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CHAPTER I

Theory of Calculus in One Real Variable

Abstract. This chapter, beginning with Section 2, develops the topic of sequences and series
of functions, especially of functions of one variable. An important part of the treatment is an
introduction to the problem of interchange of limits, both theoretically and practically. This problem
plays a role repeatedly in real analysis, but its visibility decreases as more and more results are
developed for handling it in various situations. Fourier series are introduced in this chapter and are
carried along throughout the book as a motivating example for a number of problems in real analysis.
Section 1 makes contact with the core of a first undergraduate course in real-variable theory.

Some material from such a course is repeated here in order to establish notation and a point of view.
Omitted material is summarized at the end of the section, and some of it is discussed in a little more
detail in AppendixA at the end of the book. The point of view being established is the use of defining
properties of the real number system to prove the Bolzano–Weierstrass Theorem, followed by the
use of that theorem to prove some of the difficult theorems that are usually assumed in a one-variable
calculus course. The treatment makes use of the extended real-number system, in order to allow sup
and inf to be defined for any nonempty set of reals and to allow lim sup and lim inf to be meaningful
for any sequence.
Sections 2–3 introduce the problem of interchange of limits. They show how certain concrete

problems can be viewed in this way, and they give a way of thinking about all such interchanges
in a common framework. A positive result affirms such an interchange under suitable hypotheses
of monotonicity. This positive result is by way of introduction to the topic in Section 3 of uniform
convergence and the role of uniform convergence in continuity and differentiation.
Section 4 gives a careful development of the Riemann integral for real-valued functions of one

variable, establishing existence of Riemann integrals for bounded functions that are discontinuous
at only finitely many points, basic properties of the integral, the Fundamental Theorem of Calculus
for continuous integrands, the change-of-variables formula, and other results. Section 5 examines
complex-valued functions, pointing out the extent to which the results for real-valued functions in
the first four sections extend to complex-valued functions.
Section 6 is a short treatment of the version of Taylor’s Theorem in which the remainder is given

by an integral. Section 7 takes up power series and uses them to define the elementary transcendental
functions and establish their properties. The power series expansion of (1+x)p for arbitrary complex
p is studied carefully. Section 8 introduces Cesàro and Abel summability, which play a role in the
subject of Fourier series. A converse theorem to Abel’s theorem is used to exhibit the function |x | as
the uniform limit of polynomials on [−1, 1]. The Weierstrass Approximation Theorem of Section 9
generalizes this example and establishes that every continuous complex-valued function on a closed
bounded interval is the uniform limit of polynomials.
Section 10 introduces Fourier series in one variable in the context of the Riemann integral. The

main theorems of the section are a convergence result for continuously differentiable functions,
Bessel’s inequality, the Riemann–Lebesgue Lemma, Fejér’s Theorem, and Parseval’s Theorem.
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2 I. Theory of Calculus in One Real Variable

1. Review of Real Numbers, Sequences, Continuity

This section reviews some material that is normally in an undergraduate course
in real analysis. The emphasis will be on a rigorous proof of the Bolzano–
Weierstrass Theorem and its use to prove some of the difficult theorems that are
usually assumed in a one-variable calculus course. We shall skip over some easier
aspects of an undergraduate course in real analysis that fit logically at the end of
this section. A list of such topics appears at the end of the section.
The system of real numbersRmay be constructed out of the system of rational

numbersQ, and we take this construction as known. The formal definition is that
a real number is a cut of rational numbers, i.e., a subset of rational numbers that
is neither Q nor the empty set, has no largest element, and contains all rational
numbers less than any rational that it contains. The idea of the construction is
as follows: Each rational number q determines a cut q∗, namely the set of all
rationals less than q. Under the identification of Q with a subset of R, the cut
defining a real number consists of all rational numbers less than the given real
number.
The set of cuts gets a natural ordering, given by inclusion. In place of ⊆, we

write ≤. For any two cuts r and s, we have r ≤ s or s ≤ r , and if both occur,
then r = s. We can then define <, ∏, and > in the expected way. The positive
cuts r are those with 0∗ < r , and the negative cuts are those with r < 0∗.
Once cuts and their ordering are in place, one can go about defining the usual

operations of arithmetic and proving that R with these operations satisfies the
familiar associative, commutative, and distributive laws, and that these interact
with inequalities in the usual ways. The definitions of addition and subtraction
are easy: the sum or difference of two cuts is simply the set of sums or differences
of the rationals from the respective cuts. For multiplication and reciprocals one
has to take signs into account. For example, the product of two positive cuts
consists of all products of positive rationals from the two cuts, as well as 0 and all
negative rationals. After these definitions and the proofs of the usual arithmetic
operations are complete, it is customary to write 0 and 1 in place of 0∗ and 1∗.
An upper bound for a nonempty subset E of R is a real number M such that

x ≤ M for all x in E . If the nonempty set E has an upper bound, we can take the
cuts that E consists of and form their union. This turns out to be a cut, it is an
upper bound for E , and it is ≤ all upper bounds for E . We can summarize this
result as a theorem.

Theorem 1.1. Any nonempty subset E of R with an upper bound has a least
upper bound.

The least upper bound is necessarily unique, and the notation for it is supx∈E x
or sup {x | x ∈ E}, “sup” being an abbreviation for the Latin word “supremum,”
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the largest. Of course, the least upper bound for a set E with an upper bound
need not be in E ; for example, the supremum of the negative rationals is 0, which
is not negative.
A lower bound for a nonempty set E ofR is a real numberm such that x ∏ m

for all x ∈ E . If m is a lower bound for E , then−m is an upper bound for the set
−E of negatives of members of E . Thus −E has an upper bound, and Theorem
1.1 shows that it has a least upper bound supx∈−E x . Then−x is a greatest lower
bound for E . This greatest lower bound is denoted by infy∈E y or inf {y | y ∈ E},
“inf” being an abbreviation for “infimum.” We can summarize as follows.

Corollary 1.2. Any nonempty subset E ofRwith a lower bound has a greatest
lower bound.

A subset ofR is said to be bounded if it has an upper bound and a lower bound.
Let us introduce notation and terminology for intervals of R, first treating the
bounded ones.1 Let a and b be real numbers with a ≤ b. The open interval
from a to b is the set (a, b) = {x ∈ R | a < x < b}, the closed interval is
the set [a, b] = {x ∈ R | a ≤ x ≤ b}, and the half-open intervals are the sets
[a, b) = {x ∈ R | a ≤ x < b} and (a, b] = {x ∈ R | a < x ≤ b}. Each of the
above intervals is indeed bounded, having a as a lower bound and b as an upper
bound. These intervals are nonempty when a < b or when the interval is [a, b]
with a = b, and in these cases the least upper bound is b and the greatest lower
bound is a.
Open sets in R are defined to be arbitrary unions of open bounded intervals,

and a closed set is any set whose complement inR is open. A set E is open if and
only if for each x ∈ E , there is an open interval (a, b) such that x ∈ (a, b) ⊆ E .
In this case we of course have a < x < b. If we put ≤ = min{x − a, b − x},
then we see that x lies in the subset (x − ≤, x + ≤) of (a, b). The open interval
(x − ≤, x + ≤) equals

©
y ∈ R

Ø
Ø |y − x | < ≤

™
. Thus an open set in R is any set E

such that for each x ∈ E , there is a number ≤ > 0 such that
©
y ∈ R

Ø
Ø |y− x | < ≤

™

lies in E . A limit point x of a subset F of R is a point of R such that any
open interval containing x meets F in a point other than x . For example, the set
[a, b) ∪ {b+ 1} has [a, b] as its set of limit points. A subset of R is closed if and
only if it contains all its limit points.
Now let us turn to unbounded intervals. To provide notation for these, we shall

make use of two symbols+∞ and−∞ thatwill shortly be defined to be “extended
real numbers.” If a is in R, then the subsets (a,+∞) = {x ∈ R | a < x},
(−∞, a) = {x ∈ R | x < a}, (−∞,+∞) = R, [a,+∞) = {x ∈ R | a ≤ x},
and (−∞, a] = {x ∈ R | x ≤ a} are defined to be intervals, and they are all
unbounded. The first three are open sets of R and are considered to be open

1Bounded intervals are called “finite intervals” by some authors.
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intervals, while the last three are closed sets and are considered to be closed
intervals. Specifically the middle set R is both open and closed.
One important consequence of Theorem 1.1 is the archimedean property of

R, as follows.

Corollary 1.3. If a and b are real numbers with a > 0, then there exists an
integer n with na > b.

PROOF. If, on the contrary, na ≤ b for all integers n, then b is an upper bound
for the set of allna. LetM be the least upperboundof the set {na | n is an integer}.
Using that a is positive, we find that a−1M is a least upper bound for the integers.
Thus n ≤ a−1M for all integers n, and there is no smaller upper bound. However,
the smaller number a−1M − 1 must be an upper bound, since saying n ≤ a−1M
for all integers is the same as saying n−1 ≤ a−1M−1 for all integers. We arrive
at a contradiction, and we conclude that there is some integer n with na > b. §

The archimedean property enables one to see, for example, that any two
distinct real numbers have a rational number lying between them. We prove
this consequence as Corollary 1.5 after isolating one step as Corollary 1.4.

Corollary 1.4. If c is a real number, then there exists an integer n such that
n ≤ c < n + 1.

PROOF. Corollary 1.3 with a = 1 and b = c shows that there is an integer M
with M > c, and Corollary 1.3 with a = 1 and b = −c shows that there is an
integer m with m > −c. Then −m < c < M , and it follows that there exists a
greatest integer n with n ≤ c. This n must have the property that c < n + 1, and
the corollary follows. §

Corollary 1.5. If x and y are real numbers with x < y, then there exists a
rational number r with x < r < y.

PROOF. By Corollary 1.3 with a = y − x and b = 1, there is an integer N
such that N (y − x) > 1. This integer N has to be positive. Then 1

N < y − x .
By Corollary 1.4 with c = Nx , there exists an integer n with n ≤ Nx < n + 1,
hence with n

N ≤ x < n+1
N . Adding the inequalities n

N ≤ x and 1
N < y − x yields

n+1
N < y. Thus x < n+1

N < y, and the rational number r = n+1
N has the required

properties. §

A sequence in a set S is a function from a certain kind of subset of integers into
S. It will be assumed that the set of integers is nonempty, consists of consecutive
integers, and contains no largest integer. In particular the domain of any sequence
is infinite. Usually the set of integers is either all nonnegative integers or all
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positive integers. Sometimes the set of integers is all integers, and the sequence
in this case is often called “doubly infinite.” The value of a sequence f at the
integer n is normally written fn rather than f (n), and the sequence itself may be
denoted by an expression like { fn}n∏1, in which the outer subscript indicates the
domain.
A subsequence of a sequence f with domain {m,m+1, . . . } is a composition

f ◦ n, where f is a sequence and n is a sequence in the domain of f such that
nk < nk+1 for all k. For example, if {an}n∏1 is a sequence, then {a2k}k∏1 is the
subsequence in which the function n is given by nk = 2k. The domain of a
subsequence, by our definition, is always infinite.
A sequence an in R is convergent, or convergent in R, if there exists a real

number a such that for each ≤ > 0, there is an integer N with |an − a| < ≤
for all n ∏ N . The number a is necessarily unique and is called the limit
of the sequence. Depending on how much information about the sequence is
unambiguous, we may write limn→∞ an = a or limn an = a or lim an = a or
an → a. We also say an tends to a as n tends to infinity or∞.
A sequence in R is called monotone increasing if an ≤ an+1 for all n in the

domain, monotone decreasing if an ∏ an+1 for all n in the domain, monotone
if it is monotone increasing or monotone decreasing.

Corollary 1.6. Any bounded monotone sequence in R converges. If the
sequence is monotone increasing, then the limit is the least upper bound of the
image in R of the sequence. If the sequence is monotone decreasing, the limit is
the greatest lower bound of the image.

REMARK. Often it is Corollary 1.6, rather than the existence of least upper
bounds, that is taken for granted in an elementary calculus course. The reason
is that the statement of Corollary 1.6 tends for calculus students to be easier to
understand than the statement of the least upper bound property. Problem 1 at the
end of the chapter asks for a derivation of the least-upper-bound property from
Corollary 1.6.

PROOF. Suppose that {an} is monotone increasing and bounded. Let a =
supn an , the existence of the supremum being ensured by Theorem 1.1, and let
≤ > 0 be given. If there were no integer N with aN > a− ≤, then a− ≤ would be
a smaller upper bound, contradiction. Thus such an N exists. For that N , n ∏ N
implies a − ≤ < aN ≤ an ≤ a < a + ≤. Thus n ∏ N implies |an − a| < ≤.
Since ≤ is arbitrary, limn→∞ an = a. If the given sequence {an} is monotone
decreasing, we argue similarly with a = infn an . §

In working with sup and inf, it will be quite convenient to use the notation
supx∈E x evenwhen E is nonempty but not bounded above, and to use the notation
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infx∈E x evenwhen E is nonempty but not bounded below. We introduce symbols
+∞ and−∞, plus andminus infinity, for this purpose and extend the definitions
of supx∈E x and infx∈E x to all nonempty subsets E of R by taking

sup
x∈E

x = +∞ if E has no upper bound,

inf
x∈E

x = −∞ if E has no lower bound.

To work effectively with these new pieces of notation, we shall enlarge R to a
set R∗ called the extended real numbers by defining

R∗ = R ∪ {+∞} ∪ {−∞}.

An ordering onR∗ is defined by taking−∞ < r < +∞ for every member r ofR
and by retaining the usual ordering withinR. It is immediate from this definition
that

inf
x∈E

x ≤ sup
x∈E

x

if E is any nonempty subset ofR. In fact, we can enlarge the definitionsof infx∈E x
and supx∈E x in obvious fashion to include the case that E is any nonempty
subset of R∗, and we still have inf ≤ sup. With the ordering in place, we can
unambiguously speak of open intervals (a, b), closed intervals [a, b], and half-
open intervals [a, b) and (a, b] in R∗ even if a or b is infinite. Under our
definitions the intervals of R are the intervals of R∗ that are subsets of R, even if
a or b is infinite. If no special mention is made whether an interval lies in R or
R∗, it is usually assumed to lie in R.
The next step is to extend the operations of arithmetic to R∗. It is important

not to try to make such operations be everywhere defined, lest the distributive
laws fail. Letting r denote any member of R and a and b be any members of R∗,
we make the following new definitions:

Multiplication: r(+∞) = (+∞)r =






+∞ if r > 0,
0 if r = 0,
−∞ if r < 0,

r(−∞) = (−∞)r =






−∞ if r > 0,
0 if r = 0,
+∞ if r < 0,

(+∞)(+∞) = (−∞)(−∞) = +∞,

(+∞)(−∞) = (−∞)(+∞) = −∞.
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Addition: r + (+∞) = (+∞) + r = +∞,

r + (−∞) = (−∞) + r = −∞,

(+∞) + (+∞) = +∞,

(−∞) + (−∞) = −∞.

Subtraction: a − b = a + (−b) whenever the right side is defined.

Division: a/b = 0 if a ∈ R and b is ±∞,

a/b = b−1a if b ∈ R with b 6= 0 and a is ±∞.

The only surprise in the list is that 0 times anything is 0. This definition will be
important to us when we get to measure theory, starting in Chapter V.
It is now a simple matter to define convergence of a sequence inR∗. The cases

that need addressing are that the sequence is inR and that the limit is+∞ or−∞.
We say that a sequence {an} inR tends to+∞ if for any positive numberM , there
exists an integer N such that an ∏ M for all n ∏ N . The sequence tends to −∞
if for any negative number −M , there exists an integer N such that an ≤ −M
for all n ∏ N . It is important to indicate whether convergence/divergence of a
sequence is being discussed inR or inR∗. The default setting isR, in keepingwith
standard terminology in calculus. Thus, for example, we say that the sequence
{n}n∏1 diverges, but it converges in R∗ (to +∞).
With our new definitions every monotone sequence converges in R∗.
For a sequence {an} inR or even inR∗, we now introducemembers lim supn an

and lim infn an of R∗. These will always be defined, and thus we can apply the
operations lim sup and lim inf to any sequence in R∗. For the case of lim sup
we define bn = supk∏n ak as a sequence in R∗. The sequence {bn} is monotone
decreasing. Thus it converges to infn bn in R∗. We define2

lim sup
n

an = inf
n
sup
k∏n

ak

as a member of R∗, and we define

lim inf
n

an = sup
n
inf
k∏n

ak

as a member of R∗. Let us underscore that lim sup an and lim inf an always exist.
However, one or both may be ±∞ even if an is in R for every n.

Proposition 1.7. The operations lim sup and lim inf on sequences {an} and
{bn} in R∗ have the following properties:

(a) if an ≤ bn for all n, then lim sup an ≤ lim sup bn and lim inf an ≤
lim inf bn ,

2The notation lim was at one time used for lim sup, and lim was used for lim inf.
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(b) lim inf an ≤ lim sup an ,
(c) {an} has a subsequence converging in R∗ to lim sup an and another sub-

sequence converging in R∗ to lim inf an ,
(d) lim sup an is the supremum of all subsequential limits of {an} in R∗, and

lim infn is the infimum of all subsequential limits of {an} in R∗,
(e) if lim sup an < +∞, then lim sup an is the infimum of all extended real

numbers a such that an ∏ a for only finitely many n, and if lim inf an >
−∞, then lim inf an is the supremum of all extended real numbers a such
that an ≤ a for only finitely many n,

(f) the sequence {an} in R∗ converges in R∗ if and only if lim inf an =
lim sup an , and in this case the limit is the common value of lim inf an and
lim sup an .

REMARK. It is enough to prove the results about lim sup, since lim inf an =
− lim sup(−an).

PROOFS FOR lim sup.
(a) From al ≤ bl for all l, we have al ≤ supk∏n bk if l ∏ n. Hence supl∏n al ≤

supk∏n bk . Then (a) follows by taking the limit on n.
(b) This follows by taking the limit onn of the inequality infk∏n ak ≤ supk∏n ak .
(c) We divide matters into cases. The main case is that a = lim sup an is in R.

Inductively, for each l ∏ 1, choose N ∏ nl−1 such that | supk∏N ak − a| < l−1.
Then choose nl > nl−1 such that |anl − supk∏N ak | < l−1. Together these
inequalities imply |anl − a| < 2l−1 for all l, and thus liml→∞ anl = a. The
second case is that a = lim sup an equals +∞. Since supk∏n ak is monotone
decreasing in n, we must have supk∏n ak = +∞ for all n. Inductively for l ∏ 1,
we can choose nl > nl−1 such that anl ∏ l. Then liml→∞ anl = +∞. The
third case is that a = lim sup an equals −∞. The sequence bn = supk∏n ak is
monotone decreasing to −∞. Inductively for l ∏ 1, choose nl > nl−1 such that
bnl ≤ −l. Then anl ≤ bnl ≤ −l, and liml→∞ anl = −∞.
(d) By (c), lim sup an is one subsequential limit. Let a = limk→∞ ank be an-

other subsequential limit. Put bn = supl∏n al . Then {bn} converges to lim sup an
in R∗, and the same thing is true of every subsequence. Since ank ≤ supl∏nk al =
bnk for all k, we can let k tend to infinity and obtain a = limk→∞ ank ≤
limk→∞ bnk = lim sup an .
(e) Since lim sup an < +∞, we have supk∏n ak < +∞ for n greater than or

equal to some N . For this N and any a > supk∏N ak , we then have an ∏ a only
finitely often. Thus there exists a ∈ R such that an ∏ a for only finitely many n.
On the other hand, if a0 is a real number< lim sup an , then (c) shows that an ∏ a0

for infinitely many n. Hence

lim sup an ≤ inf {a | an ∏ a for only finitely many a}.
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Arguing by contradiction, suppose that< holds in this inequality, and let a00 be a
real number strictly in between the two sides of the inequality. Then supk∏n ak <
a00 for n large enough, and so an ∏ a00 only finitely often. But then a00 is in the set

{a | an ∏ a for only finitely many n},

and the statement that a00 is less than the infimum of this set gives a contradiction.
(f) If {an} converges inR∗, then (c) forces lim inf an = lim sup an . Conversely

suppose lim inf an = lim sup an , and let a be the common value of lim inf an and
lim sup an . Themain case is that a is inR. Let ≤ > 0 be given. By (e), an ∏ a+≤
only finitely often, and an ≤ a − ≤ only finitely often. Thus |an − a| < ≤ for
all n sufficiently large. In other words, lim an = a as asserted. The other cases
are that a = +∞ or a = −∞, and they are completely analogous to each other.
Suppose for definiteness that a = +∞. Since lim inf an = +∞, the monotone
increasing sequence bn = infk∏n ak converges in R∗ to +∞. Given M , choose
N such that bn ∏ M for n ∏ N . Then also an ∏ M for n ∏ N , and an converges
in R∗ to +∞. This completes the proof. §

With Proposition1.7 as a tool, we can nowprove theBolzano–WeierstrassThe-
orem. The remainder of the section will consist of applications of this theorem,
showing that Cauchy sequences in R converge in R, that continuous functions
on closed bounded intervals of R are uniformly continuous, that continuous
functions on closed bounded intervals are bounded and assume their maximum
and minimum values, and that continuous functions on closed intervals take on
all intermediate values.

Theorem 1.8 (Bolzano–Weierstrass). Every bounded sequence in R has a
convergent subsequence with limit in R.
PROOF. If the given bounded sequence is {an}, form the subsequence noted

in Proposition 1.7c that converges in R∗ to lim sup an . All quantities arising in
the formation of lim sup an are in R, since {an} is bounded, and thus the limit is
in R. §

A sequence {an} in R is called a Cauchy sequence if for any ≤ > 0, there
exists an N such that |an − am | < ≤ for all n and m that are ∏ N .

EXAMPLE. Every convergent sequence in R with limit in R is Cauchy. In fact,
let a = lim an , and let ≤ > 0 be given. Choose N such that n ∏ N implies
|an − a| < ≤. Then n,m ∏ N implies

|an − am | ≤ |an − a| + |a − am | < ≤ + ≤ = 2≤.

Hence the sequence is Cauchy.
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In the above example and elsewhere in this book, we allow ourselves the luxury
of having our final bound come out as a fixed multiple M≤ of ≤, rather than ≤
itself. Strictly speaking, we should have introduced ≤0 = ≤/M and aimed for
≤0 rather than ≤. Then our final bound would have been M≤0 = ≤. Since the
technique for adjusting a proof in this way is always the same, we shall not add
these extra steps in the future unless there would otherwise be a possibility of
confusion.
This convention suggests a handy piece of terminology—that a proof as in the

above example, in which M = 2, is a “2≤ proof.” That name conveys a great deal
of information about the proof, saying that one should expect two contributions
to the final estimate and that the final bound will be 2≤.

Theorem 1.9 (Cauchy criterion). Every Cauchy sequence in R converges to a
limit in R.
PROOF. Let {an} be Cauchy in R. First let us see that {an} is bounded. In

fact, for ≤ = 1, choose N such that n,m ∏ N implies |an − am | < 1. Then
|am | ≤ |aN | + 1 for m ∏ N , and M = max{|a1|, . . . , |aN−1|, |aN | + 1} is a
common bound for all |an|.
Since {an} is bounded, it has a convergent subsequence {ank }, say with limit

a, by the Bolzano–Weierstrass Theorem. The subsequential limit has to satisfy
|a| ≤ M within R∗, and thus a is in R.
Finally let us see that lim an = a. In fact, if ≤ > 0 is given, choose N such

that nk ∏ N implies |ank − a| < ≤. Also, choose N 0 ∏ N such that n,m ∏ N 0

implies |an − am | < ≤. If n ∏ N 0, then any nk ∏ N 0 has |an − ank | < ≤, and
hence

|an − a| ≤ |an − ank | + |ank − a| < ≤ + ≤ = 2≤.

This completes the proof. §

Let f be a function with domain an interval and with range in R. The interval
is allowed to be unbounded, but it is required to be a subset of R. We say
that f is continuous at a point x0 of the domain of f within R if for each
≤ > 0, there is some δ > 0 such that all x in the domain of f that satisfy
|x − x0| < δ have | f (x) − f (x0)| < ≤. This notion is sometimes abbreviated as
limx→x0 f (x) = f (x0). Alternatively, one may say that f (x) tends to f (x0) as
x tends to x0, and one may write f (x) → f (x0) as x → x0.
Amathematically equivalent definition is that f is continuous at x0 if whenever

a sequence has xn → x0 within the domain interval, then f (xn) → f (x0). This
latter version of continuity will be shown in Section II.4 to be equivalent to the
former version, given in terms of continuous limits, in greater generality than just
for R, and thus we shall not stop to prove the equivalence now. We say that f is
continuous if it is continuous at all points of its domain.
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We say that the a function f as above is uniformly continuous on its domain
if for any ≤ > 0, there is some δ > 0 such that | f (x) − f (x0)| < ≤ whenever x
and x0 are in the domain interval and |x− x0| < δ. (In other words, the condition
for the continuity to be uniform is that δ can always be chosen independently of
x0.)

EXAMPLE. The function f (x) = x2 is continuous on (−∞,+∞), but it is
not uniformly continuous. In fact, it is not uniformly continuous on [1,+∞).
Assuming the contrary, choose δ for ≤ = 1. Thenwemust have

Ø
Ø(x+ δ

2 )
2−x2

Ø
Ø < 1

for all x ∏ 1. But
Ø
Ø(x + δ

2 )
2 − x2

Ø
Ø = δx + δ2

4 ∏ δx , and this is ∏ 1 for x ∏ δ−1.

Theorem 1.10. A continuous function f from a closed bounded interval [a, b]
into R is uniformly continuous.
PROOF. Fix ≤ > 0. For x0 in the domain of f , the continuity of f at x0 means

that it makes sense to define

δx0(≤) = min
Ω
1, sup

Ω
δ0 > 0

Ø
Ø
Ø
Ø
|x − x0| < δ0 and x in the domain
of f imply | f (x) − f (x0)| < ≤

ææ
.

If |x − x0| < δx0(≤), then | f (x) − f (x0)| < ≤. Put δ(≤) = infx0∈[a,b] δx0(≤).
Let us see that it is enough to prove that δ(≤) > 0. If x and y are in [a, b] with
|x − y| < δ(≤), then |x − y| < δ(≤) ≤ δy(≤). Hence | f (x) − f (y)| < ≤ as
required.
Thus we are to prove that δ(≤) > 0. If δ(≤) = 0, then, for each integer

n > 0, we can choose xn such that δxn (≤) < 1
n . By the Bolzano–Weierstrass

Theorem, there is a convergent subsequence, say with xnk → x 0. Along this
subsequence, δxnk (≤) → 0. Fix k large enough so that |xnk − x 0| < 1

2δx 0( ≤
2 ). Then

| f (xnk ) − f (x 0)| < ≤
2 . Also, |x − xnk | < 1

2δx 0( ≤
2 ) implies

|x − x 0| ≤ |x − xnk | + |xnk − x 0| < 1
2δx 0( ≤

2 ) + 1
2δx 0( ≤

2 ) = δx 0( ≤
2 ),

so that | f (x) − f (x 0)| < ≤
2 and

| f (xnk ) − f (x)| ≤ | f (xnk ) − f (x 0)| + | f (x 0) − f (x)| < ≤
2 + ≤

2 = ≤.

Consequently our arbitrary large fixed k has δxnk ∏ 1
2δx 0( ≤

2 ), and the sequence
{δxnk (≤)} cannot be tending to 0. §

Theorem 1.11. A continuous function f from a closed bounded interval [a, b]
into R is bounded and takes on maximum and minimum values.
PROOF. Let c = supx∈[a,b] f (x) in R∗. Choose a sequence xn in [a, b]

with f (xn) increasing to c. By the Bolzano–Weierstrass Theorem, {xn} has a
convergent subsequence, say xnk → x 0. By continuity, f (xnk ) → f (x 0). Then
f (x 0) = c, and c is a finite maximum. The proof for a finite minimum is
similar. §
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Theorem 1.12 (Intermediate Value Theorem). Let a < b be real numbers,
and let f : [a, b] → R be continuous. Then f , in the interval [a, b], takes on all
values between f (a) and f (b).
REMARK. The proof below, which uses the Bolzano–Weierstrass Theorem,

does not make absolutely clear what aspects of the structure of R are essential to
the argument. A conceptually clearer proof will be given in Section II.8 and will
bring out that the essential property of the interval [a, b] is its “connectedness”
in a sense to be defined in that section.
PROOF. Let f (a) = α and f (b) = β, and let ∞ be between α and β. We may

assume that ∞ is in fact strictly between α and β. Possibly by replacing f by
− f , we may assume that also α < β. Let

A = {x ∈ [a, b] | f (x) ≤ ∞ } and B = {x ∈ [a, b] | f (x) ∏ ∞ }.

These sets are nonempty, since a is in A and b is in B, and f is bounded as
a result of Theorem 1.11. Thus the numbers ∞1 = sup { f (x) | x ∈ A} and
∞2 = inf { f (x) | x ∈ B} are well defined and have ∞1 ≤ ∞ ≤ ∞2.
If ∞1 = ∞ , thenwe canfind a sequence {xn} in A such that f (xn) converges to ∞ .

Using the Bolzano–Weierstrass Theorem, we can find a convergent subsequence
{xnk } of {xn}, say with limit x0. By continuity of f , { f (xnk )} converges to f (x0).
Then f (x0) = ∞1 = ∞ , and we are done. Arguing by contradiction, we may
therefore assume that ∞1 < ∞ . Similarly we may assume that ∞ < ∞2, but we do
not need to do so.
Let ≤ = ∞2 − ∞1, and choose, by Theorem 1.10 and uniform continuity, δ > 0

such that |x1 − x2| < δ implies | f (x1) − f (x2)| < ≤ whenever x1 and x2 both
lie in [a, b]. Then choose an integer n such that 2−n(b − a) < δ, and consider
the value of f at the points pk = a + k2−n(b − a) for 0 ≤ k ≤ 2n . Since
pk+1 − pk = 2−n(b − a) < δ, we have | f (pk+1) − f (pk)| < ≤ = ∞2 − ∞1.
Consequently if f (pk) ≤ ∞1, then

f (pk+1) ≤ f (pk) + | f (pk+1) − f (pk)| < ∞1 + (∞2 − ∞1) = ∞2,

and hence f (pk+1) ≤ ∞1. Now f (p0) = f (a) = α ≤ ∞1. Thus induction shows
that f (pk) ≤ ∞1 for all k ≤ 2n . However, for k = 2n , we have p2n = b, and
f (b) = β ∏ ∞ > ∞1, and we have arrived at a contradiction. §

Further topics. Here a number of other topics of an undergraduate course in real-variable
theory fit well logically. Among these are countable vs. uncountable sets, infinite series and tests
for their convergence, the fact that every rearrangement of an infinite series of positive terms has the
same sum, special sequences, derivatives, the Mean Value Theorem as in Section A2 of Appendix
A, and continuity and differentiability of inverse functions as in Section A3 of Appendix A.We shall
not stop here to review these topics, which are treated in many books. One such book is Rudin’s
Principles of Mathematical Analysis, the relevant chapters being 1 to 5. In Chapter 2 of that book,
only the first few pages are needed; they are the ones where countable and uncountable sets are
discussed.
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2. Interchange of Limits

Let {bi j } be a doubly indexed sequence of real numbers. It is natural to ask for
the extent to which

lim
i
lim
j
bi j = lim

j
lim
i
bi j ,

more specifically to ask how to tell, in an expression involving iterated limits,
whether we can interchange the order of the two limit operations. We can view
matters conveniently in terms of an infinite matrix




b11 b12 · · ·
b21 b22
...

. . .



 .

The left-hand iterated limit, namely limi limj bi j , is obtained by forming the limit
of each row, assembling the results, and then taking the limit of the row limits
down through the rows. The right-hand iterated limit, namely limj limi bi j , is
obtained by forming the limit of each column, assembling the results, and then
taking the limit of the column limits through the columns. If we use the particular
infinite matrix 







1 1 1 1 · · ·
0 1 1 1 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·
...

. . .









,

thenwe see that the first iterated limit depends only on the part of thematrix above
the main diagonal, while the second iterated limit depends only on the part of the
matrix below the main diagonal. Thus the two iterated limits in general have no
reason at all to be related. In the specific matrix that we have just considered,
they are 1 and 0, respectively. Let us consider some examples along the same
lines but with an analytic flavor.

EXAMPLES.

(1) Let bi j =
j

i + j
. Then limi limj bi j = 1, while limj limi bi j = 0.

(2) Let Fn be a continuous real-valued function onR, and suppose that F(x) =
lim Fn(x) exists for every x . Is F continuous? This is the same kind of question.
It asks whether limt→x F(t) ?

= F(x), hence whether

lim
t→x

lim
n→∞

Fn(t)
?
= lim

n→∞
lim
t→x

Fn(t).
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If we take fk(x) =
x2

(1+ x2)k
for k ∏ 0 and define Fn(x) =

Pn
k=0 fk(x), then

each Fn is continuous. The sequence of functions {Fn} has a pointwise limit

F(x) =
X∞

k=0
x2

(1+ x2)k
. The series is a geometric series, and we can easily

calculate explicitly the partial sums and the limit function. The latter is

F(x) =

Ω 0 if x = 0
1+ x2 if x 6= 0.

It is apparent that the limit function is discontinuous.
(3) Let { fn} be a sequence of differentiable functions, and suppose that f (x) =

lim fn(x) exists for every x and is differentiable. Is lim f 0
n(x) = f 0(x)? This

question comes down to whether

lim
n→∞

lim
t→x

fn(t) − fn(x)
t − x

?
= lim

t→x
lim
n→∞

fn(t) − fn(x)
t − x

.

An example where the answer is negative uses the sine and cosine functions,
which are undefined in the rigorous development until Section 7 on power series.

The example has fn(x) =
sin nx
p
n

for n ∏ 1. Then limn fn(x) = 0, so that

f (x) = 0 and f 0(x) = 0. Also, f 0
n(x) =

p
n cos nx , so that f 0

n(0) =
p
n does

not tend to 0 = f 0(0).

Yet we know many examples from calculus where an interchange of limits is
valid. For example, in calculus of two variables, the first partial derivatives of
nice functions—polynomials, for example—can be computed in either order with
the same result, and double integrals of continuous functions over a rectangle can
be calculated as iterated integrals in either order with the same result. Positive
theorems about interchanging limits are usually based on some kind of uniform
behavior, in a sense that we take up in the next section. A number of positive
results of this kind ultimately come down to the following general theorem about
doubly indexed sequences that are monotone increasing in each variable. In
Section 3 we shall examine the mechanism of this theorem closely: the proof
shows that the equality in question is supi supj bi j = supj supi bi j and that it
holds because both sides equal supi, j bi j .

Theorem 1.13. Let bi j be members ofR∗ that are∏ 0 for all i and j . Suppose
that bi j is monotone increasing in i , for each j , and is monotone increasing in j ,
for each i . Then

lim
i
lim
j
bi j = lim

j
lim
i
bi j ,

with all the indicated limits existing in R∗.
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PROOF. Put Li = limj bi j and L 0
j = limi bi j . These limits exist in R∗, since

the sequences in question are monotone. Then Li ≤ Li+1 and L 0
j ≤ L 0

j+1, and
thus

L = lim
i
Li and L 0 = lim

j
L 0
j

both exist in R∗. Arguing by contradiction, suppose that L < L 0. Then we can
choose j0 such that L 0

j0 > L . Since L 0
j0 = limi bi j0 , we can choose i0 such that

bi0 j0 > L . Then we have L < bi0 j0 ≤ Li0 ≤ L , contradiction. Similarly the
assumption L 0 < L leads to a contradiction. We conclude that L = L 0. §

Corollary 1.14. If al j are members of R∗ that are ∏ 0 and are monotone
increasing in j for each l, then

lim
j

X

l
al j =

X

l
lim
j
al j

in R∗, the limits existing.

REMARK. This result will be generalized by the Monotone Convergence
Theorem when we study abstract measure theory in Chapter V.

PROOF. Put bi j =
Pi

l=1 al j in Theorem 1.13. §

Corollary 1.15. If ci j are members of R∗ that are ∏ 0 for all i and j , then
X

i

X

j
ci j =

X

j

X

i
ci j

in R∗, the limits existing.

REMARK. This result will be generalized by Fubini’s Theorem when we study
abstract measure theory in Chapter V.

PROOF. This follows from Corollary 1.14. §

3. Uniform Convergence

Let us examine more closely what is happening in the proof of Theorem 1.13, in
which it is proved that iterated limits can be interchangedunder certain hypotheses
of monotonicity. One of the iterated limits is L = limi limj bi j , and the claim is
that L is approached as i and j tend to infinity jointly. In terms of a matrix whose
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entries are the various bi j ’s, the pictorial assertion is that all the terms far down
and to the right are close to L:








· · · · · ·

· · · All terms here
are close to L








.

To see this claim, let us choose a row limit Li0 that is close to L and then take an
entry bi0 j0 that is close to Li0 . Then bi0 j0 is close to L , and all terms down and to
the right from there are even closer because of the hypothesis of monotonicity.
To relate this behavior to something uniform, suppose that L < +∞, and let

some ≤ > 0 be given. We have just seen that we can arrange to have |L−bi j | < ≤
whenever i ∏ i0 and j ∏ j0. Then |Li − bi j | < ≤ whenever i ∏ i0, provided
j ∏ j0. Also, we have limj bi j = Li for i = 1, 2, . . . , i0−1. Thus |Li −bi j | < ≤
for all i , provided j ∏ j 00, where j 00 is some larger index than j0. This is the
notion of uniform convergence that we shall define precisely in a moment: an
expression with a parameter (i in our case) has a limit (on the variable j in our
case) with an estimate independent of the parameter. We can visualize matters as
in the following matrix:

j j 00

i

√

· · ·
All terms here
are close to Li
on all rows.

!

.

The vertical dividing line occurs when the column index j is equal to j 00, and all
terms to the right of this line are close to their respective row limits Li .
Let us see the effect of this situation on the problem of interchange of limits.

The above diagram forces all the terms in the shaded part of

√ · · · · · ·

· · · //////

!

to

be close to one number if lim Li exists, i.e., if the row limits are tending to a
limit. If the other iterated limit exists, then it must be this same number. Thus
the interchange of limits is valid under these circumstances.
Actually, we can get by with less. If, in the displayed diagram above, we

assume that all the column limits L 0
j exist, then it appears that all the column

limits with j ∏ j 00 have to be close to the Li ’s. From this we can deduce that the
column limits have a limit L 0 and that the row limits Li must tend to the limit
of the column limits. In other words, the convergence of the rows in a suitable
uniform fashion and the convergence of the columns together imply that both
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iterated limits exist and they are equal. We shall state this result rigorously as
Proposition 1.16, which will become a prototype for applications later in this
section.
Let S be a nonempty set, and let f and fn , for integers n ∏ 1, be functions

from S to R. We say that fn(x) converges to f (x) uniformly for x in S if for
any ≤ > 0, there is an integer N such that n ∏ N implies | fn(x) − f (x)| < ≤ for
all x in S. It is equivalent to say that supx∈S | fn(x) − f (x)| tends to 0 as n tends
to infinity.

Proposition 1.16. Let bi j be real numbers for i ∏ 1 and j ∏ 1. Suppose that
(i) Li = limj bi j exists in R uniformly in i , and
(ii) L 0

j = limi bi j exists in R for each j .
Then

(a) L = limi Li exists in R,
(b) L 0 = limj L 0

j exists in R,
(c) L = L 0,
(d) the double limit on i and j of bi j exists and equals the common value of

the iterated limits L and L 0, i.e., for each ≤ > 0, there exist i0 and j0 such
that |bi j − L| < ≤ whenever i ∏ i0 and j ∏ j0,

(e) L 0
j = limi bi j exists in R uniformly in j .

REMARK. In applicationswe shall sometimes have extra information, typically
the validity of (a) or (b). According to the statement of the proposition, however,
the conclusions are valid without using this extra information as an additional
hypothesis.
PROOF. Let ≤ > 0 be given. By (i), choose j0 such that |bi j − Li | < ≤ for all

i whenever j ∏ j0. With j ∏ j0 fixed, (ii) says that |bi j − L 0
j | < ≤ whenever i is

∏ some i0 = i0( j). For j ∏ j0 and i ∏ i0( j), we then have

|Li − L 0
j | ≤ |Li − bi j | + |bi j − L 0

j | < ≤ + ≤ = 2≤.

If j 0 ∏ j0 and i ∏ i0( j 0), we similarly have |Li − L 0
j 0 | < 2≤. Hence if j ∏ j0,

j 0 ∏ j0, and i ∏ max{i0( j), i0( j 0)}, then

|L 0
j − L 0

j 0 | ≤ |L 0
j − Li | + |Li − L 0

j 0 | < 2≤ + 2≤ = 4≤.

In other words, {L 0
j } is a Cauchy sequence. By Theorem 1.9, L 0 = limj L 0

j exists
in R. This proves (b).
Passing to the limit in our inequality, we have |L 0

j − L 0| ≤ 4≤ when j ∏ j0
and in particular when j = j0. If i ∏ i0( j0), then we saw that |bi j0 − Li | < ≤
and |bi j0 − L 0

j0 | < ≤. Hence i ∏ i0( j0) implies

|Li − L 0| ≤ |Li − bi j0 | + |bi j0 − L 0
j0 | + |L 0

j0 − L 0| < ≤ + ≤ + 4≤ = 6≤.
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Since ≤ is arbitrary, L = limi Li exists and equals L 0. This proves (a) and (c).
Since limi Li = L , choose i1 such that |Li −L| < ≤ whenever i ∏ i1. If i ∏ i1

and j ∏ j0, we then have

|bi j − L| ≤ |bi j − Li | + |Li − L| < ≤ + ≤ = 2≤.

This proves (d).
Let i1 and j0 be as in the previous paragraph. We have seen that |L 0

j−L 0
j 0 | < 4≤

for j ∏ j0. By (b), |L 0
j −L 0| ≤ 4≤ whenever j ∏ j0. Hence (c) and the inequality

of the previous paragraph give

|bi j − L 0
j | ≤ |bi j − L| + |L − L 0| + |L 0 − L 0

j | < 2≤ + 0+ 4≤ = 6≤

whenever i ∏ i1 and j ∏ j0. By (ii), choose i2 ∏ i1 such that |bi j − L 0
j | < 6≤

whenever j ∈ {1, . . . , j0−1} and i ∏ i2. Then i ∏ i2 implies |bi j − L 0
j | < 6≤ for

all j whenever i ∏ i2. §

In checking for uniform convergence, we often do not have access to explicit
expressions for limiting values. One device for dealing with the problem is a
uniform version of the Cauchy criterion. Let S be a nonempty set, and let { fn}n∏1
be a sequence of functions from S toR. We say that { fn(x)} is uniformlyCauchy
for x ∈ S if for any ≤ > 0, there is an integer N such that n ∏ N and m ∏ N
together imply | fn(x) − fm(x)| < ≤ for all x in S.

Proposition 1.17 (uniform Cauchy criterion). A sequence { fn} of functions
from a nonempty set S to R is uniformly Cauchy if and only if it is uniformly
convergent.

PROOF. If { fn} is uniformly convergent to f , we use a 2≤ argument, just as
in the example before Theorem 1.9: Given ≤ > 0, choose N such that n ∏ N
implies | fn(x) − f (x)| < ≤. Then n ∏ N and m ∏ N together imply

| fn(x) − fm(x)| ≤ | fn(x) − f (x)| + | f (x) − fm(x)| < ≤ + ≤ = 2≤.

Thus { fn} is uniformly Cauchy.
Conversely suppose that { fn} is uniformlyCauchy. Then { fn(x)} is Cauchy for

each x . Theorem 1.9 therefore shows that there exists a function f : S → R such
that limn fn(x) = f (x) for each x . We prove that the convergence is uniform.
Given ≤ > 0, choose N , as is possible since { fn} is uniformly Cauchy, such that
n ∏ N and m ∏ N together imply | fn(x) − fm(x)| < ≤. Letting m tend to ∞
shows that | fn(x) − f (x)| ≤ ≤ for n ∏ N . Hence limn fn(x) = f (x) uniformly
for x in S. §
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In practice, uniform convergence often arises with infinite series of functions,
and then the definition and results about uniform convergence are to be applied to
the sequenceof partial sums. If the series is

P∞
k=1 ak(x), onewants

Ø
ØPn

k=m ak(x)
Ø
Ø

to be small for all m and n sufficiently large. Some of the standard tests for
convergence of series of numbers yield tests for uniform convergence of series of
functions just by introducing a parameter and ensuring that the estimates do not
depend on the parameter. We give two clear-cut examples. One is the uniform
alternating series test or Leibniz test, given in Corollary 1.18. A generalization
is the handy test given in Corollary 1.19.

Corollary 1.18. If for each x in a nonempty set S, {an(x)}n∏1 is a mono-
tone decreasing sequence of nonnegative real numbers such that limn an(x) = 0
uniformly in x , then

P∞
n=1 (−1)nan(x) converges uniformly.

PROOF. The hypotheses are such that
Ø
ØPn

k=m (−1)kak(x)
Ø
Ø ≤ supx |am(x)|

whenever n ∏ m, and the uniform convergence is immediate from the uniform
Cauchy criterion. §

Corollary 1.19. If for each x in a nonempty set S, {an(x)}n∏1 is a monotone
decreasing sequence of nonnegative real numbers such that limn an(x) = 0
uniformly in x and if {bn(x)}n∏1 is a sequence of real-valued functions on S
whose partial sums Bn(x) =

Pn
k=1 bk(x) have |Bn(x)| ≤ M for some M and all

n and x , then
P∞

n=1 an(x)bn(x) converges uniformly.

PROOF. If n ∏ m, summation by parts gives

nX

k=m
ak(x)bk(x) =

n−1X

k=m
Bk(x)(ak(x) − ak+1(x)) + Bn(x)an(x) − Bm−1(x)am(x),

as one can check by expanding out the right side. Let ≤ > 0 be given, and choose
N such that ak(x) ≤ ≤ for all x whenever k ∏ N . If n ∏ m ∏ N , then

Ø
Ø
Ø

nX

k=m
ak(x)bk(x)

Ø
Ø
Ø ≤

n−1X

k=m
|Bk(x)|(ak(x) − ak+1(x)) + M≤ + M≤

≤ M
n−1X

k=m
(ak(x) − ak+1(x)) + 2M≤

≤ Mam(x) + 2M≤

≤ 3M≤,

and the uniform convergence is immediate from the uniform Cauchy criterion.§
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A third consequence can be considered as a uniform version of the result that
absolute convergence implies convergence. In practice it tends to be fairly easy
to apply, but it applies only in the simplest situations.

Proposition 1.20 (Weierstrass M test). Let S be a nonempty set, and let { fn}
be a sequence of real-valued functions on S such that | fn(x)| ≤ Mn for all x in
S. Suppose that

P
n Mn < +∞. Then

P∞
n=1 fn(x) converges uniformly for x in

S.

PROOF. If n ∏ m ∏ N , then
Ø
ØPn

k=m fk(x)
Ø
Ø ≤

Pn
k=m | fk(x)| ≤

Pn
k=m Mk ,

and the right side tends to 0 uniformly in x as N tends to infinity. Therefore the
result follows from the uniform Cauchy criterion. §

EXAMPLES.
(1) The series

∞X

n=1

1
n2

xn

converges uniformly for−1 ≤ x ≤ 1 by theWeierstrass M test with Mn = 1/n2.
(2) The series

∞X

n=1
(−1)n

x2 + n
n2

converges uniformly for −1 ≤ x ≤ 1, but the M test does not apply. To see
that the M test does not apply, we use the smallest possible Mn , which is Mn =
supx

Ø
Ø(−1)n x2+n

n2 | = n+1
n2 . The series

P n+1
n2 diverges, and hence the M test

cannot apply for any choice of the numbers Mn . To see the uniform convergence
of the given series, we observe that the terms strictly alternate in sign. Also,

x2 + n
n2

∏
x2 + (n + 1)

(n + 1)2
because

x2

n2
∏

x2

(n + 1)2
and

1
n

∏
1

n + 1
.

Finally
x2 + n
n2

≤
n + 1
n2

→ 0

uniformly for−1 ≤ x ≤ 1. Hence the series converges uniformly by the uniform
Leibniz test (Corollary 1.18).

Having developed some tools for proving uniform convergence, let us apply
the notion of uniform convergence to interchanges of limits involving functions
of a real variable. For a point of reference, recall the diagrams of interchanges of
limits at the beginning of the section. We take the column index to be n and think



3. Uniform Convergence 21

of the row index as a variable t , which is tending to x . We make assumptions
that correspond to (i) and (ii) in Proposition 1.16, namely that { fn(t)} converges
uniformly in t as n tends to infinity, say to f (t), and that fn(t) converges to some
limit fn(x) as t tends to x . With fn(x) defined as this limit, fn is continuous
at x . In other words, the assumptions are that the sequence { fn} is uniformly
convergent to f and each fn is continuous.

Theorem 1.21. If { fn} is a sequence of real-valued functions on [a, b] that are
continuous at x and if { fn} converges to f uniformly, then f is continuous at x .
REMARKS. This is really a consequence of Proposition 1.16 except that one of

the indices, namely t , is regarded as continuous and not discrete. Actually, there is
a subtle simplification here, by comparison with Proposition 1.16, in that { fn(x)}
at the limiting parameter x is being assumed to tend to f (x). This corresponds
to assuming (b) in the proposition, as well as (i) and (ii). Consequently the proof
of the theorem will be considerably simpler than the proof of Proposition 1.16.
In fact, the proof will be our first example of a 3≤ proof. In many applications
of Theorem 1.21, the given sequence { fn} is continuous at every x , and then the
conclusion is that f is continuous at every x .
PROOF. We write

| f (t) − f (x)| ≤ | f (t) − fn(t)| + | fn(t) − fn(x)| + | fn(x) − f (x)|.
Given ≤ > 0, choose N large enough so that | fn(t)− f (t)| < ≤ for all t whenever
n ∏ N . With such an n fixed, choose some δ of continuity for the function
fn , the point x , and the number ≤. Each term above is then < ≤, and hence
| f (t) − f (x)| < 3≤. Since ≤ is arbitrary, f is continuous at x . §

Theorem 1.21 in effect uses only conclusion (c) of Proposition 1.16, which
concerns the equality of the two iterated limits. Conclusion (d) gives a stronger
result, namely that the double limit exists and equals each iterated limit. The
strengthened version of Theorem 1.21 is as follows.

Theorem 1.210. If { fn} is a sequence of real-valued functions on [a, b] that
are continuous at x and if { fn} converges to f uniformly, then for each ≤ > 0,
there exist an integer N and a number δ > 0 such that

| fn(t) − f (x)| < ≤

whenever n ∏ N and |t − x | < δ.
PROOF. If ≤ > 0 is given, choose N such that | fn(t) − f (t)| < ≤/2 for all

t whenever n ∏ N , and choose δ in the conclusion of Theorem 1.21 such that
|t − x | < δ implies | f (t) − f (x)| < ≤/2. Then

| fn(t) − f (x)| ≤ | fn(t) − f (t)| + | f (t) − f (x)| < ≤
2 + ≤

2 = ≤

whenever n ∏ N and |t − x | < δ. Theorem 1.210 follows. §
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In interpreting our diagrams of interchanges of limits to get at the statement of
Theorem 1.21, we took the column index to be n and thought of the row index as
a variable t , which was tending to x . It is instructive to see what happens when
the roles of n and t are reversed, i.e., when the row index is n and the column
index is the variable t , which is tending to x . Again we have fn(t) converging
to f (t) and limt→x fn(t) = fn(x), but the uniformity is different. This time
we want the uniformity to be in n as t tends to x . This means that the δ of
continuity that corresponds to ≤ can be taken independent of n. This is the notion
of “equicontinuity,” and there is a classical theorem about it. The theorem is
actually stronger than Proposition 1.16 suggests, since the theorem assumes less
than that fn(t) converges to f (t) for all t .
Let F = { fα | α ∈ A} be a set of real-valued functions on a bounded interval

[a, b]. We say that F is equicontinuous at x ∈ [a, b] if for each ≤ > 0, there is
some δ > 0 such that |t−x | < δ implies | f (t)− f (x)| < ≤ for all f ∈ F. The set
F of functions is pointwise bounded if for each t ∈ [a, b], there exists a number
Mt such that | f (t)| ≤ Mt for all f ∈ F. The set is uniformly equicontinuous on
[a, b] if it is equicontinuous at each point x and if the δ can be taken independent
of x . The set is uniformly bounded on [a, b] if it is pointwise bounded at each
t ∈ [a, b] and the bound Mt can be taken independent of t .

Theorem 1.22 (Ascoli’s Theorem). If { fn} is a sequence of real-valued func-
tions on a closed bounded interval [a, b] that is equicontinuous at each point of
[a, b] and pointwise bounded on [a, b], then

(a) { fn} is uniformly equicontinuous and uniformly bounded on [a, b],
(b) { fn} has a uniformly convergent subsequence.

PROOF. Since each fn is continuous at each point, we know from Theorems
1.10 and 1.11 that each fn is uniformly continuous and bounded. The proof of
(a) amounts to an argument that the estimates in those theorems can be arranged
to apply simultaneously for all n.
First consider the questionof uniformboundedness. Choose, byTheorem1.11,

some xn in [a, b] with | fn(xn)| equal to Kn = supx∈[a,b] | fn(x)|. Then choose a
subsequence on which the numbers Kn tend to supn Kn in R∗. There will be no
loss of generality in assuming that this subsequence is ourwhole sequence. Apply
the Bolzano–Weierstrass Theorem to find a convergent subsequence {xnk } of {xn},
say with limit x0. By pointwise boundedness, find Mx0 with | fn(x0)| ≤ Mx0 for
all n. Then choose some δ of equicontinuity at x0 for ≤ = 1. As soon as k is large
enough so that |xnk − x0| < δ, we have

Knk = | fnk (xnk )| ≤ | fnk (xnk ) − fnk (x0)| + | fnk (x0)| < 1+ Mx0 .

Thus 1+ Mx0 is a uniform bound for the functions fn .
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The proof of uniform equicontinuity proceeds in the same spirit but takes
longer to write out. Fix ≤ > 0. The uniform continuity of fn for each n means
that it makes sense to define

δn(≤) = min
Ω
1, sup

Ω
δ0 > 0

Ø
Ø
Ø
Ø
| fn(x)− fn(y)| < ≤whenever |x−y| < δ0

and x and y are in the domain of fn

ææ
.

If |x − y| < δn(≤), then | fn(x) − fn(y)| < ≤. Put δ(≤) = infn δn(≤). Let us see
that it is enough to prove that δ(≤) > 0: If x and y are in [a, b] with |x−y| < δ(≤),
then |x − y| < δ(≤) ≤ δn(≤). Hence | fn(x) − fn(y)| < ≤ as required.
Thus we are to prove that δ(≤) > 0. If δ(≤) = 0, then we first choose an

increasing sequence {nk} of positive integers such that δnk (≤) < 1
k , and we next

choose xk and yk in [a, b] with |xk − yk | < 1/k and | fnk (xk) − fnk (yk)| ∏ ≤.
Applying the Bolzano–Weierstrass Theorem, we obtain a subsequence {xkl } of
{xk} such that {xkl } converges, say to x0. Then

lim sup
l

|ykl − x0| ≤ lim sup
l

|ykl − xkl | + lim sup
l

|xkl − x0| = 0+ 0 = 0,

so that {ykl } converges to x0. Now choose, by equicontinuity at x0, a number
δ0 > 0 such that | fn(x) − fn(x0)| < ≤

2 for all n whenever |x − x0| < δ0. The
convergence of {xkl } and {ykl } to x0 implies that for large enough l, we have
|xkl − x0| < δ0/2 and |ykl − x0| < δ0/2. Therefore | fnkl (xkl ) − fnkl (x0)| < ≤

2 and
| fnkl (ykl )− fnkl (x0)| < ≤

2 , fromwhichwe conclude that | fnkl (xkl )− fnkl (ykl )| < ≤.
But we saw that | fnk (xk) − fnk (yk)| ∏ ≤ for all k, and thus we have arrived at a
contradiction. This proves the uniform equicontinuity and completes the proof
of (a).
To prove (b), we first construct a subsequence of { fn} that is convergent at

every rational point in [a, b]. We enumerate the rationals, say as x1, x2, . . . . By
the Bolzano–Weierstrass Theorem and the pointwise boundedness, we can find
a subsequence of { fn} that is convergent at x1, a subsequence of the result that
is convergent at x2, a subsequence of the result that is convergent at x3, and so
on. The trouble with this process is that each term of our original sequence may
disappear at some stage, and then we are left with no terms that address all the
rationals. The trick is to form the subsequence { fnk } of the given { fn} whose
kth term is the kth term of the kth subsequence we constructed. Then the kth,
(k + 1)st, (k + 2)nd, . . . terms of { fnk } all lie in our kth constructed subsequence,
and hence { fnk } converges at the first k points x1, . . . , xk . Since k is arbitrary,
{ fnk } converges at every rational point.
Let us prove that { fnk } is uniformly Cauchy. Redefining our indices, we may

assume that nk = k for all k. Let ≤ > 0 be given, let δ be some corresponding
number exhibiting uniform equicontinuity, and choose finitely many rationals
r1, . . . , rl in [a, b] such that any member of [a, b] is within δ of at least one of
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these rationals. Then choose N such that | fn(rj ) − fm(rj )| < ≤ for 1 ≤ j ≤ l
whenever n andm are∏ N . If x is in [a, b], let r(x) be an rj with |x−r(x)| < δ.
Whenever n and m are ∏ N , we then have

| fn(x) − fm(x)|
≤ | fn(x) − fn(r(x))| + | fn(r(x)) − fm(r(x))| + | fm(r(x)) − fm(x)|
< ≤ + ≤ + ≤ = 3≤.

Hence { fnk } is uniformly Cauchy, and (b) follows from Proposition 1.17. §

REMARK. The construction of the subsequence for which countably many
convergence conditions were all satisfied is an important one and is often referred
to as a diagonal process or as the Cantor diagonal process.

EXAMPLE. Let K and M be positive constants, and let F be the set of con-
tinuous real-valued functions f on [a, b] such that | f (t)| ≤ K for a ≤ t ≤ b
and such that the derivative f 0(t) exists for a < t < b and satisfies | f 0(t)| ≤ M
there. This set of functions is certainly uniformly bounded by K , and we show
that it is also uniformly equicontinuous. To see the latter, we use the Mean Value
Theorem. If x is in the closed interval [a, b] and t is in the open interval (a, b),
then there exists ξ depending on t and x such that

| f (t) − f (x)| = | f 0(ξ)||t − x | ≤ M|t − x |.

From this inequality it follows that the number δ of uniform equicontinuity for
≤ and F can be taken to be ≤/M . The hypotheses of Ascoli’s Theorem are
satisfied, and it follows that any sequence of functions in F has a uniformly
convergent subsequence. The estimate of δ is independent of the uniform bound
K , yet Ascoli’s Theorem breaks down if there is no bound at all; for example, the
sequence of constant functions with fn(x) = n is uniformly equicontinuous but
has no convergent subsequence.

We turn now to the problem of interchange of derivative and limit. The two
indices again will be an integer n that is tending to infinity and a parameter t that
is tending to x . Proposition 1.16 takes away all the surprise in the statement of
the theorem, and it tells us the steps to follow in a proof. What the proposition
suggests is that the general entry in our interchange diagram should be whatever
quantity we want to take an iterated limit of in either order. Thus we expect not a
theorem about a general entry fn(t), but instead a theorem about a general entry
fn(t) − fn(x)

t − x
. The limit on n gives us

f (t) − f (x)
t − x

for a limiting function f ,
and then the limit as t → x gives us f 0(x). In the other order the limit as t → x
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gives us f 0
n(x), and then we are to consider the limit on n. If Proposition 1.16 is

to be a guide, we are to assume that the convergence in one variable is uniform
in the other. The proposition also suggests that if we have existence of each row
limit and each column limit, then uniform convergence when one variable occurs
first is equivalent to uniform convergence when the other variable occurs first.
Thus we should assume whichever is easier to verify.

Theorem 1.23. Suppose that { fn} is a sequence of real-valued functions
continuous for a ≤ t ≤ b and differentiable for a < t < b such that { f 0

n}
converges uniformly for a < t < b and { fn(x0)} converges inR for some x0 with
a ≤ x0 ≤ b. Then { fn} converges uniformly for a ≤ t ≤ b to a function f , and
f 0(x) = limn f 0

n(x) for a < x < b, with the derivative and the limit existing.

REMARKS. The convergence of { f (x0)} cannot be dropped completely as a
hypothesis because fn(t) = n would otherwise provide a counterexample. In
practice, { fn} will be known in advance to be uniformly convergent. However,
uniform convergence of { fn} is not enough by itself, as was shown by the example

fn(x) =
sin nx
p
n
in Section 2.

PROOF. The first step is to apply theMean Value Theorem to fn− fm , estimate
f 0
n − f 0

m , and use the convergence of { fn(x0)} to obtain the existence of the limit
function f . The Mean Value Theorem produces some ξ strictly between t and
x0 such that

fn(t) − fm(t) =
°
fn(x0) − fm(x0)

¢
+ (t − x0)

°
f 0
n(ξ) − f 0

m(ξ)
¢
.

Our hypotheses allow us to conclude that { fn(t)} is uniformly Cauchy, and thus
{ fn} converges uniformly to a limit function f by Proposition 1.17.
The second step is to apply the Mean Value Theorem again to fn − fm , this

time to see that
ϕn(t) =

fn(t) − fn(x)
t − x

converges uniformly in t (for t 6= x) as n tends to infinity, the limit being ϕ(t) =
f (t) − f (x)

t − x
. In fact, theMeanValue Theoremproduces some ξ strictly between

t and x such that

ϕn(t) − ϕm(t) =
[ fn(t) − fm(t)]− [ fn(x) − fm(x)]

t − x
= f 0

n(ξ) − f 0
m(ξ),

and the right side tends to 0 uniformly as n and m tend to infinity. Therefore
{ϕn(t)} is uniformly Cauchy for t 6= x , and Proposition 1.17 shows that it is
uniformly convergent.



26 I. Theory of Calculus in One Real Variable

The third step is to extend the definition of ϕ to x by ϕn(x) = f 0
n(x) and

then to see that ϕn is continuous at x and Theorem 1.21 applies. In fact, the
definition of ϕn(t) is as the difference quotient for the derivative of fn at x , and
thus ϕn(t) → f 0

n(x) = ϕn(x). Hence ϕn is continuous at x . We saw in the
second step that ϕn(t) is uniformly convergent for t 6= x , and we are given that
ϕn(x) = f 0

n(x) is convergent. Therefore ϕn(t) is uniformly convergent for all t
with

limϕn(t) =






f (t) − f (x)
t − x

for t 6= x,

lim f 0
n(x) for t = x .

Theorem 1.21 says that the limiting function limϕn(t) is continuous at x . Thus

lim
t→x

f (t) − f (x)
t − x

= lim
n

f 0
n(x).

In other words, f is differentiable at x and f 0(x) = limn f 0
n(x). §

4. Riemann Integral

This section contains a careful but limited development of the Riemann integral
in one variable. The reader is assumed to have a familiarity with Riemann sums
at the level of a calculus course. The objective in this section is to prove that
bounded functions with only finitely many discontinuities are Riemann inte-
grable, to address the interchange-of-limits problem that arises with a sequence
of functions and an integration, to prove the Fundamental Theorem of Calculus
in the case of continuous integrand, to prove a change-of-variables formula, and
to relate Riemann integrals to general Riemann sums. The Riemann integral in
several variables will be treated in Chapter III, and some of the theorems to be
proved in the several-variable case at that time will be results that have not been
proved here in the one-variable case. In Chapters VI and VII, in the context
of the Lebesgue integral, we shall prove a much more sweeping version of the
Fundamental Theorem of Calculus.
First we give the relevant definitions. Wework with a function f : [a, b] → R

with a ≤ b in R, and we always assume that f is bounded. A partition P of
[a, b] is a subdivision of the interval [a, b] into subintervals, and we write such a
partition as

a = x0 ≤ x1 ≤ · · · ≤ xn = b.

The points xj will be called the subdivision points of the partition, and we may
abbreviate the partition as P = {xi }ni=0. In order to permit integration over an
interval of zero length, we allow partitions in which two consecutive xj ’s are
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equal; themultiplicity of xj is the number of times that xj occurs in the partition.
For the above partition, let

1xi = xi − xi−1, µ(P) = mesh of P = max
i

1xi ,

Mi = sup
xi−1≤x≤xi

f (x), mi = inf
xi−1≤x≤xi

f (x).

Put

U(P, f ) =
nX

i=1
Mi1xi = upper Riemann sum for P,

L(P, f ) =
nX

i=1
mi1xi = lower Riemann sum for P,

Z

a

b

f dx = inf
P
U(P, f ) = upper Riemann integral of f,

Z b

a
f dx = sup

P
L(P, f ) = lower Riemann integral of f.

We say that f is Riemann integrable on [a, b] if
R
a
b
f dx =

R b
a
f dx , and in

this case we write
R b
a f dx for the common value of these two numbers. We write

R[a, b] for the set of Riemann integrable functions on [a, b].
If f ∏ 0, an upper Riemann sum for f may be visualized in the traditional

way as the sum of the areas of rectangles with bases [xi−1, xi ] and with heights
just sufficient to rise above the graph of f on the interval [xi−1, xi ], and a lower
summay be visualized similarly, using rectangles as large as possible so that they
lie below the graph.

EXAMPLES.
(1) Suppose f (x) = c for a ≤ x ≤ b. No matter what partition P is used,

we have Mi = c and mi = c. Therefore U(P, f ) = L(P, f ) = c(b − a),
R
a
b
f dx =

R b
a
f dx = c(b − a), and f is Riemann integrable on [a, b] with

R b
a f dx = c(b − a).
(2) Let [a, b] be arbitrary with a < b, and let f be 1 on the rationals and 0 on

the irrationals. This f is discontinuous at every point of [a, b]. No matter what
partition is used, we have Mi = 1 and mi = 0 whenever 1xi > 0. Therefore
U(P, f ) = b− a and L(P, f ) = 0. Hence

R
a
b
f dx = b− a and

R b
a
f dx = 0,

and f is not Riemann integrable.



28 I. Theory of Calculus in One Real Variable

Let us work toward a proof that continuous functions are Riemann integrable.
We shall use some elementary properties of upper and lower Riemann sums along
with Theorem 1.10, which says that a continuous function on [a, b] is uniformly
continuous.

Lemma 1.24. Suppose that f : [a, b] → R has m ≤ f (x) ≤ M for all x in
[a, b]. Then

m(b − a) ≤ L(P, f ) ≤ U(P, f ) ≤ M(b − a),

m(b − a) ≤
Z b

a
f dx ≤ M(b − a),

m(b − a) ≤
Z

a

b

f dx ≤ M(b − a).

PROOF. The first conclusion follows from the computation

m(b − a) =
nX

i=1
m1xi ≤ L(P, f ) =

nX

i=1
mi1xi

≤
nX

i=1
Mi1xi = U(P, f ) ≤

nX

i=1
M1xi = M(b − a).

If we concentrate on the first, third, and last members of the above inequalities
and take the supremum on P , then we obtain the second conclusion. Similarly if
we concentrate on the first, sixth, and last members of the above inequalities and
take the infimum on P , then we obtain the third conclusion. §

A refinement of the partition P is a partition P∗ containing all the subdivision
points of P , with at least their same multiplicities. If P1 and P2 are two parti-
tions, then P1 and P2 have at least one common refinement: one such common
refinement is obtained by taking the union of the subdivision points from each
and repeating each such point with the maximum of the multiplicities with which
it occurs in P1 and P2. We use this notion in order to prove a second lemma.

Lemma 1.25. Let f : [a, b] → R satisfy m ≤ f (x) ≤ M for all x in [a, b].
Then

(a) L(P, f ) ≤ L(P∗, f ) and U(P∗, f ) ≤ U(P, f ) whenever P is a parti-
tion of [a, b] and P∗ is a refinement,

(b) L(P1, f ) ≤ U(P2, f ) whenever P1 and P2 are partitions of [a, b],
(c)

R b
a
f dx ≤

R
a
b
f dx ,
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(d)
R
a
b
f dx −

R b
a
f dx ≤ (M − m)(b − a),

(e) the function f is Riemann integrable on [a, b] if and only if for each
≤ > 0, there exists a partition P with U(P, f ) − L(P, f ) < ≤.

PROOF. In (a), it is enough to handle the case in which P∗ is obtained from P
by including one additional point, say x∗ between xi−1 and xi . The only possible
difference between L(P, f ) and L(P∗, f ) comes from [xi−1, xi ], and there we
have

inf
x∈[xi−1,xi ]

f (x) (xi−xi−1) = inf
x∈[xi−1,xi ]

f (x) (xi−x∗) + inf
x∈[xi−1,xi ]

f (x) (x∗−xi−1)

≤ inf
x∈[xi−1,x∗]

f (x) (xi−x∗) + inf
x∈[x∗,xi ]

f (x) (x∗−xi−1).

Hence L(P, f ) ≤ L(P∗, f ), and similarly U(P∗, f ) ≤ U(P, f ). This proves
(a).
Let P∗ be a common refinement of P1 and P2. Combining (a) with Lemma

1.24 gives
L(P1, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P2, f ).

This proves (b). Conclusion (c) follows by taking the supremum on P1 and
then the infimum on P2, and conclusion (d) follows by subtracting the second
conclusion of Lemma 1.24 from the third.
For (e), we have

L(P1, f ) ≤
Z b

a
f dx ≤

Z

a

b

f dx ≤ U(P2, f )

for any partitions P1 and P2 of [a, b]. Riemann integrabilitymeans that the center
twomembers of this inequality are equal. If they are not equal, then there certainly
can exist no P withU(P, f ) − L(P, f ) < ≤ if ≤ =

R
a
b
f dx −

R b
a
f dx . On the

other hand, equality of the center two members, together with the definitions of
the lower and upper Riemann integrals, means that for each ≤ > 0, we can choose
P1 and P2 with U(P2, f ) − L(P1, f ) < ≤. Letting P be a common refinement
of P1 and P2 and applying (a), we see thatU(P, f ) − L(P, f ) < ≤. This proves
(e). §

Theorem 1.26. If f : [a, b] → R is continuous on [a, b], then f is Riemann
integrable on [a, b].

PROOF. FromTheorem 1.10we know that f is uniformly continuous on [a, b].
Given ≤ > 0, we can therefore choose somenumber δ > 0 corresponding to f and
≤ on [a, b]. Let P = {xi }ni=0 be a partition on [a, b] of mesh µ(P) < δ. On any
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subinterval [xi−1, xi ] corresponding to P , we have mi = f (ξi ) and Mi = f (ηi )
for some ξi and ηi in [xi−1, xi ], by Theorem 1.11. Since |ηi − ξi | ≤ |xi − xi−1| =
1xi ≤ µ(P) < δ, we obtain Mi − mi = f (ηi ) − f (ξi ) < ≤. Therefore

U(P, f ) − L(P, f ) =
nX

i=1
(Mi − mi )1xi ≤ ≤

nX

i=1
1xi = ≤(b − a),

and the theorem follows from Lemma 1.25e. §

We shall improve upon Theorem 1.26 by allowing finitely many points of
discontinuity, but we need to do some additional work beforehand.

Lemma 1.27. If f is bounded on [a, b] and a ≤ c ≤ b, then
R
a
b
f dx =

R
a
c
f dx +

R
c
b
f dx , and similarly for

R b
a
. Consequently f is in R[a, b] if and

only if f is in bothR[a, c] andR[c, b], and in this case,
Z b

a
f dx =

Z c

a
f dx +

Z b

c
f dx .

REMARKS. After one is done developing the Riemann integral and its prop-
erties, it is customary to adopt the convention that

R a
b f dx = −

R b
a f dx when

b < a. One of the places that this convention is particularly helpful is in applying
the displayed formula of Lemma 1.27: the formula is then valid for all real a, b, c
without the assumption that a, b, c are ordered in a particular way.

PROOF. If P1 and P2 are partitions of [a, c] and [c, b], respectively, let P be
their “union,” which is obtained by using all the subdivision points 6= c of each
partition, together with c itself. The multiplicity of c in P is to be the larger of
the numbers of times c occurs in P1 and P2. This P is a partition of [a, b]. Then

Z

a

b

f dx ≤ U(P, f ) = U(P1, f ) +U(P2, f ).

Taking the infimum over P1 and then the infimum over P2, we obtain

Z

a

b

f dx ≤
Z

a

c

f dx +
Z

c

b

f dx .

For the reverse inequality, let ≤ > 0 be given, and choose a partition P of
[a, b] withU(P, f ) −

R
a
b
f dx < ≤. Let P∗ be the refinement of P obtained by

adjoining c to P if c is not a subdivision point of P or by using P itself if c is a



4. Riemann Integral 31

subdivision point of P . Lemma 1.25a givesU(P∗, f ) −
R
a
b
f dx < ≤. Because

c is a subdivision point of P∗, the subdivision points≤ c give us a partition P1 of
[a, c] and the subdivision points ∏ c give us a partition P2 of [c, b]. Moreover,
P∗ is the union of P1 and P2. Then we have
Z

a

b

f dx + ≤ ∏ U(P∗, f ) = U(P1, f ) +U(P2, f ) ∏
Z

a

c

f dx +
Z

c

b

f dx .

Since ≤ is arbitrary, the lemma follows. §

Lemma 1.28. Suppose that f : [a, b] → R is bounded on [a, b] and that
a ≤ c ≤ b. If for each δ > 0, f is Riemann integrable on each closed subinterval
of [a, b] ∩

©
x

Ø
Ø |x − c| ∏ δ

™
, then f is Riemann integrable on [a, b].

PROOF. We give the argument when a < c < b, the cases c = a and c = b
being handled similarly. Since f is by assumption bounded, find m and M
with m ≤ f (x) ≤ M for all x ∈ [a, b]. Choose δ > 0 small enough so that
a < c − δ < c < c + δ < b. To simplify the notation, let us drop “ f dx” from
all integrals. Since f is by assumption Riemann integrable on [a, c − δ] and
[c + δ, b], Lemma 1.27 gives

Z

a

b

=
Z

a

c−δ

+
Z c+δ

c−δ

+
Z b

c+δ

=
Z c−δ

a
+

Z c+δ

c−δ

+
Z b

c+δ

≤
Z c−δ

a
+

≥Z c+δ

c−δ

+ 2δ(M − m)
¥

+
Z b

c+δ

=
Z b

a
+ 2δ(M − m).

Since δ is arbitrary,
R
a
b

=
R b
a
. The lemma follows. §

Proposition 1.29. If f : [a, b] → R is bounded on [a, b] and is continuous
at all but finitely many points of [a, b], then f is Riemann integrable on [a, b].

REMARK. There is no assumption that f has only jump discontinuities. For
example, the proposition applies if [a, b] = [0, 1] and f is the function with
f (x) = sin 1x for x 6= 0 and f (0) = 0.

PROOF. By Lemma 1.27 and induction, it is enough to handle the case that f is
discontinuous at exactly one point, say c. Since f is bounded and is continuous
at all points but c, Theorem 1.26 shows that the hypotheses of Lemma 1.28
are satisfied. Therefore Lemma 1.28 shows that f is Riemann integrable on
[a, b]. §
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We shall now work toward a theorem about interchanging limits and integrals.
The preliminary step is to obtain some simple properties of Riemann integrals.

Proposition 1.30. If f , f1, and f2 are Riemann integrable on [a, b], then
(a) f1 + f2 is inR[a, b] and

R b
a ( f1 + f2) dx =

R b
a f1 dx +

R b
a f2 dx ,

(b) c f is inR[a, b] and
R b
a c f dx = c

R b
a f dx for any real number c,

(c) f1 ≤ f2 on [a, b] implies
R b
a f1 dx ≤

R b
a f2 dx ,

(d) m ≤ f ≤ M on [a, b] and ϕ : [m,M] → R continuous imply that ϕ ◦ f
is inR[a, b],

(e) | f | is inR[a, b], and
Ø
Ø R b

a f dx
Ø
Ø ≤

R b
a | f | dx ,

(f) f 2 and f1 f2 are inR[a, b],
(g)

p
f is inR[a, b] if f ∏ 0 on [a, b],

(h) the function g with g(x) = f (−x) is in R[−b,−a] and satisfiesR −a
−b g dx =

R b
a f dx .

REMARK. The proof of (c) will show, even without the assumption of Riemann
integrability, that

R
a
b
f1 dx ≤

R
a
b
f2 dx and

R b
a
f1 dx ≤

R b
a
f2 dx . We shall make

use of this stronger conclusion later in this section.

PROOF. For (a), write f = f1 + f2, and let P be a partition. From

inf
x∈[xi−1,xi ]

f1(x) + inf
x∈[xi−1,xi ]

f2(x) ≤ inf
x∈[xi−1,xi ]

( f1 + f2)(x) = inf
x∈[xi−1,xi ]

f (x)

and a similar inequality with the supremum, we obtain

L(P, f1) + L(P, f2) ≤ L(P, f ) ≤ U(P, f ) ≤ U(P, f1) +U(P, f2). (∗)

Let ≤ > 0 be given. By Lemma 1.25e, choose P1 and P2 with

U(P1, f1) − L(P1, f1) < ≤ and U(P2, f2) − L(P2, f2) < ≤.

If P is a common refinement of P1 and P2, then Lemma 1.25a gives

U(P, f1) − L(P, f1) < ≤ and U(P, f2) − L(P, f2) < ≤.

Hence

U(P, f1) ≤
Z b

a
f1 dx + ≤ ≤ L(P, f1) + 2≤,

U(P, f2) ≤
Z b

a
f2 dx + ≤ ≤ L(P, f2) + 2≤,
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and (∗) yields U(P, f ) − L(P, f ) ≤ 4≤. Since ≤ is arbitrary, Lemma 1.25e
shows that f is in R[a, b]. From the inequalities for U(P, f1) and U(P, f2),
combined with the last inequality in (∗), we see that
Z b

a
f dx ≤ U(P, f ) ≤ U(P, f1) +U(P, f2) ≤

Z b

a
f1 dx +

Z b

a
f2 dx + 2≤,

while the first inequality in (∗) shows that
Z b

a
f1 dx +

Z b

a
f2 dx + 2≤ ≤ L(P, f1) + L(P, f2) + 4≤

≤ L(P, f ) + 4≤ ≤
Z b

a
f dx + 4≤.

Since ≤ is arbitrary, we obtain
R b
a ( f1 + f2) dx =

R b
a f1 dx +

R b
a f2 dx . This

proves (a).
For (b), consider any subinterval [xi−1, xi ] of a partition, and let mi and

Mi be the infimum and supremum of f on this subinterval. Also, let m0
i and

M 0
i be the infimum and supremum of c f on this subinterval. If c ∏ 0, then

M 0
i = cMi and m0

i = cmi , so that U(P, c f ) = cU(P, f ) and L(P, c f ) =
cL(P, f ). If c ≤ 0, then M 0

i = cmi and m0
i = cMi , so that U(P, c f ) =

cL(P, f ) and L(P, c f ) = cU(P, f ). In either case, U(P, c f ) − L(P, c f ) =
|c|(U(P, f ) − L(P, f )), and (b) follows from Lemma 1.25e.
For (c), we have

R
a
b
f1 dx ≤ U(P, f1) ≤ U(P, f2) for all P . Taking the

infimum on P in the inequality of the first and third members gives
R
a
b
f1 dx ≤

R
a
b
f2 dx . (Similarly

R b
a
f1 dx ≤

R b
a
f2 dx , but this is not needed under the

hypothesis that f1 and f2 are Riemann integrable.)
For (d), let K = supt∈[m,M] |ϕ(t)|. Let ≤ > 0 be given, and choose by Theorem

1.10 some δ of uniform continuity for ϕ and ≤. Without loss of generality, we
may assume that δ ≤ ≤. By Lemma 1.25e, choose a partition P = {xi }ni=0 of
[a, b] such that U(P, f ) − L(P, f ) < δ2. On any subinterval [xi−1, xi ] of P ,
let mi and Mi be the infimum and supremum of f , and let m0

i and M 0
i be the

infimum and supremum of ϕ ◦ f . Divide the set of integers {1, . . . , n} into two
subsets—the subset A of integers i with Mi −mi < δ and the subset B of integers
i with Mi −mi ∏ δ. If i is in A, then the definition of δ makes M 0

i −m0
i ≤ ≤. If

i is in B, then the best we can say is that M 0
i − m0

i ≤ 2K . However, on B we do
have Mi − mi ∏ δ, and thus

δ
X

i∈B
1xi ≤

X

i∈B
(Mi −mi )1xi ≤

nX

i=1
(Mi −mi )1xi = U(P, f )−L(P, f ) < δ2.
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Thus
P

i∈B 1xi < δ and

U(P, ϕ ◦ f ) − L(P, ϕ ◦ f ) =
X

i∈A
(M 0

i − m0
i )1xi +

X

i∈B
(M 0

i − m0
i )1xi

≤ ≤
X

i∈A
1xi + 2K

X

i∈B
1xi

≤ ≤(b − a) + 2K δ ≤ ≤(b − a) + 2K ≤.

Since ≤ is arbitrary, the Riemann integrability ofϕ◦ f follows fromLemma1.25e.
For (e), the first conclusion follows from (d) with ϕ(t) = |t |. For the asserted

inequality we have f ≤ | f | and − f ≤ | f |, so that (c) and (b) give
R b
a f dx ≤

R b
a | f | dx and −

R b
a f dx ≤

R b
a | f | dx . Combining these inequalities, we obtain

Ø
Ø R b

a f dx
Ø
Ø ≤

R b
a | f | dx .

For (f), the first conclusion follows from (d) with ϕ(t) = t2. For the Riemann
integrability of f1 f2, we use the formula f1 f2 = 1

2
°
( f1 + f2)2 − f 21 − f 22

¢
and

the earlier parts of the proposition.
Conclusion (g) follows from (d) with ϕ(t) =

p
t .

For (h), each partition P of [a, b] yields a natural partition P 0 of [−b,−a] by
using the negatives of the partitionpoints. When P and P 0 arematched in thisway,
U(P, f ) = U(P 0, g) and L(P, f ) = L(P 0, g). It is immediate that f ∈ R[a, b]
implies g ∈ R[−b,−a] and that

R −a
−b g dx =

R b
a f dx . This completes the

proof. §

The next topic is the problem of interchange of integral and limit.

EXAMPLE. On the interval [0, 1], define fn(x) to be n for 0 < x < 1/n and to
be 0 otherwise. Proposition1.29 shows that fn is Riemann integrable, andLemma
1.27allowsus to see that

R 1
0 fn dx = 1 for alln. On theotherhand, limn fn(x) = 0

for all x ∈ [0, 1]. Since
R 1
0 0 dx = 0, we have

R 1
0 fn dx = 1 6= 0 =

R
limn fn dx .

Thus an interchange of integral and limit is not justified without some additional
hypothesis.

Theorem 1.31. If { fn} is a sequence of Riemann integrable functions on [a, b]
and if { fn} converges uniformly to f on [a, b], then f is Riemann integrable on
[a, b], and limn

R b
a fn dx =

R b
a f dx .

REMARKS. Proposition 1.16 suggests considering a “matrix” whose entries
are the quantities for which we are computing iterated limits, and these quantities
are U(P, fn) here. (Alternatively, we could use L(P, fn).) The hypothesis of
uniformity in the statement of Theorem1.31, however, concerns fn , notU(P, fn).
In fact, the tidy hypothesis on fn in the statement of the theorem implies a less
intuitive hypothesis onU(P, fn) that has not been considered. The proof conceals
these details.
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PROOF. Using the uniform Cauchy criterion with ≤ = 1, we see that there
exists N such that | fn(x)| ≤ MN + 1 for all x whenever n ∏ N . It follows
from the boundedness of f1, . . . , fN−1 that the | fn| are uniformly bounded, say
by M . Then also | f (x)| ≤ M for all x . Put εn = supx | fn(x) − f (x)|, so that
fn − εn ≤ f ≤ fn + εn . Proposition 1.30c and the remark with the proposition,
combined with Lemma 1.25c, then yield

Z b

a
( fn − εn) dx ≤

Z b

a
f dx ≤

Z

a

b

f dx ≤
Z b

a
( fn + εn) dx .

Subtracting
R b
a fn dx throughout gives

R
a
b
f dx −

R b
a
f dx ≤ 2εn

R b
a dx =

2εn(b − a) for all n. The uniform convergence of { fn} to f forces εn to tend
to 0, and thus f is in R[a, b]. The displayed equation, in light of the Riemann
integrability of f , shows that

Ø
Ø
Ø
Z b

a
f dx −

Z b

a
fn dx

Ø
Ø
Ø ≤ 2εn(b − a).

The right side tends to 0, and therefore limn
R b
a fn dx =

R b
a f dx . §

EXAMPLE. Let f : [0, 1] → R be defined by

f (x) =

Ω 1/q if x is the rational p/q in lowest terms
0 if x is irrational.

This function is discontinuous at every rational and is continuous at every irra-
tional. Its Riemann integrability is not settled by Proposition 1.29. Define

fn(x) =






1/q if x is the rational p/q in lowest terms, q ≤ n
0 if x is the rational p/q in lowest terms, q > n
0 if x is irrational.

Proposition 1.29 shows that fn is Riemann integrable, andLemma1.27 shows thatR 1
0 fn dx = 0. Since | fn(x) − f (x)| ≤ 1/n for all x , { fn} converges uniformly
to f . By Theorem 1.31, f is Riemann integrable and

R 1
0 f dx = 0.

Theorem 1.32 (Fundamental Theorem of Calculus). If f : [a, b] → R is
continuous, then

(a) the function G(x) =
R x
a f dt is differentiable for a < x < b with

derivative f (x), and it is continuous at a and b with G(a) = 0,
(b) any continuous function F on [a, b] that is differentiable for a < x < b

with derivative f (x) has
R b
a f dt = F(b) − F(a).
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REMARK. The derivative of G(x) on (a, b), namely f (x), has the finite limits
f (a) and f (b) at the endpoints of the interval, since f has been assumed to
be continuous on [a, b]. Thus, in the sense of the last paragraph of Section A2
of Appendix A, G(x) has the continuous derivative f (x) on the closed interval
[a, b].

PROOF OF (a). Riemann integrability of f is known from Theorem 1.26. For
h > 0 small enough to make x + h < b, Lemma 1.27 and Proposition 1.30 give

G(x + h) − G(x)
h

− f (x) =

R x+h
a f dt −

R x
a f dt

h
− f (x)

=
1
h

Z x+h

x
f dt − f (x)

=
1
h

Z x+h

x
[ f (t) − f (x)] dt

and hence
Ø
Ø
Ø
Ø
G(x + h) − G(x)

h
− f (x)

Ø
Ø
Ø
Ø ≤

1
h

Z x+h

x
| f (t) − f (x)| dt.

If ≤ > 0 is given, choose the δ of continuity for f and ≤ at x . Then 0 < h ≤ δ
implies that the right side is ≤ ≤. For negative h, we instead take h > 0 and
consider

G(x − h) − G(x)
−h

− f (x) =
1
h

Z x

x−h
f dt − f (x) =

1
h

Z x

x−h
[ f (t) − f (x)] dt.

Then
Ø
Ø
Ø
Ø
G(x − h) − G(x)

−h
− f (x)

Ø
Ø
Ø
Ø ≤

1
|h|

Z x

x−h
| f (t) − f (x)| dt ≤ ≤,

as required. §

PROOF OF (b). The functions F and G are two continuous functions on [a, b]
with equal derivative on (a, b). A corollary of the Mean Value Theorem stated
in Section A2 of Appendix A implies that G = F + c for some constant c. Then

Z b

a
f dt = G(b) − 0 = G(b) − G(a) = F(b) + c− F(a) − c = F(b) − F(a).

§
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Corollary 1.33 (integration by parts). Let f and g be real-valued functions
defined and having a continuous derivative on [a, b]. Then

Z b

a
f (x)g0(x) dx =

h
f (x)g(x)

ib

a
−

Z b

a
f 0(x)g(x) dx .

REMARK. The notion of a continuous derivative at the endpoints of an interval
is discussed in the last paragraph of Section A2 of Appendix A.

PROOF. We start from the product rule for differentiation, namely

d
dx
[ f (x)g(x)] = f (x)g0(x) + f 0(x)g(x),

and we apply
R b
a to both sides. Taking Theorem 1.32 into account, we obtain the

desired formula. §

Theorem 1.34 (change-of-variables formula). Let f be Riemann integrable
on [a, b], let ϕ be a continuous strictly increasing function from an interval [A, B]
onto [a, b], suppose that the inverse functionϕ−1 : [a, b] → [A, B] is continuous,
and suppose finally that ϕ is differentiable on (A, B) with uniformly continuous
derivative ϕ0. Then the product ( f ◦ ϕ)ϕ0 is Riemann integrable on [A, B], and

Z b

a
f (x) dx =

Z B

A
f (ϕ(y))ϕ0(y) dy.

REMARKS. The uniform continuity of ϕ0 forces ϕ0 to be bounded. If ϕ0 were
also assumed positive on (A, B), then the continuity of ϕ−1 on (a, b) would be
automatic as a consequence of the proposition in Section A3 of Appendix A. The
result in the appendix is not quite good enough for current purposes, and thus we
have assumed the continuity of ϕ−1 on [a, b]. It will be seen in Section II.7 that
the continuity of ϕ−1 on [a, b] is automatic in the statement of Theorem 1.34 and
need not be assumed.

PROOF IF f ∏ 0. Given ≤ > 0, choose some η of uniform continuity for ϕ0 and
≤, and then choose, by Theorem 1.10, some δ of uniform continuity for ϕ−1 and η.
Next choose a partition P = {xi }ni=0 on [a, b] such thatU(P, f )− L(P, f ) < ≤.
Possibly by passing to a refinement of P , we may assume that µ(P) < δ. Let Q
be the partition {yi }ni=0 of [A, B] with yi = ϕ−1(xi ). Then µ(Q) < η.
The Mean Value Theorem gives1xi = (1yi )ϕ0(ξi ) for some ξi between yi−1

and yi . On [A, B], ϕ0 is bounded; let m∗
i and M∗

i be the infimum and supremum
of ϕ0 on [yi−1, yi ], so that m∗

i ≤ ϕ0(ξi ) ≤ M∗
i and m∗

i 1yi ≤ 1xi ≤ M∗
i 1yi .

Since µ(Q) < η, we have M∗
i − m∗

i ≤ ≤. Then we have
X

Mim∗
i 1yi ≤

X
Mi1xi = U(P, f ) =

X
Miϕ

0(ξi )1yi ≤
X

MiM∗
i 1yi .
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Whenever F and G are ∏ 0 on a common domain and x is in that domain,
(infG)F(x) ≤ G(x)F(x); taking the supremumof both sides gives the inequality
(infG)(sup F) ≤ sup(FG). Also, sup(FG) ≤ sup(F) sup(G). Applying these
inequalities with G = ϕ0 and F = f ◦ ϕ yields

X
Mim∗

i 1yi ≤ U(Q, ( f ◦ ϕ)ϕ0) ≤
X

MiM∗
i 1yi .

Subtraction of the right-hand inequality of the first display and the left-hand
inequality of the second display shows that

U(P, f ) −U(Q, ( f ◦ ϕ)ϕ0) ≤
X

Mi (M∗
i − m∗

i )1yi , (∗)

while subtraction of the right-hand inequality of the second display and the left-
hand inequality of the first display gives

U(Q, ( f ◦ ϕ)ϕ0) −U(P, f ) ≤
X

Mi (M∗
i − m∗

i )1yi . (∗∗)

Suppose that | f (x)| ≤ M on [a, b]. Then (∗) and (∗∗) give

|U(P, f ) −U(Q, ( f ◦ ϕ)ϕ0)| ≤
X

Mi (M∗
i − m∗

i )1yi ≤ ≤M(B − A).

Similarly |L(P, f ) − L(Q, ( f ◦ ϕ)ϕ0)| ≤ ≤M(B − A),

and hence

|U(Q, ( f ◦ ϕ)ϕ0) − L(Q, ( f ◦ ϕ)ϕ0)|

≤ |U(Q, ( f ◦ ϕ)ϕ0) −U(P, f )| + |U(P, f ) − L(P, f )|
+ |L(P, f ) − L(Q, ( f ◦ ϕ)ϕ0)|

≤ 2≤M(B − A) + ≤.

Since ≤ is arbitrary, Lemma 1.25e shows that ( f ◦ ϕ)ϕ0 is in R[A, B]. Our
inequalities imply that

Ø
ØR b
a f dx −U(P, f )

Ø
Ø ≤ ≤,

|U(P, f ) −U(Q, ( f ◦ ϕ)ϕ0)| ≤ ≤M(B − A),

|U(Q, ( f ◦ ϕ)ϕ0) −
R B
A ( f ◦ ϕ)ϕ0 dy

Ø
Ø ≤ 2≤M(B − A) + ≤.and

Addition shows that
Ø
Ø R b

a f dx −
R B
A ( f ◦ ϕ)ϕ0 dy

Ø
Ø ≤ 2≤ + 3≤M(B − A). Since

≤ is arbitrary,
R b
a f dx =

R B
A ( f ◦ ϕ)ϕ0 dy. §

PROOF FOR GENERAL f . The special case just proved shows that the result
holds for f + c for a suitable positive constant c, as well as for the constant
function c. Subtracting the results for f + c and c gives the result for f , and the
proof is complete. §
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If f isRiemann integrableon [a, b], thenU(P, f ) and L(P, f ) tend to
R b
a f dx

as P gets finer by insertion of points. This conclusion tells us nothing about fine-
looking partitions like those that are equally spaced with many subdivisions. The
next theorem says that the approximating sums tend to

R b
a f dx just under the

assumption that µ(P) tends to 0.
Relative to our standard partition P = {xi }ni=0, let ti for 1 ≤ i ≤ n satisfy

xi−1 ≤ ti ≤ xi , and define

S(P, {ti }, f ) =
nX

i=1
f (ti )1xi .

This is called a Riemann sum of f .

Theorem 1.35. If f is Riemann integrable on [a, b], then

lim
µ(P)→0

S(P, {ti }, f ) =
Z b

a
f dx .

Conversely if f is bounded on [a, b] and if there exists a real number r such
that for any ≤ > 0, there exists some δ > 0 for which |S(P, {ti }, f ) − r | < ≤
whenever µ(P) < δ, then f is Riemann integrable on [a, b].

PROOF. For the direct part the function f is assumed bounded; suppose
| f (x)| ≤ M on [a, b]. Let ≤ > 0 be given. Choose a partition P∗ of [a, b] with
U(P∗, f ) ≤

R b
a f dx + ≤. Say P∗ is a partition into k intervals. Put δ1 = ≤

Mk ,
and suppose that P is any partition of [a, b] with µ(P) ≤ δ1. In the sum giving
U(P, f ), we divide the terms into two types—those from a subinterval of P that
does not lie within one subinterval of P∗ and those from a subinterval of P that
does lie within one subinterval of P∗.
Each subinterval of P of the first kind has at least one point of P∗ strictly

inside it, and the number of such subintervals is therefore ≤ k − 1. Hence the
sum of the corresponding terms of U(P, f ) is

≤ (k − 1)Mµ(P) ≤
(k − 1)M≤

Mk
≤ ≤.

For the terms of the second kind, fix attention on one subinterval I ∗ of P∗ and
consider all the subintervals Ii of P that are of the second kind and lie within
I ∗. Let |Ii | be the length of Ii , and let mi be the supremum of f , positive
or negative or zero, on Ii . Let m be the supremum of f on I ∗. Then the
contribution of the intervals Ii to U(P, f ) is

P
i mi |Ii |, and term by term this is

≤
P

i m|Ii | = m
P

i |Ii |. The intervals Ii must fill up I ∗ except possibly for a
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part of I ∗ at each end, and each of these two ends has a total length of ≤ µ(P).
Thus the contribution of the intervals Ii of the second kind inside I ∗ to U(P, f )
is

≤ m
X

i
|Ii | = m(|I ∗| − |left end| − |right end|)

≤ m|I ∗| + |m|2µ(P) ≤ m|I ∗| + (sup | f |)2µ(P) ≤ m|I ∗| + 2≤/k.

On the right side the term m|I ∗| is the term of U(P∗, f ) coming from I ∗. Sum-
ming over the k intervals I ∗ whose union is [a, b], we see that the contribution
to U(P, f ) of all intervals of the second kind is

≤ U(P∗, f ) + 2≤.

Thus
U(P, f ) ≤ ≤ +U(P∗, f ) ≤

Z b

a
f dx + 3≤.

Similarly we can produce δ2 such that µ(P) ≤ δ2 implies

L(P, f ) ∏
Z b

a
f dx − 3≤.

If δ = min{δ1, δ2} and µ(P) ≤ δ, then
Z b

a
f dx − 3≤ ≤ L(P, f ) ≤ S(P, f ) ≤ U(P, f ) ≤

Z b

a
f dx + 3≤,

and hence
Ø
ØS(P, f ) −

R b
a f dx

Ø
Ø ≤ 3≤.

For the converse let ≤ > 0 be given, and choose some δ as in the statement of the
theorem. Next choose a partition P = {xi }ni=0 with

Ø
ØU(P, f ) −

R
a
b
f dx

Ø
Ø < ≤

and
Ø
ØR b

a
f dx − L(P, f )

Ø
Ø < ≤; possibly by passing to a refinement of P , we

may assume without loss of generality that µ(P) < δ. Choosing {ti }ni=1 suitably
for the partition P , we can make |U(P, f ) − S(P, {ti }, f )| < ≤. For a possibly
different choice of the set of intermediate points, say {t 0i }, we can make
|S(P, {t 0i }, f ) − L(P, f )| < ≤. Then
Ø
ØR
a
b
f dx −

R b
a
f dx

Ø
Ø ≤

Ø
ØU(P, f ) −

R
a
b
f dx

Ø
Ø + |U(P, f ) − S(P, {ti }, f )|

+ |S(P, {ti }, f ) − r | + |r − S(P, {t 0i }, f )|

+ |S(P, {t 0i }, f ) − L(P, f )| +
Ø
ØL(P, f ) −

R b
a
f dx

Ø
Ø

< 6≤.

Since ≤ is arbitrary, the Riemann integrability of f follows from Lemma 1.25e.
§
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With integration in hand, one could at this point give rigorous definitions of
the logarithm and exponential functions log x and exp x , as well as rigorous but
inconvenient definitions of the trigonometric functions sin x , cos x , and tan x . For
each of these functions we would obtain a formula for the derivative and other
information. We shall not pursue this approach, but we pause to mention the idea.
We put log x =

R x
1 t

−1 dt for 0 < x < +∞ and see that log carries (0,+∞)
one-one onto (−∞,+∞). The function log x has derivative 1/x and satisfies
the functional equation log(xy) = log x + log y. The proposition in Section A3
of Appendix A shows that the inverse function exp exists, carries (−∞,+∞)
one-one onto (0,+∞), is differentiable, and has derivative exp x . The functional
equation of log translates into the functional equation exp(a + b) = exp a exp b
for exp, and we readily derive as a consequence that exp x = ex , where e =
exp 1. For the trigonometric functions, the starting points with this approach are
the definitions arctan x =

R x
0 (1 + t2)−1 dt , arcsin x =

R x
0 (1 − t2)−1/2 dt , and

π = 4 arctan 1.
Instead of using this approach, we shall use power series to define these

functions and to obtain their expected properties. We do so in Section 7.

5. Complex-Valued Functions

Complex numbers are taken as known, and their notation and basic properties
are reviewed in Section A4 of Appendix A. The point of the present section is
to extend some of the results for real-valued functions in earlier sections so that
they apply also to complex-valued functions.
The distance between two members z and w of C is defined by d(z, w) =

|z − w|. This has the properties
(i) d(z1, z2) ∏ 0 with equality if and only if z1 = z2,
(ii) d(z1, z2) = d(z2, z1),
(iii) d(z1, z2) ≤ d(z1, z3) + d(z3, z2).

The first two are immediate from the definition, and the third follows from the
triangle inequality of SectionA4of the appendixwith z = z1−z3 andw = z3−z2.
For this reason, (iii) is called the triangle inequality also.
Convergence of a sequence {zn} in C to z has two possible interpretations:

either {Re zn} converges to Re z and {Im zn} converges to Im z, or d(zn, z) con-
verges to 0 in R. These interpretations come to the same thing because

max {Rew, Imw} ≤ |w| ≤
p
2max {Rew, Imw}.

Then it follows that uniform convergence of a sequence of complex-valued
functions has two equivalent meanings, so does continuity of a complex-valued
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function at a point or everywhere, and so does differentiation of a complex-
valued function. We readily check that all the results of Section 3, starting with
Proposition 1.16 and ending with Theorem 1.23, extend to be valid for complex-
valued functions as well as real-valued functions.
The one point that requires special note in connection with Section 3 is the

Mean Value Theorem. This theorem is valid for real-valued functions but not
for complex-valued functions. It is possible to give an example now if we again
allow ourselves to use the exponential and trigonometric functions before we
get to Section 7, where the tools will be available for rigorous definitions. The
example is f (x) = eix for x ∈ [0, 2π]. This function has f (0) = f (2π) = 1,
but the derivative f 0(x) = ieix is never 0.
The Mean Value Theorem was used in the proof of Theorem 1.23, but the

failure of the Mean Value Theorem for complex-valued functions causes us no
problem when we seek to extend Theorem 1.23 to complex-valued functions.
The reason is that once Theorem 1.23 has been proved for real-valued functions,
one simply puts together conclusions about the real and imaginary parts.
Next we examine how the results of Section 4 may be extended to complex-

valued functions. Upper and lower Riemann sums, of course, make no sense for
a complex-valued function. It is possible to make sense out of general Riemann
sums as in Theorem 1.35, but we shall not base a definition on this approach.
Instead, we simply define definite integrals of a function f : R → C in terms

of real and imaginary parts. Define the real and imaginary parts u = Re f and
v = Im f by f (x) = u(x) + iv(x), and let

R b
a f dx =

R b
a u dx + i

R b
a v dx . We

can then redefine the set R[a, b] of Riemann integrable functions on [a, b] to
consist of bounded complex-valued functions on [a, b] whose real and imaginary
parts are each Riemann integrable.
Most properties of definite integrals go over to the case of complex-valued

functions by inspection; there are two properties that deserve some discussion:
(i) If f is inR[a, b] and c is complex, then c f is inR[a, b] and

R b
a c f dx =

c
R b
a f dx .

(ii) If f is inR[a, b], then | f | is inR[a, b] and
Ø
Ø R b

a f dx
Ø
Ø ≤

R b
a | f | dx .

To see (i), write f = u + iv and c = r + is. Then c f = (r + is)(u + iv) =
(ru−sv)+i(rv+su). The functions ru−sv and rv+su are Riemann integrable
on [a, b], and hence so is c f . Then

R b
a c f dx =

R b
a (ru − sv) dx + i

R b
a (rv + su) dx

= r
R b
a u dx − s

R b
a v dx + ir

R b
a v dx + is

R b
a u dx

= r
R b
a (u + iv) dx + is

R b
a (u + iv) dx = c

R b
a f dx .

To see (ii), let f be in R[a, b]. Proposition 1.30 shows successively that
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(Re f )2 and (Im f )2 are inR[a, b], that (Re f )2 + (Im f )2 = | f |2 is inR[a, b],
and that

p
| f |2 = | f | is in R[a, b]. For the inequality with

Ø
Ø R b

a f dx
Ø
Ø, choose

c ∈ C with |c| = 1 such that c
R b
a f dx is real and nonnegative, i.e., equals

Ø
Ø R b

a f dx
Ø
Ø. Using (i), we obtain (ii) from

Ø
Ø R b

a f dx
Ø
Ø = c

R b
a f dx =

R b
a c f dx =

R b
a Re(c f ) dx

≤
R b
a |c f | dx =

R b
a | f | dx .

Finally we observe that Theorem 1.35 extends to complex-valued functions
f . The definition of Riemann sum is unchanged, namely S(P, {ti }, f ) =Pn
i=1 f (ti )1xi , and the statement of Theorem 1.35 is unchanged except that the

number r is now allowed to be complex. The direct part of the extended theorem
follows by applying Theorem 1.35 to the real and imaginary parts of f separately.
For the converse we use that the inequality |S(P, {ti }, f )−c| < ≤ with c complex
implies |S(P, {ti },Re f ) − Re c| < ≤ and |S(P, {ti }, Im f ) − Im c| < ≤. Theo-
rem 1.35 for real-valued functions then shows that Re f and Im f are Riemann
integrable, and hence so is f .

6. Taylor’s Theorem with Integral Remainder

There are several forms to the remainder term in the one-variable Taylor’s
Theorem for real-valued functions, and the differences already show up in their
lowest-order formulations. Let f be given, and, for definiteness, suppose a < x .
If o(1) denotes a term that tends to 0 as x tends to a, three such lowest-order
formulas are

f (x) = f (a) + o(1) if f is merely assumed to be continuous,
f (x) = f (a) + (x − a) f 0(ξ) with a < ξ < x if f is continuous

on [a, x] and f 0 exists on (a, x),

f (x) = f (a) +
Z x

a
f 0(t) dt if f and f 0 are continuous on [a, x].

The first formula follows directly from the definition of continuity, while the sec-
ond formula restates the Mean Value Theorem and the third formula restates part
of the Fundamental Theorem of Calculus. The hypotheses of the three formulas
increase in strength, and so do the conclusions. In practice, Taylor’s Theorem
is most often used with functions having derivatives of all orders, and then the
strongest hypothesis is satisfied. Thus we state a general theorem corresponding
only to the third formula above. It applies to complex-valued functions as well
as real-valued functions.
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Theorem 1.36 (Taylor’s Theorem). Let n be an integer ∏ 0, let a and x
be points of R, and let f be a complex-valued function with n + 1 continuous
derivatives on the closed interval from a to x . Then

f (x) = f (a) +
f 0(a)
1!

(x − a) + · · · +
f (n)(a)
n!

(x − a)n + Rn(a, x),

where

Rn(a, x) =






1
n!

Z x

a
(x − t)n f (n+1)(t) dt if a ≤ x,

−
1
n!

Z a

x
(x − t)n f (n+1)(t) dt if x ≤ a.

REMARKS. The notion of a continuous derivative at the endpoints of an interval
is discussed for real-valued functions in the last paragraph of Section A2 of
Appendix A and extends immediately to complex-valued functions; iteration of
this definition attaches a meaning to continuous higher-order derivatives on a
closed interval. Once the convention in the remarks with Lemma 1.27 is adopted,
namely that

R a
x f dt = −

R x
a f dt when x < a, the formula for the remainder

term becomes tidier:

Rn(a, x) =
1
n!

Z x

a
(x − t)n f (n+1)(t) dt,

with no assumption that a ≤ x .

PROOF. We give the argument when a ≤ x , the case x ≤ a being handled
analogously. The proof is by induction on n. For n = 0, the formula is immediate
from the Fundamental Theorem of Calculus (Theorem 1.32b). Assume that the
formula holds for n − 1. We apply integration by parts (Corollary 1.33) to the
remainder term at stage n − 1, obtaining
Z x

a
(x − t)n−1 f (n)(t) dt = −

1
n

h
(x − t)n f (n)(t)

ix

a
+
1
n

Z x

a
(x − t)n f (n+1)(t) dt.

Substitution gives

Rn−1(a, x) =
1

(n − 1)!

Z x

a
(x − t)n−1 f (n)(t) dt

= −
1
n!

h
(x − t)n f (n)(t)

ix

a
+
1
n!

Z x

a
(x − t)n f (n+1)(t) dt

=
1
n!

(x − a)n f (n)(a) + Rn(a, x),

and the induction is complete. §
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7. Power Series and Special Functions

A power series is an infinite series of the form
P∞

n=0 cnzn . Normally in math-
ematics, if nothing is said to the contrary, the coefficients cn are assumed to be
complex and the variable z is allowed to be complex. However, in the context of
real-variable theory, aswhen formingderivatives of functionsdefinedon intervals,
one is interested only in real values of z. In this book the context will generally
make clear whether the variable is to be regarded as complex or as real.

One source of power series is the “infinite Taylor series”
X∞

n=0
f (n)(0)xn

n!
of

a function f having derivatives of all orders, with the remainder terms discarded.
In this case the variable is to be real. If the series is convergent at x , the series
has sum f (x) if and only if limn Rn(0, x) = 0. Later in this section, we shall
see examples both where the limit is identically 0 and where it is nowhere 0 for
x 6= 0.

Theorem 1.37. If a power series
P∞

n=0 cnzn is convergent inC for some com-
plex z0 with |z0| = R and if R0 < R, then

P∞
n=0 |cnzn| is uniformly convergent

for complex z with |z| ≤ R0, and so is
P∞

n=0 (n + 1)|cn+1zn|.

REMARKS. The number

R = sup
©
R0

Ø
ØP∞

n=0cnz
n converges for some z0 with |z0| = R0™

is called the radius of convergence of
P∞

n=0 cnzn . The theorem says that if
R0 < R, then

P∞
n=0 |cnzn| converges uniformly for |z| ≤ R0, and it follows from

the uniform Cauchy criterion that
P∞

n=0 cnzn converges uniformly for |z| ≤ R0.
The definition of R carries with it the implication that if z0 has |z0| > R, thenP∞

n=0 cnz
n
0 diverges.

PROOF. The theorem is vacuous unless R > 0. Since
P∞

n=0 cnz
n
0 is convergent,

the terms cnzn0 tend to 0. Thus there is some integer N for which |cn|Rn ≤ 1
when n ∏ N . Fix R0 < R. For |z| ≤ R0 and n ∏ N , we have

|cnzn| = |cnzn0 |
Ø
Ø
Ø
z
z0

Ø
Ø
Ø
n

= |cn|Rn
Ø
Ø
Ø
z
z0

Ø
Ø
Ø
n

≤
≥ R0

R

¥n
.

Since
P ° R0

R
¢n

< +∞, the Weierstrass M test shows that
P∞

n=0 cnzn converges
uniformly for |z| ≤ R0.
For the series

P∞
n=0 (n + 1)|cn+1zn|, the inequalities |z| ≤ R0 and n ∏ N

together imply

|(n + 1)cn+1zn| ≤ (n + 1)|cn+1|Rn
≥ R0

R

¥n
≤ (n + 1)R−1

≥ R0

R

¥n
.
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To see that the Weierstrass M test applies here as well, choose r 0 with R0/R <
r 0 < 1 and increase the size of N so that n+1n ≤ R

R0 r 0 whenever n ∏ N . For such
n, the ratio test and the inequality

(n + 2)R−1° R0

R
¢n+1

(n + 1)R−1
° R0

R
¢n =

n + 2
n + 1

R0

R
≤ r 0

show that
P

(n + 1)R−1° R0

R
¢n converges. Thus the Weierstrass M test indeed

applies, and the proof is complete. §

Corollary 1.38. If
P∞

n=0 cnxn converges for |x | < R and the sum of the series
for x real is denoted by f (x), then the function f has derivatives of all orders
for |x | < R. These derivatives are given by term-by-term differentiation of the
series for f , and each differentiated series converges for |x | < R. Moreover,

ck =
f (k)(0)
k!

.

REMARK. When a function has derivatives of all orders, we say that it is
infinitely differentiable.

PROOF. The corollary is vacuous unless R > 0. Let R0 < R. The given
series certainly converges at x = 0, and Theorem 1.37 shows that the term-by-
term differentiated series converges uniformly for |x | ≤ R0. Thus Theorem 1.23
gives f 0(x) =

P∞
n=0 (n + 1)cn+1xn for |x | < R0. Since R0 < R is arbitrary,

f 0(x) =
P∞

n=0 (n + 1)cn+1xn for |x | < R.
We can iterate this result to obtain the corresponding conclusion for the higher-

order derivatives. Evaluating the derivatives at 0, we obtain f (k)(0) = ckk!, as
asserted. §

Corollary 1.39. If
P∞

n=0 cnxn and
P∞

n=0 dnxn both converge for |x | < R and
if their sums are equal for x real with |x | < R, then cn = dn for all n.

PROOF. This result is immediate from the formula for the coefficients in
Corollary 1.38. §

If f : R → C is infinitely differentiable near x = a, we call the infinite series
∞P

n=0

f (n)(a)
n!

(x − a)n the (infinite) Taylor series of f . We call a general series
P∞

n=0 cn(x − a)n a power series about x = a; its behavior at x = a + t is the
same as the behavior of the series

P∞
n=0 cnxn at x = t . In applications, one

usually adjusts the function f so that Taylor series expansions are about x = 0.
Thus we shall concentrate largely on power series expansions about x = 0.
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Had we chosen at the end of Section 4 to define log x as
R x
1 t

−1 dt and exp x as
the inverse function of log x , we would have found right away that

° d
dx

¢k exp x =
exp x for all k. Therefore the infinite Taylor series expansion of exp x about x = 0
is

P∞
n=0

xn
n! . This fact does not, however, tell us whether exp x is the sum of this

series. For this purpose we need to examine the remainder. Theorem 1.36 shows
that the remainder after the term xn/n! is

Rn(0, x) =
1
n!

Z x

0
(x − t)n f (n+1)(t) dt =

1
n!

Z x

0
(x − t)net dt.

Between 0 and x , et is bounded by some constant M(x) depending on x , and thus
|Rn(0, x)| ≤ M(x)

n!

Ø
Ø R x
0 (x− t)n dt

Ø
Ø = M(x)

(n+1)! |x |
n+1. With x fixed, this tends to 0 as

n tends to infinity, and thus limn Rn(0, x) = 0 for each x . The conclusion is that
exp x =

P∞
n=0

xn
n! . In a similar fashion one can obtain power series expansions of

sin x and cos x if one starts fromdefinitions of the corresponding inverse functions
in terms of Riemann integrals.
Instead of using this approach, we shall define exp x , sin x , and cos x directly

as sums of standard power series. An advantage of using series in the definitions
is that this approach allows us to define these functions at an arbitrary complex
z, not just at a real x . Thus we define

exp z =
∞X

n=0

zn

n!
, sin z =

∞X

n=0

(−1)nz2n+1

(2n + 1)!
, cos z =

∞X

n=0

(−1)nz2n

(2n)!
.

The ratio test shows immediately that these series all converge for all complex z.
Inspection of all these series gives us the identity

exp i z = cos z + i sin z.

Corollary 1.38 shows that the functions exp z, sin z, and cos z, when considered
as functions of a real variable z = x , are infinitely differentiable with derivatives
given by the expected formulas

d
dx

exp x = exp x,
d
dx

sin x = cos x,
d
dx

cos x = − sin x .

From these formulas it is immediate that d
dx

°
sin2 x + cos2 x

¢
= 0 for all x .

Therefore sin2 x + cos2 x is constant. Putting x = 0 shows that the constant is 1.
Thus

sin2 x + cos2 x = 1.

In order to prove that exp x = ex , where e = exp 1, and to prove other familiar
trigonometric identities, we shall do some calculations with power series that are
justified by the following theorem.
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Theorem 1.40. If f (z) =
P∞

n=0 anzn and g(z) =
P∞

n=0 bnzn for complex z
with |z| < R, then f (z)g(z) =

P∞
n=0 cnzn for |z| < R, where

cn = anb0 + an−1b1 + · · · + a0bn.
REMARK. In other words, the rule is to multiply the series formally, assuming

a kind of infinite distributive law, and reassemble the series by grouping terms
with like powers of z. The coefficient cn of zn in the product comes from all
products akzkbl zl for which the total degree is n, i.e., for which k + l = n. Thus
cn is as indicated.
PROOF. The theorem is vacuous unless R > 0. Fix R0 < R. For |z| ≤ R0,

put F(z) =
P∞

n=0 |anzn| and G(z) =
P∞

n=0 |bnzn|. These series are uniformly
convergent for |z| ≤ R0 by Theorem 1.37, and also | f (z)| ≤ F(z) and |g(z)| ≤
G(z). By the uniform convergence of the series for F and G when |z| ≤ R0,
there exists M < +∞ such that F(z) ≤ M and G(z) ≤ M for |z| ≤ R0. Given
≤ > 0, choose an integer N 0 such that |z| ≤ R0 implies

P
n∏N 0 |anzn| < ≤ andP

n∏N 0 |bnzn| < ≤. If |z| ≤ R0 and N ∏ 2N 0, then
Ø
Ø
Ø f (z)g(z) −

NX

n=0
cnzn

Ø
Ø
Ø ≤

Ø
Ø
Ø f (z)g(z) −

≥ NX

n=0
anzn

¥≥ NX

n=0
bnzn

¥Ø
Ø
Ø

+
Ø
Ø
Ø
≥ NX

n=0
anzn

¥≥ NX

n=0
bnzn

¥
−

NX

n=0
cnzn

Ø
Ø
Ø.

Call the two terms on the right side T1 and T2. Then we have

T1 ≤
Ø
Ø
Ø f (z) −

NX

n=0
anzn

Ø
Ø
Ø|g(z)| +

Ø
Ø
Ø

NX

n=0
anzn

Ø
Ø
Ø
Ø
Ø
Øg(z) −

NX

n=0
bnzn

Ø
Ø
Ø ≤ ≤G(z) + ≤F(z),

and also, with [N/2] denoting the greatest integer in N/2,

T2 =
Ø
Ø
Ø

X

k+l>N ,
k≤N , l≤N

akbl zk+l
Ø
Ø
Ø ≤

X

k+l>N ,
k≤N , l≤N

|akzk ||bl zl |

≤
NX

k=0

NX

l=[N/2]
+

NX

k=[N/2]

NX

l=0

≤
∞X

k=0

∞X

l=N 0

+
∞X

k=N 0

∞X

l=0

≤ ≤G(z) + ≤F(z).
Since G(z) ≤ M and F(z) ≤ M for |z| ≤ R0, the total estimate is that T1 + T2 ≤
4≤M . Since ≤ is arbitrary, we conclude that limN

PN
n=0 cnzn = f (z)g(z) for

|z| ≤ R0. Since R0 is an arbitrary number < R, we conclude that
P∞

n=0 cnzn =
f (z)g(z) for |z| < R. §
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Corollary1.41. For any z andw inC, exp(z+w) = exp z expw. Furthermore,
exp z̄ = exp z.

PROOF. Theorem 1.40 and the infinite radius of convergence allow us to write

exp z expw =
≥ ∞X

r=0

zr

r!

¥≥ ∞X

s=0

ws

s!

¥
=

X

r,s

zrws

r!s!

=
∞X

N=0

NX

k=0

zkwN−k

k!(N − k)!
=

∞X

N=0

1
N !

NX

k=0

µ
N
k

∂
zkwN−k

=
∞X

N=0

(z + w)N

N !
= exp(z + w).

For the second formula, write z = x + iy. Then

exp z̄ = exp(x − iy) = exp x exp(−iy) = (exp x)(cos y − i sin y)

= (exp x)(cos y + i sin y) = exp x exp(iy) = exp(x + iy) = exp z.

§

Corollary1.42. Theexponential functionexp x , as a functionof a real variable,
has the following properties:

(a) exp is strictly increasing on (−∞,+∞) and is one-one onto (0,+∞),
(b) exp x = ex , where e = exp 1,
(c) exp x has an inverse function, denoted by log x , that is strictly increas-

ing, carries (0,+∞) one-one onto (−∞,+∞), has derivative 1/x , and
satisfies log(xy) = log x + log y.

REMARKS. The three facts that exp x = ex for x real, exp z satisfies the
functional equationofCorollary1.41 for z complex, and ez is previouslyundefined
for z nonreal allow one to define ez to mean exp z for all complex z. We follow
this convention. In particular, eix = exp(i x) = cos x + i sin x .

PROOF. For x ∏ 0, we certainly have exp x ∏ 1. Also, each term of the
series for exp x is strictly increasing for x ∏ 0, and hence the same thing is true
of the sum of the series. From Corollary 1.41, exp(−x) exp x = exp 0 = 1,
and thus exp x is strictly increasing for x ≤ 0 with 0 < exp x ≤ 1. Putting
these statements together, we see that exp x is strictly increasing and positive on
(−∞,+∞). Hence it is one-one. This proves part of (a).
Since exp x > 0, it makes sense to consider rational powers of exp x . Iteration

of the identity exp(z + w) = exp z expw shows that
°
exp px

q
¢q

= exp px =
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(exp x)p, and application of the q th root function gives exp px
q = (exp x)p/q .

Taking x = 1 yields exp(p/q) = ep/q for all rational p/q. The two functions
exp x and ex are continuous functions of a real variable that are equal when x is
rational, and hence they are equal for all x . This proves (b).
From the first two terms of the series for exp 1, we see that e > 2. Therefore

en > 2n > n for all positive integers n, and exp x has arbitrarily large numbers
in its image. The Intermediate Value Theorem (Theorem 1.12) then shows that
[1,+∞) is contained in its image. Since exp(−x) exp x = 1, the interval (0, 1]
is contained in the image as well. Thus exp x carries (−∞,+∞) onto (0,+∞).
This proves the remainder of (a).
Consequently exp x has an inverse function, which is denoted by log x . Since

exp x has the continuous everywhere-positive derivative exp x , the proposition
in Section A3 of Appendix A applies and shows that log x is differentiable with
derivative 1/ exp(log x). Since exp and log are inverse functions, exp(log x) = x .
Thus the derivative of log x is 1/x .
Finally exp(log x + log y) = exp(log x) exp(log y) = xy, since exp and log

are inverse functions. Applying log to both sides gives log x + log y = log(xy).
This proves (c). §

Corollary 1.43. The trigonometric functions sin x and cos x , as functions of
a real variable, satisfy

(a) sin(x + y) = sin x cos y + cos x sin y,
(b) cos(x + y) = cos x cos y − sin x sin y.

PROOF. By Corollary 1.41, cos(x + y) + i sin(x + y) = ei(x+y) = eixeiy =
(cos x + i sin x)(cos y+ i sin y). Multiplying out the right side and equating real
and imaginary parts yields the corollary. §

The final step in the foundational work with the trigonometric functions is to
define π and to establish the role that it plays with trigonometric functions.

Proposition 1.44. The function cos x , with x real, has a smallest positive x0
for which cos x0 = 0. If π is defined by writing x0 = π/2, then

(a) sin x is strictly increasing, hence one-one, from [0, π
2 ] onto [0, 1], and

cos x is strictly decreasing, hence one-one, from [0, π
2 ] onto [0, 1],

(b) sin(−x) = − sin x and cos(−x) = cos x ,
(c) sin(x + π

2 ) = cos x and cos(x + π
2 ) = − sin x ,

(d) sin(x + π) = − sin x and cos(x + π) = − cos x ,
(e) sin(x + 2π) = sin x and cos(x + 2π) = cos x .
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PROOF. The function cos x has cos 0 = 1. Arguing by contradiction, suppose
that cos x is nowhere 0 for x > 0. By the Intermediate Value Theorem (Theorem
1.12), cos x > 0 for x ∏ 0. Since sin x is 0 at 0 and has derivative cos x , sin x is
strictly increasing for x ∏ 0 and is therefore positive for x > 0. Since cos x has
derivative− sin x , cos x is strictly decreasing for x ∏ 0. Let us form the function
f (x) = (cos x − cos 1)+ (sin 1)(x −1). If there is some x1 > 1 with f (x1) > 0,
then the Mean Value Theorem produces some ξ with 1 < ξ < x1 such that

0 < f (x1) = f (x1) − f (1) = (x1 − 1) f 0(ξ) = (x1 − 1)(− sin ξ + sin 1) < 0,

and we have a contradiction, since sin2 ξ + cos2 ξ = 1 forces | sin ξ | ≤ 1. Thus
f (x) ≤ 0 for all x ∏ 1. In other words, cos x ≤ cos 1 − (sin 1)(x − 1) for all
x ∏ 1. For x sufficiently large, cos 1 − (sin 1)(x − 1) is negative, and we see
that cos x has to be negative for x sufficiently large. The result is a contradiction,
and we conclude that cos x is 0 for some x > 0. Let x0 be the infimum of the
nonempty set of positive x’s for which cos x = 0. We can find a sequence {xn}
with xn → x0 and cos xn = 0 for all n. By continuity cos x0 = 0. We know that
x0 ∏ 0, and we must have x0 > 0, since cos 0 = 1. This proves the existence of
x0.
Since sin x has derivative cos x , which is positive for 0 ≤ x < π/2, sin x is

strictly increasing for 0 ≤ x ≤ π/2. From sin2 x + cos2 x = 1, we deduce that
sin(π/2) = 1. By the Intermediate Value Theorem, sin x is one-one from [0, π

2 ]
onto [0, 1]. In similar fashion, cos x is strictly decreasing and one-one from [0, π

2 ]
onto [0, 1]. This proves (a).
Conclusion (b) is immediate from the series expansions of sin x and cos x .

Conclusion (c) follows from Corollary 1.43 and the facts that sin π
2 = 1 and

cos π
2 = 0. Conclusion (d) follows by applying (c) twice, and conclusion (e)

follows by applying (d) twice. §

Corollary 1.45. The function eix , with x real, has |eix | = 1 for all x , and
x 7→ eix is one-one from [0, 2π) onto the unit circle of C, i.e., the subset of
z ∈ C with |z| = 1.

PROOF. We have | cos x + i sin x |2 = cos2 x + sin2 x = 1 and therefore
|eix | = 1. If eix1 = eix2 with x1 and x2 in [0, 2π), then ei(x1−x2) = 1 with
t = x1 − x2 in (−2π, 2π). So cos t = 1 and sin t = 0. From Proposition 1.44
we see that the only possibility for t ∈ (−2π, 2π) is t = 0. Thus x1 − x2 = 0,
and x 7→ eix is one-one.
Now let x + iy have x2 + y2 = 1. First suppose that x ∏ 0 and y ∏ 0. Since

0 ≤ y ≤ 1, it follows that there exists t ∈ [0, π
2 ] with sin t = y. For this t ,

the numbers x and cos t are both ∏ 0 and have square equal to 1 − y2. Thus
x = cos t and eit = x + iy. For a general x + iy with x2 + y2 = 1, at least
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one of the complex numbers i n(x + iy) with 0 ≤ n ≤ 3 has real and imaginary
parts ∏ 0. Then i n(x + iy) = eit for some t . Since i = cos π

2 + i sin π
2 = eiπ/2,

we see that x + iy = eit e−inπ/2 = eit−inπ/2. From ei(t±2π) = eit , we can adjust
i t − inπ/2 additively by a multiple of 2π i so that the result i t 0 lies in i[0, 2π),
and then eit 0 = x + iy, as required. §

Corollary 1.46.
(a) The function sin x carries (−π

2 ,
π
2 ) onto (−1, 1), has everywhere-positive

derivative, and has a differentiable inverse function arcsin x carrying (−1, 1)
one-one onto (−π

2 ,
π
2 ). The derivative of arcsin x is 1/

p
1− x2.

(b) The function tan x = (sin x)/(cos x) carries (−π
2 ,

π
2 ) onto (−∞,+∞),

has everywhere-positive derivative, and has a differentiable inverse function
arctan x carrying (−∞,+∞) one-one onto (−π

2 ,
π
2 ). The derivative of arctan x is

1/(1+ x2), and
R 1
−1 (1+ x2)−1 dx = π/2.

PROOF. From Proposition 1.44 we see that d
dx (sin x) = cos x and d

dx (tan x) =
(cos x)−2. The first of these is everywhere positive because of (a) and (b)
in the proposition, and the second is everywhere positive by inspection.
The image of sin x is (−1, 1) by (a) and (b) in the proposition, and also the image
of tan x is (−∞,+∞), again by (a) and (b). Application of the proposition in
Section A3 of Appendix A yields all the conclusions of the corollary except the
formula for

R 1
−1 (1+ x2)−1 dx . This integral is given by arctan 1− arctan(−1) by

Theorem1.32. Since tan(π/4) = sin(π/4)/ cos(π/4), (c) in the propositiongives
tan(π/4) = 1, and hence arctan 1 = π/4. In addition, tan(−π/4) = sin(−π/4)

cos(−π/4) =

− sin(π/4)
cos(π/4) = −1, and hence arctan(−1) = −π/4. Therefore

R 1
−1 (1+ x2)−1 dx =

(π/4) − (−π/4) = π/2. §

A power series, even a Taylor series, may have any radius of convergence in
[0,+∞]. Even if the radius of convergence is > 0, the series may not converge
to the given function. For example, Problems 20–22 at the end of the chapter ask
one to verify that the function

f (x) =

Ω
e−1/x2 if x 6= 0,
0 if x = 0,

is infinitely differentiable, even at x = 0, and has f (n)(0) = 0 for all n. Thus its
infinite Taylor series is identically 0, and the series evidently converges to f (x)
only for x = 0.
Because of Corollary 1.38, one is not restricted to a rote use of Taylor’s formula

in order to compute Taylor series. If we are interested in the Taylor expansion
of f about x = 0, any power series with a positive radius of convergence that
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converges to f on some open interval about x has to be the Taylor expansion of
f . A simple example is ex2 , whose derivatives at x = 0 are a chore to compute.
However, eu =

P∞
n=0

un
n! for all u. If we put u = x2, we obtain ex2 =

P∞
n=0

x2n
n!

for all x . Therefore this series must be the infinite Taylor series of ex2 . Here is a
more complicated example.

EXAMPLE. Binomial series. Let p be any complex number, and put F(x) =
(1+ x)p for−1 < x < 1. We can compute the nth derivative of F by inspection,
and we obtain F (n)(x) = p(p − 1) · · · (p − n + 1)(1 + x)p−n . Therefore the
infinite Taylor series of F about x = 0 is

∞X

n=0

p(p − 1) · · · (p − n + 1)
n!

xn.

This series reduces to a polynomial if p is a nonnegative integer, and the series
is genuinely infinite otherwise. The ratio test shows that the series converges for
|x | < 1; let f (x) be its sum for x real. The remainder term Rn(0, x) is difficult to
estimate, and thus the relationship between the sum f (x) and the original function
(1 + x)p is not immediately apparent. However, we can use Corollary 1.38 to
obtain

f 0(x) =
∞X

n=1

np(p − 1) · · · (p − n + 1)
n!

xn−1 =
∞X

n=0

p(p − 1) · · · (p − n)
n!

xn

for |x | < 1. We compute (1 + x) f 0(x) by multiplying the first series by x , the
second series by 1, and adding. If we write the constant term separately, the result
is

(1+ x) f 0(x) = p +
∞X

n=1

p(p − 1) · · · (p − n + 1)[n + (p − n)]
n!

xn = p f (x).

Therefore
d
dx

£
(1+ x)−p f (x)

§
= −p(1+ x)−p−1 f (x) + (1+ x)−p f 0(x)

= (1+ x)−p−1[−p f (x) + (1+ x) f 0(x)] = 0,

and (1+ x)−p f (x) has to be constant for |x | < 1. From the series whose sum is
f (x), we see that f (0) = 1, and hence the constant is 1. Thus f (x) = (1+ x)p,
and we have established the binomial series expansion

(1+ x)p =
∞X

n=0

p(p − 1) · · · (p − n + 1)
n!

xn

for −1 < x < 1.



54 I. Theory of Calculus in One Real Variable

8. Summability

Summability refers to an operation on a sequence of complex numbers to make it
more likely that the sequence will converge. The subject is of interest particularly
with Fourier series, where the ordinary partial sums may not converge even at
points where the given function is continuous.
Let {sn}n∏0 be a sequence in C, and define its sequence of Cesàro sums, or

arithmetic means, to be given by

σn =
s0 + s1 + · · · + sn

n + 1

for n ∏ 0. If limn σn = σ exists inC, we say that {sn} isCesàro summable to the
limit σ . For example the sequence with sn = (−1)n for n ∏ 0 is not convergent,
but it is Cesàro summable to the limit 0 because σn is 0 for all odd n and is 1

n+1
for all even n.

Theorem 1.47. If a complex sequence {sn}n∏0 is convergent in C to the limit
s, then {sn} is Cesàro summable to the limit s.

REMARK. The argument is a 2≤ proof, and two things are affecting σn . For k
small and fixed, the contribution of sk to σn is sk/(n+ 1) and is tending to 0. For
k large, any sk is close to s, and the average of such terms is close to s.

PROOF. Let ≤ > 0 be given, and choose N1 such that k ∏ N1 implies |sk−s| <
≤. If n ∏ N1, then

σn − s =
(s0 − s) + · · · + (sN1 − s)

n + 1
+

(sN1+1 − s) + · · · + (sn − s)
n + 1

,

so that

|σn − s| ≤
|s0| + · · · + |sN1 | + (N1 + 1)|s|

n + 1
+
n − N1
n + 1

≤

≤
|s0| + · · · + |sN1 | + (N1 + 1)|s|

n + 1
+ ≤.

The numerator of the first term is fixed, and thus we can choose N ∏ N1 large
enough so that the first term is < ≤ whenever n ∏ N . If n ∏ N , then we see that
|σn − s| < 2≤. Since ≤ is arbitrary, the theorem follows. §

Next let {an}n∏0 be a complex sequence, and let {sn}n∏0 be the sequence of
partial sums with sn =

Pn
k=0 ak . Form the power series σr =

P∞
n=0 anrn . We

say that the sequence {sn} of partial sums is Abel summable to the limit s in C
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if limr↑1 σr = s, i.e., if for each ≤ > 0, there is some r0 such that r0 ≤ r < 1
implies that |σr − s| < ≤. For example, take ak = (−1)k , so that sn equals 1 if n
is even and equals 0 if n is odd. The sequence {sn} of partial sums is divergent.
The r th Abel sum σr is given by the geometric series

P∞
k=0 (−1)krk with sum

1/(1+r). Letting r increase to 1, we see that {sn} is Abel summable with limit 12 .

Theorem 1.48 (Abel’s Theorem). Let {an}n∏0 be a complex sequence, and
let {sn}n∏0 be the sequence of partial sums with sn =

Pn
k=0 ak . If {sn}n∏0 is

convergent in C to the limit s, then {sn} is Abel summable to the limit s.
REMARK. The proof will proceed along the same lines as in the previous case.

It is first necessary to express the Abel sums σr in terms of the sk’s.
PROOF. Since {sn} converges, {sn} and {an} are bounded, and thus

P∞
n=0 snrn

and
P∞

k=0 akrk are absolutely convergent for 0 ≤ r < 1. With s−1 = 0, write

σr =
∞X

n=0
anrn =

∞X

n=0
(sn − sn−1)rn =

∞X

n=0
snrn −

∞X

n=0
snrn+1

= (1− r)
∞X

n=0
snrn = (1− r)

NX

k=0
rksk +

∞X

k=N+1
(1− r)rksk .

Let ≤ > 0 be given, and choose N such that k ∏ N implies |sk − s| < ≤. Then

|σr − s| ≤ (1− r)
NX

k=0
(|sk | + |s|) +

∞X

k=N+1
(1− r)rk |sk − s|

≤ (1− r)
NX

k=0
(|sk | + |s|) +

≥
(1− r)

∞X

k=N+1
rk

¥
≤

≤ (1− r)
NX

k=0
(|sk | + |s|) + ≤.

With N fixed, the coefficient of (1− r) in the first term is fixed, and thus we can
choose r0 close enough to 1 so that the first term is < ≤ whenever r0 ≤ r < 1. If
r0 ≤ r < 1, we see that |σr−s| < 2≤. Since ≤ is arbitrary, the theorem follows. §

EXAMPLE. For |x | < 1, the geometric series
P∞

n=0(−1)nxn converges and
has sum (1+ x)−1. The Fundamental Theorem of Calculus gives log(1+ x) =R x
0

1
1+t dt =

R x
0

P∞
n=0 (−1)ntn dt for |x | < 1, and Theorem 1.31 allows us to

interchange sum and integral as long as |x | < 1. Consequently

log(1+ x) =
∞X

n=0

(−1)nxn+1

n + 1
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for |x | < 1. The sequence of partial sums on the right converges for x = 1 by
the Leibniz test, and Theorem 1.48 says that the Abel sums must converge to
the same limit. But the Abel sums have limit limx↑1 log(1 + x) = log 2, since
log(1+ x) is continuous for x > 0. Thus Abel’s Theorem has given us a rigorous
proof of the familiar identity

∞X

n=0

(−1)n

n + 1
= log 2.

Theorems 1.47 and 1.48, which say that one kind of convergence always
implies another, are called Abelian theorems. Converse results, saying that the
second kind of convergence implies the first under an additional hypothesis, are
called Tauberian theorems. These tend to be harder to prove. We give two
examples of Tauberian theorems; the first one will be applied immediately to
yield an important special case of the main theorem of Section 9; the second one
will be used in Chapter VI to prove a deep theorem about pointwise convergence
of Fourier series.

Proposition 1.49. Let {an}n∏0 be a numerical sequence with all terms ∏ 0,
and let {sn}n∏0 be the sequence of partial sums with sn =

Pn
k=0 ak . If {sn}n∏0 is

Abel summable in R to the limit s, then {sn} is convergent to the limit s.

PROOF. Let {rj }j∏0 be a sequence increasing to the limit 1. Since anrnj ∏ 0 is
nonnegative and since it is monotone increasing in j for each n, Corollary 1.14
applies and gives limj

P∞
n=0 anr

n
j =

P∞
n=0 limj anrnj , the limits existing in R∗.

The left side is the (finite) limit s of the Abel sums, and the right side is lim sn ,
which Corollary 1.14 is asserting exists. §

EXAMPLE. The binomial series expansion in Section 7 shows, for any complex
p, that (1− r)p is given for −1 < r < 1 by the absolutely convergent series

(1− r)p = 1+
∞X

n=1
(−1)n

p(p − 1) · · · (p − n + 1)
n!

rn.

For p real with 0 < p < 1, inspection shows that all the coefficients in the sum
on the right are ≤ 0. Therefore

1− (1− r)p =
∞X

n=1
(−1)n+1

p(p − 1) · · · (p − n + 1)
n!

rn (∗)

has all coefficients ∏ 0 if 0 < p < 1. For 0 ≤ r < 1, the sum of the series is
1− (1− r)p and is ∏ 0. The fact that limr↑1 [1− (1− r)p] = 1 means that the
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sequence of partial sums sn =
Pn

k=1 (−1)k+1 p(p−1)···(p−k+1)
k! is Abel summable

to 1. Proposition 1.49 shows that the series (∗) is convergent with sum 1 at r = 1,
and the Weierstrass M test shows that (∗) converges uniformly for −1 ≤ r ≤ 1
to 1− (1− r)p. If we now take p = 1

2 , we have

(1− r)1/2 = 1−
∞X

n=1
(−1)n+1

1
2 (−

1
2 )(−

3
2 ) · · · ( 32 − n)
n!

rn

=
∞X

n=1
(−1)n+1

1
2 (−

1
2 )(−

3
2 ) · · · ( 32 − n)
n!

−
∞X

n=1
(−1)n+1

1
2 (−

1
2 )(−

3
2 ) · · · ( 32 − n)
n!

rn

=
∞X

n=1
(−1)n+1

1
2 (−

1
2 )(−

3
2 ) · · · ( 32 − n)
n!

(1− rn),

the series on the right being uniformly convergent for −1 ≤ r ≤ 1. Putting
r = 1− x2 therefore gives

|x | =
p
x2 =

∞X

n=1
(−1)n+1

1
2 (−

1
2 )(−

3
2 ) · · · ( 32 − n)
n!

°
1− (1− x2)n

¢
,

the series on the right being uniformly convergent for−1 ≤ x ≤ 1. Consequently
|x | is the uniform limit of a sequence of polynomials on [−1, 1], and all these
polynomials are in fact 0 at x = 0.

Proposition 1.50. Let {an}n∏0 be a complex sequence, and let {sn}n∏0 be the
sequence of partial sums with sn =

Pn
k=0 ak . If {sn} is Cesàro summable to the

limit s in C and if the sequence {nan} is bounded, then {sn} is convergent and the
limit is s. The rate of convergence depends only on the bound for {nan} and the
rate of convergence of the Cesàro sums.

REMARK. In our application in ChapterVI to pointwise convergence of Fourier
series, the sequence of partial sums will be of the form {sn(x)}, depending on a
parameter x , and the statement about the rate of convergence will enable us to
see that the convergence of {sn(x)} is uniform in x under suitable hypotheses.

PROOF. Let {sn} be the sequence of partial sums of {an}, and choose M such
that |nan| ≤ M for all n. The first step is to establish a useful formula for
sn − σn . Let m be any integer with 0 ≤ m < n. We start from the trivial identity
−(n−m)σn = (m+ 1)σn − (n+ 1)σn , add (n−m)sn to both sides, and regroup



58 I. Theory of Calculus in One Real Variable

as

(n−m)(sn − σn) = (m+1)σn − s0 − · · · − sm + (n−m)sn − sm+1 − · · · − sn

= (m+1)(σn − σm) +
nX

j=m+1
(sn − sj ).

Dividing by (n − m) yields

sn − σn =
m + 1
n − m

(σn − σm) +
1

n − m

nX

j=m+1
(sn − sj ),

which is the identity from which the estimates begin.
For m + 1 ≤ j ≤ n, we have

|sn − sj | ≤ |an| + |an−1| + · · · + |aj+1| ≤
M
n

+
M

n − 1
+ · · · +

M
j + 1

≤
M
j + 1

+
M
j + 1

+ · · · +
M
j + 1

=
(n − j)M
j + 1

≤
(n − m − 1)M

m + 2
.

Substituting into our identity yields

|sn − σn| ≤
m + 1
n − m

Ø
Øσn − σm

Ø
Ø +

(n − m − 1)M
m + 2

.

Let ≤ > 0 be given, and choose N such that |σk − s| ≤ ≤2 whenever k ∏ N .
We may assume that ≤ < 1

2 and N ∏ 4. With ≤ fixed and with n fixed to be
∏ 2N , define m to be the unique integer with

m ≤
n − ≤

1+ ≤
< m + 1.

Then 0 ≤ m < n, and our inequality for |sn−σn| applies. From the left inequality
m ≤ n−≤

1+≤
defining m, we obtain m + m≤ ≤ n − ≤ and hence (m + 1)≤ ≤ n − m

and m+1
n−m ≤ ≤−1. From the right inequality n−≤

1+≤
< m + 1 defining m, we obtain

n − ≤ < m + 1 + ≤m + ≤ and hence n − m − 1 < ≤(m + 2) and n−m−1
m+2 < ≤.

Thus our main inequality becomes

|sn − σn| ≤ ≤−1|σn − σm | + M≤.

To handle σm , we need to bound m below. We have seen that n − m − 1 <
≤(m + 2), and we have assumed that ≤ < 1

2 . Then n − m − 1 < 1
2 (m + 2), and

this simplifies to m > 2n
3 − 4

3 , which is ∏ n
2 if n ∏ 8, thus certainly if N ∏ 4. In

other words, N ∏ 4 and n ∏ 2N makes m ∏ n
2 ∏ N . Therefore |σm − s| < ≤2,

and |σn − σm | < 2≤2. Substituting into our main inequality, we obtain

|sn − σn| < ≤−12≤2 + M≤ = (M + 2)≤.

Since ≤ is arbitrary, the proof is complete. §
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9. Weierstrass Approximation Theorem

We saw as an application of Proposition 1.49 that the function |x | on [−1, 1] is the
uniform limit of an explicit sequence {Pn} of polynomials with Pn(0) = 0. This
is a special case of a theorem of Weierstrass that any continuous complex-valued
function on a bounded interval [a, b] is the uniform limit of polynomials on the
interval.
The device for proving the Weierstrass theorem for a general continuous

complex-valued function is to construct the approximating polynomials as the
result of a smoothing process, known as the use of an “approximate identity.”
The idea of an approximate identity is an important one in analysis and will occur
several times in this book. If f is the given function, the smoothing is achieved
by “convolution”

Z
f (x − t)ϕ(t) dt

of f with some functionϕ, the integrals being taken over someparticular intervals.
The resulting function of x from the convolution turns out to be as “smooth” as
the smoother of f and ϕ. In the case of the Weierstrass theorem, the function
ϕ will be a polynomial, and we shall arrange parameters so that the convolution
will automatically be a polynomial.
To see how a polynomial

R
f (x − t)ϕ(t) dt might approximate f , one can

think of ϕ as some kind of mass distribution; the mass is all nonnegative if
ϕ ∏ 0. The integration produces a function of x that is the “average” of translates
x 7→ f (x−t) of f , the average being computed according to themass distribution
ϕ. If ϕ has total mass 1, i.e., total integral 1, and most of the mass is concentrated
near t = 0, then f is being replaced essentially by an average of its translates,
most of the translates being rather close to f , and we can expect the result to be
close to f .
For the Weierstrass theorem, we use a single starting ϕ1 at stage 1, namely

c1(1− x2) on [−1, 1] with c1 chosen so that the total integral is 1. The graph of
ϕ1 is a familiar inverted parabola, with the appearance of a bump centered at the
origin. The function at stage n is cn(1 − x2)n , with cn chosen so that the total
integral is 1. Graphs for n = 3 and n = 30 appear in Figure 1.1. The bump near
the origin appears to be more pronounced at n increases, and what we need to do
is to translate the above motivation into a proof.

Lemma 1.51. If cn is chosen so that cn
R 1
−1 (1− x2)n dx = 1, then cn ≤ e

p
n

for n sufficiently large.
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PROOF. We have

c−1
n =

R 1
−1 (1− x2)n dx ∏

R 1/pn
−1/

p
n (1− x2)n dx = 2

R 1/pn
0 (1− x2)n dx

∏ 2
R 1/pn
0 (1− 1

n )
n dx = 2(1− 1

n )
n±p

n.

Since (1 − 1
n )

n → e−1, we have (1 − 1
n )

n ∏ 1
2e

−1 for n large enough (actually
for n ∏ 2). Therefore c−1

n ∏ e−1/
p
n for n large enough, and hence cn ≤ e

p
n

for n large enough. This proves the lemma. §

n = 3 n = 30

FIGURE 1.1. Approximate identity. Graphs of cn(1− x2)n for n = 3
and n = 30 with different scales used on the vertical axes.

Let ϕn(x) = cn(1−x2)n on [−1, 1], with cn as in the lemma. The polynomials
ϕn have the following properties:

(i) ϕn(x) ∏ 0,
(ii)

R 1
−1 ϕn(x) dx = 1,

(iii) for any δ > 0, sup {ϕn(x) | δ ≤ x ≤ 1} tends to 0 as n tends to infinity.
Lemma 1.51 is used to verify (iii): the quantity

sup {ϕn(x) | δ ≤ x ≤ 1} = cn(1− δ2)n

tends to 0 because limn
p
n(1 − δ2)n = 0. A function with the above three

properties will be called an approximate identity on [−1, 1].

Theorem 1.52 (Weierstrass Approximation Theorem). Any complex-valued
continuous function on a bounded interval [a, b] is the uniform limit of a sequence
of polynomials.

PROOF. In order to arrange for the convolution to be a polynomial, we need
to make some preliminary normalizations. Approximating f (x) on [a, b] by
P(x) uniformly within ≤ is the same as approximating f (x + a) on [0, b − a]
by P(x + a) uniformly within ≤, and approximating g(x) on [0, c] uniformly by
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Q(x) is the same as approximating g(cx) uniformly by Q(cx). Thus we may
assume without loss of generality that [a, b] = [0, 1].
If h : [0, 1] → C is continuous and if r is the function defined by r(x) =

h(x) − h(0) − [h(1) − h(0)]x , then r is continuous with r(0) = r(1) = 0.
Approximating h(x) on [0, 1] uniformly by R(x) is the same as approximating
r(x) on [0, 1] uniformly by R(x)− h(0)− [h(1)− h(0)]x . Thus we may assume
without loss of generality that the function to be approximated has value 0 at 0
and 1.
Let f : [0, 1] → C be a given continuous function with f (0) = f (1) = 0; the

function f is uniformly continuous by Theorem 1.10. We extend f to the whole
line by making it be 0 outside [0, 1], and the uniform continuity is maintained.
Now let ϕn be the polynomial above, and put Pn(x) =

R 1
−1 f (x − t)ϕn(t) dt .

Let us see that Pn is a polynomial. By our definition of the extended f , the
integrand is 0 for a particular x ∈ [0, 1] unless t is in [x−1, x] as well as [−1, 1].
We change variables, replacing t by s + x and making use of Theorem 1.34, and
the integral becomes Pn(x) =

R
f (−s)ϕn(s + x) ds, the integral being taken for

s in [−1, 0]∩ [−1− x, 1− x]. Since x is in [0, 1], the condition on s is that s is in
[−1, 0]. Thus Pn(x) =

R 0
−1 f (−s)ϕn(s+ x) ds. In this integral, ϕn(x) is a linear

combination of monomials xk , and xk itself contributes
R 0
−1 f (−s)(x + s)k ds,

which expands out to be a polynomial in x . Thus Pn(x) is a polynomial in x .
By property (ii) of ϕn , we have

Pn(x)− f (x) =
Z 1

−1
f (x− t)ϕn(t) dt− f (x) =

Z 1

−1
[ f (x− t)− f (x)]ϕn(t) dt.

Then property (i) gives

|Pn(x) − f (x)| ≤
Z 1

−1
| f (x − t) − f (x)|ϕn(t) dt

=
Z δ

−δ

| f (x−t) − f (x)|ϕn(t) dt +
≥ Z −δ

−1
+

Z 1

δ

¥
| f (x−t) − f (x)|ϕn(t) dt,

and two further uses of property (ii) show that this is

≤ sup
|t |≤δ

| f (x − t) − f (x)| + 4
≥
sup
y∈[0,1]

| f (y)|
¥≥

sup
δ≤|t |≤1

ϕn(t)
¥
.

Given ≤ > 0, we choose some δ of uniform continuity for f and ≤, and then the
first term is ≤ ≤. With δ fixed, we use property (iii) of ϕn and the boundedness
of f , given by Theorem 1.11, to produce an integer N such that the second term
is < ≤ for n ∏ N . Then n ∏ N implies that the displayed expression is < 2≤.
Since ≤ is arbitrary, Pn converges uniformly to f . §
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10. Fourier Series

A trigonometric series is a series of the form
P∞

n=−∞ cneinx with complex coef-
ficients. The individual terms of the series thus form a doubly infinite sequence,
but the sequence of partial sums is always understood to be the sequence {sN }∞N=0
with sN (x) =

PN
n=−N cneinx . Such a series may also be written as

a0
2

+
∞X

n=1
(an cos nx + bn sin nx)

by putting
einx = cos nx + i sin nx

e−inx = cos nx − i sin nx

)

for n > 0,

c0 = 1
2a0, cn = 1

2 (an − ibn), and c−n = 1
2 (an + ibn) for n > 0.

Historically the notation with the an’s and bn’s was introduced first, but the use of
complex exponentials has become quite common. Nowadays the notation with
an’s and bn’s tends to be used only when a function f under investigation is
real-valued or when all the cosine terms are absent (i.e., f is odd) or all the sine
terms are absent (i.e., f is even).
Power series enable us to enlarge our repertory of explicit functions, and the

same thing is true of trigonometric series. Just as the coefficients of a power
series whose sum is a function f have to be those arising from Taylor’s formula
for f , the coefficients of a trigonometric series formed from a function have to
arise from specific formulas. Let us run through the relevant formal computation:
First we observe that the partial sums have to be periodic with period 2π . The
question then is the extent to which a complex-valued periodic function f on the
real line can be given by a trigonometric series. Suppose that

f (x) =
∞X

n=−∞

cneinx .

Multiply by e−ikx and integrate to get

1
2π

Z π

−π

f (x)e−ikx dx =
1
2π

Z π

−π

∞X

n=−∞

cneinxe−ikx dx .

If we can interchange the order of the integration and the infinite sum, e.g., if the
trigonometric series is uniformly convergent to f (x), the right side is

=
∞X

n=−∞

cn
1
2π

Z π

−π

einxe−ikx dx =
∞X

n=−∞

cn
1
2π

Z π

−π

ei(n−k)x dx = ck
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because
1
2π

Z π

−π

eimx dx =

Ω 1 if m = 0,
0 if m 6= 0.

Let f be Riemann integrable on [−π, π], and regard f as periodic on R. The
trigonometric series

P∞
n=−∞ cneinx with

cn =
1
2π

Z π

−π

f (x)e−inx dx

is called the Fourier series of f . We write

f (x) ∼
∞X

n=−∞

cneinx and sN ( f ; x) =
NX

n=−N
cneinx .

The numbers cn are the Fourier coefficients of f , and the functions sN ( f ; x) are
the partial sums of the Fourier series. The symbol∼ is to be read as “has Fourier
series,” nothing more, at least initially. The formulas for the coefficients when
the Fourier series is written with sines and cosines are

an =
1
π

Z π

−π

f (x) cos nx dx for n ∏ 0,

bn =
1
π

Z π

−π

f (x) sin nx dx for n ∏ 1.

In applications one encounters periodic functions of periods other than 2π . If
f is periodic of period 2l, then the Fourier series of f is f (x) ∼

P∞
n=−∞ cneinπx/ l

with cn = (2l)−1
R l
−l f (x)e

−inπx/ l dx . The formula for the series written with
sines and cosines is f (x) ∼ a0/2+

P∞
n=1 (an cos(nπx/ l)+bn sin(nπx/ l))with

an = l−1
R l
−l f (x) cos(nπx/ l) dx and bn = l−1

R l
−l f (x) sin(nπx/ l) dx . In the

present section of the text, we shall assume that our periodic functions have period
2π .
The result implicit in the formal computation above is that if f (x) is the sum

of a uniformly convergent trigonometric series, then the trigonometric series is
the Fourier series of f , by Theorem 1.31.
We ask two questions: When does a general Fourier series converge? If the

Fourier series converges, to what extent does the sum represent f ? We begin
with an illuminating example that brings together a number of techniques from
this chapter.
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EXAMPLE. As in the example following Theorem 1.48, we have

log
≥ 1
1− x

¥
= x + 1

2 x
2 + 1

3 x
3 + · · · for − 1 < x < 1.

We would like to extend this identity to complex z with |z| < 1 but do not want
just now to attack the problem of making sense out of log as a function of a
complex variable. What we do is apply exp to both sides and obtain an identity
for which both sides make sense when the real x is replaced by a complex z:

exp
°
z + 1

2 z
2 + 1

3 z
3 + · · ·

¢
=

1
1− z

for |z| < 1.

In fact, this identity is valid for z complex with |z| < 1, and Problems 30–35 at
the end of the chapter lead to a proof of it using only real analysis.3 Corollary
1.45 allows us to write z = reiθ and z + 1

2 z
2 + 1

3 z
3 + · · · = ρeiϕ . Equating real

and imaginary parts of the latter equation gives us

ρ cosϕ =
∞X

n=1

rn cos nθ
n

and ρ sinϕ =
∞X

n=1

rn sin nθ
n

.

We shall compute the left sides of these displayed equations in another way. We
have

eρ cosϕeiρ sinϕ = exp(ρ cosϕ + iρ sinϕ) = exp(ρeiϕ) = (1− z)−1

and therefore also eρ cosϕe−iρ sinϕ = (1− z̄)−1. Thus

e2ρ cosϕ = (1−z)−1(1−z̄)−1 = (1−reiθ )−1(1−re−iθ )−1 = (1−2r cos θ+r2)−1.

Taking log of both sides gives 2ρ cosϕ = log
°
(1− 2r cos θ + r2)−1

¢
, and thus

we have
1
2 log

≥ 1
1− 2r cos θ + r2

¥
=

∞X

n=1

rn cos nθ
n

. (∗)

Handling ρ sinϕ is a little harder. From eρ cosϕeiρ sinϕ = (1 − z)−1, we have
eiρ sinϕ = (1− z)−1/|1− z|−1 = (1− z̄)/|1− z| = 1−r cos θ

|1−z| + i r sin θ
|1−z| , and hence

cos(ρ sinϕ) = (1− r cos θ)/|1− z| and sin(ρ sinϕ) = (r sin θ)/|1− z|.

Thus tan(ρ sinϕ) = r sin θ/(1−r cos θ). Since 1−r cos θ is> 0, cos(ρ sinϕ) is
> 0, and ρ sinϕ = arctan

°
(r sin θ)/(1− r cos θ)

¢
+ 2πN (r, θ) for some integer

3A proof using elementary complex analysis appears as an example in Section B8 of Appendix
B and is considerably shorter.



10. Fourier Series 65

N (r, θ) depending on r and θ . Hence

arctan
°
(r sin θ)/(1− r cos θ)

¢
+ 2πN (r, θ) =

∞X

n=1

rn sin nθ
n

.

For fixed r , the first term on the left is continuous in θ , and the series on the
right is uniformly convergent by the Weierstrass M test. By Theorem 1.21 the
right side is continuous in θ . Thus N (r, θ) is continuous in θ for fixed r ; since
N (r, 0) = 0, N (r, θ) = 0 for all r and θ . We conclude that

arctan
≥ r sin θ

1− r cos θ

¥
=

∞X

n=1

rn sin nθ
n

. (∗∗)

Problem 15 at the end of the chapter observes that the partial sums
PN

n=1 cos nθ
and

PN
n=1 sin nθ are uniformly bounded on any set ≤ ≤ θ < π − ≤ if ≤ > 0.

Corollary 1.19 therefore shows that the series
∞X

n=1

cos nθ
n

and
∞X

n=1

sin nθ
n

are uniformly convergent for ≤ ≤ θ < π −≤ if ≤ > 0. Abel’s Theorem (Theorem
1.48) shows that each of these series is therefore Abel summable with the same
limit. We can tell what the latter limits are from (∗) and (∗∗), and thus we
conclude that

1
2 log

≥ 1
2− 2 cos θ

¥
=

∞X

n=1

cos nθ
n

arctan
≥ sin θ

1− cos θ

¥
=

∞X

n=1

sin nθ
n

,and

The sum of the series with the cosine terms is unbounded near θ = 0, and
Riemann integration is not meaningful with it. We shall not be able to analyze
this series further until we can treat the left side in Chapter VI by means of
Lebesgue integration. The sum of the series with the sine terms is written in a
way that stresses its periodicity. On the interval [−π, π], we can rewrite its left
side as 12 (−π − θ) for −π ≤ θ < 0, 0 for θ = 0, and 1

2 (π − θ) for 0 < θ ≤ π .
The expression for the left side is nicer on the interval (0, 2π), and there we have

1
2 (π − θ) =

∞X

n=1

sin nθ
n

for 0 < θ < 2π.

The function 1
2 (π − θ) is bounded on (0, 2π), and we can readily compute its

Fourier coefficients from the formula bn = π−1 R 2π
0

1
2 (π − θ) sin nθ dθ , using

integration by parts (Corollary 1.33). The result is that bn = 1/n. Hence the
displayed series is the Fourier series. Graphs of some of the partial sums appear
in Figure 1.2.
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n = 3 n = 5

n = 10 n = 30

FIGURE 1.2. Fourier series of sawtooth function. Graphs ofPn
k=1(sin kx)/k for n = 3, 5, 10, 30.

The sawtooth function in the above example has a discontinuity, and yet its
Fourier series converges to it pointwise. The recognition of the remarkable
potential that Fourier series have for representing discontinuous functions dates
to Joseph Fourier himself and caused many of Fourier’s contemporaries to doubt
the validity of his work.
Although the above Fourier series converges to the function, it cannot do so

uniformly, as a consequence of Theorem 1.21. In any such situation the Fourier
coefficients cannot decrease rapidly, and a decrease of order 1/n is the best that
one gets for a nice function with a jump discontinuity.
This example points to a general heuristic principle contrasting how power

series and trigonometric series behave: whereas Taylor series converge very
rapidly and may not converge to the function, Fourier series are inclined to
converge rather slowly and they are more likely to converge to the function.
We come to convergence results in a moment. First we establish some ele-

mentary properties of them. Taking the absolute value of cn in the definition of
Fourier coefficient, we obtain the trivial bound |cn| ≤ 1

2π
R π

−π | f (x)| dx .

Theorem 1.53. Let f be in R[−π, π]. Among all choices of d−N , . . . , dN ,
the expression

1
2π

Z π

−π

Ø
Ø
Ø f (x) −

NX

n=−N
dneinx

Ø
Ø
Ø
2
dx

is minimized uniquely by choosing dn , for all n with |n| ≤ N , to be the Fourier
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coefficient cn = 1
2π

R π

−π f (x)e−inx dx . The minimum value is

1
2π

Z π

−π

| f (x)|2 dx −
NX

n=−N
|cn|2.

PROOF. Put dn = cn + εn . Then
1
2π

R π

−π

Ø
Ø f (x) −

PN
n=−N dneinx

Ø
Ø2 dx

= 1
2π

R π

−π | f (x)|2 dx − 1
2π 2Re

PN
n=−N dn

R π

−π f (x)e−inx dx

+ 1
2π

R π

−π

PN
m,n=−N dmdnei(m−n)x dx

= 1
2π

R π

−π | f (x)|2 dx − 2Re
PN

n=−N cndn +
PN

n=−N |dn|2

=
° 1
2π

R π

−π | f (x)|2 dx
¢
−

°
2
PN

n=−N |cn|2 + 2Re
PN

n=−N cnεn
¢

+
°PN

n=−N |cn|2 + 2Re
PN

n=−N cnεn +
PN

n=−N |εn|2
¢

= 1
2π

R π

−π | f (x)|2 −
PN

n=−N |cn|2 +
PN

n=−N |εn|2.

The result follows. §

Corollary 1.54 (Bessel’s inequality). Let f be in R[−π, π], and let f (x) ∼P∞
n=−∞ cneinx . Then

∞X

n=−∞

|cn|2 ≤
1
2π

Z π

−π

| f (x)|2 dx .

In particular,
P∞

n=−∞ |cn|2 is finite.
REMARK. In terms of the coefficients an and bn , the corresponding result is

|a0|2

2
+

∞X

n=1

°
|an|2 + |bn|2

¢
≤
1
π

Z π

−π

| f (x)|2 dx .

PROOF. Theorem 1.53 shows that the minimum value of a certain nonnegative
quantity depending on N is 1

2π
R π

−π | f (x)|2 dx−
PN

n=−N |cn|2. Thus, for any N ,PN
n=−N |cn|2 ≤ 1

2π
R π

−π | f (x)|2 dx . Letting N tend to infinity, we obtain the
corollary. §

Corollary 1.55 (Riemann–Lebesgue Lemma). If f is in R[−π, π] and has
Fourier coefficients {cn}∞n=−∞, then lim|n|→∞ cn = 0.

REMARK. This improves on the inequality |cn| ≤ 1
2π

R π

−π | f (x)| dx observed
above, which shows, by means of an explicit estimate, that {cn} is a bounded
sequence.
PROOF. This is immediate from Corollary 1.54. §
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We now turn to convergence results. First it is necessary to clarify terms like
“continuous” and “differentiable” in the context of Fourier series of functions
on [−π, π]. Each term of a Fourier series is defined on all of R and is periodic
with period 2π and is really given as the restriction to [−π, π] of this periodic
function. Thus it makes sense to regard a general function in the same way if
one wants to form its Fourier series: a function f is extended to all of R so as
to be periodic with period 2π , and if we consider f on [−π, π], it is really the
restriction to [−π, π] that we are considering.
In particular, it makes sense to insist that f (−π) = f (π); if f does not

have this property initially, one or both of these endpoint values will have to be
adjusted, but that adjustment will not affect any Fourier coefficients. Similarly
continuity of f will refer to continuity of the extended function on all of R, and
similarly for differentiability.
That being said, let us take up thematter of integration by parts for the functions

weare considering. The scopeof integrationbyparts inCorollary1.33was limited
to a pair of functions f and g that have a continuous first derivative. In the context
of Fourier series, it is the periodic extensions that are to have these properties,
and then the integration-by-parts formula simplifies. Namely,

Z π

−π

f (x)g0(x) dx =
h
f (x)g(x)

iπ

−π
−

Z π

−π

f 0(x)g(x) dx

= −
Z π

−π

f 0(x)g(x) dx,

i.e., the integrated term drops out because of the assumed periodicity.
The simplest convergence result for Fourier series is that a periodic function (of

period 2π) with two continuous derivatives has a uniformly convergent Fourier
series. To prove this, we take n 6= 0 and use the above integration-by-parts
formula twice to obtain

cn =
1
2π

Z π

−π

f (x)e−inx dx = −
1
2π

≥ 1
−in

¥ Z π

−π

f 0(x)e−inx dx

=
1
2π

≥ 1
−in

¥2 Z π

−π

f 00(x)e−inx dx .

Then |cneinx | = |cn| ≤ C/n2, where C = 1
2π

R π

−π | f 00(x)| dx , and the Fourier
series converges uniformly by theWeierstrass M test. The argument does not say
that the convergence is to f , but that fact will be proved in Theorem 1.57 below.
Adjusting the proof just given, we can prove a sharper convergence result.

Proposition 1.56 . If f is periodic (of period 2π) and has one continuous
derivative, then the Fourier series of f converges uniformly.
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PROOF. As in the above argument, cn = − 1
2π

° 1
−in

¢ R π

−π f 0(x)e−inx dx , and
this equals 1

in dn , where dn is the n
th Fourier coefficient of the continuous function

f 0. In the computation that follows, we use the classical Schwarz inequality (as
in Section A5 of Appendix A) for finite sums and pass to the limit in order to get
the first inequality, and then we use Bessel’s inequality (Corollary 1.54) to get
the second inequality:

X

n 6=0
|cn| =

X

n 6=0
|incn|

1
|n|

=
X

n 6=0

1
|n|

|dn| ≤
≥X

n 6=0

1
n2

¥1/2≥X

n 6=0
|dn|2

¥1/2

≤
≥X

n 6=0

1
n2

¥1/2≥ 1
2π

Z π

−π

| f 0(x)|2 dx
¥1/2

.

The right side is finite, and the proposition follows from the Weierstrass
M test. §

The fact that the convergence in Proposition 1.56 is actually to f will follow
from Dini’s test, which is Theorem 1.57 below. We first derive some simple
formulas. The Dirichlet kernel is the periodic function of period 2π defined by

DN (x) =
NX

n=−N
einx =

sin
°
(N + 1

2 )x
¢

sin 12 x
,

the second equality following from the formula for the sum of a geometric series.
For a periodic function f of period 2π , the partial sums of the Fourier series of
f are given by

sN ( f ; x) =
NX

n=−N

≥ 1
2π

Z π

−π

f (t)e−int dt
¥
einx

=
1
2π

Z π

−π

f (t)
NX

n=−N
ein(x−t) dt

=
1
2π

Z π

−π

f (t)DN (x − t) dt

=
1
2π

Z x+π

x−π

f (x − s)DN (s) ds

=
1
2π

Z π

−π

f (x − t)DN (t) dt,

the last two steps following from the changes of variables t 7→ x + s (Theorem
1.34) and s 7→ −s (Proposition 1.30h) and from the periodicity of f and DN .
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FIGURE 1.3. Dirichlet kernel. Graph of DN for N = 30.

This is the kind of convolution integral that occurred in the previous section.
Term-by-term integration shows that 1

2π
R π

−π DN (x) dx = 1. However, DN is not
an approximate identity, not being everywhere ∏ 0. Figure 1.3 shows the graph
of DN for N = 30. Although DN (x) looks small in the graph away from x = 0,
it is small only as a percentage of DN (0); DN (x) does not have limN DN (x) equal
to 0 for x 6= 0. Thus DN (x) fails in a second way to be an approximate identity.
The failure of DN to be an approximate identity is what makes the subject of
convergence of Fourier series so subtle.

Theorem 1.57 (Dini’s test). Let f : R → C be periodic of period 2π and
Riemann integrable on [−π, π]. Fix x in [−π, π]. If there are constants δ > 0
and M < +∞ such that

| f (x + t) − f (x)| ≤ M|t | for |t | < δ,

then limN sN ( f ; x) = f (x).

REMARK. This condition is satisfied if f is differentiable at x . Thus the
convergence of the Fourier series in Proposition 1.56 is to the original function
f . By contrast, the Dini condition is not satisfied at x = 0 for the continuous
periodic extension of the function f (x) = |x |1/2 defined on (−π, π].

PROOF. With x fixed, let

g(t) =

( f (x − t) − f (x)
sin t/2

for 0 < |t | ≤ π,

0 for t = 0.

Proposition 1.30d shows that (sin t/2)−1 is Riemann integrable on ≤ ≤ |t | ≤ π for
any ≤ > 0, and hence so is g(t). Since g(t) is bounded near t = 0, Lemma 1.28
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shows that g(t) is Riemann integrable on [−π, π]. Since 1
2π

R π

−π DN (x) dx = 1,
we have

sN ( f ;x) − f (x)

=
1
2π

Z π

−π

f (x−t)
sin

°
(N + 1

2 )t
¢

sin 12 t
dt −

1
2π

Z π

−π

f (x)
sin

°
(N + 1

2 )t
¢

sin 12 t
dt

=
1
2π

Z π

−π

g(t) sin
°
(N + 1

2 )t
¢
dt

=
1
2π

Z π

−π

£
g(t) cos t2

§
sin Nt dt +

1
2π

Z π

−π

£
g(t) sin t

2
§
cos Nt dt,

and both terms on the right side tend to 0 with N by the Riemann–Lebesgue
Lemma (Corollary 1.55). §

Dini’s test (Theorem 1.57) has implications for “localization” of the conver-
gence of Fourier series. Suppose that f = g on an open interval I , and suppose
that the Fourier series of f converges to f on I . Then Dini’s test shows that
the Fourier series of f − g converges to 0 on I , and hence the Fourier series of
g converges to g on I . For example, f could be a function with a continuous
derivative everywhere, and g could have discontinuities outside the open interval
I . For f , the proof of Proposition 1.56 shows that

P
|cn| < +∞. But for g,

the Fourier series cannot converge so rapidly because the sum of a uniformly
convergent series of continuous functions has to be continuous. Thus the two
series locally have the same sum, but their qualitative behavior is quite different.
Next let us address the question of the extent to which the Fourier series of f

uniquely determines f . Our first result in this direction will be that if f and g
are Riemann integrable and have the same respective Fourier coefficients, then
f (x) = g(x) at every point of continuity of both f and g. It may look as if some
sharpening of Dini’s test might apply just under the assumption of continuity of
the function, and then this uniqueness result would be trivial. However, as we
shall see in Chapter XII, the Fourier series of a continuous function need not
converge to the function at particular points, and there can be no such sharpening
of Dini’s test. Instead, we shall handle the uniqueness question in a more indirect
fashion.
The technique is to use an approximate identity, as in the proof of the Weier-

strass Approximation Theorem in Section 9. Although the partial sums of the
Fourier series of a continuous function need not converge at every point, the
Cesàro sums do converge. To get at this fact, we shall examine the Fejér kernel

KN (x) =
1

N + 1

NX

n=0
Dn(x).
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The N th Cesàro sum of sn( f ; x) is given by 1
2π

R π

−π KN (x − t) f (t) dt because

1
N + 1

NX

n=0
sn( f ; x) =

1
N + 1

NX

n=0

1
2π

Z π

−π

Dn(x − t) f (t) dt

=
1
2π

Z π

−π

KN (x − t) f (t) dt.

The remarkable fact is that the Fejér kernel is an approximate identity even though
the Dirichlet kernel is not, and the result will be that the Cesàro sums of a Fourier
series converge in every way that they have any hope of converging.

Lemma 1.58. The Fejér kernel is given by

KN (x) =
1

N + 1
1− cos(N + 1)x

1− cos x
.

PROOF. We show by induction on N that the values of KN (x) in the definition
and in the lemma are equal. For N = 0, we have K0(x) = D0(x) = 1 = 1−cos 1x

1−cos x
as required. Assume the equality for N − 1. Then

(N + 1)KN (x) =
NX

n=0
Dn(x) = NKN−1(x) + DN (x)

=
1− cos Nx
1− cos x

+
sin

°
(N + 1

2 )x
¢

sin 12 x
·
sin 12 x
sin 12 x

by induction

=
1− cos Nx + 2 sin

°
(N + 1

2 )x
¢
sin 12 x

1− cos x

=
1− cos Nx −

£
cos

°
(N+ 1

2 )x+ 1
2 x

¢
− cos

°
(N+ 1

2 )x− 1
2 x

¢§

1− cos x

=
1− cos(N + 1)x

1− cos x
,

as required. §

In line with the definition of approximate identity in Section 9, we are to show
that KN (x) has the following properties:

(i) KN (x) ∏ 0,
(ii) 1

2π
R π

−π KN (x) dx = 1,
(iii) for any δ > 0, supδ≤|x |≤π KN (x) tends to 0 as N tends to infinity.

Property (i) follows from Lemma 1.58, since cos x ≤ 1 everywhere; prop-
erty (ii) follows from the definition of KN (x) and the linearity of the integral,
since 1

2π
R π

−π Dn(x) dx = 1 for all n; and property (iii) follows fromLemma 1.58,
since 1− cos(N +1)x ≤ 2 everywhere and 1− cos x ∏ 1− cos δ if δ ≤ |x | ≤ π .
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Theorem 1.59 (Fejér’s Theorem). Let f : R → C be periodic of period 2π
and Riemann integrable on [−π, π]. If f is continuous at a point x0 in [−π, π],
then

lim
N→∞

1
2π

Z π

−π

f (x)KN (x0 − x) dx = f (x0).

If f is uniformly continuous on a subset E of [−π, π], then the convergence is
uniform for x0 in E .
PROOF. Choose M such that | f (x)| ≤ M for all x . By (ii) and then (i),

Ø
Ø
Ø
1
2π

Z π

−π

f (x)KN (x0 − x) dx − f (x0)
Ø
Ø
Ø

=
Ø
Ø
Ø
1
2π

Z π

−π

[ f (x) − f (x0)]KN (x0 − x) dx
Ø
Ø
Ø

≤
1
2π

Z π

−π

| f (x) − f (x0)|KN (x0 − x) dx

≤
1
2π

Z

|x−x0|≤δ

| f (x) − f (x0)|KN (x0 − x) dx

+
1
2π

Z

δ≤|x−x0|≤π

2M
≥
sup

δ≤|t |≤π

KN (t)
¥
dx

≤
1
2π

Z

|x−x0|≤δ

| f (x) − f (x0)|KN (x0 − x) dx + 2M sup
δ≤|t |≤π

KN (t).

Given ≤ > 0, choose some δ for ≤ and continuity of f at x0 or for ≤ and
uniform continuity of f on E . In the first term on the right side, we then have
| f (x) − f (x0)| ≤ ≤ on the set where |x − x0| ≤ δ. Thus use of (i) and (ii) shows
that the above expression is

≤ ≤ + 2M sup
δ≤|t |≤π

KN (t).

With δ fixed, property (iii) shows that the right side is < 2≤ if N is sufficiently
large, and the theorem follows. §

Corollary 1.60 (uniqueness theorem). Let f : R → C and g : R → C
be periodic of period 2π and Riemann integrable on [−π, π]. If f and g have
the same respective Fourier coefficients, then f (x) = g(x) at every point of
continuity of both f and g.
REMARK. The fact that f and g have the same Fourier coefficients means that

sn( f ; x) = sn(g; x) for all n, hence that
1
2π

Z π

−π

Dn(x − t) f (t) dt =
1
2π

Z π

−π

Dn(x − t)g(t) dt
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for all n. Then the same formula applies with Dn replaced by its Cesàro sums
KN .

PROOF. Apply Theorem 1.59 to f − g at a point x0 of continuity of both f
and g. §

Our second result about uniqueness will improve on Corollary 1.60, saying
that any Riemann integrable function with all Fourier coefficients 0 is basically
the 0 function—at least in the sense that any definite integral in which it is a factor
of the integrand is 0. We shall prove this improved result as a consequence of
Parseval’s Theorem, which says that equality holds in Bessel’s inequality. The
proof of Parseval’s Theorem will be preceded by an example and some lemmas.

Theorem 1.61 (Parseval’s Theorem). Let f : R → C be periodic of period
2π and Riemann integrable on [−π, π]. If f (x) ∼

P∞
−∞ cneinx , then

lim
N→∞

1
2π

Z π

−π

| f (x) − sN ( f ; x)|2 dx = 0

and
1
2π

Z π

−π

| f (x)|2 dx =
∞X

n=−∞

|cn|2.

REMARK. In terms of the coefficients an and bn , the corresponding result is

1
π

Z π

−π

| f (x)|2 dx =
|a0|2

2
+

∞X

n=1

°
|an|2 + |bn|2

¢
.

EXAMPLE. We saw near the beginning of this section that the periodic function

f given by f (x) = 1
2 (π −x) on (0, 2π) has f (x) ∼

∞P

n=1

sin nx
n

. The formulation

of Parseval’s Theorem as in the remark, but with the interval (0, 2π) replacing
the interval (−π, π), says that

P∞
n=1

1
n2 = 1

π

R 2π
0

Ø
Ø 1
2 (π − x)

Ø
Ø2 dx . The right side

is = 1
4π

R π

−π x
2 dx = 2π3/3

4π = π2

6 . Thus

∞X

n=1

1
n2

=
π2

6
.

This formula was discovered by Euler by other means before the work of Fourier.
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For the purposes of the lemmas and the proof of Parseval’s Theorem, let us
introduce a “Hermitian inner product”4 onR[−π, π] by the definition

( f, g)2 =
1
2π

Z π

−π

f (x)g(x) dx,

as well as a “norm” defined by

k f k2 = ( f, f )1/22 =
≥ 1
2π

Z π

−π

| f (x)|2 dx
¥1/2

and a “distance function” defined by

d2( f, g) = k f − gk2 =
≥ 1
2π

Z π

−π

| f (x) − g(x)|2 dx
¥1/2

.

The role of the function d2 will become clearer in Chapter II, where “distance
functions” of this kind will be studied extensively.

Lemma 1.62. If f is in R[−π, π] and
R π

−π | f (x)|2 dx = 0, then
R π

−π | f (x)| dx = 0 and also
R π

−π f (x)g(x) dx = 0 for all g ∈ R[−π, π].

PROOF. Write M = supx∈[−π,π] | f (x)|, and let ≤ > 0 be given. Choose a
partition P = {xi }ni=0 with U(P, | f |2) < ≤3, i.e.,

nX

i=1

≥
sup

x∈[xi−1,xi ]
| f (x)|2

¥
1xi ≤ ≤3.

Divide the indices from 1 to n into two subsets, A and B, with

A =
n
i
Ø
Ø sup
x∈[xi−1,xi ]

| f (x)| ∏ ≤
o

and B =
©
i
Ø
Ø
Ø sup
x∈[xi−1,xi ]

| f (x)| < ≤
o
.

The sum of the contributions from indices i ∈ A toU
°
P, | f |2

¢
is∏ ≤2

P
i∈A 1xi ,

and thus
P

i∈A 1xi ≤ ≤. Hence
P

i∈A
°
supx∈[xi−1,xi ] | f (x)|

¢
1xi ≤ M≤. Also,

P
i∈B

°
supx∈[xi−1,xi ] | f (x)|

¢
1xi ≤ 2π≤. Therefore U(P, | f |) ≤ (2π + M)≤.

Since ≤ is arbitrary,
R π

−π | f (x)| dx = 0. This proves the first conclusion.
For the second conclusion it follows from the boundedness of |g|, say by M 0,

that
Ø
Ø R π

−π f (x)g(x) dx
Ø
Ø ≤ 1

2π
R π

−π | f (x)||g(x)| dx ≤ M 0
R π

−π | f (x)| dx = 0. §

4The term “Hermitian inner product” will be defined precisely in Section II.1. The form ( f, g)2
comes close to being one, but it fails to meet all the conditions because ( f, f )2 = 0 is possible
without f = 0.
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Lemma 1.63 (Schwarz inequality). If f and g are inR[−π, π], then

|( f, g)2| ≤ k f k2kgk2.

REMARK. Compare this result with the version of the Schwarz inequality in
Section A5 of Appendix A. This kind of inequality is put into a broader setting
in Section II.1.

PROOF. If kgk2 = 0, then Lemma 1.62 shows that ( f, g)2 = 0 for all f . Thus
the lemma is valid in this case. If kgk2 6= 0, then we have

0 ≤
∞
∞ f − kgk−2

2 ( f, g)2 g
∞
∞2
2 =

°
f − kgk−2

2 ( f, g)2 g, f − kgk−2
2 ( f, g)2 g

¢
2

= k f k22−2kgk
−2
2 |( f, g)2|

2+kgk−4
2 |( f, g)2|

2 kgk22 = k f k22−kgk−2
2 |( f, g)2|

2,

and the lemma follows in this case as well. §

Lemma 1.64 (triangle inequality). If f , g, and h are in R[−π, π], then
d2( f, h) ≤ d2( f, g) + d2(g, h).

PROOF. For any two such functions F and G, Lemma 1.63 gives

kF + Gk22 = (F + G, F + G)2 = (F, F)2 + (F,G)2 + (G, F)2 + (G,G)2

= kFk22 + 2Re(F,G)2 + kGk22

≤ kFk22 + 2kFk2kGk2 + kGk22 = (kFk2 + kGk2)
2.

Taking the square root of both sides and substituting F = f − g and G = g− h,
we obtain the lemma. §

Lemma1.65. Let f : R → Cbeperiodicof period2π andRiemann integrable
on [−π, π], and let ≤ > 0 be given. Then there exists a continuous periodic
g : R → C of period 2π such that k f − gk2 < ≤.

PROOF. Because of Lemma 1.64, we may assume that f is real-valued and is
not identically 0. Define M = supt∈[−π,π] | f (t)| > 0, let ≤ > 0 be given, and
let P = {xi }ni=0 be a partition to be specified. Using P , we form the function g
defined by

g(t) =
xi − t
1xi

f (xi−1) +
t − xi−1

1xi
f (xi ) for xi−1 ≤ t ≤ xi .

The graph of g interpolates the points (xi , f (xi )), 0 ≤ i ≤ n, by line segments.
Fix attention on a particular [xi−1, xi ], and let I = inft∈[xi−1,xi ] f (t) and S =
supt∈[xi−1,xi ] f (t). For t ∈ [xi−1, xi ], we have I ≤ g(t) ≤ S. At a single
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point t in this interval, f (t) ∏ g(t) implies I ≤ g(t) ≤ f (t) ≤ S, while
g(t) ∏ f (t) implies I ≤ f (t) ≤ g(t) ≤ S. Thus in either case we have
| f (t) − g(t)| ≤ S− I . Taking the supremum over t in the interval and summing
on i , we obtain U(P, | f − g|) ≤ U(P, f ) − L(P, f ).
Since | f − g|2 = | f − g|| f − g|, we have

sup
t∈[xi−1,xi ]

| f (t) − g(t)|2 ≤ sup
t∈[xi−1,xi ]

| f (t) − g(t)| sup
t∈[xi−1,xi ]

| f (t) − g(t)|

≤ 2M sup
t∈[xi−1,xi ]

| f (t) − g(t)|

for 1 ≤ i ≤ n. Summing on i givesU
°
P, | f −g|2

¢
≤ 2M(U(P, f )− L(P, f )).

Nowwe can specify P; it is to be any partition forwhichU(P, f )−L(P, f ) ≤
≤2/(2M) and no 1xi is 0. Then

0 ≤ 1
2π

R π

−π | f (t) − g(t)|2 dt ≤ 1
2π U

°
P, | f − g|2

¢

≤ 2M
2π (U(P, f ) − L(P, f )) ≤ ≤2/(2π) < ≤2,

as required. §

PROOF OF THEOREM 1.61. Given ≤ > 0, choose by Lemma 1.65 a con-
tinuous periodic g with k f − gk2 < ≤. Write g(x) ∼

P∞
n=−∞ c0

neinx , and
put gN (x) = 1

2π
R π

−π KN (x − t)g(t) dt , where KN is the Fejér kernel. Fejér’s
Theorem (Theorem1.59) gives supx∈[−π,π] |g(x)−gN (x)| < ≤ for N sufficiently
large. Since any Riemann integrable h has khk2 ≤ supx∈[−π,π] |h(x)|, we obtain
kg − gNk2 < ≤ for N sufficiently large. Fixing such an N and substituting from
the definition of KN , we have

gN (x) =
1

N + 1
NP

n=0

1
2π

Z π

−π

Dn(x − t)g(t) dt

=
1

N + 1
NP

n=0

nP

k=−n
c0
ke
ikx =

NP

n=−N
dneinx

for suitable constants dn . Theorem 1.53 and Lemma 1.64 then give
≥ 1
2π

Z π

−π

| f (x)|2 dx −
NP

n=−N
|cn|2

¥1/2
=

∞
∞
∞ f −

NP

n=−N
cneinx

∞
∞
∞
2

≤
∞
∞
∞ f −

NP

n=−N
dneinx

∞
∞
∞
2

= k f − gNk2

≤ k f − gk2 + kg − gNk2 < ≤ + ≤ = 2≤,

and the result follows. §
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Corollary 1.66 (uniqueness theorem). Let f : R → C be periodic of period
2π and Riemann integrable on [−π, π]. If f has all Fourier coefficients 0, thenR π

−π | f (x)| dx = 0 and
R π

−π f (x)g(x) dx = 0 for every member g ofR[−π, π].

PROOF. If f has all Fourier coefficients 0, then
R π

−π | f (x)|2 dx = 0 by
Theorem 1.61. Application of Lemma 1.62 completes the proof of the corollary.

§

It is natural to askwhich sequences {cn}with
P

|cn|2 finite are the sequences of
Fourier coefficients of some f ∈ R[−π, π]. To see that this is a difficult question,
one has only to compare the two series

P∞
n=1 n−1 sin nx and

P∞
n=1 n−1 cos nx

studied at the beginning of this section. The first series comes from a function in
R[−π, π], but a little argument shows that the second does not. It was an early
triumph of Lebesgue integration that this question has a elegant answer when
the Riemann integral is replaced by the Lebesgue integral: the answer when the
Lebesgue integral is used is given by the Riesz–Fischer Theorem in Chapter VI,
namely, any sequence with

P
|cn|2 finite is the sequence of Fourier coefficients

of a square-integrable function.

11. Problems

1. (a) Derive the archimedean property (Corollary 1.3) from the convergence of
bounded monotone increasing sequences (Corollary 1.6).

(b) Using (a), derive the least-upper-bound property (Theorem 1.1) from the
convergence of bounded monotone increasing sequences (Corollary 1.6).

2. According to Newton’s method, to find numerical approximations to
p
a when

a > 0, one can set x0 = 1 and define xn+1 = 1
2 (x

2
n + a)/xn for n ∏ 0. Prove

that {xn} converges and that the limit is
p
a.

3. Find lim sup an and lim inf an when an is defined by a1 = 0, a2n = 1
2a2n−1,

a2n+1 = 1
2 + a2n . Prove that your answers are correct.

4. For any two sequences {an} and {bn} in R, prove that lim sup(an + bn) ≤
lim sup an + lim sup bn , provided the two terms on the right side are not+∞ and
−∞ in some order.

5. Which of the following limits exist uniformly for 0 ≤ x ≤ 1: (i) limn→∞ xn ,
(ii) limn→∞ xn/n, (iii) limn→∞

Pn
k=1 xk/k ? Supply proofs for those that do

converge uniformly. For the other ones, prove anyway that there is uniform
convergence on any interval 0 ≤ x ≤ 1− ≤, where ≤ > 0.

6. Let an(x) = (−1)nxn(1 − x) on [0, 1]. Show that
P∞

n=0 an(x) converges
uniformly and that

P∞
n=0 |an(x)| converges pointwise but not uniformly.
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7. (Dini’s Theorem) Suppose that fn : [a, b] → R is continuous and that
f1 ≤ f2 ≤ f3 ≤ · · · . Suppose also that f (x) = lim fn(x) is continuous and
is nowhere +∞. Use the Bolzano–Weierstrass Theorem (Theorem 1.8) to
prove that fn converges to f uniformly for a ≤ x ≤ b.

8. Prove that

x −
x3

3!
+
x5

5!
−
x7

7!
+
x9

9!
−
x11

11!
+
x13

13!
−
x15

15!
< sin x

for all x > 0.
9. Let f : (−∞,+∞) → R be infinitely differentiable with | f (n)(x)| ≤ 1 for all

n and x . Use Taylor’s Theorem (Theorem 1.36) to prove that

f (x) =
∞X

n=0

f (n)(0)
n!

xn

for all x .
10. (Helly’s Selection Principle) Suppose that {Fn} is a sequence of nonde-

creasing functions on [−1, 1] with 0 ≤ Fn(x) ≤ 1 for all n and x . Using a
diagonal process twice, prove that there is a subsequence {Fnk } that converges
pointwise on [−1, 1].

11. Prove that the radius of convergence of
P∞

n=0 anxn is 1/ lim sup n
p

|an| .
12. Find a power series expansion for each of the following functions, and find the

radius of convergence:
(a) 1/(1− x)2 = d

dx (1− x)−1,
(b) log(1− x) = −

R x
0

dt
1−t ,

(c) 1/(1+ x2),
(d) arctan x =

R x
0

dt
1+t2 .

13. Prove, along the lines of the proof of Corollary 1.46a, that cos x has an inverse
function arccos x defined for −1 < x < 1 and that the inverse function is
differentiable. Find an explicit formula for the derivative of arccos x . Relate
arccos x to arcsin x when −1 < x < 1.

14. State and prove uniform versions of Abel’s Theorem (Theorem 1.48) and of the
corresponding theorem about Cesàro sums (Theorem 1.47), the uniformity being
with respect to a parameter x .

15. Prove that the partial sums
PN

n=1 cos nθ and
PN

n=1 sin nθ are uniformly bounded
on any set ≤ ≤ θ < 2π − ≤ if ≤ > 0.

16. Verify the following calculations of Fourier series:

(a) f (x) =

Ω
+1 for 0 < x < π

−1 for − π < x < 0

æ
has f (x) ∼

4
π

∞X

n=1

sin(2n − 1)x
2n − 1

.
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(b) f (x) = e−iαx on (0, 2π)has f (x) ∼
e−iπα sinπα

π

∞X

n=−∞

einx

n + α
, provided

α is not an integer.
17. Combining Parseval’s Theorem (Theorem 1.61) with the results of Problem 16,

prove the following identities:

(a)
∞X

n=1

1
(2n − 1)2

=
π2

8
, (b)

∞X

n=−∞

1
|n + α|2

=
π2

sin2 πα
.

Problems 18–19 identify the continuous functions f : R → C with f (x) f (y) =
f (x + y) for all x and y as the 0 function and the functions f (x) = ecx , using two
different kinds of techniques from the chapter.
18. Put F(x) =

R x
0 f (t) dt . Find an equation satisfied by F , and use it to show that

f is differentiable everywhere. Then show that f 0(y) = f 0(0) f (y), and deduce
the form of f .

19. Proceed without using integration. Using continuity, find x0 > 0 such that the
expression | f (x) − 1| is suitably small when |x | ≤ |x0|. Show that f (2−k x0) is
then uniquely determined in terms of f (x0) for all k ∏ 0. If f is not identically
0, use x0 to define c. Then verify that f (x) = ecx for all x .

Problems 20–22 construct a nonzero infinitely differentiable function f : R → R
having all derivatives equal to 0 at one point.
20. Let P(x) and Q(x) be two polynomials with Q not the zero polynomial. Prove

that
lim
x→0

P(x)
Q(x) e

−1/x2 = 0.

21. With P and Q as in the previous problem, use the Mean Value Theorem to prove
that the function g : R → R with

g(x) =

Ω P(x)
Q(x) e

−1/x2 for x 6= 0,
0 for x = 0,

has g0(0) = 0 and that g0 is continuous.
22. Prove that the function f : R → R with

f (x) =

Ω
e−1/x2 for x 6= 0,
0 for x = 0,

is infinitely differentiable with derivatives of all orders equal to 0 at x = 0.
Problems 23–26 concern a generalization of Cesàro and Abel summability. A
Silverman–Toeplitz summabilitymethod refers to the following construction: One
starts with a system {Mi j }i, j∏0 of nonnegative real numbers with the two properties
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that (i)
P

j Mi j = 1 for all i and (ii) limi→∞ Mi j = 0 for all j . Themethod associates
to a complex sequence {sn}n∏0 the complex sequence {tn}n∏0 with ti =

P
j∏0 Mi j sj

as if the process were multiplication by the infinite square matrix {Mi j } on infinite
column vectors.
23. Prove that if {sn} is a convergent sequence with limit s, then the corresponding

sequence {tn} produced by a Silverman–Toeplitz summability method converges
and has limit s.

24. Exhibit specific matrices {Mi j } that produce the effects of Cesàro and Abel
summability, the latter along a sequence ri increasing to 1.

25. Let ri be a sequence increasing to 1, and define Mi j = ( j + 1)(ri ) j (1 − ri )2.
Show that {Mi j } defines a Silverman–Toeplitz summability method.

26. Using the system {Mi j } in thepreviousproblem, prove the following: if a bounded
sequence {sn} is not necessarily convergent but is Cesàro summable to a limit σ ,
then {sn} is Abel summable to the same limit σ .

Problems 27–29 concern the Poisson kernel, which plays the same role for Abel sums
of Fourier series that the Fejér kernel plays for Cesàro sums. For 0 ≤ r < 1, define
the Poisson kernel Pr (θ) to be the r th Abel sum of the Dirichlet kernel Dn(θ) =
1+

Pn
k=1 (eikθ + e−ikθ ). In the terminology of Section 8 this means that a0 = 1 and

ak = eikθ + e−ikθ for k ∏ 1, so that the sequence of partial sums
Pn

k=0 ak is exactly
the sequence whose nth term is Dn(θ). The r th Abel sum

P∞
n=0 anrn is therefore the

expression

Pr (θ) =
∞P

n=−∞
r |n|einθ .

27. For f in R[−π, π], verify that the r th Abel sum of sn( f ; θ) is given by the
expression 1

2π
R π
−π Pr (θ − ϕ) f (ϕ) dϕ.

28. Verify that Pr (θ) =
1− r2

1− 2r cos θ + r2
. Deduce that Pr (θ) has the following

properties:
(i) Pr (θ) ∏ 0,
(ii) 1

2π
R π
−π Pr (θ) dθ = 1,

(iii) for any δ > 0, supδ≤|θ |≤π Pr (θ) tends to 0 as r increases to 1.

29. Let f : R → C be periodic of period 2π and Riemann integrable on [−π, π].
(a) Prove that if f is continuous at a point θ0 in [−π, π], then

lim
r↑1

1
2π

Z π

−π
Pr (θ0 − θ) f (θ) dθ = f (θ0).

(b) Prove that if f is uniformly continuous on a subset E of [−π, π], then the
convergence in (a) is uniform for θ0 in E .
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Problems 30–35 lead to a proof without complex analysis (and in particular without
the complex logarithm) that exp

°
z + 1

2 z
2 + 1

3 z
3 + · · ·

¢
= 1/(1− z) for all complex

z with |z| < 1. (For the easy proof via elementary complex analysis, see Section B8
of Appendix B.)
30. Suppose that R > 0, that fk(x) =

P∞
n=0 cn,k xn is convergent for |x | < R, that

cn,k ∏ 0 for all n and k, and that limk→∞ fk(x) = f (x) uniformly for |x | ≤ r
whenever r < R. Prove for each r < R that some subsequence { fkl } of { fk} has
liml→∞ f 0

kl (x) existing uniformly for |x | ≤ r .

31. In the setting of the previous problem, prove that f is infinitely differentiable for
|x | < R.

32. In the setting of the previous two problems, use Taylor’s Theorem to show that
f (x) is the sum of its infinite Taylor series for |x | < R.

33. If 0 ≤ r < 1, prove for |z| ≤ r that
Ø
Ø 1
N z

N + 1
N+1 z

N+1+· · ·
Ø
Ø ≤ r N/(1− r), and

deduce that exp
° 1
N z

N + 1
N+1 z

N+1 + · · ·
¢
converges to 1 uniformly for |z| ≤ r .

34. Why is it true that if a power series
P∞

n=0 cnzn with complex coefficients sums
to 0 for all real z with |z| < R, then it sums to 0 for all complex z with |z| < R?

35. Prove that exp
°
z+ 1

2 z
2+ 1

3 z
3+· · ·

¢
= 1/(1− z) for all complex z with |z| < 1.




