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The asymptotic normality of a class of estimators for extreme quantiles is established under mild

structural conditions on the observed stationary �-mixing time series. Consistent estimators of the

asymptotic variance are introduced, which render possible the construction of asymptotic confidence

intervals for the extreme quantiles. Moreover, it is shown that many well-known time series models

satisfy our conditions. The theory is then applied to a time series of stock index returns. Finally, the

finite-sample behaviour of the proposed confidence intervals is examined in a simulation study. It turns

out that for most time series models under consideration the actual coverage probability is pretty close

to the nominal level if the sample fraction used for estimation is chosen appropriately.
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1. Introduction

Let Si, 0 < i < n, be a sequence of consecutive share prices. In recent years the Value at

Risk (VaR) – defined as a large quantile of the negative log-returns X i ¼ �log(Si=Si�1),

which are assumed stationary – has become a popular measure of the risk of an investment

in these shares. It has long been known that the classical Gaussian models for log-returns

(such as the famous Black–Scholes model) underestimate the risk of large losses and hence

are not suitable as a basis for VaR estimation. As an alternative, it has been proposed to

model series of log-returns by independent random variables with heavy tails (see, for

example, Jansen and de Vries 1991; Longin 1996). To take into account the serial

dependence which is usually observed in time series of log-returns, a large variety of more

sophisticated autoregressive conditional heteroscedastic (ARCH) type models have been

introduced since the seminal paper by Engle (1982).

Though some of these models describe real time series of log-returns reasonably well for

specific purposes, none of them is able to capture all so-called ‘stylized facts’, that is,

features common to most of these financial data sets; see Mikosch and Stărică (2002) for a

comprehensive discussion. In particular, it is questionable whether such a model can well

describe both the central part of the distribution and its tails. Therefore, it has recently been

suggested that one should ‘let the tails speak for themselves’, that is, use merely the largest

negative log-returns for the estimation of the VaR.
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Statistical procedures of this type are provided by extreme value theory under rather mild

structural assumptions on the tail of the marginal distributions of log-returns. Unfortunately,

almost all results on the asymptotic behaviour of extreme quantile estimators available

hitherto are restricted to independent observations. For financial time series, however, it is

rarely realistic to assume independence of consecutive observations. Thus the main aim of

the present paper is to investigate the asymptotic behaviour of quantile estimators based on

large observations under mild assumptions on the serial dependence.

Of course, the results are relevant not only to VaR estimation but also to the tail analysis

of any real-life time series if the assumption of independence seems inappropriate. For

example, the interarrival times and package lengths in teletraffic networks often exhibit

heavy tails and serial dependence as well.

Denote the common distribution function (df) of the stationary time series under

consideration, X i, i 2 N, by F. The basic assumption in the extreme value approach is

F n(anxþ bn)! G(x), x 2 R, (1)

for some an . 0, bn 2 R, where G is a non-degenerate limit df. It is well known that then G

must then be one of the extreme value dfs (up to a scale and location parameter)

Gª(x) ¼ exp(�(1þ ªx)�1=ª), 1þ ªx > 0, ª 2 R,

which is interpreted as exp(e�x) for ª ¼ 0. For the sake of brevity we write F 2 D(Gª). If the

X i are independent (or weakly dependent) then (1) is equivalent to the weak convergence of

the df of the standardized maximum of n observations to G. In general, though, the

maximum of a stationary time series is stochastically smaller than the maximum of an

independent and identically distributed (i.i.d.) sequence with the same marginal df, since the

serial dependence leads to a clustering of large values. Indeed, under mild conditions on the

dependence structure, F 2 D(Gª) implies

L a�1
n max

1<i<n
X i � bn

� �� �
! GŁ

ª weakly (2)

for some Ł 2 [0, 1]; see Leadbetter et al. (1983, Section 3.7), for details. Typically the so-

called extremal index Ł can be interpreted as the reciprocal value of the asymptotic mean

cluster size.

Note that, by (1) and (2),

P a�1
n max

1<i<n
X i � bn

� �
< x

� �
� P a�1

n max
1<i<[nŁ]

~XX i � bn) < x

� ��
as n!1, where ~XX i, i 2 N, is an i.i.d. sequence with marginal df F. (Here cn � dn means

cn=dn ! 1, and [x] denotes the largest integer smaller than or equal to x.) Hence, as far as

the behaviour of the maximum is concerned, the serial dependence between large

observations reduces the effective sample size by the factor Ł. Since intuitively a cluster

of large observations contains less information about F than the same number of independent

large observations, one will also expect an influence of the serial dependence on the precision

of statistical extreme value procedures. More precisely, the dependence will lead to an

increase in the estimation error. Thus it is important not to use the classical confidence
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intervals developed for i.i.d. settings if the serial dependence is not negligible. If, for

example, the VaR of a financial investment is to be estimated, then an upper confidence

bound obtained from the i.i.d. theory will often indicate a risk much lower than the actual

one.

To be more concrete, let F�1(1� pn) be the extreme quantile that is to be estimated. We

are mainly interested in the case npn ¼ O(1), although our main result also holds if

npn !1 not too fast.

Only estimators based, say, on the k n þ 1 largest order statistics max1<i<n X i ¼
X n:n > X n�1:n > . . . > X n�k n:n are considered. In order to keep the paper to manageable

proportions, we will focus on heavy-tailed distributions, ª . 0, which is the most important

case in financial applications. However, we will also indicate how to construct and analyse

similar estimators in the general case ª 2 R.

To construct extreme quantile estimators, recall that the basic assumption F 2 D(Gª)

with ª . 0 is equivalent to

R(º, t) :¼ F�1(1� ºt)

F�1(1� º)
� t�ª ! 0, t . 0, (3)

as º#0. Reading this convergence as an approximation for small º, one obtains

xpn :¼ F�1(1� pn) � F�1 1� k n

n

� �
npn

k n

� ��ª

� X n�k n:n

npn

k n

� ��ª̂ªn

¼: x̂x(k n)
pn
¼ x̂x pn , (4)

where ª̂ªn denotes a suitable estimator of the extreme value index ª depending only on the

k n þ 1 largest order statistics. To justify the first approximation k n=n has to be small, while

on the other hand k n should be sufficiently large that the empirical quantile X n�k n:n

estimates the intermediate quantile F�1(1� k n=n) well. Thus in what follows we assume that

the natural numbers k n form an intermediate sequence, that is,

k n !1, k n=n! 0: (5)

The extreme value index ª may be estimated, for example, by the Hill estimator

ª̂ª(H)
n ¼

1

k n

Xk n

i¼1

log
X n�iþ1:n

X n�k n:n

:

The consistency of the Hill estimator was proved in quite general time series models by

Hsing (1991) and Resnick and Stărică (1998). Resnick and Stărică (1997) examined its

asymptotic normality in specific models, while Novak (2002) proved the asymptotic

normality of a closely related estimator under suitable mixing conditions. Rootzén et al.

(1992) established asymptotic normality for the quantile estimator x̂x pn based on the Hill
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estimator under a rather complex set of conditions; among other things, they assumed that the

von Mises condition is met, npn ! 0, and the time series is strongly mixing.

In contrast, Drees (2000) established the asymptotic normality of a much broader class of

estimators for the extreme value index, including the maximum likelihood estimator, studied

by Smith (1987) in an i.i.d. setting, the moment estimator proposed by Dekkers et al.

(1989) and the Pickands (1975) estimator. The main mathematical tool underlying these

asymptotic results is a weighted approximation of the tail empirical quantile function (qf).

This functional limit theorem will also enable us to derive the asymptotic normality of the

quantile estimators x̂x pn based on the general class of estimators ª̂ªn.

In the general case ª 2 R, a necessary and sufficient condition for F 2 D(Gª) is

F�1(1� ºt)� F�1(1� º)

a(º)
! t�ª � 1

ª
, t . 0, (6)

as º # 0 for some normalizing function a : (0, 1)! (0, 1); for ª ¼ 0 the right-hand side is

interpreted as �log t. Hence the following extreme quantile estimator can be motivated in a

similar fashion to x̂x pn above:

~xxpn :¼ X n�k n:n þ âa(k n=n)
(npn=k n)

�ª̂ªn � 1

ª̂ªn

: (7)

Here âa(k n=n) denotes a suitable estimator for a(k n=n), for example

âa(k n=n) :¼ ª̂ªn

2ª̂ªn � 1
X n�[k n=2]:n � X n�k n:n

� �
, (8)

which is obtained by choosing º ¼ k n=n and t ¼ 1
2

in (6) and replacing the unknown

quantiles by their respective empirical counterparts. In an i.i.d. setting, the limit distribution

of particular estimators of this type was established by Dekkers et al. (1989) and de Haan and

Rootzén (1993), among others. However, no general approach to constructing estimators of a

and hence of extreme quantiles, comparable to the broad class of statistical tail functionals

for ª introduced in Drees (1998a), has hitherto been proposed.

It should be emphasized that within a parametric model for the dependence structure, one

may often construct more efficient estimators for extreme quantiles; see Section 3 for an

example. However, these estimators will be very sensitive to deviations from the parametric

model, while the estimators under consideration in the present paper yield reasonable results

under mild structural assumptions.

The paper is organized as follows. In Section 2, first the approximation result for the tail

empirical qf of absolutely regular time series established in Drees (2000) is specialized to

the case ª . 0. Here we impose conditions which are more restrictive but often more easily

checked. From this we derive the asymptotic normality of quantile estimators of type (4).

Estimators of the asymptotic variance and resulting confidence intervals are also discussed.

As examples of time series models satisfying our conditions, a particular class of nonlinear

time series, including ARCH(1) models, and linear time series are considered in Section 3.

Then the theory is applied to a time series of log-returns of the Nasdaq Composite index. It

turns out that the classical i.i.d. theory leads to confidence intervals that are much shorter

than the new confidence intervals that take into account the serial dependence.
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In Section 5 the finite-sample performance of the statistical procedures is examined in a

simulation study for several time series models with heavy tails. Again the confidence

intervals proposed in the present paper usually have coverage probabilities that are much

closer to the nominal level than those of classical confidence intervals.

Finally, we establish the asymptotic normality of a broad class of estimators for ª and a

for general ª 2 R and conclude the asymptotic normality of the resulting quantile

estimators of type (7).

2. Asymptotics for ª . 0

In the following we assume that the sequence X i, i 2 N, is strictly stationary, that is,

L((X i)i2N) ¼ L((X iþn)i2N) for all n 2 N. Since the quantile estimator of type (4) depends

only on the k n þ 1 largest order statistics, it is essential to analyse the asymptotic behaviour

of the pertaining tail empirical qf

Qn,k n
(t) ¼ Qn(t) :¼ X n�[k n t]:n, 0 , t < 1:

Drees (2000) gave a weighted approximation of this stochastic process for stationary �-

mixing time series with a continuous marginal df F 2 D(Gª), ª 2 R. (In fact, the continuity

assumption may be dropped; see Remark 2 of that paper.) Recall that X i, i 2 N, is called

�-mixing (or absolutely regular) if

�(l) :¼ sup
m2N

E sup
A2B1mþ lþ1

jP(AjBm
1 )� P(A)j

 !
! 0

as l!1, where Bm
1 and B1mþ lþ1 denote the � -fields generated by (X i)1<i<m and

(X i)mþ lþ1<i, respectively. More precisely, it is assumed that there exists a sequence l n,

n 2 N, such that

(C1) lim
n!1

�(ln)

ln
nþ ln k

�1=2
n log2 k n ¼ 0.

Since the �-coefficients measure the influence of the past on future events, condition (C1)

states that this influence vanishes sufficiently fast as past and future are separated by a time

interval of increasing length. Typical examples are Harris recurrent Markov chains, for which

the �-coefficients decrease geometrically; see Doukhan (1994, Section 2.4), for details. More

specific, autoregressive moving average (ARMA), ARCH and generalized ARCH (GARCH)

time series are geometrically �-mixing under rather mild conditions (Doukhan, 1994, Section

2.3). In these cases, condition (C1) is satisfied with ln ¼ [C log n] for a sufficiently large

constant C . 0 and k n satisfying

log2 n log4(log n) ¼ o(k n): (9)

Furthermore, we assume a regularity condition for the joint tail of (X 1, X 1þm):

(C2) There exist 
 . 0 and functions cm, m 2 N, such that
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lim
n!1

n

kn

P X 1 . F�1 1� k n

n
x

� �
, X 1þm . F�1 1� k n

n
y

� �� �
! cm(x, y)

8m 2 N, 0 , x, y < 1þ 
:

In addition, we need a uniform bound on the probability that both X 1 and X1þm belong to an

extreme interval:

(C3) There exist D1 > 0 and a sequence ~rr(m), m 2 N, satisfying
P1

m¼1~rr(m) ,1 such

that

n

k n

PfX1 2 I n(x, y), X 1þm 2 I n(x, y)g < (y� x) ~rr(m)þ D1

k n

n

� �
8m 2 N, 0 , x, y < 1þ 


with I n(x, y) ¼ (F�1(1� yk n=n), F�1(1� xk n=n)].

Remark 2.1. Condition (C2) is satisfied if all vectors (X 1, X1þm) belong to the domain of

attraction of a bivariate extreme value distribution, that is, if the suitably standardized

coordinatewise maxima of n i.i.d. copies of (X 1, X 1þm) converge to a non-trivial limiting

distribution as n tends to 1. If the marginals of the limiting vector are independent, then

cm(x, y) ¼ 0 for all m 2 N and all 0 , x, y < 1þ 
.

Remark 2.2. It is readily seen that condition (C3) is met if the r-mixing coefficients of the

time series are finitely summable, that is,
P1

l¼1r(l) ,1 with

r(l) :¼ sup
m2N

sup
U2L2(Bm

1 ),V2L2(B1mþ lþ1)

jcov(U , V )j
(var(U )var(V ))1=2

(10)

and L2(A) denoting the space of square-integrable (A, B)-measurable functions.

Conditions (C2) and (C3) ensure that the suitably standardized covariance of the numbers

of exceedances over different high quantiles of F converges to a limit covariance function

as the sample size increases. Moreover, they imply a bound on the second moment of the

number of observations in an extreme interval.

Proposition 2.1. Suppose that ln ¼ o(n=k n) and that conditions (C2) and (C3) are satisfied.

Then, for all 0 , x, y < 1þ 
,

lim
n!1

n

lnk n

cov
Xl n
i¼1

1fX i.F �1(1�(k n=n)x)g,
Xl n
i¼1

1fX i.F �1(1�(k n=n) y)g

 !
¼ c(x, y) (11)

with

c(x, y) :¼ x ^ yþ
X1
m¼1

(cm(x, y)þ cm(y, x)) 2 R (12)
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and x ^ y :¼ min(x, y).

Moreover, there exists D . 0 such that, for all 0 , x, y < 1þ 
 and all n 2 N,

n

ln k n

E
Xl n
i¼1

1fX i2 I n(x, y)g

 !2

< D(y� x) (13)

Proof. In (C3) choose y ¼ 1þ 
 and let x tend to 0 to obtain

n

k n

P X 1 . F�1 1� k n

n
(1þ 
)

� �
, X 1þm . F�1 1� k n

n
(1þ 
)

� �� �

< (1þ 
) ~rr(m)þ D1

k n

n

� �
:

Because of (C2), ln k n=n! 0 and limn!1
P l n

m¼1(~rr(m)þ (D1 þ (1þ 
)2)k n=n) ¼P1
m¼1~rr(m) ,1, Pratt’s (1960) lemma yields

lim
n!1

n

kn

Xl n
m¼1

cov 1fX1.F �1(1�(k n=n)x)g, 1fX1þm.F �1(1�(k n=n) y)g
� � ¼X1

m¼1

cm(x, y) 2 R:

Hence, by the stationarity of the time series,

n

k n ln

X
1<i, j< l n

cov 1fX i.F �1(1�(k n=n)x)g, 1fX j.F �1(1�(k n=n) y)g
� �

¼ 1

ln

Xl n
i¼1

n

k n

Xiþ l n�1

j¼iþ1

cov 1fX i.F �1(1�(k n=n)x)g, 1fX j.F �1(1�(k n=n) y)g
� �

� 1

ln

Xl n
i¼2

n

kn

Xiþ l n�1

j¼ l nþ1

cov 1fX i.F �1(1�(k n=n)x)g, 1fX j.F �1(1�(k n=n) y)g
� �

!
X1
m¼1

cm(x, y)

since the second term can be bounded by
P l n�1

m¼1 m(~rr(m)þ (D1 þ (1þ 
)2)k n=n)=l n which

tends to 0. Now (11) is obvious.

Likewise, one obtains

n

lnk n

E
Xl n
i¼1

1fX i2 I n(x, y)g

 !2

< (y� x) 1þ 2
Xl n�1

m¼1

~rr(m)þ D1

k n

n

� � !
so that (13) follows from the summability of ~rr(m) and ln k n=n! 0. h

Remark 2.3. Using Theorem 1.1 of Shao (1995), in (13) one may even replace the second
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moment with the fourth moment. These moment conditions can be interpreted in terms of

moments of cluster sizes of exceedances; see Drees (2000) for details.

Finally, we need a condition on the rate of convergence of k n !1 to ensure that the

extreme value approximation used in (4) is sufficiently accurate. For the sake of simplicity,

we assume that the qf admits the following representation:

(C4) F�1(1� t) ¼ dt�ª 1þ r(t)ð Þ, with jr(t)j < �(t), for some constant d . 0 and a

function � which is �-varying at 0 for some � . 0, or � ¼ 0 and � is non-

decreasing with lim t#0�(t) ¼ 0.

Then we assume that k n is an intermediate sequence such that

(C5) lim
n!1

k1=2
n �(k n=n) ¼ 0:

(However, see Remark 2.6 below for more general conditions.)

Theorem 2.1. Under conditions (C1)–(C5) with ln ¼ o(n=k n) there exist versions of the tail

empirical qf Qn and a centred Gaussian process e with covariance function c defined by (12)

such that

sup
t2(0,1]

tªþ1=2(1þ jlog tj)�1=2

����k1=2
n

Qn(t)

F�1(1� k n=n)
� t�ª

� �
� ªt�(ªþ1)e(t)

����! 0 (14)

in probability.

Proof. In view of (C4), the remainder term defined in (3) equals R(º, t) ¼
t�ª O(�(ºt)þ�(º)) uniformly for bounded t. Thus, because of either the �-variation of

� with � . 0 or the monotonicity of �, k1=2
n �(k n=n)! 0 implies

lim
n!1

k1=2
n sup

0, t<1þ

tªþ1=2(1þ jlog tj)�1=2jR(k n=n, t)j ¼ 0:

Combining this with Proposition 2.1 and Remark 2.3, we see that the conditions of Theorem

3.1 of Drees (2000) are satisfied, from which the assertion is obvious. h

Remark 2.4. Conditions (C2) and (C3) are only needed to verify (11) and the analogue of

(13) for the fourth moment. Hence Theorem 2.1 holds under these considerably weaker (but

somewhat more complex) conditions. If (C2) and (C3) are replaced with (11) and (13), then

(14) holds with weight function tªþ1=2 replaced with tªþ3=4. See Drees (2002) for a more

detailed discussion of these conditions.

It is worth mentioning that for independent observations the Gaussian process e is a

standard Brownian motion. Hence, in that case, Theorem 2.1 is essentially equivalent to

Theorem 2.1(i) of Drees (1998b).

In the next step, we deduce the asymptotic normality of estimators of the extreme value
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index that use only the k n þ 1 largest order statistics, and of the pertaining quantile

estimators of type (4). Drees (1998a; 1998b) observed that almost every estimator ª̂ªn of this

type can be represented as a so-called statistical tail functional, that is, as a smooth

functional applied to the tail empirical qf: ª̂ªn ¼ T (Qn).

To establish asymptotic normality for this class of estimators we impose the following

regularity conditions on T :

(T0) T is a Borel-measurable real-valued functional on the set of functions z 2 D(0, 1]

satisfying tªþ1=2jlog tj�1=2z(t)! 0 as t # 0.

(T1) T is scale-invariant: T (az) ¼ T (z) for all a . 0.

(T2) T (t�ª)0, t<1ð Þ ¼ ª.

(T3) There exists a signed measure �T ,ª on (0, 1] with
Ð

(0,1]
t�ª�1=2(1 þ

jlog tj)1=2j�T ,ªj(dt) ,1 such that


�1
n T (t�ª þ 
nzn(t))0, t<1ð Þ � T (t�ª)0, t<1ð Þð Þ !

ð
(0,1]

z(t)�T ,ª(dt)

for all 
n # 0 and zn satisfying

sup
0, t<1

tªþ1=2(1þ jlog tj)�1=2jzn(t)� z(t)j ! 0

for some continuous function z as described in (T0).

Condition (T2) means that precisely the true extreme value index is obtained if one plugs in

the limiting Pareto qf instead of the tail empirical qf. Condition (T3) can be interpreted as T

being Hadamard differentiable at (t�ª)0, t<1 in a suitable function space. Refer to Drees

(1998a; 1998b) for a thorough discussion of these regularity conditions. In particular, there it

is shown that the Hill estimator and the maximum likelihood estimator in a generalized

Pareto model satisfy these conditions with signed measures

�H,ª(dt) ¼ tª dt � 
1(dt)

and

�ML,ª(dt) ¼ (ªþ 1)2

ª2
tª � (2ªþ 1)t2ª
� �

dt þ ªþ 1

ª

1(dt),

where 
1 denotes the Dirac measure with mass 1 at 1. Other examples are the Pickands

estimator (Pickands 1975), the moment estimator proposed by Dekkers et al. (1989) and

generalized probability-weighted moment estimators.

In addition to (C5) we need the following assumption about the relationship between the

number of order statistics used for estimation and the expected number of exceedances over

the extreme quantile to be estimated:
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lim
n!1

k�1=2
n log(npn) ¼ 0, lim

n!1
npn=k n ¼ 0: (15)

The first assumption is very weak; it is satisfied if, for example, n�m ¼ o(pn) for some

m . 0 and log2 n ¼ o(k n). Notice that we allow npn to tend to infinity, but the whole

extreme value approach only makes sense if npn ¼ o(k n).

Theorem 2.2. Suppose that the conditions of Theorem 2.1 and condition (15) are satisfied. If

ª̂ªn ¼ T (Qn), with T fulfilling conditions (T0)–(T3), then

k1=2
n

log(k n=(npn))
log

x̂x pn
x pn
� k1=2

n

log(k n=(npn))

x̂x pn

x pn

� 1

� �
� k1=2

n (ª̂ªn � ª)! N (0, � 2
T,ª) (16)

weakly with

� 2
T ,ª ¼ ª2

ð
(0,1]

ð
(0,1]

(st)�(ªþ1)c(s, t)�T ,ª(ds)�T ,ª(dt):

Proof. The weak convergence of k1=2
n (ª̂ªn � ª) follows from the following calculation:

ª̂ªn ¼
(T1)

T
Qn

F�1(1� k n=n)

� �

¼d T t�ª þ k�1=2
n ªt�(ªþ1)e(t)þ oP(k�1=2

n )

� 

0, t<1

� �

¼(T3)
T (t�ª)0, t<1ð Þ þ k�1=2

n ª

ð
(0,1]

t�(ªþ1)e(t)�T ,ª(dt)þ oP(k�1=2
n ):

Hence, by (T2),

k1=2
n (ª̂ªn � ª)! ª

ð
(0,1]

t�(ªþ1)e(t)�T ,ª(dt),

which proves the assertion; we refer to Drees (1998a) for technical details.

Because log(1þ x) � x as x! 0, it remains to verify that

1

log(k n=(npn))

x̂x pn
x pn
� 1

� �
¼ ª̂ªn � ªþ oP(k�1=2

n ): (17)

To this end, check that
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x̂x pn � xpn ¼ Qn(1)� F�1 1� k n

n

� �� �
npn

k n

� ��ª̂ªn

þ F�1 1� k n

n

� �
npn

k n

� ��ª̂ªn

� npn

k n

� ��ª !

þ F�1 1� k n

n

� �
npn

k n

� ��ª
� F�1(1� pn)

 !

¼: I þ II þ III :

As in the proof of Theorem 2.1, (C4) and (C5) imply���� F�1(1� pn)

F�1(1� k n=n)

npn

k n

� �ª

�1

���� ¼ ����R kn

n
,
npn

k n

� ����� npn

k n

� �ª

¼ O �
k n

n

� �� �
¼ o(k�1=2

n ):

Hence Theorem 2.1, condition (15) and ª̂ªn � ª ¼ OP(k�1=2
n ) yield

I

xpn log(k n=(npn))
¼ k�1=2

n (e(1)þ oP(1))
F�1(1� k n=n)

F�1(1� pn)

1

log(k n=(npn))

npn

k n

� ��ª̂ªn

¼ oP(k�1=2
n ):

Likewise

III

x pn log(k n=(npn))
¼ F�1(1� k n=n)

F�1(1� pn)

npn

k n

� ��ª
�1

 !�
log

k n

npn
¼ o(k�1=2

n ):

Finally, because @=(@�)x� ¼ x� log x, using the mean value theorem and (15) one obtains

II

x pn log(k n=(npn))
¼ F�1(1� k n=n)

F�1(1� pn)

npn

k n

� ��ª npn

k n

� �W(ª�ª̂ªn)

(ª̂ªn � ª) ¼ (ª̂ªn � ª)(1þ oP(1))

for some W 2 (0, 1). Adding the expressions for I, II and III, one arrives at (17). h

Remark 2.5. If npn !1 one may also estimate xpn consistently by the empirical quantile

X n�[npn]:n, that is, X n�[npn]:n=xpn ! 1 in probability. However, typically the relative

estimation error will be of order (npn)�1=2. In particular this holds if conditions (C1)–(C5)

are fulfilled with k n replaced by [npn]þ 1. So the quantile estimator x̂x pn is asymptotically

more efficient provided npn ¼ o(k n). Of course, this higher efficiency is achieved only under

considerably stronger model assumptions than necessary to ensure consistency of the

empirical quantile.

Remark 2.6. Time series models are often described implicitly as stationary solutions of

certain equations involving innovations with a given distribution (see Section 3 for examples).

Then no analytical expression is usually available for the distribution function F of the time

series at any time t. In this situation it might be difficult to verify condition (C4), but for

F 2 D(Gª) the following milder condition replacing (C4) and (C5) is always satisfied for

some intermediate sequence k n tending to infinity not too fast:

Extreme quantile estimation for dependent data 627



lim
n!1

k1=2
n sup

0, t<1þ

tªþ1=2(1þ jlog tj)�1=2jR(k n=n, t)j ¼ 0 (18)

with R defined by (3); cf. Drees (1998a; 2000). Under the conditions (C1)–(C3) and (18) the

assertion of Theorem 2.1 holds. To prove asymptotic normality of the quantile estimators, in

addition to (15) we need

lim
n!1

k1=2
n

log(k n=(npn))

npn

k n

� �ª

R
kn

n
,
npn

k n

� �
¼ 0: (19)

This convergence implies

F�1(1� pn)

F�1(1� k n=n)

npn

k n

� �ª

�1 ¼ npn

k n

� �ª

R
kn

n
,
npn

k n

� �
¼ o k�1=2

n log
k n

npn

� �
:

Hence the proof of Theorem 2.2 shows that convergence (16) holds under these milder

conditions.

In simulations we found that in most cases the normal approximation is more accurate

for log(x̂x pn=xpn ) than for x̂x pn=xpn � 1. Heuristically, this may be explained by the fact that

log x̂x pn is a linear function of ª̂ªn, whose estimation error determines the dominating part of

the error of the quantile estimator. So if the distribution of ª̂ªn is well approximated by a

normal distribution (which is usually true for the Hill estimator), this often also holds for

log x̂x pn but not necessarily for x̂x pn which, according to the �-method, is only locally linear

in ª̂ªn.

In order to construct confidence intervals based on (16), one has to estimate the

asymptotic variance � 2
T ,ª, which depends not only on ª but also on the unknown limiting

covariance function c. Instead of trying to estimate this function nonparametrically, it seems

more reasonable to employ (16) for the estimation of � 2
T ,ª.

In a blocks approach, one would split the time series into blocks of constant length mn,

say, and estimate an extreme quantile or ª for each block separately. If mn is not too small,

by condition (C1) these estimates are almost independent. Hence one may estimate � 2
T ,ª by

the suitably standardized sample variance of the block estimates. In practice, however, this

procedure is rather cumbersome, because one must find not only a suitable block length mn,

but also a number ~kk n , mn such that in every block it is reasonable to use the ~kk n þ 1

largest order statistics for estimation. Given that it is often not easy to choose k n for one

fixed sample, this may be a delicate task.

As an alternative, we propose an approach which uses a process version of convergence

(16). For this, note that under very weak conditions the covariance function c is

homogeneous:

c(ºx, ºy) ¼ ºc(x, y), º, x, y 2 [0, 1], (20)

and hence that the Gaussian process e is self-similar, that is,

e(º�) ¼d º1=2e(�), º 2 [0, 1]: (21)
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For example, if condition (11) holds for k n and two sequences k n,º j
� º j k n with º j 2 (0, 1),

j ¼ 1, 2, then, by the continuity of c,

c(x, y) n

lnk n,º j

cov
Xl n
i¼1

1fX i.F �1(1�(k n,º j=n)x)g,
Xl n
i¼1

1fX i.F�1(1�(k n,º j=n) y)g

 !

� n

ln k nº j

cov
Xl n
i¼1

1fX i.F �1(1�(k n=n)(k n,º j=k n)x)g,
Xl n
i¼1

1fX i.F �1(1�(k n=n)(k n,º j=k n) y)g

 !

! 1

º j

c(º jx, º j y):

If log º1=log º2 is irrational then, by Theorem 1.4.3 of Bingham et al. (1987), this in turn

implies (20). Likewise, if convergence (14) holds for k n and k n,º j
then from the regular

variation of F�1(1� �) it follows that e(�) ¼d º�1=2
j e(º j�) and thus (21) and (20).

Now one may argue heuristically as follows. Denote by ª̂ª(i)
n the estimator for ª that uses

the iþ 1 largest order statistics: ª̂ª(i)
n ¼ T (Qn(i=k n�)). Under a slightly stronger differentia-

bility condition than (T3), one obtains as in Theorem 2.2 the approximation

k1=2
n (ª̂ª([k n s])

n � ª) � ª

s

ð
(0,1]

t�(ªþ1)e(st)�T ,ª(dt) ¼: ZT ,ª(s) (22)

for 1=k n < s < 1. Notice that, by the homogeneity property (20) of c,

~ZZT ,ª(u) :¼ eu=2ZT ,ª(eu), u 2 (�1, 0], (23)

defines a strictly stationary centred Gaussian process with covariance function

cov( ~ZZT ,ª(u), ~ZZT ,ª(v)) ¼ ª2 exp � uþ v

2

� �ð
(0,1]

ð
(0,1]

(st)�(ªþ1)c(eus, ev t)�T ,ª(ds)�T ,ª(dt)

¼ ª2 exp
u� v

2

� �ð
(0,1]

ð
(0,1]

(st)�(ªþ1)c(s, ev�u t)�T ,ª(ds)�T,ª(dt)

depending only on u� v. Using the ergodic theorem, one can show that

log
k n

jn

� ��1Xk n

i¼ j n

(ª̂ª(i)
n � ª̂ª(k n)

n )2 � log
k n

jn

� ��1ð1

j n=k n

(ZT ,ª(s)� ZT ,ª(1))2 ds (24)

� log
k n

jn

� ��1ð0

log( j n=k n)

~ZZ2
T ,ª(u) du

! E( ~ZZ2
T ,ª(0)) ¼ � 2

T ,ª,

provided k n= jn !1 (refer to the proof of Theorem 2.3 for details). Unfortunately, from

Theorem 2.1 it can only be shown that approximation (24) is sufficiently accurate for some
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sequence jn ¼ o(k n); for a more precise assertion about jn one would need the rate of

convergence in (14).

Theorem 2.3. Suppose that (20) (or, equivalently, (21)) holds and that T is Fréchet

differentiable at (t�ª)0, t<1:


�1 T (t�ª þ 
z(t))0, t<1ð Þ � T (t�ª)0, t<1ð Þð Þ !
ð

(0,1]

z(t)�T ,ª(dt), (25)

as 
 # 0, uniformly for all z satisfying

sup
0, t<1

tªþ1=2(1þ jlog tj)�1=2jz(t)j < 1:

Then, under the conditions of Theorem 2.2, there exists a sequence jn ¼ o(k n) such that

�̂� 2
T ,ª,1 :¼ log

k n

jn

� ��1Xk n

i¼ j n

(ª̂ª(i)
n � ª̂ª(k n)

n )2 ! � 2
T ,ª (26)

�̂� 2
T ,ª,2 :¼ log

k n

jn

� ��1Xk n

i¼ j n

log=(x̂x(i)
pn
=x̂x(k n)

pn
)

log(i=(npn))

 !2

! � 2
T ,ª (27)

in probability. Here ª̂ª(i)
n ¼ T (Qn(i=k n�)) and x̂x(i)

pn
is defined as in (4) with ª̂ªn replaced by ª̂ª(i)

n

and k n by i.

Proof. By (T1), (T2) and the differentiability assumption (25)

ª̂ª(i)
n ¼ T Qn

i

k n

�
� �

=F�1(1� k n=n)

� �

¼d T
i

k n

t

� ��ª
þ ªk�1=2

n

i

k n

t

� ��(ªþ1)

e
i

k n

t

� �0@0@

þ oP k�1=2
n

i

k n

t

� ��(ªþ1=2)

1þ
����log

i

k n

t

� �����
 !1=2

0@ 1A1A
0, t<1

1A

¼ T t�ª þ ª
k1=2
n

i
t�(ªþ1)e

i

k n

t

� �
þ oP k�1=2

n t�(ªþ1=2)(1þ jlog tj)1=2
� 
 !

0, t<1

0@ 1A
¼ ªþ ª

k1=2
n

i

ð
(0,1]

t�(ªþ1)e
i

k n

t

� �
�T ,ª(dt)þ oP(k�1=2

n )

uniformly for s0k n < i < k n and all s0 . 0. Hence, by the continuity of e and a standard

diagonal argument, there exists a sequence sn # 0 such that
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sup
sn<s<1

����k1=2
n (ª̂ª([k n s])

n � ª)� ZT ,ª(s)

����! 0

in probability, with ZT ,ª defined in (22).

Therefore, for jn :¼ [sn k n]þ 1 and ~ZZT ,ª defined by (23),Xk n

i¼ j n

(ª̂ª(i)
n � ª̂ª(k n)

n )2 ¼
ð1

j n=k n

ZT ,ª(s)� ZT ,ª(1)ð Þ2 ds � (1þ oP(1)) (28)

¼
ð0

log( j n=k n)

~ZZT ,ª(u)� eu=2 ~ZZT ,ª(0)

� 
2

du � (1þ oP(1)):

By the stationarity of ~ZZT ,ª and the ergodic theorem (see Cramér and Leadbetter 1967, p.

151), one has

log
k n

jn

� ��1ð0

log( j n=k n)

~ZZ2
T ,ª(u) du! E ~ZZ2

T ,ª(0) ¼ � 2
T ,ª almost surely:

Hence assertion (26) follows from
Ð 0

log( j n=k n)
(eu=2 ~ZZT ,ª(0))2 du ¼ O(1).

Similarly, one can show that, for some sn # 0,

sup
sn<s<1

���� k1=2
n

log([k ns]=(npn))
log

x̂x([k n s])
pn

x pn
� ZT ,ª(s)

����! 0

in probability. Without loss of generality one may assume that log(sn) ¼ o(log(k n=(npn))):
Hence

Xk n

i¼ j n

log(x̂x(i)
pn
=x̂x(k n)

pn
)

log(i=(npn))

 !2

¼
ð1

j n=k n

ZT ,ª(s)� log(k n=(npn))

log([k ns]=(npn))
ZT ,ª(1)

� �2

ds � (1þ oP(1)) (29)

¼
ð0

log( j n=k n)

~ZZT ,ª(u)� log(k n=(npn))

log([k neu]=(npn))
eu=2 ~ZZT ,ª(0)

� �2

du � (1þ oP(1)):

Now assertion (27) follows by the above arguments and

log(k n=(npn))

log([k neu]=(npn))
<

1

1þ log sn=log(k n=(npn))
! 1

for all log( jn=k n) < u < 0. h

The proof shows that the left-hand sides of (26) and (27) are consistent estimators of

� 2
T ,ª for all sequences ( jn)n2N such that jn=k n converges to 0 not too fast. In practice

usually one may choose jn to be rather small. Indeed, even the smallest number for which

the estimator is defined will often do the job; cf. Sections 4 and 5.
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In the proof it was also shown that in (28) and in (29) the terms pertaining to ZT ,ª(1) are

asymptotically negligible. This suggests the approximation

E
Xk n

i¼ j n

log(x̂x(i)
pn
=x̂x(k n)

pn
)

log(i=(npn))

 !2

� E

ð1

j n=k n

Z2
T ,ª(s) ds ¼

ð1

j n=k n

� 2
T ,ª

s
ds ¼ � 2

T ,ªlog
k n

jn
,

and likewise for the estimator �̂� 2
T ,ª,1, which leads to the normalizing factor log(k n= jn) in the

definition of �̂� 2
T ,ª,1 and �̂� 2

T ,ª,2. For moderate sample sizes, however, this approximation is too

crude, that is, it overestimates the left-hand side considerably and hence yields too short

confidence intervals. More appropriate would be the normalizing factor

1

k n� 2
T ,ª

E
Xk n

i¼ j n

ZT ,ª
i

k n

� �
� log(k n=(npn))

log(i=(npn))
ZT ,ª(1)

 !2

¼
Xk n

i¼ j n

1

i
� 2

� 2
T ,ª

log(k n=(npn))

log(i=(npn))

cov ZT ,ª(i=k n), ZT ,ª(1)
� �

k n

þ log(k n=(npn))

log(i=(npn))

� �2
1

k n

: (30)

Unfortunately, the covariance of ZT ,ª(i=k n) and ZT ,ª(1) depends on the unknown limiting

covariance function c, so (30) cannot be used directly for the estimation of the asymptotic

variance. Instead we propose to use the lower bound

Xk n

i¼ j n

1

i
� 2

� 2
T ,ª

� log(k n=(npn))

log(i=(npn))

var ZT ,ª(i=k n) � var ZT ,ª(1)
� �1=2

k n

þ log(k n=(npn))

log(i=(npn))

� �2
1

k n

¼
Xk n

i¼ j n

i�1=2 � log(k n=(npn))

log(i=(npn))
k�1=2
n

� �2

(31)

as the normalizing factor replacing log(k n= jn) in (27). Note that (31) is asymptotically

equivalent to log(k n= jn). Thus the resulting modified estimator

�̂� 2
T ,ª,3 :¼

Xk n

i¼ j n

i�1=2 � log(k n=(npn))

log(i=(npn))
k�1=2
n

� �2
0@ 1A�1Xk n

i¼ j n

log(x̂x(i)
pn
=x̂x(k n

pn))

log(i=(npn))

 !2

(32)

is also consistent for the asymptotic variance, yet for finite sample sizes it yields substantially

more conservative confidence intervals. For example, the two-sided asymptotic confidence

interval for the nominal coverage probability 1� Æ 2 (0, 1) is given by

x̂x pn exp �zÆ=2�̂� T ,ª,3k
�1=2
n log

k n

npn

� �
, x̂x pn exp zÆ=2�̂� T ,ª,3k

�1=2
n log

k n

npn

� �� 	
, (33)

with zÆ=2 denoting the (1� Æ=2) quantile of the standard normal distribution. For that reason,

we will mainly use �̂� 2
T ,ª,3 to construct confidence intervals in our application and the

simulation study.

Note that one may also modify the estimator �̂� 2
T ,ª,1 in a similar way, but it seems more
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natural to use a variance estimator that is based on quantile estimators if one is interested in

confidence intervals for extreme quantiles.

3. Time series models

Here we demonstrate the applicability of the theory outlined in the previous section to

specific time series models. First we consider solutions of certain stochastic recurrence

equations, including ARCH(1) time series, and then linear time series.

3.1. Solutions of a stochastic difference equation

Consider the stochastic recursion

X i ¼ AiX i�1 þ Bi, i 2 N, (34)

where (Ai, Bi), i 2 N, denote i.i.d. R2-valued random vectors. Such stochastic difference

equations occur in many contexts. For example, X i describes the balance of an account at

time i if Ai denotes the inverse of the stochastic discount factor for the time interval from

i� 1 to i and Bi a random deposit made just before time i; see Embrechts et al. (1997,

Section 8.4.1) for details.

Closely related is the ARCH(1) time series, which is a popular simple model for returns

on a risky investment:

Yi ¼ Æ0 þ Æ1Y
2
i�1

� �1=2
Zi, i 2 N, (35)

where Zi are i.i.d. innovations with mean 0 and variance 1. Then X i ¼ Y 2
i satisfies equation

(34) with Ai ¼ Æ1Z
2
i and Bi ¼ Æ0Z

2
i . Further applications of model (34) were discussed by

Vervaat (1979).

In what follows, we assume that A1 and B1 have an absolute continuous df. Kesten

(1973) proved that a stationary solution of (34) with heavy-tailed marginals exists if

(D1) A1, B1 . 0 and there exists k . 0 such that

EAk
1 ¼ 1, E Ak

1 max(log A1, 0)
� �

,1 and EBk
1 2 (0, 1):

Then the df F of X 1 belongs to the domain of attraction of Gª with extreme value index

ª ¼ 1=k. Indeed, F satisfies 1� F(x) � cx�k as x!1 for some c . 0. Note that one

obtains heavy tails for X i even if the ‘random coefficients’ Ai and Bi have light tails.

In Drees (2000, Corollary 4.1) it is shown that the conditions of Theorem 2.1 are

satisfied and hence (14) holds with covariance function

c(x, y) ¼ x ^ yþ
X1
j¼1

x

ð y=x

0

P
Yj
i¼1

Ai . tª

( )
dt þ y

ðx= y
0

P
Yj
i¼1

Ai . tª

( )
dt

 !
(36)

if, in addition, the following conditions hold:
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(D2) There exists � . 0 such that EA
kþ�
1 ,1 and EB

kþ�
1 ,1:

(D3) log2 n log4(log n) ¼ o(k n) and k n ¼ o(n2�=(2�þ1)) where � . 0 is such that

1� F(x) ¼ dx�1=ª 1þ O(x��=ª)
� �

: (37)

Goldie (1989) proved that, under conditions (D1) and (D2), there does indeed always exist a

� . 0 satisfying (37), which is a special case of (C4), while the upper bound on k n required

in (D3) is equivalent to (C5). Therefore, under the additional condition (15), we obtain the

asymptotic normality of the statistical tail functionals and the pertaining quantile estimators

as well.

Likewise, one may check the conditions of Theorem 2.1 for the ARCH(1) model (35).

However, if the distribution of the innovations Zi is symmetric, then (C1)–(C5) follow

immediately from the corresponding conditions for Y 2
i and thus from the aforementioned

result established in Drees (2000). For example, (C2) for Y 2
i , combined with the relationship

P Yi . F�1
Y 1� k n

n
x

� �
, Y j . F�1

Y 1� k n

n
y

� �� �
¼ 1

4
P Y 2

i . F�1
Y 2 1� k n

n
2x

� �
, Y 2

j . F�1
Y 2 1� k n

n
2y

� �� �
,

implies (C2) for the ARCH(1) time series Yi with

cm,Y (x, y) ¼ 1

4
cm,Y 2 (2x, 2y) ¼ 1

2
cm,Y 2 (x, y)

and F�1
Y and F�1

Y 2 denoting the qf of Yi and Y 2
i , respectively. Hence the analogous relation

also holds for the limiting covariance functions cY and cY 2 given by (36). Note that in

general this covariance function cannot be calculated analytically, but Stărică (1998) proposed

a method to compute it by simulation.

3.2. Linear time series

Here we examine classical linear time series

X i ¼
X1
j¼0

ł j Zi� j, i 2 N, (38)

with i.i.d. innovations Zi. Without loss of generality, we assume ł0 ¼ 1. For simplicity, we

confine ourselves to geometrically decreasing coefficients, that is,

jł jj ¼ O(� j) (39)

as j!1 for some � 2 (0, 1); in particular, finite-order ARMA models are included.

However, the results given below hold true under much weaker summability conditions on the

coefficients (cf. Datta and McCormick 1998, Lemma 5.2; or Mikosch and Samorodnitsky

2000, Lemma A.3).

In model (38) the variables X i are heavy-tailed if and only if the innovations have heavy
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tails. Hence the stochastic behaviour of the linear time series (38) is very different from

that of the nonlinear time series considered in Section 3.1.

In what follows we assume that the df FZ of Z1 has balanced heavy tails, that is,

FZ 2 D(Gª), lim
x!1

1� FZ(x)

FZ(�x)
¼ p

q
for some p ¼ 1� q 2 (0, 1) (40)

(or, equivalently, 1� FZ(x) � px�1=ª l(x) and FZ(�x) � qx�1=ª l(x) as x!1 for some

slowly varying function l). Then, by Lemma 5.2 of Datta and McCormick (1998), the df F of

X 1 satisfies

1� F(x)

1� FZ(x)
!
X1
j¼0

pł1=ª
j 1fł j.0g þ qjł jj1=ª1fł j,0g

� 

¼: dł (41)

as x!1. In particular, F 2 D(Gª), too.

If, in addition, FZ has a Lebesgue density f Z which is L1-Lipshitz continuous, that is,ð
j f Z(zþ u)� f Z(z)j dz ¼ O(u) (42)

as u # 0, then the time series X i, i 2 N, is geometrically �-mixing (Doukhan 1994, Theorem

2.3.2). (For a finite-order ARMA process the mere existence of a Lebesgue density is

sufficient; see Doukhan 1994, Theorem 2.4.6.) Hence condition (C1) is satisfied with

ln ¼ [const: � log n] provided k n satisfies (9).

In the same way as in Lemma 5.1 of Datta and McCormick (1998), one can show that

PfX 1 . u, X 1þm . uvg
1� FZ(u)

!
X1
j¼0

jł jj1=ª ^ (v�1=ªjł jþmj1=ª)

� 

as u!1, for v . 0 and m . 1. Combining this with (41) and F�1(1� yk n=n)=
F�1(1� xk n=n)! (y=x)�ª, one obtains (C2) with

cm(x, y) ¼ 1

pdł

X1
j¼0

(xjł jj1=ª) ^ (yjł jþmj1=ª)

� 

p1fł j^ł jþm.0g þ q1fł j_ł jþm,0g
� �

: (43)

It is more complicated to check (C3) for general linear time series. Of course, any finite-

order moving average meets this condition. More interesting is the example given by Bosq

(1998, p. 18): if the innovations Zi have finite variance (which is ensured by ª , 1
2
), then

the time series X i, i 2 N, is geometrically r-mixing and hence Remark 2.2 applies.

Though in practice it is often realistic to assume a finite variance, this condition is a little

disturbing in an extreme value setting. As a simple example of a time series that is neither

m-dependent for a finite m nor necessarily of finite variance, we consider a first-order

autoregressive (AR(1)) process

X i ¼ ŁX i�1 þ Zi

for some Ł 2 (�1, 1). This time series has representation (38) with ł j ¼ Ł j, so that (C2)

holds if the df of the innovations has a Lebesgue density and satisfies (40).

Next we verify condition (C3). We restrict ourselves to the case Ł > 0; the other case can
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be treated in the same way. Then the representation X1þm ¼ ŁmX 1 þ
P1þm

k¼2 Ł
1þm�k Z k

shows that

PfX 1 2 I n(x, y), X 1þm 2 I n(x, y)g

< P X 1 2 I n(x, y), ŁmX 1 . Ł1=2F�1 1� k n

n
y

� �� �

þ P X1 2 I n(x, y),
X1þm

k¼2

Ł1þm�k Z k . (1� Ł1=2)F�1 1� k n

n
y

� �( )
(44)

< 1� F Ł1=2�mF�1 1� k n

n
y

� �� �
� k n

n
x

� �þ

þ k n

n
(y� x) � P

X1
j¼0

Ł jjZ jj . (1� Ł1=2)F�1 1� k n

n
(1þ 
)

� �( )
: (45)

Here the second term is of order (k n=n)2(y� x). By the Potter bounds (Bingham et al. 1987,

Theorem 1.5.6), we have

1� F Ł1=2�mF�1 1� k n

n
y

� �� �
� k n

n
x

� �þ
< Ł(m�1)=(2ª) k n

n
y� k n

n
x

� �þ
<

k n

n
Ł(m�1)=(2ª)(y� x):

Combine this with (45) to obtain (C3).

To sum up, if X i allows representation (38) with coefficients satisfying (39) and FZ

satisfying (40) and (42), and if k n meets conditions (18), (9) and k n ¼ O(n=log n), then the

approximation (14) of the tail empirical qf Qn holds with limiting covariance function given

by (12) and (43), provided that ª , 1
2
, or ł j ¼ 0 for all but finitely many j, or ł j ¼ Ł j for

some Ł 2 (�1, 1). Hence, under the additional conditions (19) and (15) on k n, the

asymptotic normality of the quantile estimator x̂x pn follows.

Notice that for the AR(1) model the asymptotic variance is particularly simple if one uses

the Hill or the maximum likelihood estimator for the estimation of the extreme value index,

since

c(1, 1) ¼ 1þ 2 � Ł1=ª=(1� Ł1=ª), if Ł > 0,

jŁj1=ª=(1� jŁj2=ª), if Ł , 0:

�
Hence, within this model, one may construct confidence intervals without using the variance

estimators discussed in Section 2. Instead one may define an estimator of c(1, 1) using, for

example, the same estimator for ª as for the quantile estimation and the sample

autocorrelation function at lag 1 as an estimator of Ł.

Resnick and Stărică (1997) demonstrated that, if one trusts in the simple AR(1) model,

one obtains more accurate estimates of the extreme value index by first estimating Ł and
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then the extreme value index based on the resulting residuals X i � Ł̂ŁX i�1. By fitting a

Pareto distribution to the tails of the residuals and then using relation (41), one might also

obtain an accurate estimate of extreme quantiles of F. The main advantage of the approach

presented here is its robustness, as it does not rely on a specific model but yields reasonable

estimates under mild structural assumptions.

4. The Nasdaq Composite index: a case study

In this section we analyse the ‘risk’ of a large hike in the Nasdaq Composite index. (In

fact, it is a risk for investors betting on a fall in the index, which may seem a reasonable

strategy given the huge losses observed in the last months of the period considered here.)

More precisely, we examine the (log-)returns X i ¼ log(Si=Si�1), 1 < i < n, with Si
denoting the index calculated at the end of the ith trading day in the years 1997 to 2000,

amounting to a sample size n ¼ 1007. We do not consider negative returns, that is to say,

the left tail of the returns, because, somewhat surprisingly, there is only very weak evidence

for a positive extreme value index there. Hence for the analysis of the left tail one must

apply estimators for general ª 2 R, which we discuss in less detail in Section 6.

A scatterplot of these returns is given in Figure 1. To some extent, there is an increasing

trend in the volatility, which seems to contradict stationarity of the time series. On the other

hand, bursts of volatility have also been observed in the first half of the observation period

(for i about 200 and 400). Moreover, the observed increase may also be due to a persistence
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Figure 1. Log-returns of the Nasdaq Compostie index, 1997–2000.
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in the volatility after these random shocks. All in all, given the moderate length of the

period under consideration and the fact that there was no obvious structural change in the

economic environment during this period, stationarity may be regarded as a reasonable

approximation to reality. (Contrary to that judgement, Stărică and Granger (2001) argue for

shorter periods of stationarity of the S&P500 index in the second half of the 1990s.)

In the following, we aim to estimate the upper pn ¼ 0:001 quantile xpn ¼ F�1(0:999)

under the assumption of stationarity. Note that npn is about 1, so that we are actually

looking for an extreme quantile.

Figure 2(a) displays the graphs of the Hill estimator, the maximum likelihood estimator

and the moment estimator proposed by Dekkers et al. (1989) as a function of k, the number

of largest order statistics reduced by 1. All estimates are positive for k from about 50 to

460, so that we may assume a heavy-tailed distribution. However, the values obtained by the

different estimation methods differ quite a lot. In particular, the Hill estimator shows a clear

upward trend starting from k ¼ 100, whereas the curve pertaining to the maximum

likelihood estimator is much more stable. This may indicate that the Pareto approximation

(3) becomes sufficiently accurate only after a suitable shift of the data, that is,

F�1(1� t) � d t�ª þ � for some � 6¼ 0, because it is well known that a non-vanishing

location parameter leads to a large bias of the Hill estimator, whereas the maximum

likelihood estimator is invariant under a shift transformation and the moment estimator is

less sensitive to shifts than the Hill estimator.
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Figure 2. Hill (dashed curve), moment (dotted) and maximum likelihood estimator (solid) for (a)

original returns and (b) returns shifted into positive real halfline.
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This hypothesis can be checked by subtracting a suitable constant from the data. A

choice suggesting itself is the smallest observation, since after this shift all transformed data

points are non-negative, thus allowing us to use (almost) up to the full sample for the Hill

and the moment estimator. Figure 2(b) shows the resulting estimates for the extreme value

index based on these shifted data. Now the behaviour of the Hill estimator has changed

completely, yielding an almost flat line for k ranging from 100 to 400. (Note that the scale

of the y-axis has been changed to magnify the relevant range of y-values.) Even more

strikingly, the moment and the maximum likelihood estimator (which is not influenced by

the transformation) are now almost identical for k between 180 and 470.

From our experience with several data sets, as a rule of thumb this similarity indicates

that the pure Pareto approximation without a location parameter is particularly accurate, that

is, F�1
s (1� t) � dt�ª with Fs denoting the df of the shifted random variables. To check this

for the shifted data set under consideration, in Figure 3 we have plotted a linearly

interpolated version of the tail empirical qf Qn,k for k ¼ 400 based on the transformed data

together with the estimated Pareto approximation X n�k:n t
�ª̂ª(H)

n using the Hill estimator

ª̂ª(H)
n � 0:10. The fit is convincing for the whole unit interval and almost perfect for its

upper half.

Encouraged by this fit, we carry on with the statistical analysis of the shifted returns.

Figure 4 displays the estimator �̂� T ,ª,3 whose square is defined in (32). Here we have used

the Hill estimator and jn ¼ 2, the smallest integer exceeding npn, so that �̂� T ,ª,3 is well

defined. (Different small values for jn . npn lead to similar results, but if jn is chosen too

large then the performance of the variance estimator deteriorates.)
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Figure 3. Continuous version of Qn,k for shifted log-returns with k ¼ 400 (solid line) and estimated

Pareto approximation (dashed).
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After large fluctuations when only few order statistics are used for estimation, the curve

stabilizes at a value slightly below 0.2. Then, starting at about k ¼ 400, there is a strong

upward trend in the curve, suggesting that a non-negligible bias has appeared. Note that the

kink in the curve at k ¼ 400 is much more pronounced in this plot than in the graph of the

estimators for the extreme value index or the extreme quantile (Figure 5). Hence to plot

�̂� T ,ª,3 against k might be a useful data-analytic tool for choosing a suitable sample fraction,

even in the case of i.i.d. data where such an estimate of the variance is not needed for the

construction of confidence intervals.

After these preparations, we arrive at our final plot in Figure 5. Here the quantile

estimator x̂x pn is plotted against k, together with 99% confidence intervals (33) and the

confidence intervals

[x̂x pn exp(�zÆ=2ª̂ª
(H)
n k�1=2

n log(k n=(npn))), x̂x pn exp(zÆ=2ª̂ª
(H)
n k�1=2

n log(k n=(npn)))], (46)

suggested by the theory for i.i.d. data. The estimators are calculated from the shifted data and

then the shift has been corrected, so that the graphs show the estimates for the original

distribution of the returns. For k ¼ 400 one obtains a quantile estimate of about 0.096 with

confidence interval (33) equal to [0:075, 0:119]. As expected, the intervals ignoring the serial

dependence are much shorter than the intervals obtained by the new approach presented here,

indicating that perhaps the former claim a much higher estimation accuracy than is actually

achieved. Despite this fact, in the literature about the statistical analysis of financial series

with a clear serial dependence often confidence intervals are displayed which are motivated

ô
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Figure 4. Estimated asymptotic standard deviation �̂� T ,ª,3.
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by the classical extreme value theory for independent data; see Longin (1996), Caserta et al.

(1998) and Müller et al. (1998). This, of course, does not mean that the standard confidence

intervals are necessarily too short because in some cases the dependence may be negligible

for large observations, but the theoretical justification for these confidence intervals is very

weak.

It is also worth noting that, unlike the intervals (46), the confidence intervals based on

the estimator �̂� T ,ª,3 automatically widen for large k where the bias kicks in. Hence they

actually reflect not only the variance of the quantile estimator but also the bias, thus

avoiding an empty intersection of confidence intervals based on different sample fractions.

In contrast, the standard confidence intervals are completely misleading if too many order

statistics are used for estimation. In fact, in our simulation study it turned out that in some

cases the actual coverage probability of the new intervals comes quite close to the nominal

probability even for large k, though we do not offer any theoretical explanation for this

effect.

5. Simulations

In this section we study the actual coverage probabilities of the two-sided confidence

interval (33) derived in the present paper in comparison with those of the confidence

interval (46) suggested by the theory for i.i.d. samples. Here both types of confidence

interval are calculated for the nominal coverage probability of 95%, and they are based on
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Figure 5. Estimated 0.999 quantile of the original return distribution (solid curve) with 99%

confidence intervals (33) (dashed) and (46) (dotted).
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the Hill estimator for ª. In the definition of �̂� T ,ª,3 used in (33) we choose jn equal to 2 for

pn < 1=n and jn ¼ 3 for pn ¼ 2=n so that log( jn=(npn)) is strictly positive. All simulations

were carried out using the programming language StatPascal which is part of the software

package XTREMES (see Reiss and Thomas 2001).

As examples of linear time series we consider four ARMA(1, 1) models

X i � �X i�1 ¼ Zi þ ŁZi�1: (47)

Here the i.i.d. innovations Zi have a two-sided Pareto df with extreme value index ª ¼ 1=3,

that is,

1� FZ(x) ¼ FZ(�x) ¼ 1

2
x�3, x > 1,

and

(i) � ¼ 0:95, Ł ¼ 0:9,

(ii) � ¼ 0:95, Ł ¼ �0:6,

(iii) � ¼ 0:95, Ł ¼ �0:9,

(iv) � ¼ 0:3, Ł ¼ 0:9,

respectively. Observe that the innovations have finite variance and thus, according to Section

3.2, these models satisfy the conditions of Theorem 2.2.

In models (i)–(iii) the dependence is mainly due to the autoregressive part and, roughly

speaking, the degree of dependence decreases from model (i) to model (iii) as the effect of

the large autoregressive parameter � ¼ 0:95 is partly compensated by the negative moving

average parameter Ł. (Note that for Ł ¼ �� one has X i ¼ Zi, that is, independent random

variables are observed.) In model (iv) the dependence is locally strong due to the large

moving average parameter Ł, but it has a very short memory because � is small.

In addition, we consider two nonlinear (G)ARCH time series

X i ¼ � i Zi

with i.i.d. standard normal innovations Zi and

(v) � 2
i ¼ 0:0001þ 0:9X 2

i�1,

(vi) � 2
i ¼ 0:0001þ 0:4X 2

i�1 þ 0:5� 2
i�1,

respectively. For the ARCH(1) model (v) our conditions have been checked in Section 3.1.

GARCH(1, 1) time series like (vi) are widely used in finance to model returns of risky assets.

It is known that such time series are geometrically �-mixing (Doukhan 1994, Section

2.4.2.3), but conditions (C2) and (C3) have not yet been verified. The choice of the

parameters describing the influence of X 2
i�1 and � 2

i�1 on � 2
i is motivated by the observation

that in financial applications typically the sum of these parameters is close to but less than 1.

Finally, we also simulate i.i.d. sequences of Fréchet random variables with df

(vii) F(x) ¼ exp(�x�3), x . 0,

in order to examine the performance of the confidence interval (33) in a situation where the

interval (46) is appropriate.
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The quantiles xpn ¼ F�1(1� pn) are to be estimated for pn ¼ 1=n and pn ¼ 1=(5n).

Since the quantiles are not known exactly for models (i)–(vi), they are determined by

simulation. For this purpose, recall from Theorem 2.1 that an empirical intermediate

quantile is asymptotically normal with median equal to the pertaining true quantile. Thus

we simulate m ¼ 1000 time series of length 5 3 106 and estimate xpn by the median of the

empirical (1� pn) quantiles. Table 1 gives the resulting estimates and 95% confidence

intervals [Y[(1�z0:025 m�1=2)m=2]:m,Y[(1þz0:025 m�1=2)m=2]:m] with Yi, 1 < i < m, denoting the observed

empirical quantiles.

Next, m ¼ 10 000 time series of length n ¼ 2000 are simulated from each of the above

models and the relative frequency of samples is determined for which the true quantile lies

outside the confidence intervals (33) and (46), respectively. In Figure 6 the resulting

empirical non-coverage probabilities of (33) and (46) are plotted against k, the number of

order statistics reduced by 1, for models (i)–(vi) and pn ¼ 1=n ¼ 0:0005. The nominal

level 5% is indicated by the dotted line. The maximal k-values are chosen such that in

(almost) all samples the kth largest order statistic is still positive, so that the Hill estimator

is well defined.

The confidence interval (46) derived from the theory for i.i.d. samples yields an

acceptable level of non-coverage only for the ARMA(1, 1) model (iii), which is close to an

i.i.d. model. In all other cases, the non-coverage probability is always larger than 13% and

typically larger than 20%. Moreover, if k is taken too large such that a non-negligible bias

appears, then the probability of non-coverage increases rapidly, as the confidence interval

(46) does not take into account any bias.

In contrast to that behaviour, the confidence interval (33) is unbiased in all cases if one

uses at least 40 order statistics for estimation, except in the ARCH(1) model (v) with k

between 240 and 410 when the nominal level is exceeded by less than 2%. At first glance,

it is somewhat surprising that the confidence interval is most conservative for the ARMA(1,

1) model (i) which exhibits the strongest dependence. This, however, is due to the rather

poor fit of the tail of the stationary distribution by a Pareto distribution if one uses more

than 200 order statistics. As a result, the quantile estimator has a large bias if k is much

bigger than 200 (as can be seen from the quickly increasing actual non-coverage probability

Table 1. Estimated quantiles xpn for models (i)–(vi) with 95%

confidence intervals

Model pn ¼ 0:0005 pn ¼ 0:0001

(i) 41.88, [41.75, 41.96] 63.77, [63.35, 64.28]

(ii) 11.74, [11.71, 11.76] 19.03, [18.94, 19.13]

(iii) 10.02, [10.00, 10.03] 17.13, [17.08, 17.17]

(iv) 14.59, [14.56, 14.61] 24.38, [24.32, 24.47]

(v) 0.2479, [0.2452, 0.2494] 0.4940, [0.4854, 0.5029]

(vi) 0.2114, [0.2109, 0.2117] 0.3450, [0.3435, 0.3466]
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Figure 6. Empirical non-coverage probabilities of (33) (solid line) and (46) (dashed line) for

pn ¼ 1=n; the nominal probability 5% is indicated by the dotted line.
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of the i.i.d. confidence interval (46)). This in turn leads to an overestimation of the

asymptotic variance by �̂� 2
T ,ª,3 and hence to too wide a confidence interval (33).

Figure 7 is the analogue of Figure 6 for pn ¼ 1=(5n) ¼ 0:0001. By and large, the

performance of the confidence interval assuming i.i.d. observations is the same as for

pn ¼ 1=n. In contrast, the non-coverage probabilities of the confidence interval (33) are

considerably higher than in Figure 6. This is particularly true for the nonlinear time series

models (v) and (vi), where the actual probability is much larger than the nominal level for

most k. This problem is mainly due to the large estimation error of the estimator �̂� 2
T ,ª,3 for

the asymptotic variance, which is based on the quantile estimates x̂x
(i)

1=(5n)
. The dash-dotted

line in Figure 7 shows the empirical non-coverage probability when this variance estimator

is replaced with the one based on the quantile estimates x̂x
(i)

1=n, that is, the same estimator as

used in Figure 6. Indeed, now the nominal 5% level is exceeded only for very small k and,

for models (iv) and (v) with k between 90 and 240 and between 230 and 430 respectively,

by merely a few percentage points. So apparently the estimates for x1=(5n) are not reliable

enough to be used for the estimation of the asymptotic variance. This, of course, is not

completely surprising, since it is much more delicate to estimate the quantile x1=(5n) which

lies far outside the range of observations than to estimate the quantile x1=n on the boundary

of that range.

Next, we consider our model (vii) of i.i.d. Fréchet observations (Figure 8). Not

surprisingly, the confidence interval (46) derived from the theory for i.i.d. observations does

a very good job if one uses an appropriate number of order statistics, while the confidence

interval (33) is often too conservative. On the other hand, the latter is less sensitive to a

misspecification of the sample fraction used for estimation, albeit that the nominal level is

exceeded if k is chosen much too large.

As usual in extreme value theory, the choice of the sample fraction used for estimation is

crucial for the performance of the quantile estimators and the pertaining confidence

intervals. Given a fixed level 1� Æ, one often aims at a confidence interval as short as

possible such that the coverage probability is at least 1� Æ. Hence it seems natural to

choose k such that the estimate of the asymptotic variance is minimized. Obviously, this

approach relies on good variance estimates. Therefore, as mentioned above, the estimator

�̂� 2
T ,ª,3 should be based on quantile estimators x̂x

(i)
~ppn

for a quantile x ~ppn that lies inside the

range of observations. On the other hand, ~ppn must be sufficiently small to justify the use of

extreme value theory. As a compromise between these conditions, we choose ~ppn ¼ 2=n.

(Taking ~ppn ¼ 1=n as in Figure 7 leads to slightly worse results, with non-coverage

probabilities about 1–2% higher than reported in Table 2.) In addition, one has to rule out

k being too small, since then the variance estimates are not reliable. Here we restrict k to

values larger than or equal to 80, that is, at least 4% of the sample is used for estimation.

In addition, we exclude unrealistic small-variance estimates by requiring that the estimate is

at least (ª̂ª(k)
n )2, the estimated variance in the case of independent observations. To sum up,

we choose

k̂k :¼ arg min �̂� (k)
T ,ª,3

���� k > 80, �̂� (k)
T ,ª,3 > ª̂ª(k)

n

( )
(48)
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Figure 7. Empirical non-coverage probabilities of (33) (solid line), (33) with variance estimator �̂� 2
T ,ª,3

based on x̂x
(i)

1=n (dash-dotted line) and (46) (dashed line) for pn ¼ 1=(5n); the nominal probability 5% is

indicated by the dotted line.

646 H. Drees



where �̂� (k)
T ,ª,3 is the estimator of the asymptotic standard deviation defined analogously to (32),

but based on the estimators x̂x
(i)

2=n, 3 < i < k, instead of x̂x(i)
pn

.

The resulting empirical probabilities of non-coverage are reported in Table 2. With the

exception of the ARMA(1, 1) model (iv), the method works pretty well: the nominal level

is at most exceeded by just a narrow margin in models (i)–(iii), (vi) and (vii), and by about

2:5–3:5% for the ARCH(1) model (v). In contrast, the actual probability of non-coverage is

2–3 times as large as the nominal one in model (iv), which exhibits a strong local but very
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Figure 8. Empirical non-coverage probabilities of (33) (solid line), (33) with variance estimator �̂� 2
T ,ª,3

based on x̂x
(i)

1=n (dash-dotted line) and (46) (dashed line) for the Fréchet model (vii) and (a) pn ¼ 1=n,

(b) pn ¼ 1=(5n); the nominal probability 5% is indicated by the dotted line.

Table 2. Empirical non-coverage probabilities for

models (i)–(vi) with k chosen according to (48)

Model pn ¼ 0:0005 pn ¼ 0:0001

(i) 2.5% 2.2%

(ii) 5.3% 6.6%

(iii) 6.1% 6.7%

(iv) 10.1% 14.1%

(v) 7.7% 8.6%

(vi) 5.5% 6.3%

(vii) 5.4% 6.0%
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short-ranged dependence. Nevertheless, the approach to minimizing the estimated

asymptotic variance seems very promising if reliable variance estimates are at hand.

Finally, we discuss the effect, observed in the analysis of the Nasdaq Composite index,

that a shift in the data can considerably improve the fit of the extremes by a Pareto

distribution and consequently also the estimation accuracy. In the present study this applies

particularly to the nonlinear ARCH(1) and GARCH(1, 1) time series used to model the

returns of risky financial assets. For example, Figure 9 shows the Pareto quantile–quantile

plot (log((nþ 1)=i), log X n�iþ1:n)1<i<nþ for a GARCH time series of size n ¼ 50 000

drawn from model (vi) and for the sample shifted by 0.035. (Here nþ denotes the number

of positive observations; we use simulated data to obtain an estimate for the unknown dfs.)

Clearly the quantile–quantile plot for the shifted data set can be well approximated by a

line over a much wider range than the plot for the original data, thus indicating that a

larger sample fraction of extremes can be fitted well by a Pareto distribution. Here the

amount by which the data set is shifted does not depend on the particular sample (but, of

course, on the model). Indeed, the value 0.035 was chosen so that the Hill plot for a

different sample from model (vi) appeared flat, and the moment estimator and the

maximum likelihood estimator yield similar results over a wide range of k-values; cf. the

discussion in Section 4.

Figure 10 displays the empirical non-coverage probabilities of the confidence intervals

(33) and (46) for the GARCH(1, 1) model (vi) shifted by 0.035. From the curves

corresponding to the interval (46) one can see that a significant bias occurs only if k is

taken to be larger than 400, whereas for the original model this happens for about k > 150.

Hence on the average one obtains much shorter confidence intervals by choosing k between
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Figure 9. Pareto quantile–quantile plot for GARCH(1, 1) model (vi) (lower plot) and for model

shifted by 0.035 (upper plot).

648 H. Drees



250 and 350, say, leading to non-coverage probabilities of about 4–5% for pn ¼ 1=n and

about 3:5–5% for pn ¼ 1=(5n). More precisely, although these probabilities are smaller than

those reported in Table 2 for the original GARCH model when almost shortest confidence

intervals are used, there the average length of the confidence intervals is more than 3 times

as large as in the shifted model for pn ¼ 1=n and about 6 times as large for pn ¼ 1=(5n).

This demonstrates the huge improvement in the estimation accuracy achieved by an

appropriate shift of the data. In addition, the confidence interval becomes less sensitive to a

misspecification of the sample fraction used for estimation, as far as the coverage

probability is concerned.

6. Asymptotics: the general case

In this section we analyse the asymptotic behaviour of quantile estimators of type (7) when

F 2 D(Gª) for some ª 2 R. Unlike in the special case ª . 0, there is no simple unifying

representation of the quantile function that is sufficient for F 2 D(Gª) for all ª 2 R.

Therefore we replace (C4) and (C5) with an analogue of condition (18) based on

convergence (6):
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Figure 10. Empirical non-coverage probabilities of (33) (solid line), (33) with variance estimator

�̂� 2
T ,ª,3 based on x̂x

(i)

1=n (dash-dotted line) and (46) (dashed line) for the GARCH(1, 1) model (vi) shifted

by 0.035 and (a) pn ¼ 1=n (left), (b) pn ¼ 1=(5n); the nominal probability 5% is indicated by the

dotted line.
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(C4)9 lim
n!1

k1=2
n sup

0, t<1þ

tªþ1=2(1þ jlog tj)�1=2j ~RR(k n=n, t)j ¼ 0

with

~RR(º, t) :¼ F�1(1� ºt)� F�1(1� º)

a(º)
� t�ª � 1

ª
.

Then we have the following counterpart to Theorem 2.1 (see Drees 2000):

Theorem 6.1. Under conditions (C1)–(C3) and (C4)9 for some ln ¼ o(n=k n) there exist

versions of the tail empirical qf Qn, random variables Dn and a centred Gaussian process e

with covariance function c defined by (12) such that

sup
t2(0,1]

tªþ1=2(1þ jlog tj)�1=2

����k1=2
n

Qn(t)� Dn

a(k n=n)
� t�ª � 1

ª

� �
� t�(ªþ1)e(t)

����! 0 (49)

in probability.

Remark 6.1. For ª > �1
2

the random variables Dn may be replaced with F�1(1� k n=n),

while for ª , �1
2

one merely has Dn � F�1(1� k n=n) ¼ oP(k�1=2
n ); see Drees (1998a) for

more about Dn.

Remark 6.2. Remark 2.4 also applies in the present case.

As in the case ª . 0, the extreme value index may be estimated by a statistical tail

functional T (Qn). However, in conditions (T1)–(T3) t�ª must be replaced with (t�ª � 1)=ª
and, in addition to the scale invariance of T , we need location invariance to deal with the

random shift by Dn in (49). This leads to the following modified conditions:

(T1)9 T (azþ b) ¼ T (z) for all a . 0 and b 2 R.

(T2)9 T
t�ª � 1

ª

� �
0, t<1

 !
¼ ª.

(T3)9 There exists a signed measure �T ,ª on (0,1] with
Ð

(0,1]
t�ª�1=2(1 þ

jlog tj)1=2 j�T ,ªj(dt) ,1 such that


�1
n T

t�ª � 1

ª
þ 
nzn(t)

� �
0, t<1

 !
� T

t�ª � 1

ª

� �
0, t<1

 ! !
!
ð

(0,1]

z(t)�T ,ª(dt)

for all 
n # 0 and zn satisfying

sup
0, t<1

tªþ1=2(1þ jlog tj)�1=2jzn(t)� z(t)j ! 0

for some continuous function z as described in (T0).
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Note that, for ª . 0, here �T ,ª has a slightly different meaning than in (T3), since here we

consider a derivative of T at (t�ª � 1)=ª.

Next we need an estimator of the scale function a. To this end, we can employ a similar

approach, that is, we estimate a by a smooth functional S(Qn). Like T , the functional S

should be invariant under shifts but it must be equivariant under scale transformations.

Moreover, S should give the value 1 when applied to the standard generalized Pareto qf.

Hence we impose the following conditions:

(S0) S is a Borel measurable real-valued functional on the set of functions z 2 D(0, 1]

satisfying tªþ1=2j log tj�1=2z(t)! 0 as t # 0.

(S1) S(azþ b) ¼ aS(z) for all a . 0 and b 2 R.

(S2) S
t�ª � 1

ª

� �
0, t<1

 !
¼ 1.

(S3) There exists a signed measure �S,ª on (0,1] with
Ð

(0,1]
t�ª�1=2(1 þ

j log tj)1=2 j�S,ªj(dt) ,1 such that


�1
n S

t�ª � 1

ª
þ 
nzn(t)

� �
0, t<1

 !
� S

t�ª � 1

ª

� �
0, t<1

 ! !
!
ð

(0,1]

z(t)�S,ª(dt)

for all 
n # 0 and zn satisfying

sup
0, t<1

tªþ1=2(1þ jlog tj)�1=2jzn(t)� z(t)j ! 0

for some continuous function z as described in (S0).

Example. The estimator (8) is of this type with

S(z) ¼ (z(1
2
)� z(1))

T (z)

2T(z) � 1

if ª̂ªn ¼ T (Qn) for some T satisfying (T0) and (T1)9–(T3)9.

Conditions (S0)–(S2) are readily verified. To check (S3) note that, with yª(t) :¼
(t�ª � 1)=ª, condition (T3)9 and a Taylor expansion of x 7! x=(2x � 1) at ª yield

T (yª þ 
nzn)

2T ( yªþ
 n zn) � 1
¼ ª

2ª � 1
þ 
n

2ª � 1� ª2ª log 2

(2ª � 1)2

ð
(0,1]

z(t)�T ,ª(dt)þ o(
n),

which for ª ¼ 0 is to be interpreted as the limit for ª! 0. Hence


�1
n (S(yª þ 
nzn)� S(yª))

¼ (zn(
1
2
)� zn(1))

ª

2ª � 1
þ (yª

1
2

� �
� yª(1))
�1

n

T (yª þ 
nzn)

2T( yªþ
n z n) � 1
� ª

2ª � 1

� �
þ o(1)

! (z 1
2

� �
� z(1))

ª

2ª � 1
þ 2ª � 1� ª2ª log 2

ª(2ª � 1)

ð
(0,1]

z(t)�T ,ª(dt),
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that is, (S3) with

�S,ª ¼
ª

2ª � 1
(
1=2 � 
1)þ 2ª � 1� ª2ª log 2

ª(2ª � 1)
�T ,ª:

Theorem 6.2. Suppose that the conditions of Theorem 6.1 are satisfied. If ª̂ªn ¼ T (Qn) and

âa(k n=n) ¼ S(Qn) with T and S satisfying (T0), (T1)9–(T3)9 and (S0)–(S3), respectively, then

k1=2
n (ª̂ªn � ª)! N (0, � 2

T ,ª) (50)

and

k1=2
n

âa(k n=n)

a(k n=n)
� 1

� �
! N (0, � 2

S,ª) (51)

weakly with

� 2
T ,ª ¼

ð
(0,1]

ð
(0,1]

(st)�(ªþ1) �T ,ª(ds)�T ,ª(dt),

� 2
S,ª ¼

ð
(0,1]

ð
(0,1]

(st)�(ªþ1) �S,ª(ds)�S,ª(dt):

Suppose, in addition, that condition (15) holds and

lim
n!1

dn ~RR
kn

n
,
npn

k n

� �
¼ 0 (52)

with

dn :¼ k1=2
n

ª

(npn=k n)�ª � 1

(log(k n=(npn)))
�1, if ª > 0,

1, if ª , 0:

�
Then the estimator ~xxpn defined by (7) satisfies

dn

a(k n=n)
(~xxpn � xpn )! N (0, � 2

S,T ,ª) (53)

where � 2
S,T ,ª ¼ � 2

T ,ª if ª . 0, � 2
S,T ,ª ¼ � 2

T ,ª=4 if ª ¼ 0, and

� 2
S,T ,ª ¼ ª2c(1, 1)� 2ª

ð
(0,1]

t�(ªþ1)c(1, t)�S,ª(dt)þ 2

ð
(0,1]

t�(ªþ1)c(1, t)�T ,ª(dt)

þ
ð

(0,1]

ð
(0,1]

(st)�(ªþ1)c(s, t)�S,ª(ds)�S,ª(dt)

� 2

ª

ð
(0,1]

ð
(0,1]

(st)�(ªþ1)c(s, t)�S,ª(ds)�T ,ª(dt)

þ 1

ª2

ð
(0,1]

ð
(0,1]

(st)�(ªþ1)c(s, t)�T ,ª(ds)�T ,ª(dt)

if ª , 0.
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Remark 6.3. In view of the proof of Theorem 6.2, condition (52) is a natural generalization

of (19).

Remark 6.4. Note that for ª > 0 the choice of the estimator for the scale function a does not

matter asymptotically. For ª , 0, though, both the estimators of ª and of a influence the

asymptotic behaviour of the quantile estimator, leading to a considerably more complicated

expression for the asymptotic variance.

Proof. According to Skorohod’s representation theorem there exist versions of Qn, Dn and e

such that the convergence (49) holds almost surely. Let yª(t) :¼ (t�ª � 1)=ª and

zn :¼ k1=2
n ((Qn � Dn)=a(k n=n)� yª). Since the process e has almost surely continuous

sample paths (see Drees 2000), (S1)–(S3) combined with (49) give

âa(k n=n)

a(k n=n)
¼ S

Qn � Dn

a(k n=n)

� �
¼ S(yª þ k�1=2

n zn)

¼ 1þ k�1=2
n

ð
(0,1]

t�(ªþ1)e(t)�S,ª(dt)þ o(k�1=2
n ) (54)

almost surely, from which (51) is obvious.

Likewise, one can show that

k1=2
n (ª̂ªn � ª)!

ð
(0,1]

t�(ªþ1)e(t)�T ,ª(dt) a:s: (55)

which implies (50) (see proof of Theorem 2.2).

To prove (53), check that

~xxpn � xpn
a(k n=n)

¼ Qn(1)� F�1(1� k n=n)

a(k n=n)
� (xpn � F�1(1� k n=n)

a(k n=n)
� yª

npn

k n

� � !

þ âa(k n=n)

a(k n=n)
� 1

� �
yª̂ª n

npn

k n

� �
þ yª̂ªn

npn

k n

� �
� yª

npn

k n

� �� �
¼: I þ II þ III þ IV :

Theorem 6.1, in combination with Remark 6.1, shows that

k1=2
n I ! e(1) a:s:

By condition (52) we have

k1=2
n II ¼ ~RR

kn

n
,
npn

k n

� �
¼ o(yª(npn=k n)) a:s:

Condition (15) ensures that yª̂ªn
(npn=k n) ¼ yª(npn=k n)(1þ o(1)). Hence, in view of (54),
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k1=2
n III ¼ yª

npn

k n

� �ð
(0,1]

t�(ªþ1)e(t)�S,ª(dt)(1þ o(1)) a:s:

where

yª
npn

k n

� �
¼ (1þ o(1)) �

((npn)=k n)
�ª=ª, if ª . 0,

log(k n=(npn)), if ª ¼ 0,

�1=ª, if ª , 0:

8<:
Finally, similarly to the proof of Theorem 2.2 and the example given above, a Taylor

expansion of x 7! yx(npn=k n) at ª in combination with (15) and (55) yields

k1=2
n IV ¼ k1=2

n (ª̂ªn � ª)
1

ª2
1� 1þ ª log

npn

k n

� �
npn

k n

� ��ª !
(1þ o(1))

¼
ð

(0,1]

t�(ªþ1)e(t)�T ,ª(dt)(1þ o(1)) �

log(k n=(npn))(npn=k n)
�ª=ª, if ª . 0,

log2(k n=(npn))=2, if ª ¼ 0,

1=ª2, if ª , 0:

8>>><>>>:
Because, for ª > 0, I þ II þ III ¼ o(IV ), assertion (53) follows readily in this case. For

ª , 0 we obtain

dn

a(k n=n)
(~xxpn � xpn)! �ªe(1)þ

ð
(0,1]

t�(ªþ1)e(t)�S,ª(dt)� 1

ª

ð
(0,1]

t�(ªþ1)e(t)�T ,ª(dt)

from which (53) follows by straightforward calculations. h

Based on Theorem 6.2, one may construct confidence intervals along the lines given in

Section 2. In the present situation one uses different estimators of the asymptotic variance

depending on the estimated extreme value index ª̂ªn.

For example, if ª , 0 then one can show by arguments similar to those in the proofs of

Theorems 6.2 and 2.3 that, for all s . 0,

ª̂ª(i)
n :¼ T (Qn,i) ¼ ªþ k1=2

n

i

ð
(0,1]

t�(ªþ1)e
i

k n

t

� �
�T ,ª(dt)þ oP(k�1=2

n )

âa(i=n)

a(k n=n)
:¼ S(Qn,i)

a(k n=n)
¼ i

k n

� ��ª
1þ k1=2

n

i

ð
(0,1]

t�(ªþ1)e
i

k n

t

� �
�S,ª(dt)þ oP(k�1=2

n )

 !
uniformly for sk n < i < k n. From this one may conclude the existence of a sequence sn # 0

such that

sup
sn<s<1

����k1=2
n

~xx([k n s])
pn

� xpn

âa([k ns]=n)
� ZS,T ,ª(s)

����! 0

in probability, with
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~xx(i)
pn

:¼ X n�i:n þ âa
i

n

� �
(npn=i)

ª̂ª(i)
n � 1

ª̂ª(i)
n

and

ZS,T ,ª(s) :¼ e(s)

ª
� 1

ªs

ð
(0,1]

t�(ªþ1)e(st)�S,ª(dt)þ 1

ª2s

ð
(0,1]

t�(ªþ1)e(st)� t,ª(dt):

In view of the proof of Theorem 2.3, this in turn implies, with jn :¼ [k nsn]þ 1 and
~ZZS,T ,ª(u) :¼ eu=2ZS,T ,ª(eu),

~�� 2
n :¼

1

log(k n= jn)

Xk n

i¼ j n

~xx(i)
pn
� ~xxpn

âa(i=n)

 !2

¼ 1

log(k n= jn)

ð1

j n=k n

ZS,T ,ª(s)� âa(k n=n)

âa(i=n)
ZS,T ,ª(1)

� �2

ds(1þ oP(1))

¼ 1

log(k n= jn)

ð1

j n=k n

(ZS,T ,ª(s)� s�ªZS,T ,ª(1))2 ds(1þ oP(1))

¼ 1

log(k n= jn)

ð0

log( j n=k n)

( ~ZZS,T ,ª(u)� e(1=2�ª)u ~ZZS,T ,ª(0))2 du(1þ oP(1))

! E ~ZZ2
S,T ,ª(0)

� 

¼

� 2
S,T ,ª

ª2

because

1

log(k n= jn)
E

ð0

log( j n=k n)

e(1=2�ª)u ~ZZS,T ,ª(0)
� 
 !2

du! 0:

Therefore, one may use the asymptotic (1� Æ) confidence interval

[~xxpn � k�1=2
n

~��nzÆ=2, ~xxpn þ k�1=2
n

~��nzÆ=2]

if ª̂ªn , 0, since dn � �ªk1=2
n if ª , 0. In order to keep the paper to manageable proportions,

we do not discuss the case ª > 0 and all the ramifications considered in Section 2.
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