
Chapter 13 

SQUARE  ROOTS, PYTHAGORAS, 

AND  SIMILAR TRIANGLES

Juan Gris Jar, Bottle, and Glass, 1911 

The diagonal of an oblong produces by itself both the areas which the two sides of the oblong 

produce separately. — Baudhayana, Sulbasutram, Sutra 48 [AT: Baudhayana] 

This chapter is devoted to a subject that is not only of great theoretical interest but also of 

recreational interest, for dissection theory plays an important role in a rigorous 

development of area and volume and also furnishes a seemingly endless variety of 

attractive and challenging puzzles. 

In the last chapter, we showed that two polygons on a sphere with the same area are 

equivalent by dissection because both are equivalent to the same biangle. In this chapter, 

we will prove an analogous result on the plane by showing that every planar polygon is 

equivalent by dissection to a square. This result is the basis for many popular dissection 

puzzles. Before reading this chapter, you should go through the Introduction to Dissection 

Theory and Problem 12.1 at the start of Chapter 12. 

In the process of exploring this dissection theory, we will follow a path through a 

corner of the forest of mathematics — a path that has delighted and surprised the authors 

many times. We will bring with us the question, What are square roots? Along the way we 

will confront relationships between geometry and algebra of real numbers, in addition to 

similar triangles, the Pythagorean Theorem (the quote above is a statement of this theorem 

written before Pythagoras), and possibly the oldest written proof in geometry (at least 2600 

years old). This path will lead to the solutions of quadratic and cubic equations in Chapter 

19. We will let David’s personal experience start us on this path.
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SQUARE ROOTS 

When David was in eighth grade, he asked his teacher, “What is a square root?” David 

knew that the square root of N was a number whose square was equal to N, but where 

would one find it? (Hidden in that question is “How does one know it will always exist?”) 

He knew what the square roots of 4 and 9 were — no problem there. He even knew that 

the square root of 2 was the length of the diagonal of a unit square, but what of the square 

root of 2.5 or of ? 

At first, the teacher showed David a square root table (a table of numerical square 

roots), but he soon discovered that if one took the number listed in the table as the square 

root of 2 and squared it, you got 1.999396, not 2. (Modern-day calculators give rise to the 

same problem but hide it reasonably effectively by calculating more digits than they display 

and then rounding off.) So, David persisted in asking his question, What is the square root? 

Then the teacher gave him THE ANSWER — the Square Root Algorithm. Do you 

remember the Square Root Algorithm — that procedure, similar to long division, by which 

it is possible to calculate the square root? Or perhaps more recently you were taught the 

“divide and average” method, a more efficient method that was known to Archytas of 

Tarentum (428–350 B.C., Greek) but today is often called Newton’s Method after Isaac 

Newton (English, 1643–1727). 

If A1 is an approximation of the square root of N, then the average of A1 and N/A1 is 

an even better approximation, which we could call A2 . And then the next 

approximation A3 is the average of A2 and N/A2. In equation form this becomes 

An+1 = (1/2)(An+(N/An)). 

For example, if A1 = 1.5 is an approximation of the square root of 2, then 

  A2 = 1.417··· ,  A3 = 1.414216··· 

and so forth are better and better approximations. 

But wait! Most of the time these algorithms do not calculate the square root — they only 

calculate approximations to the square root. The algorithms have an advantage over the 

tables because we could, at least in theory, calculate approximations as close as we wished. 

However, they are still only approximations and David’s question still remained — What 

is the square root these algorithms approximate? 

David’s eighth-grade teacher then gave up, but later in college David found out that 

some modern mathematicians answer his question in the following way: “We make an 

assumption (the Completeness Axiom) that implies that the sequence of approximations 

from the Square Root Algorithm must converge to some real number.” And, when he 

continued to ask his question, he found that in modern mathematics the square root is a 

certain equivalence class of Cauchy (Augustin-Louis Cauchy, 1789–1857, French) 

sequences of rational numbers, or a certain Dedekind (Julius Dedekind, 1831–1916, 
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German) cut. Finally, David let go of the question and forgot it in the turmoil of graduate 

school, writing his thesis, and beginning his mathematical career. 

Later, David started teaching the geometry course that is the basis for this book. One 

of the problems in the course was the following Problem 13.1. [For this chapter you will 

need, at times, to assume the Archimedean Postulate, AP — when you do, note it.] 

PROBLEM 13.1 A RECTANGLE DISSECTS INTO A SQUARE 

Show that, on the plane, every rectangle is equivalent by dissection to a square. 

Figure 13.1 Dissecting a rectangle into a square 

SUGGESTIONS 

Problems 13.1 and 13.2 can be done in any order. So, if you get stuck on one problem, you 

can still go on to the other. In Problems 13.1 and 13.2, it is especially important to make 

accurate models and constructions — rough drawings will not show the necessary length 

and angle relationships. 

Problem 13.1 is one of the oldest problems in geometry, so you may have guessed 

(correctly!) that it is one of the more complex ones. This problem is interesting for more 

than just historical reasons. You are asked to prove that you can cut up any rectangle (into 

a finite number of pieces) and rearrange the pieces to form a square, as in Figure 13.1. 

Because you are neither adding anything to the rectangle nor removing anything, 

the area must remain the same, so ab = x2, or x = √𝑎𝑏 . What you are really finding is a 

geometric interpretation of a square root. This was done already by Pythagoreans (6th

century B.C.), who called x the geometric mean of a and b. 

Let us look at a proof that is similar to the proofs in many standard geometry 

textbooks: 

Let 𝑠 = √𝑎𝑏  be the side of the square equivalent by dissection to the rectangle with 

sides a and  b. Place the square, AEFH, on the rectangle, ABCD, as shown in 

Figure 13.2. Draw ED to intersect BC in R and HF in K. Let BC intersect HF in 

G. [In the case that ABCD is so long and  skinny that K ends up between G and F,

we can, by cutting ABCD in half and stacking the halves, reduce the proof to

the case above. Note that AP is implicitly being used here.] From the

similar   triangles ∆ KDH and ∆ EDA we have HK/AE = HD/AD, or

     HK = (AE)(HD)/AD = s(a − s)/a = s − s2/a = s − b. 

Therefore, we have ∆ EFK  ∆ RCD, ∆ EBR  ∆ KHD. 
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Figure 13.2 Textbook proof 

 David was satisfied with this proof until, in the second year of teaching the geometry 

course, he started sensing student uneasiness with it. As he listened to their comments, he 

noticed questions being asked by the students: “What is  √𝑎𝑏 ?” How do you find it?” 

Those used to be his questions! 

 The students and David also noticed that the facts used about similar triangles in the 

proof above are usually proved using the theory of areas of triangles. Thus, the proof could 

not be used as part of a concrete theory of areas of polygons, which was our purpose in 

studying dissection theory in the first place. Notice that the above proof also assumes the 

existence of the square, which in analysis is based on what is called the Completeness 

Axiom. The conclusion here seems to be that it would be desirable instead to construct the 

square root x. That started David on an exploration that continued on and off for many 

years. 

 Now let us solve a few problems in dissection theory. 

 Here are three methods for constructing x. For all three constructions we will use a 

rectangle like the one shown in Figure 13.1, with the longer side b as the base and the 

shorter side a as the height. 
 

Figure 13.3 The angle at A is a right angle 

 For both the first and second constructions, you need to know that a triangle with 

all vertices on the circumference of a circle and one side a diameter of the circle is a right 

triangle. See Figure 13.3. That the angle not on the diameter is a right angle follows from 

a more general result, which we will prove in Problem 15.1a, but the special case we need 

is easy to see now. Draw the line segment from the vertex to the center of the circle and 

note that two isosceles triangles are formed. By ITT, Problem 6.2, there are congruent 

 
 

  
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angles as marked; and, because the sum of the angles in a planar triangle is 180° (Problems 

7.3b or 10.2) we can compute that  

                                                 (2 + ) + (2 + ) = 360°  

and, because  +  = 180°, it follows immediately that  +  = 90°. See Problem 15.1 for a 

more general result. 

 For the first construction, Figure 13.4, take the rectangle and lay a out to the left of 

b. Use this base line as the diameter of a circle. The length x that you are looking for is the 

perpendicular line from the left side of the rectangle to where it intersects the circle. 

 
Figure 13.4 First construction of x 

 The second construction, Figure 13.5, is similar, but this time put a on the inside of 

the base of the rectangle. Now the side x you are looking for is the segment from the lower 

left corner of the rectangle to the point of intersection on the circle with the perpendicular 

rising from the point a in from the corner as indicated in the figure. 

 

Figure 13.5 Second construction of x 

The third construction, Figure 13.6, is a bit more algebraic than the others, and doesn’t 

directly involve a circle. 

 

Figure 13.6 Third construction of x 

This construction can be used together with the result of Problem 13.2 in order to obtain a 

proof by subtraction. 

a 
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For all of these constructions, it is imperative that you use accurate models. 

Whatever method you choose, make the rectangle and the square overlap as much as 

possible, and see how to fit the other pieces in. Then you have to prove that all of the sides 

and angles line up properly. Note that it is much better to solve this problem geometrically 

rather than by only trying to work out the algebra — actually do the construction and 

proceed from there. Finally, you don’t have to use one of the constructions shown here. If 

these don’t make sense to you, then find one of your own that does. 

And remember not to use results about similar triangles because we normally need 

results about areas in order to prove these results as we will do in Problem 13.4. 

Pause, explore, and write out your ideas before reading further. 

BAUDHAYANA’S SULBASUTRAM 

While reading an article, David ran across an item that said that the problem of changing a 

rectangle into a square appeared in the Sulbasutram. “Sulbasutram” means “rules of the 

cord,” and the several Sanskrit texts collectively called the Sulbasutra were written by the 

Vedic Hindus starting before 600 B.C. and are thought to be compilations of oral wisdom 

that may go back to 2000 B.C. (See, for example, A. Seidenberg The Ritual Origin of 

Geometry [HI: Seidenberg].) These texts have prescriptions for building fire altars, or Agni. 

However, contained in the Sulbasutra are sections that constitute a geometry textbook 

detailing the geometry necessary for designing and constructing the altars. As far as we 

have been able to determine, these are the oldest geometry (or even mathematics) textbooks 

in existence. There are at least four versions of the Sulbasutram by Baudhayana, 

Apastamba, Katyayana, and Manava. The geometric descriptions are very similar in these 

four books, and we will only use Baudhayana’s version here (see [AT: Baudhayana]). 

The first chapter of Baudhayana’s Sulbasutram contains geometric statements 

called “Sutra.” Sutra 54 is what we asked you to prove in Problem 13.1. It states the 

following: 

If you wish to turn an oblong [here “oblong” means “rectangle”] into a square, take the 

shorter side of the oblong for the side of square. Divide the remainder into two parts 

and inverting join those two parts to two sides of the square. Fill the empty place by 

adding a piece. It has been taught how to deduct it. [See Figure 13.7.] 

Figure 13.7 Sutra 54 
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So, our rectangle has been changed into a figure with an “empty place,” which can be filled 

“by adding a piece” (a small square). The result is a large square from which a small square 

has to be “deducted.” 

 Now Sutra 51 (Refer to Figure 13.8.): 

If you wish to deduct one square from another square, cut off a piece from the larger 

square by making a mark on the ground with the side of the smaller square which you 

wish to deduct; draw one of the sides across the oblong so that it touches the other side; 

by this line which has been cut off the small square is deducted from the large one. 

 

Figure 13.8 Sutra 51: Construction of side of square 

 We wish to deduct the small square (a2) from the large square. Sutra 51 tells us to 

“scratch up” with the side of the smaller square — this produces the line AB and the oblong 

ABCD. Now, if we “draw” the side CD of the large square to produce an arc, then this arc 

intersects the other side at the point E. The sutra then claims that BE is side of the desired 

square whose area equals the area of the large square minus the area of the small square. 

This last assertion follows from Sutra 50, which we ask you to prove in Problem 13.2. 

 See Figure 13.9 for the drawing that goes with Sutra 50: 

If you wish to combine two squares of different size into one, scratch up with the side 

of the smaller square a piece cut off from the larger one. The diagonal of this cutoff 

piece is the side of the combined squares. 

Be sure you see why Sutra 50 is a statement of what we call the Pythagorean Theorem. 
 

 

Figure 13.9 Sutra 50 

 A. Seidenberg, in an article entitled The Ritual Origin of Geometry [HI: 

Seidenberg], gives a detailed discussion of the significance of Baudhayana’s Sulbasutram. 

He argues that it was written before 600 B.C. (Pythagoras lived about 500 B.C. and Euclid 

about 300 B.C.). He gives evidence to support his claim that it contains codification of 
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knowledge going “far back of 1700 B.C.” and that knowledge of this kind was the common 

source of Indian, Egyptian, Babylonian, and Greek mathematics. Together Sutras 50, 51, 

and 54 describe a construction of a square with the same area as a given rectangle (oblong) 

and a proof (based on the Pythagorean Theorem) that this construction is correct. You can 

find stated in many books and articles that the ancient Hindus, in general, and the 

Sulbasutram, in particular, did not have proofs or demonstrations, or they are dismissed as 

being “rare.” However, there are several sutras in [AT: Baudhayana] similar to the ones 

discussed above. We suggest you decide for yourself to what extent they constitute proofs 

or demonstrations. 

 Baudhayana avoids the Completeness Axiom by giving an explicit construction of 

the side of the square. The construction can be summarized in Figure 13.10. 

 This is the same as Euclid’s construction in Proposition II-14 (see [AT: Euclid, 

Elements], page 409). But Euclid’s proof is much more complicated. Note that neither 

Baudhayana nor Euclid gives a proof of Problem 13.1 because the use of the Pythagorean 

Theorem obscures the dissection. However, they do give a concrete construction and a 

proof that the construction works. 

 

 

Figure 13.10 Baudhayana’s construction of square root 

Both Baudhayana and Euclid prove the following theorem, which uses equivalence by 

subtraction. 

 

 THEOREM. For every rectangle R there are squares S1 and S2 such that R + S2 is 

 equivalent by dissection to S1 + S2 and thus   R and S1 have the same area. 

 

 Notice that both Baudhayana’s and Euclid’s proofs of this theorem and your proof 

of Problem 13.1 avoid assuming that the square root exists (and, thus, avoid the 

Completeness Axiom). They also avoid using any facts about similar triangles. These 

proofs explicitly construct the square and show in an elementary way that its area is the 

same as the area of the rectangle. There is no need for the area or the sides of the rectangle 

to be expressed in numbers. Also given a real number, b, the square root of b can be 

constructed by using a rectangle with sides b and 1. In Problem 13.3 we will use these 

techniques to prove basic properties about similar triangles. 

 So, finally, we have an answer to our question, What is a square root? Also, see 

David’s chapter, “Square Roots in the Sulba Sutra,” in  the book [EG: Gorini], which 
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describes a geometric method based on Baudhayana that finds arbitrarily accurate 

numerical approximations to many square roots and does so in a way that is 

computationally more efficient than the “divide and average” method (Archytas/Newton’s 

Method) described at the beginning of this chapter. 
 

PROBLEM 13.2 EQUIVALENCE OF SQUARES 

 Prove the following: On the plane, the union of two squares is equivalent by 

 dissection to  another square. 

 

SUGGESTIONS 

This is closely related to the Pythagorean Theorem. There are two general ways to approach 

this problem: You can use Problem 13.1 or you can prove it on its own, which will result 

in a proof of the Pythagorean Theorem — hence, you can’t use the Pythagorean Theorem 

to solve this problem because you will be proving it!  

   

To see how this problem relates to the Pythagorean Theorem, think about the following 

statement of the Pythagorean Theorem:  

 The square on the hypotenuse is equal to the sum of the squares on 

  the other two sides. 

This is not just an algebraic equation — the squares referred to are actual geometric 

squares. 

 

Figure 13.11 Pythagorean Theorem 

 As in the other dissection problems, make the three squares coincide as much as 

possible, and see how you might get the remaining pieces to overlap. You might start by 

reflecting the square with side c over the side c on the triangle. Then prove that the 

construction works as you say it does. 
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ANY POLYGON CAN BE DISSECTED INTO A SQUARE 

If we put together Problems 12.1, 13.1, and 13.2, we get the surprising 
 

 THEOREM 13.2a On the plane, every simple polygon is equivalent by  

  dissection to a square. 
 

 

 

Figure 13.12 Every polygon dissects into a square 
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HISTORY OF DISSECTIONS 

We have now seen dissection proofs in Chapter 12, Problems 13.1 and 13.2, and we will 

see more in later chapters (for example, the dissection proof of the Law of Cosines in 

20.2a). In the section History of Dissections in the Theory of Area of Chapter 12 we 

outlined how dissection have been used to prove results about area and to develop a 

rigorous theory of area. In this chapter we have seen more examples of this. 

Note that the result in Theorem 13.2a implies, on the plane, that 
 

 THEOREM 13.2b Any two polygons with the same area are equivalent by  

  dissection to each other. 

 

This theorem is true not only on the plane but also on spheres (Problem 12.4) and 

hyperbolic planes (Theorem 12.4). On the plane the theorem is often called the Bolyai-

Gerwien-Wallace Theorem (with sometimes Wallace’s name left off). It was proved 

independently by Wallace in 1831, Bolyai in 1832, and Gerwien in 1833. 

 Note that Theorem 13.2 does not tell us anything about how many pieces would be 

needed in any particular dissection. In fact, the number will, in general, be very large. This 

leads to the question of making dissections with the least number of pieces, or with the 

most symmetry, or, we can say, with the most elegance. A large number of polygonal 

dissection puzzles and recreations arises from these questions. There is a surprisingly rich 

history associated with recreational dissections. See, for example [DI: Frederickson 1997] 

and [DI: Frederickson 2002]. Refer to these books for further history and about 1000 

dissection pictures.  

 As an example, the dissection in Figure 13.13 is a famous dissection of an equilateral 

triangle into a square that requires only four pieces. The discovery of this dissection is 

usually credited to Henry Dudeney (English, 1857–1930) in 1902, but [DI: Frederickson 

1997], p. 136, raises some doubts about this attribution. 

 In this dissection, the segments AD, DB, BE, EC, FG are all equal to half the side of 

the triangle; EF is equal to the side of the equivalent square; DJ and GK are each 

perpendicular to EF. If the four pieces are successively hinged to one another at the points, 

D, E, G, then holding piece I fixed and swinging the connected set of pieces IV-III-II 

clockwise, the equilateral triangle is neatly carried into the square. 

    

Figure 13.13 Four-piece dissection of triangle to square, 3D printed design by Laura Taalman 

(mathgrrl.com) 
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We could build a set of four connected tables based on this fact; swinging the tables in one 

direction causes the tops to fit together into a single equilateral triangular table and 

swinging them in the other direction causes the tops to fit together into a single square 

table. This is an example of a hinged dissection. If you go back to your dissections in 

Chapter 12 and 13.1 and 13.2, you will probably find that some of them can also be hinged. 

The [DI: Frederickson 2002] book is entirely about hinged dissections and what he calls 

“twisting dissections.” 

 The 18th and 19th centuries produced a variety of puzzle books that contained 

dissection puzzles. Articles about dissections also appeared in scientific journals. In the 

early 19th century the Bolyai-Gerwien-Wallace Theorem was proved. Dissection puzzles 

had great popularity during 1880s and 1890s, and at the end of 19th century puzzle columns 

by Sam Loyd and Henry E. Dudeney began to appear in newspapers and magazines. The 

20th century brought an increase in sophistication to dissections. Articles and problems 

appeared in periodicals such as Mathematical Gazette, American Mathematical Monthly, 

and Scientific American. Geometric dissection has become a frequent topic in books on 

mathematical recreations, but there are books that focus exclusively on dissections, [DI: 

Lindgren 1964 & 1972] and [DI: Boltyanski 1980]. 
 

PROBLEM 13.3 MORE DISSECTION-RELATED PROBLEMS 

Some of these dissection problems are easy and some are hard. We do not tell you which; 

but, in any case, what is hard for us may be easy for you. 

 

a. Show that the four-piece dissection of an equilateral triangle to a square depicted 

in Figure 13.13 actually works as claimed. 

 

b. Show that any obtuse triangle (one angle is greater than a right angle) can be 

dissected into acute triangles (all angles are less than a right angle). What is the 

dissection with the smallest number of pieces you can find? 

 

c. Prove that the figure formed when the midpoints of the sides of a quadrilateral are 

joined in order is a parallelogram, and its area is half that of the quadrangle. 

Remember that quadrilaterals need not be convex; see Figure 13.14. 
 

 

Figure 13.14 The Varignon parallelogram of a quadrilateral 
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This parallelogram is often referred to as the Varignon parallelogram of the quadrilateral, 

because the result first appeared in a 1731 posthumous publication by Pierre Varignon 

(1654–1722, French). 

 

d. Show that if one diagonal divides a quadrangle into two triangles of equal area, it 

bisects the other diagonal. Conversely, if one diagonal bisects the other, it bisects 

the area of the quadrangle. 

 

e. Divide a triangle by two straight lines into three parts, which when properly 

arranged shall form a parallelogram whose angles are of given magnitudes. 

 

f. From the arbitrary point within a triangle, draw three lines to the sides of the 

triangle that shall trisect its area. 

 

g. Dissect a regular hexagon by straight cuts into six pieces that can be reassembled 

to form an equilateral triangle. Does there exist a five-piece solution? 

 

h. Given 6  n, show that it is possible to fit together n isosceles right triangles, all of 

different sizes, so as to make a single isosceles right triangle. Can the problem be 

solved for n = 5? Can a right isosceles triangle be dissected into a finite number of 

right isosceles triangles, no two having a common side? 

 

i. Show that any given triangle can be dissected by straight cuts into four pieces that 

can be arranged to form two triangles similar to the given triangle. 

 

j. Dissect a regular pentagon by straight cuts into six pieces that can be put together 

to form an equilateral triangle. 

 

k. Draw a straight line that will bisect both the area and the perimeter of a given 

quadrilateral. 
 

THREE-DIMENSIONAL DISSECTIONS AND HILBERT’S THIRD 

PROBLEM 

In 1900, David Hilbert delivered a lecture before the International Congress of 

Mathematicians in which he listed ten problems “from the discussion of which an 

advancement of science may be expected.” In a later paper he expanded these to 23 

problems, which are now called Hilbert’s Problems. 
 

 Hilbert’s Third Problem. Is it possible to specify two tetrahedra of equal bases and 

 equal  altitudes that can in no way be split up into congruent tetrahedra and that 

 cannot be combined with congruent tetrahedra to form two polyhedra that 
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 themselves could not be split up into congruent tetrahedra?  See [DI: Sah], [DI: 

 Boltyanski 1978], and [TX: Hartshorne] for a discussion of this problem and its 

 history. 
 

 Shortly after Hilbert’s lecture, Max Dehn (1878–1952, Germany, United States) 

found such tetrahedra and also proved that a regular tetrahedron is not equivalent by 

dissection to a cube. Thus, there is no possibility of dissecting polyhedra into cubes. To 

show these results, Dehn proved the following: 
 

 THEOREM 13.4  If P and Q are two polyhedra in 3-space that  are equivalent by 

 dissection (or by subtraction), then the dihedral angles (see Chapter 21) of P are, 

 mod , a rational linear combination of the dihedral angles of Q. That is, if i  

 are the dihedral angles of P and j are the dihedral angles  of Q, then there  are 

 integers ni, mj, a, b such that 

     i nii + a = j mjj + b. 

 

 This interesting fact is of far-reaching importance in the theory of volumes. It 

implies that although a theory of areas of polygons can be constructed without continuity 

considerations, such is not possible for a complete theory of volumes of polyhedra. Thus, 

the ordinary treatment of volumes, such as we find in Euclid's Elements, involves 

infinitesimals, which do not occur in the theory of polygonal areas. In addition, we showed 

in Problem 7.5b that though it is always possible to dissect a polygon into a finite number 

of triangles having their vertices only at the vertices of the polygon, there exist polyhedra, 

called Lennes polyhedra, which cannot be dissected into finite numbers of tetrahedra 

having their vertices only at the vertices of the polyhedra. [See more about polyhedra in 

Shaping Space: Exploring Polyhedra in Nature, Art, and Geometrical Imagination, ed. 

Marjorie Senechal, Springer, 2013] About disproving triangulation conjecture read here: 
https://www.quantamagazine.org/triangulation-conjecture-disproved-20150113/ 

 

PROBLEM 13.4 SIMILAR TRIANGLES 

Near the beginning of this chapter we gave a textbook proof of Problem 13.1, which used 

properties of similar triangles. Later you found a proof that did not need to use similar 

triangles. Remember that in our discussion of AAA we said that two triangles were similar 

if their corresponding angles are congruent. Now you are ready to give a dissection proof 

of the following: 
 

a. AAA similarity criterion: If two triangles are similar, then the corresponding 

sides of the triangles are in the same proportion to one another. 

 
SUGGESTIONS 

Look at your proof of Problem 13.1. It probably shows implicitly that Problem 13.4 holds 

for a pair of similar triangles in your construction. For more generality, let  be one of the 

https://www.quantamagazine.org/triangulation-conjecture-disproved-20150113/
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angles of the triangles and place the two ’s in VAT position in such a way that they form 

two parallelograms as in Figure 13.15. 
 

                 D 

       C 

Figure 13.15 Similar triangles 

 Show that the two parallelograms are equivalent by dissection and use that result to 

show that ac = bd or, in equivalent form, a/d = b/c. You may find it clearer if you start by 

looking at the special case of  = /2. 

 
b. SAS similarity criterion: If two triangles on a plane have an angle in common 

and if the corresponding sides of the angle are in the same proportion to each other, 

then the triangles are similar. 

 

Draw the two triangles with their common angle coinciding. Then show that the opposite 

sides are parallel. You will probably have to use part a. 
 

 These results about similar triangles will be used in most of the remaining chapters 

of the book. 

 

 
 

Max Bill Half-Sphere around Two Axes , marble, 1966 (The Museum of Modern Art, New York) 




