2
n,m, l)

1=2(EU 2
n9,m9, l)

1=2,

with n9 ¼ n� mþ m9. One then needs to show that

lim
l!1

lim sup
N!1

N�1QN ,i, l ¼ 0, for i ¼ 1, 2, 3: (3:15)

We first prove (3.15) for i ¼ 1. We have

E(E(X jG)� E(Y jF ))2 < 2E(E(X jG))2 þ 2E(E(Y jF ))2 < 2E(E(X 2jG))þ 2E(E(Y 2jF ))

¼ 2(EX 2 þ EY 2):

Applying this inequality to (3.14) gives

N�1QN ,1, l < 4N�1
XN
n¼1

E(K(X n,1,1)� K(X n,1, l))
2 ¼ 4E(K(X 1,1,1)� K(X 1,1, l))

2:

Since, by Kolmogorov’s three-series theorem, X 1,1, l ! X1,1,1 a.s. as l ! 1, it follows from

Lemma 2.1 that E(K(X1,1,1)� K(X 1,1, l))
2 ! 0 and hence that (3.15) holds with i ¼ 1.

We now prove (3.15) for i ¼ 2, 3. Since the function a satisfies (2.7), it is enough to

show that

EU 2
n,m, l < C

ðm
m�1

ja(x)jÆ dx
� � ð1

l

ja(x)jÆ dx
� �

, for 2 < m < l, (3:16)

EU 2
n,m, l < C

ðm
m�1

ja(x)jÆ dx
� �

, for m > l þ 1: (3:17)

We will first establish (3.16). As in (2.6), we have X n,1,1 ¼ X n,1,m�1 þ X n,m,1 and X n,1, l

¼ X n,1,m�1 þ X n,m, l. Observe that in the decomposition of X n,1,1, for example, the terms

X n,1,m�1 and X n,m,1 are respectively independent and measurable with respect to the � -
algebra F n�m. Hence setting

km(x) ¼ EK(xþ X n,1,m�1), (3:18)

we obtain E(K(X n,1,1)jF n�m) ¼ km(X n,m,1) and E(K(X n,1, l)jF n�m) ¼ km(X n,m, l). In view

of (3.14), we can then write

Un,m, l ¼ km(X n,m,1)� kmþ1(X n,mþ1,1)� km(X n,m, l)� kmþ1(X n,mþ1, l)ð Þ: (3:19)

Now denote the distribution functions corresponding to X n,m1,m2
and X n,m,m by Fm1,m2

and

Fm, respectively. Since

Central limit theorems for partial sums of bounded functionals 845



X n,m,1 ¼ X n,m,m þ X n,mþ1, l þ X n, lþ1,1,

X n,mþ1,1 ¼ X n,mþ1, l þ X n, lþ1,1,

X n,m, l ¼ X n,m,m þ X n,mþ1, l,

we obtain from (3.19) that

EU 2
n,m, l ¼

ð
R

ð
R

ð
R

f(km(uþ vþ w)� kmþ1(vþ w))

� (km(uþ v)� kmþ1(v))g2 dFm(u)dFmþ1, l(v)dFlþ1,1(w):

By using the relation kmþ1(z) ¼ EK(zþ X n,1,m) ¼ EK(zþ X n,1,m�1 þ X n,m,m) ¼
Ð
km(z þ

x)dFm(x), we obtain further that

EU 2
n,m, l ¼

ð
R

ð
R

ð
R

ð
R

D(u, v, w, x)dFm(x)

� �2

dFm(u)dFmþ1, l(v)dFlþ1,1(w)

<

ð
R

ð
R

ð
R

ð
R

D(u, v, w, x)2 dFm(u)dFmþ1, l(v)dFlþ1,1(w)dFm(x), (3:20)

where

D(u, v, w, x) ¼ km(uþ vþ w)� km(vþ wþ x)� km(uþ v)� km(vþ x)ð Þ:

Observe now that º1,m�1 ¼ (
Ð m�1

0
ja(x)jÆ dx)1=Æ is the scale parameter of the Æ-stable random

variables X n,1,m�1. Since º1,m�1, m > 2, is uniformly bounded away from 0 and from infinity,

relation (3.2) of Lemma 3.2 implies that the functions km(x) have their first two derivatives

bounded uniformly for m > 2 and x 2 R. Then, by the mean value theorem,

D(u, v, w, x)2 < Cminf1, w2, (u� x)2, (u� x)2w2g: (3:21)

To show, for example, that D(u, v, w, x)2 < Cw2, write D(u, v, w, x) ¼ g2(w)� g2(0) with

g2(w) ¼ km(uþ vþ w)� km(vþ wþ x) and apply the mean value theorem using the

uniform boundedness of the derivatives k(1)m (x). To obtain D(u, v, w, x)2 < C(u� x)2, write

D(u, v, w, x) ¼ g1(u)� g1(x) with g1(z) ¼ km(zþ vþ w)� km(zþ v) and apply the mean

value theorem, and to obtain D(u, v, w, x)2 < C(u� x)2w2, use the previous mean value

relationship D(u, v, w, x) ¼ g
(1)
1 (z�)(u� x) and again apply the mean value theorem to

g
(1)
1 (z�) ¼ k(1)m (z� þ vþ w)� k(1)m (z� þ v). Then, by using (3.20) and (3.21), we obtain that
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EU 2
n,m, l < C

ðð
ju�xj<1

(u� x)2 dFm(u)dFm(x)

 ! ð
jwj<1

w2 dFlþ1,1(w)

 !

þ C

ðð
ju�xj.1

dFm(u)dFm(x)

 ! ð
jwj<1

w2 dFlþ1,1(w)

 !

þ C

ðð
ju�xj<1

(u� x)2 dFm(u)dFm(x)

 ! ð
jwj.1

dFlþ1,1(w)

 !

þ C

ðð
ju�xj.1

dFm(u)dFm(x)

 ! ð
jwj.1

dFlþ1,1(w)

 !
: (3:22)

We will now use the fact that, for an Æ-stable standard random variable Z,

P(ºjZj . 1) < CºÆ and E((ºZ)21fºjZj<1g) < CºÆ for any º . 0, where the constant C does

not depend on the skewness parameter of Z. These bounds follow from the asymptotic

behaviour of the tails P(jZj . z) � cz�Æ as z ! 1 (see, for example, Samorodnitsky and

Taqqu 1994, p. 16) and the relation

EX 21fjX j<x0g <
Ð x0
0
2xP(jX j . x)dx which yields E((ºZ)21fºjZj<1g) ¼

º2EZ21fjZj<1=ºg < º2CºÆ�2 ¼ CºÆ. Since ºm Z1 has the distribution Fm with ºÆm ¼Ð m
m�1

ja(x)jÆ dx and º lþ1,1Z2 has the distribution Flþ1,1 with ºÆlþ1,1 ¼
Ð1
l
ja(x)jÆ dx, where

Z1 and Z2 are Æ-stable standard random variables (with perhaps different skewness

parameters), we conclude that each of the four terms in (3.22) is bounded by CºÆmº
Æ
lþ1,1 and

hence that the bound (3.16) holds. One may prove the bound (3.17) in a similar (in fact,

simpler) manner.

Non-causal moving averages. Assuming for simplicity that x0 ¼ 0 in Definition 2.1 for a

non-causal moving average X n, we have X n ¼
Ð1
n

a(n� x)M(dx). We need to prove that

lim
l!�1

lim sup
N!1

N�1 var(SN ,�1,0 � SN , l,0) ¼ 0, (3:23)

where

SN ,�1,0 ¼
XN
n¼1

(K(X n,�1,0)� EK(X n,�1,0))

SN , l,0 ¼
XN
n¼1

(K(X n, l,0)� EK(X n, l,0)):

We will show that the proof of (3.23) can be reduced to that of (3.13). While

(X n,�1,0, X n, l,0, l < 0)n¼1,...,N does not have the same distribution as

(X N�nþ1,�1,0, X N�nþ1, l,0, l < 0)n¼1,...,N , one has, for fixed N,
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SN ,�1,0 ¼
XN
n¼1

(K(X N�nþ1,�1,0)� EK(X N�nþ1,�1,0)) (3:24)

and

SN , l,0 ¼
XN
n¼1

(K(X N�nþ1, l,0)� EK(X N�nþ1, l,0)): (3:25)

Now, for fixed N, by making the change of variables N þ 1� x ¼ y below,

X N�nþ1,�1,0, X N�nþ1, l,0, l < 0ð Þn¼1,...,N

¼
ð1
N�nþ1

a(N � nþ 1� x)M(dx),

ðN�nþ2� l

N�nþ1

a(N � nþ 1� x)M(dx), l < 0

 !
n¼1,...,N

¼ �
ð n
�1

a(y� n)M(d(N þ 1� y)), �
ð n
nþ l�1

a(y� n)M(d(N þ 1� y)), l < 0

� �
n¼1,...,N

¼d
ð n
�1

~aa(n� y) ~MM(dy),

ð n
nþ l�1

~aa(n� y) ~MM(dy), l < 0

� �
n¼1,...,N

¼ ~XX n,1,1, ~XX n,1,� lþ1, l < 0
� �

n¼1,...,N ,

where ~MM is an Æ-stable random measure with the Lebesgue control measure and the

skewness intensity �, ~aa(z) ¼ a(�z) for z 2 R and ~XX n,m1,m2
¼
Ð n�m1þ1

n�m2
~aa(n� y) ~MM(dy),

�1 < m1 < m2 < 1. Then, by using (3.24) and (3.25), we obtain that, for fixed N,

(SN ,�1,0, SN , l,0) ¼d ( ~SSN ,1,1, ~SSN ,1,� lþ1) with ~SSN ,m1,m2
¼
PN

n¼1(K(
~XX n,m1,m2

)� EK( ~XX n,m1,m2
))

and hence

N�1 var(SN ,�1,0 � SN , l,0) ¼ N�1 var( ~SSN ,1,1 � ~SSN ,1,� lþ1):

The convergence (3.23) then follows from (3.13) since ~aa satisfies condition (2.7) and ~XX is

causal.

Two-sided moving averages. We need to prove (3.12) for X n ¼
Ð1
�1 a(n� x)M(dx) and

for a function K which is twice differentiable with bounded derivatives. As in the case of

causal moving averages, we can write

SN ¼
XN
n¼1

X1
m¼�1

E(K(X n)jF n�m)� E(K(X n)jF n�(mþ1))
� �

,

SN , l1, l2 ¼
XN
n¼1

Xl2
m¼ l1

E(K(X n, l1, l2 )jF n�m)� E(K(X n, l1, l2 )jF n�(mþ1))
� �

and hence SN � SN , l1, l2 ¼
PN

n¼1

P1
m¼�1Un,m, l1, l2 , where the random variables
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Un,m, l1, l2 ¼ E(K(X n)jF n�m)� E(K(X n)jF n�(mþ1))
� �
� E(K(X n, l1, l2 )jF n�m)� E(K(X n, l1, l2 )jF n�(mþ1))
� �

1f l1<m< l2g (3:26)

satisfy cov(Un,m, l1, l2 , Un9,m9, l1, l2 ) ¼ 0 unless n� m ¼ n9� m9. Then E(SN � SN , l1, l2 )
2 <

3QN ,1, l1, l2 þ 3QN ,2, l1, l2 , where

QN ,1, l1, l2 ¼
XN
n¼1

Xl2
m¼ l1

Xl2
m9¼ l1

(EU2
n,m, l1, l2

)1=2(EU 2
n9,m9, l1, l2

)1=2,

QN ,2, l1, l2 ¼
XN
n¼1

Xl1�1

m¼�1

Xl1�1

m9¼�1
þ
X1

m¼ l2þ1

X1
m9¼ l2þ1

0@ 1A(EU2
n,m, l1, l2

)1=2(EU 2
n9,m9, l1, l2

)1=2

with n9 ¼ n� mþ m9, and one needs to show that

lim
( l1, l2)!(�1,1)

lim sup
N!1

N�1QN ,i, l1, l2 ¼ 0, for i ¼ 1, 2: (3:27)

The convergence (3.27) will follow from the bounds

EU 2
n,m, l1, l2

< C

ðm
m�1

ja(x)jÆ dx
� � ð l1�1

�1
ja(x)jÆ dxþ

ð1
l2

ja(x)jÆ dx
 !

, for l1 < m < l2,

(3:28)

EU 2
n,m, l1, l2

< C

ðm
m�1

ja(x)jÆ dx
� �

, for m < l1 � 1 or m > l2 þ 1: (3:29)

We will first prove (3.28). Setting

km, l1 (z) ¼ EK(zþ X n, l1,m�1), (3:30)

we can write E(K(X n, l1, l2 )jF n�m) ¼ km, l1 (X n,m, l2 ) and

E(K(X n)jF n�m) ¼ EK(zþ X n,�1,m�1)jz¼X n,m,1

¼ EK(zþ X n,�1, l1�1 þ X n, l1,m�1)jz¼X n,m,1

¼
ð
R

km, l1 (zþ y)dF�1, l1�1(y) jz¼X n,m,1

and hence, in view of (3.26),

Un,m, l1, l2 ¼
ð
R

km, l1 (zþ y)dF�1, l1�1(y) jz¼X n,m,1
�
ð
R

kmþ1, l1 (zþ y)dF�1, l1�1(y) jz¼X n,mþ1,1

� km, l1 (X n,m, l2 )� kmþ1, l1 (X n,mþ1, l2 )ð Þ:

Then, by writing, as in the causal case,
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X n,m,1 ¼ X n,m,m þ X n,mþ1, l2 þ X n, l2þ1,1,

X n,mþ1,1 ¼ X n,mþ1, l2 þ X n, l2þ1,1,

X n,m, l2 ¼ X n,m,m þ X n,mþ1, l2 ,

and by using the relation kmþ1, l1 (z) ¼
Ð
km, l1 (zþ x)dFm(x) and the Cauchy–Schwarz

inequality, we obtain that

EU 2
n,m, l1, l2

¼
ð
R

ð
R

ð
R

ð
R

ð
R

D(u, v, w, x, y)dF�1, l1�1(y)dFm(x)

� �2

3 dFm(u)dFmþ1, l2 (v)dFl2þ1,1(w)

<

ð
R

. . .

ð
R

D(u, v, w, x, y)2 dFm(u)dFmþ1, l2 (v)dFl2þ1,1(w)dFm(x)dF�1, l1�1(y),

(3:31)

where

D(u, v, w, x, y) ¼ km, l1 (uþ vþ wþ y)� km, l1 (vþ wþ xþ y)

� km, l1 (uþ v)� km, l1 (vþ x)ð Þ:

By assumption on K and by using (3.7) in Lemma 3.3, we obtain that the functions km, l1 (x)

have their first two derivatives bounded uniformly for m, l1 2 Z and x 2 R. Then, as in (3.21)

with w replaced by wþ y, we obtain that

D(u, v, w, x, y)2 < Cminf1, (wþ y)2, (u� x)2, (u� x)2(wþ y)2g

and hence, by (3.31),

EU2
n,m, l1, l2

< C

ðð
ju�xj<1

(u� x)2 dFm(u)dFm(x)

 !

3

ðð
jwþ yj<1

(wþ y)2 dFl2þ1,1(w)dF�1, l1�1(y)

 !

þ C

ðð
ju�xj.1

dFm(u)dFm(x)

 ! ðð
jwþ yj<1

(wþ y)2 dFl2þ1,1(w)dF�1, l1�1(y)

 !

þ C

ðð
ju�xj<1

(u� x)2 dFm(u)dFm(x)

 ! ðð
jwþ yj.1

dFl2þ1,1(w)dF�1, l1�1(y)

 !

þ C

ðð
ju�xj.1

dFm(u)dFm(x)

 ! ðð
jwþ yj.1

dFl2þ1,1(w)dF�1, l1�1(y)

 !
: (3:32)
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Since º�1, l1�1Z1 has the distribution F�1, l1�1 with ºÆ�1, l1�1 ¼
Ð l1�1

�1 ja(x)jÆ dx, º l2þ1,1Z2

has the distribution Fl2þ1,1 with ºÆl2þ1,1 ¼
Ð1
l2
ja(x)jÆ dx and ºm Z3 has the distribution Fm

with ºÆm ¼
Ð m
m�1

ja(x)jÆ dx, where Z1, Z2 and Z3 are Æ-stable standard random variables (with

perhaps different skewness parameters), we conclude as in the case of (3.22) that each of the

four terms in (3.32) is bounded by CºÆm(º
Æ
�1, l1�1 þ ºÆl2þ1,1) and hence that the bound (3.28)

holds. One can prove the bound (3.29) in a similar way. h

Remark 3.1. The proof for two-sided moving averages does not apply to partial sums with

any bounded function K because the scale parameters of Æ-stable random variables

X n, l1,m�1 ¼
ð n� l1þ1

n�mþ1

a(n� x)M(dx),

namely, º l1,m�1 ¼ (
Ð m�1

l1�1
ja(x)jÆ dx)1=Æ, are not bounded away from zero uniformly in m and

l1, since º l1,m�1 ! 0 as l1 ! �1 and m ! �1. Hence, the first and second derivatives of

the functions km, l1 (x) in (3.30) are not necessarily bounded uniformly in m and l1 (see

Lemma 3.2, which involves a scale parameter � . 0). Whether Theorem 2.1 is valid for two-

sided moving averages with any bounded functions K j is still an open question.

Proof of Theorem 2.2. Observe first that the moving average X n is well defined since, by

assumptions (2.17) and (2.18),
P

jja jj� , 1 for some 0 , � , minf1, Æg and hence

EjX nj� <
P

jjc jj�EjEn� jj� ¼ EjE1j�
P

jjc jj� , 1. As in the proof of Theorem 2.1, it is

enough to show the convergence (2.19). Let Fk , k 2 Z, be � -algebras generated by

innovations Ei, i < k. (This notation corresponds to that used in the continuous case with

Ei ¼
Ð iþ1

i
M(dx).) We set X n,m1,m2

¼
P

m1< j<m2
a jEn� j. Then, by proceeding as in the proof of

Theorem 2.1 for two-sided moving averages, it is enough to prove (3.27), which will follow

here (compare with (3.28) and (3.29)) from the bounds

EU2
n,m, l1, l2

< CjamjÆ ~LL
1

jamj

� � Xl1�1

j¼�1
þ
X1
j¼ l2þ1

0@ 1Aja jjÆ ~LL
1

ja jj

� �
, for l1 < m < l2, (3:33)

EU2
n,m, l1, l2

< CjamjÆ ~LL
1

jamj

� �
, for m < l1 � 1 or m > l2 þ 1, (3:34)

where ~LL is defined in (2.22).

To show (3.33), observe that we can bound EU 2
n,m, l1, l2

as in (3.32) and hence it is enough

to prove that there is a constant C such that, for every �1 < m1 < m2 < 1,

P

���� Xm2

j¼m1

b jE j

���� . 1

 !
< C

Xm2

j¼m1

jb jjÆ ~LL
1

jb jj

� �
, (3:35)

E

���� Xm2

j¼m1

b jE j

����21fj�m2
j¼m1

b jE jj,1g

 !
< C

Xm2

j¼m1

jb jjÆ ~LL
1

jb jj

� �
, (3:36)

where fb jg satisfies
P

jjb jjÆ ~LL(1=jb jj) , 1. For example,
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ðð
jwþ yj.1

dFl2þ1,1(w)dF�1, l1�1(y) ¼ P

���� Xl1�1

j¼�1
a jE9n� j þ

X1
j¼ l2þ1

a jE 0n� j

���� . 1

0@ 1A
¼ P

���� X1
j¼�1

b jE j

���� . 1

 !
,

where E9, E 0 are independent copies of the sequence E, and b j ¼ a j for �1 , j < l1 � 1 and

l2 þ 1 < j , 1 and 0 otherwise.

Consider inequality (3.35) first. By using

P(jZj > x) <
x

2

ð2=x
�2=x

(1� EeiŁZ)dŁ, x . 0,

(Billingsley 1995, p. 350), we obtain that

P

���� Xm2

j¼m1

b jE j

���� . 1

 !
< C

ð2
�2

����1� EeiŁ�
m2
j¼m1

b jE j

����dŁ
¼ C

ð2
�2

����1� Ym2

j¼m1

EeiŁb jE1

����dŁ < C
Xm2

j¼m1

ð2
�2

����1� EeiŁb jE1

����dŁ, (3:37)

by applying the inequality j1�
Qm2

j¼m1
c jj <

Pm2

j¼m1
j1� c jj valid for jc jj < 1.

Consider first the case Æ 6¼ 1. By using (2.15), (2.16) and Ibragimov and Linnik (1971,

Theorem 2.6.5), there exist c . 0, � 2 [�1, 1] and a function h(u) ¼ h1(u)þ ih2(u) with

h(u) ! 1, as u ! 0, such that

E expfiuE1g ¼ exp �cjujÆ eLL 1

juj

� �
1� i� sign(u) tan

Æ�

2

� �
h(u)

( )

¼ exp �cjujÆ eLL 1

juj

� �
h1(u)þ � sign(u) tan

Æ�

2
h2(u)

� �(

þ icjujÆ ~LL 1

juj

� �
� sign(u) tan

Æ�

2
h1(u)� h2(u)

� �)
,

where ~LL(z) ¼ L(z). Then, by using the fact that h1(u)þ � sign(u) tan(Æ�=2)h2(u) ! 1, as

u ! 0, and the inequalities j1� c1c2j < j1� c1j þ j1� c2j for jc1j, jc2j < 1, j1� e�xj < x

for x . 0, and j1� eixj < jxj for x 2 R, we conclude that����1� EeiuE1
���� < CjujÆ ~LL 1

juj

� �
, (3:38)

for small enough u. We may suppose without loss of generality that (3.38) holds for all u.

Indeed, since the function ~LL(z) ¼ L(z) need not be defined around z ¼ 0 (see (2.15) and

(2.16)), we can define it as
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z�Æ ~LL(z) � 1, (3:39)

as z ! 0. With this non-restricting assumption in mind, by observing that the the left-hand

side of (3.38) is bounded by 2 and by increasing C, we obtain that the bound (3.38) holds for

all u.

For Æ ¼ 1, by using Aaronson and Denker (1998, Theorem 2), we can write

E expfiuE1g ¼ exp �cjujL 1

juj

� �
1� i

2�

c
C sign(u)

� �
h(u)þ iu ªþ H

1

juj

� �� �( )

¼ exp �cjujL 1

juj

� �
h1(u)þ

2�

c
C sign(u)h2(u)

� �(

þ icjujL 1

juj

� �
2�

c
C sign(u)h1(u)� h2(u)

� �
þ iu ªþ H

1

juj

� �� �)
,

where c, C, � are constants, h(u) ¼ h1(u)þ ih2(u) ! 1 as u ! 0, and the function H and

the constant ª are defined by (2.20) and (2.21). Then, by arguing as in the case Æ 6¼ 1, we

can conclude that (3.38) holds for small enough u with ~LL(z) ¼ L(z)þ jªþ H(z)j. Recall

from Remark 2.1 that ~LL is a slowly varying function at infinity. By choosing L(z) such that

z�1L(z) � 1� jªþ H(z)jz�1 as z ! 0, we can suppose without loss of generality that (3.39)

holds and hence that (3.38) holds for all u.

By using (3.38), we obtain from (3.37) that

P

���� Xm2

j¼m1

b jE j

���� . 1

 !
< C

Xm2

j¼m1

jb jjÆ
ð2
�2

jŁjÆ ~LL 1

jb jŁj

� �
dŁ:

The bound (3.35) follows since, by Potter’s bounds (see, for example, Bingham et al. 1987),
~LL(1=jŁb jj)( ~LL(1=jb jj))�1 is bounded by CjŁj�E with any E . 0, uniformly for j and jŁj < 2.

To prove inequality (3.36), observe that EX 21f0,jX j,1g <
Ð 1
0
2xP(jX j . x)dx and hence

that

E

���� Xm2

j¼m1

b jE j

����21fj�m2
j¼m1

b jE jj,1g

 !
<

ð1
0

2xP

���� Xm2

j¼m1

b jE j

���� . x

 !
dx: (3:40)

By arguing as above, we can conclude that

P

���� Xm2

j¼m1

b jE j

���� . x

 !
< Cx

Xm2

j¼m1

jb jjÆ
ð2=x
�2=x

jŁjÆ ~LL 1

jb jŁj

� �
dŁ

< Cx
Xm2

j¼m1

jb jj�1

ð2jb jj=x

�2jb jj=x
j	jÆ ~LL 1

j	j

� �
d	:

Then, by using Karamata’s theorem for the case 2jb jj , x and by making the change of

variables z ¼ 1=	, we obtain that

Central limit theorems for partial sums of bounded functionals 853



P

���� Xm2

j¼m1

b jE j

���� . x

 !
< Cx

Xm2

j¼m1

jb jj�1 jb jj
x

� �Æþ1

~LL
x

jb jj

� �
1f2jb jj,xg

þ Cx
Xm2

j¼m1

jb jj�1

ð1
x=(2jb jj)

z�2z�Æ ~LL(z)dz1f2jb jj>xg

< C9
Xm2

j¼m1

jb jjÆx�Æ ~LL
x

jb jj

� �
1f2jb jj,xg þ C9

Xm2

j¼m1

1f2jb jj>xg: (3:41)

The last term in (3.41) follows from (3.39), yielding the boundð1
x=(2jb jj)

z�2z�Æ ~LL(z)dz < C1

ð1
x=(2jb jj)

z�2 dz < C2

jb jj
x

:

By substituting the bound (3.41) into (3.40) and by using Karamata’s theorem with a change

of variables as above, we obtain that

E

���� Xm2

j¼m1

b jE j

����21 j�m2
j¼m1

b jE jj,1
� � !

< C
Xm2

j¼m1

ð2jb jj

0

x dxþ jb jjÆ
ð1
2jb jj

x1�Æ ~LL
x

jb jj

� �
dx

( )

< C9
Xm2

j¼m1

jb jj2 þ jb jj2
ð1=jb jj

2

y1�Æ ~LL(y)dy

( )

< C 0
Xm2

j¼m1

jb jj2 þ jb jjÆ ~LL
1

jb jj

� �� �

< C
Xm2

j¼m1

jb jjÆ ~LL
1

jb jj

� �
:

Finally, the bound (3.34) can be proved in a similar way by using (3.35) and (3.36). h
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