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CHAPTER III 

Inner-Product Spaces 

Abstract. This chapter investigates the effects of adding the additional structure of an inner product
to a finite-dimensional real or complex vector space.
Section 1 concerns the effect on the vector space itself, defining inner products and their cor-

responding norms and giving a number of examples and formulas for the computation of norms.
Vector-space bases that are orthonormal play a special role.
Section 2 concerns the effect on linear maps. The inner product makes itself felt partly through

the notion of the adjoint of a linear map. The section pays special attention to linear maps that are
self-adjoint, i.e., are equal to their own adjoints, and to those that are unitary, i.e., preserve norms of
vectors. 
Section 3 proves the Spectral Theorem for self-adjoint linear maps on finite-dimensional inner-

product spaces. The theorem says in part that any self-adjoint linear map has an orthonormal basis
of eigenvectors. The Spectral Theorem has several important consequences, one of which is the
existence of a unique positive semidefinite square root for any positive semidefinite linear map. The
section concludes with the polar decomposition, showing that any linear map factors as the product
of a unitary linear map and a positive semidefinite one. 

1. Inner Products and Orthonormal Sets 

In this chapter we examine the effect of adding further geometric structure to
the structure of a real or complex vector space as defined in Chapter II. To be
a little more specific in the cases of R2 and R3, the development of Chapter II
amounted to working with points, lines, planes, coordinates, and parallelism, but
nothing further. In the present chapter, by comparison, we shall take advantage
of additional structure that captures the notions of distances and angles.
We take F to be R or C, continuing to call its members the scalars. We 

do not allow F to be Q in this chapter; the main results will make essential
use of additional facts about R and C beyond those of addition, subtraction,
multiplication, and division. The relevant additional facts are summarized in
Sections A3 and A4 of the appendix.1 

1The theory of Chapter II will be observed in Chapter IV to extend to any “field” F in place of Q 
or R or C, but the theory of the present chapter is limited to R and C, as well as some other special 
fields that we shall not try to isolate. 
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90 III. Inner-Product Spaces 

Many of the results that we obtain will be limited to the finite-dimensional case.
The theory of inner-product spaces that we develop has an infinite-dimensional
generalization, but useful results for the generalization make use of a hypothesis
of “completeness” for an inner-product space that we are not in a position to
verify in examples.2 

Let V be a vector space over F. An inner product on V is a function from 
V × V into F, which we here denote by ( · , · ), with the following properties: 

(i) the function u 7→ (u, v) of V into F is linear, 
(ii) the function v 7→ (u, v) of V into F is conjugate linear in the sense 

that it satisfies (u, v1 + v2) = (u, v1) + (u, v2) for v1 and v2 in V and 
(u, cv) = c̄(u, v) for v in V and c in F,

(iii) (u, v) = (v, u) for u and v in V ,
(iv) (v, v) ∏ 0 for all v in V ,
(v) (v, v) = 0 only if v = 0 in V . 

The overbars in (ii) and (iii) indicate complex conjugation. Property (ii) reduces
when F = R to the fact that v 7→ (u, v) is linear. Properties (i) and (ii) together 
are summarized by saying that ( · , · ) is bilinear if F = R or sesquilinear if 
F = C. Property (iii) is summarized when F = R by saying that ( · , · ) is 
symmetric, or when F = C by saying that ( · , · ) is Hermitian symmetric. 
An inner-product space, for purposes of this book, is a vector space over R 

or C with an inner product in the above sense.3,4 

EXAMPLES. 
(1) V = Rn with ( · , · ) as the dot product, i.e., with (x, y) = yt x = √ x1 

! √ y1 
! 

. . . .x1 y1 + · · · + xn yn if x = and y = . The traditional notation for the . . 
xn yn

dot product is x · y. 
(2) V = Cn with ( · , · ) defined by (x, y) = ȳt x = x1 ȳ1 + · · · + xn ȳn if√ x1 

! √ y1 
! 

. .x = . and y = . . Here ȳ denotes the entry-by-entry complex conjugate . . 
xn yn

of y. The sesquilinear expression ( · , · ) is different from the complex bilinear 
dot product x · y = x1 y1 + · · · + xn yn . 

2A careful study in the infinite-dimensional case is normally made only after the development
of a considerable number of topics in real analysis.

3When the scalars are complex, many books emphasize the presence of complex scalars by
referring to the inner product as a “Hermitian inner product.” This book does not need to distinguish
the complex case very often and therefore will not use the modifier “Hermitian” with the term “inner
product.”

4Some authors, particularly in connection with mathematical physics, reverse the roles of the
two variables, defining inner products to be conjugate linear in the first variable and linear in the
second variable. 
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(3) V equal to the vector space of all complex-valued polynomials with ( f, g)= R 1 
0 f (x)g(x) dx . 

p
Let V be an inner-product space. If v is in V , define kvk = (v, v), calling 

k · k the norm associated with the inner product. The norm of v is understood to 
be the nonnegative square root of the nonnegative real number (v, v) and is well 
defined as a consequence of (iv). In the case of Rn , kxk is the Euclidean distance q
x1
2 + · · · + xn 

2 from the origin to the column vector x = (x1, . . . , xn). In this 
interpretation the dot product of two nonzero vectors in Rn is shown in analytic 
geometry to be given by x · y = kxkkyk cos θ , where θ is the angle between the 
vectors x and y. 
Direct expansion of norms squared of sums of vectors using bilinearity or

sesquilinearity leads to certain formulas of particular interest. The formula that
we shall use most frequently is 

ku + vk2 = kuk2 + 2 Re(u, v) + kvk2 , 

which generalizes from R2 a version of the law of cosines in trigonometry relating
the lengths of the three sides of a triangle when one of the angles is known. With
the additional hypothesis that (u, v) = 0, this formula generalizes from R2 the 
Pythagorean Theorem 

ku + vk2 = kuk2 + kvk2 . 

Another such formula is the parallelogram law 

ku + vk2 + ku − vk2 = 2kuk2 + 2kvk2 for all u and v in V, 

which is proved by computing ku + vk2 and ku − vk2 by the law of cosines and
adding the results. The name “parallelogram law” is explained by the geometric
interpretation in the case of the dot product for R2 and is illustrated in Figure 3.1.
That figure uses the familiar interpretation of vectors in R2 as arrows, two arrows
being identified if they are translates of one another; thus the arrow from v to u 
represents the vector u − v. 
The parallelogram law is closely related to a formula for recovering the inner

product from the norm, namely 

1 X
(u, v) = i k ku + i k vk2 ,

4 k 

where the sum extends for k ∈ {0, 2} if the scalars are real and extends for 
k ∈ {0, 1, 2, 3} if the scalars are complex. This formula goes under the name 
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polarization. To prove it, we expand ku + i k vk2 = kuk2 + 2 Re(u, i k v) + kvk2 

= kuk2 + 2 Re 
° 
(−i)k (u, v)

¢ 
+ kvk2. Multiplying by i k and summing on k 

shows that 
P

k i k ku + i k vk2 = 2 
P

k i k Re 
° 
(−i)k (u, v)

¢
. If k is even, then 

i k Re((−i)k z) = Re z for any complex z, while if k is odd, then i k Re((−i)k z) = 
i Im z. So 2 

P
k i k Re((−i)k z) = 4z, and 

P
k i k ku+i k vk2 = 4(u, v), as asserted. 

FIGURE 3.1. Geometric interpretation of the parallelogram law: the sum
of the squared lengths of the four sides of a parallelogram
equals the sum of the squared lengths of the diagonals. 

Proposition 3.1 (Schwarz inequality). In any inner-product space V , 
|(u, v)| ≤ kukkvk for all u and v in V . 

REMARK. The proof is written so as to use properties (i) through (iv) in the
definition of inner product but not (v), a situation often encountered with integrals. 

PROOF. Possibly replacing u by eiθ u for some real θ , we may assume that 
(u, v) is real. In the case that kvk 6= 0, the law of cosines gives 

2Ø
Øu − kvk−2(u, v)v

Ø
Ø = kuk2 − 2kvk−2|(u, v)|2 + kvk−4|(u, v)|2kvk2 . 

The left side is ∏ 0, and the right side simplifies to kuk2 − kvk−2|(u, v)|2. Thus 
the inequality follows in this case.
In the case that kvk = 0, it is enough to prove that (u, v) = 0 for all u. If c is 

a scalar, then we have 

ku + cvk2 = kuk2 + 2 Re 
° 
c(u, v)

¢ 
+ |c|2kvk2 = kuk2 + 2 Re 

° 
c(u, v)

¢
. 

The left side is ∏ 0 as c varies, but the right side is < 0 for a suitable choice of c 
unless (u, v) = 0. This completes the proof. § 

Proposition 3.2. In any inner-product space V , the norm satisfies 
(a) kvk ∏ 0 for all v in V , with equality if and only if v = 0,
(b) kcvk = |c|kvk for all v in V and all scalars c,
(c) ku + vk ≤ kuk + kvk for all u and v in V . 

u + v 
v 

u − v 

u 
0 
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PROOF. Conclusion (a) is immediate from properties (iv) and (v) of an inner
product, and (b) follows since kcvk2 = (cv, cv) = cc̄(v, v) = |c|2kvk2. Finally
we use the law of cosines and the Schwarz inequality (Proposition 3.1) to write 
ku +vk2 = kuk2 +2 Re(u, v)+kvk2 ≤ kuk2 +2kukkvk+kvk2 = (kuk+kvk)2. 
Taking the square root of both sides yields (c). § 

Two vectors u and v in V are said to be orthogonal if (u, v) = 0, and one 
sometimes writes u ⊥ v in this case. The notation is a reminder of the interpre-
tation in the case of dot product—that dot product 0 means that the cosine of the
angle between the two vectors is 0 and the vectors are therefore perpendicular.
An orthogonal set in V is a set of vectors such that each pair is orthogonal.
The nonzero members of an orthogonal set are linearly independent. In fact, if 

{v1, . . . , vk } is an orthogonal set of nonzero vectors and some linear combination 
has c1v1 + · · · + ck vk = 0, then the inner product of this relation with vj gives 
0 = (c1v1 + · · · + ck vk , vj ) = cj kvj k2, and we see that cj = 0 for each j . 
A unit vector in V is a vector u with kuk = 1. If v is any nonzero vector, 

then v/kvk is a unit vector. An orthonormal set in V is an orthogonal set of 
unit vectors. Under the assumption that V is finite-dimensional, an orthonormal 
basis of V is an orthonormal set that is a vector-space basis.5 

EXAMPLES. 
(1) In Rn or Cn , the standard basis {e1, . . . , en} is an orthonormal set. 
(2) Let V be the complex inner-product space of all complex finite linear

combinations, for n from −N to +N , of the functions x 7→ einx on the closed 
1 

R πinterval [−π, π], the inner product being ( f, g) = f (x)g(x) dx . With 2π −π 
respect to this inner product, the functions einx form an orthonormal set. 

A simple but important exercise in an inner-product space is to resolve a vector
into the sum of a multiple of a given unit vector and a vector orthogonal to the
given unit vector. This exercise is solved as follows: If v is given and u is a unit 
vector, then v decomposes as 

v = (v, u)u + 
° 
v − (v, u)u

¢
. 

Here (v, u)u is a multiple of u, and the two components are orthogonal since ° 
u, v − (v, u)u

¢ 
= (u, v) − (v, u)(u, u) = (u, v) − (u, v) = 0. This decom-

position is unique since if v = v1 + v2 with v1 = cu and (v2, u) = 0, then the 
inner product of v = v1 + v2 with u yields (v, u) = (cu, u) + (v2, u) = c. Hence 

5In the infinite-dimensional theory the term “orthonormal basis” is used for an orthonormal set
that spans V when limits of finite sums are allowed, in addition to finite sums themselves; when V 
is infinite-dimensional, an orthonormal basis is never large enough to be a vector-space basis. 
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c must be (v, u), v1 must be (v, u)u, and v2 must be v − (v, u)u. Figure 3.2
illustrates the decomposition, and Proposition 3.3 generalizes it by replacing the
multiples of a single unit vector by the span of a finite orthonormal set. 

v 

v − (v, u)u 

(v, u)u 

u 
0 

FIGURE 3.2. Resolution of v into a component (v, u)u parallel
to a unit vector u and a component orthogonal to u. 

Proposition 3.3. Let V be an inner-product space. If {u1, . . . , uk } is an or-
thonormal set in V and if v is given in V , then there exists a unique decomposition 

v = c1u1 + · · · + ckuk + v ⊥ 

with v⊥ orthogonal to uj for 1 ≤ j ≤ k. In this decomposition cj = (v, uj ). 

REMARK. The proof illustrates a technique that arises often in mathematics.
We seek to prove an existence–uniqueness theorem, and we begin by making
calculations toward uniqueness that narrow down the possibilities. We are led to
some formulas or conditions, and we use these to define the object in question and
thereby prove existence. Although it may not be so clear except in retrospect, this
was the technique that lay behind proving the equivalence of various conditions
for the invertibility of a square matrix in Section I.6. The technique occurred
again in defining and working with determinants in Section II.7. 

PROOF OF UNIQUENESS. Taking the inner product of both sides with uj , we 
⊥obtain (v, uj ) = (c1u1 +· · ·+ ckuk + v , uj ) = cj for each j . Then cj = (v, uj ) 

is forced, and v⊥ must be given by v − (v, u1)u1 − · · · − (v, uk)uk . § 

PROOF OF EXISTENCE. Putting cj = (v, uj ), we need check only that the 
difference v −(v, u1)u1 −· · ·−(v, uk )uk is orthogonal to each uj with 1 ≤ j ≤ k. 
Direct calculation gives 
° 
v − 

P
i (v, ui )ui , uj 

¢ 
= (v, uj ) − 

P
i ((v, ui )ui , uj ) = (v, uj ) − (v, uj ) = 0, 

and the proof is complete. § 

Corollary 3.4 (Bessel’s inequality). Let V be an inner-product space. If 
{u1, . . . , uk } is an orthonormal set in V and if v is given in V , then 

Pk 
=1 |(v, uj )|2j

≤ kvk2 with equality if and only if v is in span{u1, . . . , uk }. 
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PROOF. Using Proposition 3.3, write v = 
Pk

j=1 (v, uj )uj + v⊥ with v⊥ 

orthogonal to u1, . . . , uk . Then 

kvk2 = 
°Pk

i=1 (v, ui )ui + v⊥ , 
Pk

j=1 (v, uj )uj + v⊥
¢ 

⊥
¢

= 
P

i, j (v, ui )(v, uj )(ui , uj ) + 
°P

i (v, ui )ui , v
⊥+ 

° 
v , 

P
j (v, uj )uj 

¢ 
+ kv⊥k2 

= 
P

i, j (v, ui )(v, uj )δi j + 0 + 0 + kv⊥k2 

⊥k2= 
Pk 

=1 |(v, uj )|2 + kv .j

⊥From Proposition 3.3 we know that v is in span{u1, . . . , uk} if and only if v = 0,
and the corollary follows. § 

We shall now impose the condition of finite dimensionality in order to obtain
suitable kinds of orthonormal sets. The argument will enable us to give a basis-
free interpretation of Proposition 3.3 and Corollary 3.4, and we shall obtain
equivalent conditions for the vector v⊥ in Proposition 3.3 and Corollary 3.4 to 
be 0 for every v. 
If an ordered set of k linearly independent vectors in the inner-product space 

V is given, the above proposition suggests a way of adjusting the set so that it
becomes orthonormal. Let us write the formulas here and carry out the verifi-
cation via Proposition 3.3 in the proof of Proposition 3.5 below. The method 
of adjusting the set so as to make it orthonormal is called the Gram–Schmidt 
orthogonalization process. The given linearly independent set is denoted by 
{v1, . . . , vk }, and we define 

v1u1 = ,
kv1k 

u0 = v2 − (v2, u1)u1,2 

u0
2u2 = ,

ku0
2k 

u0 = v3 − (v3, u1)u1 − (v3, u2)u2,3 

u0
3u3 = ,

ku0
3k 

. . . 

u0 
k = vk − (vk , u1)u1 − · · · − (vk , uk−1)uk−1, 

u0
kuk = . 

ku0
k k 
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Proposition 3.5. If {v1, . . . , vk } is a linearly independent set in an inner-
product space V , then the Gram–Schmidt orthogonalization process replaces 
{v1, . . . , vk } by an orthonormal set {u1, . . . , uk } such that span{v1, . . . , vj } = 
span{u1, . . . , uj } for all j . 

PROOF. We argue by induction on j . The base case is j = 1, and the result 
is evident in this case. Assume inductively that u1, . . . , uj−1 are well defined 
and orthonormal and that span{v1, . . . , vj−1} = span{u1, . . . , uj−1}. Proposition 
3.3 shows that u0

j is orthogonal to u1, . . . , uj−1. If u0
j = 0, then vj has to be 

in span{u1, . . . , uj−1} = span{v1, . . . , vj−1}, and we have a contradiction to the 
assumed linear independence of {v1, . . . , vk }. Thus u0

j 6= 0, and {u1, . . . , uj } is a 
well-defined orthonormal set. This set must be linearly independent, and hence its
linear span is a j-dimensional vector subspace of the linear span of {v1, . . . , vj }. 
By Corollary 2.4, the two linear spans coincide. This completes the induction
and the proof. § 

Corollary 3.6. If V is a finite-dimensional inner-product space, then any
orthonormal set in a vector subspace S of V can be extended to an orthonormal 
basis of S. 

PROOF. Extend the given orthonormal set to a basis of S by Corollary 2.3b.
Then apply the Gram–Schmidt orthogonalization process. The given vectors do
not get changed by the process, as we see from the formulas for the vectors u0

j
and uj , and hence the result is an extension of the given orthonormal set to an
orthonormal basis. § 

Corollary 3.7. If S is a vector subspace of a finite-dimensional inner-product 
space V , then S has an orthonormal basis. 

PROOF. This is the special case of Corollary 3.6 in which the given orthonormal
set is empty. § 

The set of all vectors orthogonal to a subset M of the inner-product space V 
is denoted by M⊥. In symbols, 

M⊥ = {u ∈ V | (u, v) = 0 for all v ∈ M}. 

We see by inspection that M⊥ is a vector subspace. Moreover, M ∩ M⊥ = 0 
since any u in M ∩ M⊥ must have (u, u) = 0. The interest in the vector subspace 
M⊥ comes from the following proposition. 

Theorem 3.8 (Projection Theorem). If S is a vector subspace of the finite-
dimensional inner-product space V , then every v in V decomposes uniquely as 
v = v1 + v2 with v1 in S and v2 in S⊥. In other words, V = S ⊕ S⊥. 
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REMARKS. Because of this proposition, S⊥ is often called the orthogonal
complement of the vector subspace S. 
PROOF. Uniqueness follows from the fact that S ∩ S⊥ = 0. For existence, 

use of Corollaries 3.7 and 3.6 produces an orthonormal basis {u1, . . . , ur } of S 
and extends it to an orthonormal basis {u1, . . . , un} of V . The vectors uj for 
j > r are orthogonal to each ui with i ≤ r and hence are in S⊥. If v is given 
in S, we can write v = 

Pn
j=1 uj as v = v1 + v2 with v1 = 

Pr
i=1(v, ui )ui and 

v2 = 
Pn

j=r+1(v, uj )uj , and this decomposition for all v shows that V = S + S⊥. 
§ 

Corollary 3.9. If S is a vector subspace of the finite-dimensional inner-product 
space V , then 

(a) dim V = dim S + dim S⊥,
(b) S⊥⊥ = S. 

PROOF. Conclusion (a) is immediate from the direct-sum decomposition V = 
S ⊕ S⊥ of Theorem 3.8. For (b), the definition of orthogonal complement gives 
S ⊆ S⊥⊥. On the other hand, application of (a) twice shows that S and S⊥⊥ have 
the same finite dimension. By Corollary 2.4, S⊥⊥ = S. § 

Section II.6 introduced “projection” mappings in the setting of any direct sum
of two vector spaces, and we shall use those mappings in connection with the
decomposition V = S ⊕ S⊥ of Theorem 3.8. We make one adjustment in working
with the projections, changing their ranges from the image, namely S or S⊥, to 
the larger space V . In effect, a linear map p1 or p2 as in Section II.6 will be 
replaced by i1 p1 or i2 p2. 
Specifically let E : V → V be the linear map that is the identity on S and is 0 

on S⊥. Then E is called the orthogonal projection of V on S. The linear map 
S⊥⊥I − E is the identity on S⊥ and is 0 on S. Since S = , I − E is the orthogonal 

projection of V on S⊥. It is the linear map that picks out the S⊥ component
S⊥ ⊕ S⊥⊥relative to the direct-sum decomposition V = . Proposition 3.3 and

Corollary 3.4 can be restated in terms of orthogonal projections. 

Corollary 3.10. Let V be a finite-dimensional inner-product space, let S be a 
vector subspace of V , let {u1, . . . , uk } be an orthonormal basis of S, and let E be 
the orthogonal projection of V on S. If v is in V , then 

kX
E(v) = (v, uj )uj

j=1 

k
and kE(v)k2 = 

X 
|(v, uj )|2 . 

j=1 
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The vector v⊥ in the expansion v = 
Pk

j=1 (v, uj )uj + v⊥ of Proposition 3.3 is 
equal to (I − E)v, and the equality of norms 

k
kvk2 = 

X 
|(v, uj )|2 + kv ⊥k2 

j=1 

has the interpretations that 
kvk2 = kE(v)k2 + k(I − E)vk2 

and that equality holds in Bessel’s inequality if and only if E(v) = v. 

PROOF. Write v = 
Pk

j=1 (v, uj )uj + v⊥ as in Proposition 3.3. Then each uj
is in S, and the vector v⊥, being orthogonal to each member of a basis of S, is in 
S⊥. This proves the formula for E(v), and the formula for kE(v)k2 follows by 

⊥applying Corollary 3.4 to v − v . 
⊥Reassembling v, we now have v = E(v) + v⊥, and hence v = v − E(v) = 

(I − E)v. Finally the decomposition v = E(v) + (I − E)(v) is into orthogonal 
terms, and the Pythagorean Theorem shows that kvk2 = kE(v)k2 +k(I − E)vk2. 

§ 

Theorem 3.11 (Parseval’s equality). If V is a finite-dimensional inner-product
space, then the following conditions on an orthonormal set {u1, . . . , um } are 
equivalent: 

(a) {u1, . . . , um } is a vector-space basis of V , hence an orthonormal basis, 
(b) the only vector orthogonal to all of u1, . . . , um is 0, 
(c) v = 

Pm
j=1 (v, uj )uj for all v in V , 

(d) kvk2 = 
Pm 

=1 |(v, uj )|2 for all v in V , 
(e) (v, w) = 

Pj m
j=1 (v, uj )(w, uj ) for all v and w in V . 

PROOF. Let S = span{u1, . . . , um}, and let E be the orthogonal projection of 
V on S. If (a) holds, then S = V and S⊥ = 0. Thus (b) holds. 
If (b) holds, then S⊥ = 0 and E is the identity. Thus (c) holds by Corollary 

3.10. 
If (c) holds, then Corollary 3.4 shows that (d) holds.
If (d) holds, we use polarization to prove (e). Let k be in {0, 2} if F = R, or in 

{0, 1, 2, 3} if F = C. Conclusion (d) gives us 
m m

kv + i k wk2 = 
X 

|(v + i k w, uj )|2 = kvk2 +
X 

2 Re 
° 
(v, uj )i k (w, uj )

¢ 
+kwk2 . 

j=1 j=1 

Multiplying by i k and summing over k, we obtain 
m

4(v, w) = 2 
XX 

i k Re 
° 
(−i)k(v, uj )(w, uj )

¢
. 

j=1 k 
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In the proof of polarization, we saw that 2 
P

k i k Re((−i)k z) = 4z. Hence 
4(v, w) = 4 

Pm
j=1 (v, uj )(w, uj ). This proves (e). 

If (e) holds, we take w = v in (e) and apply Corollary 3.10 to see that 
kE(v)k2 = kvk2 for all v. Then k(I − E)vk2 = 0 for all v, and E(v) = v 
for all v. Hence S = V , and {u1, . . . , um } is a basis. This proves (a). § 

Theorem 3.12 (Riesz Representation Theorem). If ` is a linear functional on 
the finite-dimensional inner-product space V , then there exists a unique v in V 
with `(u) = (u, v) for all u in V . 

PROOF. Uniqueness is immediate by subtracting two such expressions, since if 
(u, v) = 0 for all u, then the special case u = v gives (v, v) = 0 and v = 0. Let 
us prove existence. If ̀  = 0, take v = 0. Otherwise let S = ker ̀ . Corollary 2.15 
shows that dim S = dim V − 1, and Corollary 3.9a then shows that dim S⊥ = 1. 
Let w be a nonzero vector in S⊥. This vector w must have `(w) 6= 0 since 
S ∩ S⊥ = 0, and we let v be the member of S⊥ given by 

`(w) 
v =

kwk2 
w. 

`(u) `(u)For any u in V , we have ` 
° 
u − w

¢ 
= 0, and hence u − w is in S. Since 

`(w) `(w) 
`(u)v is in S⊥, u − w is orthogonal to v. Thus 
`(w) 

≥ `(u) ¥ ≥ `(u) `(w) ¥ `(w) kwk2 

(u, v) = w, v = w, = `(u) = `(u). 
`(w) `(w) kwk2 

w 
`(w) kwk2 

This proves existence. § 

2. Adjoints 

Throughout this section, V will denote a finite-dimensional inner-product space 
with inner product ( · , · ) and with scalars from F, with F equal to R or C. We 
shall study aspects of linear maps L : V → V related to the inner product on V . 
The starting point is to associate to any such L another linear map L∗ : V → V 
known as the “adjoint” of V , and then to investigate some of its properties.
A tool in this investigation will be the scalar-valued function on V × V given 
by (u, v) 7→ (L(u), v), which captures the information in any matrix of L 
without requiring the choice of an ordered basis. This function determines L 
uniquely because an equality (L(u), v) = (L 0(u), v) for all u and v implies 
(L(u) − L 0(u), v) = 0 for all u and v, in particular for v = L(u) − L 0(u); thus 
kL(u) − L 0(u)k2 = 0 and L(u) = L 0(u) for all u. 
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Proposition 3.13. Let L : V → V be a linear map on the finite-dimensional 
inner-product space V . For each u in V , there exists a unique vector L∗ (u) in V 
such that 

(L(v), u) = (v, L∗ (u)) for all v in V . 

As u varies, this formula defines L∗ as a linear map from V to V . 
REMARK. The linear map L∗ : V → V is called the adjoint of L . 
PROOF. The function v 7→ (L(v), u) is a linear functional on V , and Theorem

3.12 shows that it is given by the inner product with a unique vector of V . Thus 
we define L∗ (u) to be the unique vector of V with (L(v), u) = (v, L∗ (u)) for all 
v in V . 
If c is a scalar, then the uniqueness and the computation (v, L∗ (cu)) = 

(L(v), cu) = c̄(L(v), u) = c̄(v, L∗ (u)) = (v, cL∗ (u)) yield L∗ (cu) = cL∗ (u). 
Similarly the uniqueness and the computation 

(v, L∗ (u1 + u2)) = (L(v), u1 + u2) = (L(v), u1) + (L(v), u2) 
= (v, L∗ (u1)) + (v, L∗ (u2)) = (v, L∗ (u1) + L∗ (u2)) 

yield L∗ (u1 + u2) = L∗ (u1) + L∗ (u2). Therefore L∗ is linear. § 

The passage L 7→ L∗ to the adjoint is a function from HomF(V, V ) to itself that 
is conjugate linear, and it reverses the order of multiplication: (L1 L2) ∗ = L2 

∗ L∗ 
1. 

Since the formula (L(v), u) = (v, L∗ (u)) in the proposition is equivalent to the 
formula (u, L(v)) = (L∗ (u), v), we see that L∗∗ = L . 
All of the results in Section II.3 concerning the association of matrices to linear

maps are applicable here, but our interest now will be in what happens when the
bases we use are orthonormal. Recall from Section II.3 that if 0 = (u1, . . . , un)µ 

L 
∂

and 1 = (v1, . . . , vn) are any ordered bases of V , then the matrix A = 
10 ∂µ 

L(uj )associated to the linear map L : V → V has Ai j = . 
1 i 

Lemma 3.14. If L : V → V is a linear map on the finite-dimensional inner-
product space V and if 0 = (u1, . . . , un) and 1 = (v1, . . . , vn) are ordered µ 

L 
∂

orthonormal bases of V , then the the matrix A = has Ai j = (L(uj ), vi ). 10 

PROOF. Applying Theorem 3.11c, we have 
∂ ∂µ 

L(uj ) 
µP

i 0 (L(uj ), vi 0 )vi 0Ai j = = 
1 1i i∂µ 

vi 0
X X

= (L(uj ), vi 0 ) = (L(uj ), vi 0 )δi i 0 = (L(uj ), vi ). §
1

i 0 i i 0 
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Proposition 3.15. If L : V → V is a linear map on the finite-dimensional 
inner-product space V and if 0 = (u1, . . . , un) and 1 = (v1, . . . , vn) are ordered µ 

L 
∂ µ 

L∗ 
∂

orthonormal bases of V , then the matrices A = and A∗ = of L 
10 01 

and its adjoint are related by Ai j 
∗ = Aji . 

PROOF. Lemma 3.14 and the definition of L∗ give A∗ 
i j = (L∗ (vj ), ui ) = 

(vj , L(ui )) = (L(ui ), vj ) = Aji . § 

Accordingly, we define A∗ = A t for any square matrix A, sometimes calling 
A∗ the adjoint6 of A. 
A linear map L : V → V is called self-adjoint if L∗ = L . Correspondingly a 

square matrix A is self-adjoint if A∗ = A. It is more common, however, to say 
that a matrix with A∗ = A is symmetric if F = R or Hermitian7 if F = C. A 
real Hermitian matrix is symmetric, and the term “Hermitian” is thus applicable
also when F = R. 
Any Hermitian matrix A arises from a self-adjoint linear map L . Namely, 

we take V to be Fn with the usual inner product, and we let 0 and 1 each be 
the standard ordered basis 6 = (e1, . . . , en). This basis is orthonormal, and we 
define L by the matrix product L(v) = Av for any column vector v. We know that µ 

L 
∂ 

= A. Since A∗ = A, we conclude from Proposition 3.15 that L∗ = L . 
66 

Thus we are free to deduce properties of Hermitian matrices from properties of
self-adjoint linear maps.
Self-adjoint linear maps will be of special interest to us. Nontrivial examples

of self-adjoint linear maps, constructed without simply writing down Hermitian
matrices, may be produced by the following proposition. 

Proposition 3.16. If V is a finite-dimensional inner-product space and S is a 
vector subspace of V , then the orthogonal projection E : V → V of V on S is 
self-adjoint. 

PROOF. Let v = v1+v2 and u = u1+u2 be the decompositions of two members 
of V according to V = S ⊕ S⊥. Then we have (v, E∗ (u)) = (E(v), u) = 
(v1, u1 + u2) = (v1, u1) = (v, u1) = (v, E(u)), and the proposition follows by 
the uniqueness in Proposition 3.13. § 

6The name “adjoint” happens to coincide with the name for a different notion that arose in
connection with Cramer’s rule in Section II.7. The two notions never seem to arise at the same time,
and thus no confusion need occur. 

7The term “Hermitian” is used also for a class of linear maps in the infinite-dimensional case,
but care is needed because the terms “Hermitian” and “self-adjoint” mean different things in the
infinite-dimensional case. 



102 III. Inner-Product Spaces 

To understand Proposition 3.16 in terms of matrices, take an ordered or-
thonormal basis (u1, . . . , ur ) of S, and extend it to an ordered orthonormal basis 
0 = (u1, . . . , un) of V . Then 

Ω uj for j ≤ r,
E(uj ) = 

0 for j > r, 
∂µ 

E(uj )and hence equals the j th standard basis vector ej if j ≤ r and equals 0 if 
0 µ 

E 
∂

j > r . Consequently the matrix is diagonal with 1’s in the first r diagonal
00 

entries and 0’s elsewhere. This matrix is equal to its conjugate transpose, as it
must be according to Propositions 3.15 and 3.16. 

Proposition 3.17. If V is a finite-dimensional inner-product space and 
L : V → V is a self-adjoint linear map, then (L(v), v) is in R for every v 
in V , and consequently every eigenvalue of L is in R. Conversely if F = C and 
if L : V → V is a linear map such that (L(v), v) is in R for every v in V , then L 
is self-adjoint. 

REMARK. The hypothesis F = C is essential in the converse. In fact, the 90◦ 

0 1 rotation L of R2 whose matrix in the standard basis is 
≥ ¥ 

is not self-adjoint 
−1 0 

but does have L(v) · v = 0 for every v in R2. 

PROOF. If L = L∗, then (L(v), v) = (v, L∗ (v)) = (v, L(v)) = (L(v), v),
and hence (L(v), v) is real-valued. If v is an eigenvector with eigenvalue ∏, then 
substitution of L(v) = ∏v into (L(v), v) = (L(v), v) gives ∏kvk2 = ∏̄kvk2. 
Since v 6= 0, ∏ must be real. 
For the converse we begin with the special case that (L(w), w) = 0 for all w. 

For 0 ≤ k ≤ 3, we then have 

(−i)k (L(u), v)+i k(L(v), u) = (L(u+i k v), u+i kv)−(L(u), u)−(L(v), v) = 0. 

Taking k = 0 gives (L(u), v) + (L(v), u) = 0, while taking k = 1 gives 
(L(u), v) − (L(v), u) = 0. Hence (L(u), v) = 0 for all u and v. Since the 
function (u, v) 7→ L(u, v) determines L , we obtain L = 0. 
In the general case, (L(v), v) real-valued implies that (L(v), v) = (L∗ (v), v) 

for all v. Therefore ((L − L∗ )(v), v) = 0 for all v, and the special case shows 
that L − L∗ = 0. This completes the proof. § 

We conclude this section by examining one further class of linear maps having
a special relationship with their adjoints. 
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Proposition 3.18. If V is a finite-dimensional inner-product space, then the
following conditions on a linear map L : V → V are equivalent: 

(a) L∗ L = I ,
(b) L carries some orthonormal basis of V to an orthonormal basis, 
(c) L carries each orthonormal basis of V to an orthonormal basis, 
(d) (L(u), L(v)) = (u, v) for all u and v in V ,
(e) kL(v)k = kvk for all v in V . 

REMARK. A linear map satisfying these equivalent conditions is said to be 
orthogonal if F = R and unitary if F = C. 

PROOF. We prove that (a), (d), and (e) are equivalent and that (b), (c), and (d)
are equivalent.
If (a) holds and u and v are given in V , then (L(u), L(v)) = (L∗ L(u), v) = 

(I (u), v) = (u, v), and (d) holds. If (d) holds, then setting u = v shows that (e) 
holds. If (e) holds, we use polarization twice to write 

1 1(L(u), L(v)) = 
P

k 4 i
k kL(u) + i k L(v)k2 = 

P
k 4 i

k kL(u + i k v)k2 

1 vk2= 
P

k 4 i
k ku + i k = (u, v). 

Then ((L∗ L − I )(u), v) = 0 for all u and v, and we conclude that (a) holds.
Since (b) is a special case of (c) and (c) is a special case of (d), proving that (b)

implies (d) will prove that (b), (c), and (d) are equivalent. Thus let {u1, . . . , un}
be an orthonormal basis of V such that {L(u1), . . . , L(un)} is an orthonormal 
basis, and let u and v be given. Then 

(L(u), L(v)) = 
°
L
°P

i (u, ui )ui 
¢
, L

°P
j (v, uj )uj 

¢¢ 

= 
P

i, j (u, ui )(v, uj )(L(ui ), L(uj )) 

= 
P

i, j (u, ui )(v, uj )δi j = 
P

i (u, ui )(v, ui ) = (u, v), 

the last equality following from Parseval’s equality (Theorem 3.11). § 

As with self-adjointness, we use the geometrically meaningful definition for
linear maps to obtain a definition for matrices: a square matrix A with A∗ A = I 
is said to be orthogonal if F = R and unitary if F = C. The condition is that 
A is invertible and its inverse equals its adjoint. In terms of individual entries,
the condition is that 

P
k A∗ = δi j , hence that 

P
k Aki Ak j = δi j . This is the ik Akj 

condition that the columns of A form an orthonormal basis relative to the usual 
inner product on Rn or Cn . A real unitary matrix is orthogonal. 
If A is an orthogonal or unitary matrix, we can construct a corresponding

orthogonal or unitary linear map on Rn or Cn relative to the standard ordered 
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basis 6. Namely, we define L(v) = Av, and Proposition 3.15 shows that L is 
orthogonal or unitary: L∗ L(v) = A∗ Av = I v = v. Proposition 3.19 below 
gives a converse.
Let us notice that an orthogonal or unitary matrix A necessarily has | det A| = 1. 

In fact, the formula A∗ = (A)t implies that det A∗ = det A. Then 

1 = det I = det A∗ A = det A∗ det A = det A det A = | det A|2 . 

An orthogonal matrix thus has determinant ±1, while we conclude for a unitary
matrix only that the determinant is a complex number of absolute value 1. 

EXAMPLES. 
(1) The 2-by-2 orthogonal matrices of determinant +1 are all matrices of the 

cos θ sin θ 
¥

form 
≥ 

. The 2-by-2 orthogonal matrices of determinant −1 are the 
− sin θ cos θ 

0product of 
≥ 
1 

¥ 
and the 2-by-2 orthogonal matrices of determinant +1.0 −1 

(2) The 2-by-2 unitary matrices of determinant +1 are all matrices of the form ≥ 
α β 

¥ 
with |α|2 +|β|2 = 1; these may be regarded as parametrizing the points of −β̄ ᾱ

the unit sphere S3 of R4. The 2-by-2 unitary matrices of arbitrary determinant are 
the products of all matrices 

≥ 
1 0 

¥ 
and the 2-by-2 unitary matrices of determinant 0 eiθ 

+1. 

Proposition 3.19. If V is a finite-dimensional inner-product space, if 0 = 
(u1, . . . , un) and 1 = (v1, . . . , vn) are ordered orthonormal bases of V , and if 
L : V → V is a linear map that is orthogonal if F = R and unitary if F = C,µ 

L 
∂

then the matrix A = is orthogonal or unitary. 
10 

µ 
L∗ 

∂µ 
L 

∂
PROOF. Proposition 3.15 and Theorem 2.16 give A∗ A = = 

01 10 µ ∂
I , and the right side is the identity matrix, as required. §

11 

µ 
I 

∂
One consequence of Proposition 3.19 is that any matrix relative to two 

10 
ordered orthonormal bases is orthogonal or unitary, since the identity function
I : V → V is certainly orthogonal or unitary. Thus a change from writing the 
matrix of a linear map L in one ordered orthonormal basis 0 to writing the matrix 
of L in another ordered orthonormal basis 1 is implemented by the formula µ 

L 
∂ 

= C−1 

µ 
L 

∂ µ 
I 

∂
C , where C is the orthogonal or unitary matrix . 

00 11 10 
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µ 
L 

∂
Another consequence of Proposition 3.19 is that the matrix of an 

00 
orthogonal or unitary linear map L in an ordered orthonormal basis 0 is an 
orthogonal or unitary matrix. We have defined det L to be the determinant of µ 

L 
∂ 

relative to any 0, and we conclude that | det L| = 1. 
00 

3. Spectral Theorem 

In this section we deal with the geometric structure of certain kinds of linear maps
from finite-dimensional inner-product spaces into themselves. We shall see that
linear maps that are self-adjoint or unitary, among other possible conditions, have
bases of eigenvectors in the sense of Section II.8. Moreover, such a basis may
be taken to be orthonormal. When an ordered basis of eigenvectors is used for
expressing the linear map as a matrix, the result is that the matrix is diagonal.
Thus these linear maps have an especially uncomplicated structure. In terms of
matrices, the result is that a Hermitian or unitary matrix A is similar to a diagonal 
matrix D, and the matrix C with D = C−1 AC may be taken to be unitary. We 
begin with a lemma. 

Lemma 3.20. If L : V → V is a self-adjoint linear map on an inner-
product space V , then v 7→ (L(v), v) is real-valued, every eigenvalue of L is 
real, eigenvectors under L for distinct eigenvalues are orthogonal, and every 
vector subspace S of V with L(S) ⊆ S has L(S⊥) ⊆ S⊥. 

PROOF. The first two conclusions are contained in Proposition 3.17. If v1 and 
v2 are eigenvectors of L with distinct real eigenvalues ∏1 and ∏2, then 

(∏1 − ∏2)(v1, v2) = (∏1v1, v2) − (v1, ∏2v2) = (L(v1), v2) − (v1, L(v2)) = 0. 

Since ∏1 6 ∏2, we must have (v1, v2) 0. If S is a vector subspace with = = 
L(S) ⊆ S, then also L(S⊥) ⊆ S⊥ because s ∈ S and s⊥ ∈ S⊥ together imply 

0 = (L(s), s⊥) = (s, L(s⊥)). § 

Theorem 3.21 (Spectral Theorem). Let L : V → V be a self-adjoint linear 
map on an inner-product space V . Then V has an orthonormal basis of eigenvec-
tors of L . In addition, for each scalar ∏, let 

V∏ = {v ∈ V | L(v) = ∏v}, 

so that V∏ when nonzero is the eigenspace of L for the eigenvalue ∏. Then the 
eigenvalues of L are all real, the vector subspaces V∏ are mutually orthogonal, 
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and any orthonormal basis of V of eigenvectors of L is the union of orthonormal 
bases of the V∏’s. Correspondingly if A is any Hermitian n-by-n matrix, then 
there exists a unitary matrix C such that C−1 AC is diagonal with real entries. If 
the matrix A has real entries, then C may be taken to be an orthogonal matrix. 

PROOF. Lemma 3.20 shows that the eigenvalues of L are all real and that the 
vector subspaces V∏ are mutually orthogonal.
To proceed further, we first assume that F = C. Applying the Fundamental

Theorem of Algebra (Theorem 1.18) to the characteristic polynomial of L , we see 
that L has at least one eigenvalue, say ∏1. Then L(V∏1 ) ⊆ V∏1 , and Lemma 3.20 
shows that L((V∏1 )

⊥) ⊆ (V∏1 )
⊥. The vector subspace (V∏1 )

⊥ is an inner-product 
space, and the claim is that L

Ø
Ø
(V∏1 )

⊥ is self-adjoint. In fact, if v1 and v2 are in 

(V∏1 )
⊥, then 

° 
(L

Ø
Ø
(V∏1 )

⊥ ) 
∗ (v1), v2

¢ 
= 

° 
v1, L

Ø
Ø
(V∏1 )

⊥ (v2)
¢ 

= (v1, L(v2)) 

= (L(v1), v2) = 
°
L
Ø
Ø
(V∏1 )

⊥ (v1), v2
¢
, 

and the claim is proved. Since ∏1 is an eigenvalue of L , dim(V∏1 )
⊥ < dim V . 

Therefore we can now set up an induction that ultimately exhibits V as an orthog-
onal direct sum V = V∏1 ⊕ · · · ⊕ V∏k . If v is an eigenvector of L with eigenvalue 
∏0, then either ∏0 = ∏j for some j in this decomposition, in which case v is in 
V∏j , or ∏0 is not equal to any ∏j , in which case v, by the lemma, is orthogonal 
to all vectors in V∏1 ⊕ · · · ⊕ V∏k , hence to all vectors in V ; being orthogonal to 
all vectors in V , v must be 0. Choosing an orthonormal basis for each V∏j and 
taking their union provides an orthonormal basis of eigenvectors and completes
the proof for L when F = C. 
Next assume that A is a Hermitian n-by-n matrix. We define a linear map 

L : Cn → Cn by L(v) = Av, and we know from Proposition 3.15 that L is self-
adjoint. The case just proved shows that L has an ordered orthonormal basis 0 
of eigenvectors, all the eigenvalues being real. If 6 denotes the standard ordered µ 

L 
∂

basis of Cn , then D = is diagonal with real entries and is equal to 
00 

µ 
I 

∂µ 
L 

∂µ 
I 

∂ 

= C−1 AC,
06 66 60 

µ 
L 

∂
where C = . The matrix C is unitary by Proposition 3.19, and the formula 

60 
D = C−1 AC shows that A is as asserted. 
Now let us return to L and suppose that F = R. The idea is to use the 

same argument as above in the case that F = C, but we need a substitute for 
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the use of the Fundamental Theorem of Algebra. Fixing any orthonormal basis
of V , let A be the matrix of L . Then A is Hermitian with real entries. The 
previous paragraph shows that any Hermitian matrix, whether or not real, has
a characteristic polynomial that splits as a product 

Qm 
=1 (∏ − rj )mj with all rjj

real. Consequently L has this property as well. Thus any self-adjoint L when 
F = R has an eigenvalue. Returning to the argument for L above when F = C,
we readily see that it now applies when F = R. 
Finally if A is a Hermitian matrix with real entries, then we can define a self-

adjoint linear map L : Rn → Rn by L(v) = Av, obtain an orthonormal basis 
of eigenvectors for L , and argue as above to obtain D = C−1 AC , where D is 
diagonal and C is unitary. The matrix C has columns that are eigenvectors in Rn 

of the associated L , and these have real entries. Thus C is orthogonal. § 

An important application of the Spectral Theorem is to the formation of a
square root for any “positive semidefinite” linear map. We say that a linear map
L : V → V on a finite-dimensional inner-product space is positive semidefinite 
if L∗ = L and (L(v), v) ∏ 0 for all v in V . If F = C, then the condition L∗ = L 
is redundant, according to Proposition 3.17, but that fact will not be important
for us. Similarly an n-by-n matrix A is positive semidefinite if A∗ = A and 
x̄ t Ax ∏ 0 for all column vectors x . An example of a positive semidefinite n-by-n 
matrix is any matrix A = B∗ B, where B is an arbitrary k-by-n matrix. In fact, if 
x is in Fn , then x̄ t B∗ Bx = (Bx)t (Bx), and the right side is ∏ 0, being a sum of 
absolute values squared. 

Corollary 3.22. Let L : V → V be a positive semidefinite linear map on a
finite-dimensional inner-product space, and let A be an n-by-n Hermitian matrix. 
Then 

(a) L or A is positive semidefinite if and only if all of its eigenvalues are ∏ 0. 
(b) whenever L or A is positive semidefinite, L or A is invertible if and only 

if (L(v), v) > 0 for all v 6 xt Ax > 0 for all x = 0.= 0 or ¯ 6
(c) whenever L or A is positive semidefinite, L or A has a unique positive 

semidefinite square root. 

REMARKS. A positive semidefinite linear map or matrix satisfying the condi-
tion in (b) is said to be positive definite, and the content of (b) is that a positive
semidefinite linear map or matrix is positive definite if and only if it is invertible. 

PROOF. We apply the Spectral Theorem (Theorem 3.21). For each conclusion
the result for a matrix A is a special case of the result for the linear map L , and 
it is enough to treat only L . In (a), let (u1, . . . , un) be an ordered basis of eigen-
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vectors with respective eigenvalues ∏1, . . . , ∏n , not necessarily distinct. Then 
(L(uj ), uj ) = ∏j shows the necessity of having ∏j ∏ 0, while the computation 

(L(v), v) = 
°
L
°P

i (v, ui )ui 
¢
, 

P
j (v, uj )uj 

¢ 

= 
°P

i ∏i (v, ui )ui , 
P

j (v, uj )uj 
¢ 

= 
P

i ∏i |(v, ui )|2 

shows the sufficiency.
In (b), if L fails to be invertible, then 0 is an eigenvalue for some eigenvector 

v 6 0, and v has (L(v), v) = 0. Conversely if L is invertible, then all the = 
eigenvalues ∏i are > 0 by (a), and the computation in (a) yields 

(L(v), v) = 
X 

∏i |(v, ui )|2 ∏ 
° 
min∏j 

¢X 
|(v, ui )|2 = 

° 
min∏j 

¢
kvk2 ,

j ji i 

the last step following from Parseval’s equality (Theorem 3.11).
For existence in (c), the Spectral Theorem says that there exists an ordered

orthonormal basis 0 = (u1, . . . , un) of eigenvectors of L , say with respective 
eigenvalues ∏1, . . . , ∏n . The eigenvalues are all ∏ 0 by (a). The linear extension 
of the function P with P(uj ) = ∏1j 

/2uj is given by 

nX 1/2P(v) = ∏j (v, uj )uj , 
j=1 

and it has 

P2(v) = 
P

j ∏j (v, uj )uj = 
P

j (v, uj )L(uj ) = L
°P

j (v, uj )uj 
¢ 

= L(v). 

Thus P2 = L . Relative to 0, we have 
∂ 

1/2
µ 
P 

= 
° 
(P(uj ), u1)u1 + · · · + (P(uj ), un)un

¢
i = (P(uj ), ui ) = ∏j δi j ,00 i j 

and this is a Hermitian matrix; Proposition 3.15 therefore shows that P∗ = P . 
Finally 

1/2 1/2
(P(v), v) = 

°P
i ∏ (v, ui )ui , 

P
j (v, uj )uj 

¢ 
= ∏ |(v, ui )|2 ∏ 0,i i 

and thus P is positive semidefinite. This proves existence.
For uniqueness in (c), let P satisfy P∗ = P and P2 = L , and suppose P is 

positive semidefinite. Choose an orthonormal basis of eigenvectors u1, . . . , un 

of P , say with eigenvalues c1, . . . , cn , all ∏ 0. Then L(uj ) = P2(uj ) = c2j u j ,
and we see that u1, . . . , un form an orthonormal basis of eigenvectors of L with 
eigenvalues c2j . On the space where L acts as the scalar ∏i , P must therefore act 
as the scalar ∏1/2. We conclude that P is unique. §i 
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The technique of proof of (c) allows one, more generally, to define f (L) for 
any function f : R → C whenever L is self-adjoint. Actually, the function f 
needs to be defined only on the set of eigenvalues of L for the definition to make 
sense. 
At the end of this section, we shall use the existence of the square root in (c) to

obtain the so-called “polar decomposition” of square matrices. But before doing
that, let us mine three additional easy consequences of the Spectral Theorem.
The first deals with several self-adjoint linear maps rather than one, and the other
two apply that conclusion to deal with single linear maps that are not necessarily
self-adjoint. 

Corollary 3.23. Let V be a finite-dimensional inner-product space, and let 
L1, . . . , Lm be self-adjoint linear maps from V to V that commute in the sense that 
Li L j = L j Li for all i and j . Then V has an orthonormal basis of simultaneous 
eigenvectors of L1, . . . , Lm . In addition, for each m-tuple of scalars ∏1, . . . , ∏m ,
let 

V∏1,...,∏m = {v ∈ V | L j (v) = ∏j v for 1 ≤ j ≤ m}

consist of 0 and the simultaneous eigenvectors of L1, . . . , Lm corresponding to 
∏1, . . . , ∏m . Then all the eigenvalues ∏j are real, the vector subspaces V∏1,...,∏m

are mutually orthogonal, and any orthonormal basis of V of simultaneous eigen-
vectors of L1, . . . , Lm is the union of orthonormal bases of the V∏1,...,∏m ’s. Corre-
spondingly if A1, . . . , Am are commuting Hermitian n-by-n matrices, then there 
exists a unitary matrix C such that C−1 AjC is diagonal with real entries for all j . 
If all the matrices Aj have real entries, then C may be taken to be an orthogonal 
matrix. 

PROOF. This follows by iterating the Spectral Theorem (Theorem 3.21). In 
fact, let {V∏1 } be the system of vector subspaces produced by the theorem for L1. 
For each j , the commutativity of the linear maps Li forces 

L1(Li (v)) = Li (L1(v)) = Li (∏1v) = ∏1 Li (v) for v ∈ V∏1 , 

and thus Li (V∏1 ) ⊆ V∏1 . The restrictions of L1, . . . , Lm to V∏1 are self-adjoint 
and commute. Let {V∏1,∏2 } be the system of vector subspaces produced by the 
Spectral Theorem for L2

Ø
Ø
V∏1 
. Each of these, by the commutativity, is carried 

into itself by L3, . . . , Lm , and the restrictions of L3, . . . , Lm to V∏1,∏2 form a 
commuting family of self-adjoint linear maps. Continuing in this way, we arrive
at the decomposition asserted by the corollary for L1, . . . , Lm . The assertion of 
the corollary about commuting Hermitian matrices is a special case, in the same
way that the assertions in Theorem 3.21 about matrices were special cases of the
assertions about linear maps. § 
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A linear map L : V → V , not necessarily self-adjoint, is said to be normal if 
L commutes with its adjoint: LL∗ = L∗ L . 

Corollary 3.24. Suppose that F = C, and let L : V → V be a normal linear 
map on the finite-dimensional inner-product space V . Then V has an orthonormal 
basis of eigenvectors of L . In addition, for each complex scalar ∏, let 

V∏ = {v ∈ V | L(v) = ∏v}, 

so that V∏ when nonzero is the eigenspace of L for the eigenvalue ∏. Then the 
vector subspaces V∏ are mutually orthogonal, and any orthonormal basis of V of 
eigenvectors of L is the union of orthonormal bases of the V∏’s. Correspondingly 
if A is any n-by-n complex matrix such that AA∗ = A∗ A, then there exists a 
unitary matrix C such that C−1 AC is diagonal. 

REMARK. The corollary fails if F = R: for the linear map L : R2 → R2 
≥ 

0 1 
¥

with L(v) = Av and A =
−1 0 

, L∗ = L−1 commutes with L , but L has no 

eigenvectors in R2 since the characteristic polynomial ∏2 + 1 has no first-degree 
factors with real coefficients. 

PROOF. The point is that L = 
° 1
2 (L + L∗ )

¢
+ i

° 
2
1 
i (L − L∗ )

¢ 
and that 2

1 (L + L∗ ) 
1and 2

1 
i (L − L∗ ) are self-adjoint. If L commutes with L∗, then T1 = 2 (L + L∗ ) 

and T2 = 2
1 
i (L − L∗ ) commute with each other. We apply Corollary 3.23 to 

the commuting self-adjoint linear maps T1 and T2. The vector subspace Vα,β 

produced by Corollary 3.23 coincides with the vector subspace Vα+iβ defined in 
the present corollary, and the result for L follows. The result for matrices is a 
special case. § 

Corollary 3.25. Suppose that F = C, and let L : V → V be a unitary linear 
map on the finite-dimensional inner-product space V . Then V has an orthonormal 
basis of eigenvectors of L . In addition, for each complex scalar ∏, let 

V∏ = {v ∈ V | L(v) = ∏v}, 

so that V∏ when nonzero is the eigenspace of L for the eigenvalue ∏. Then the 
eigenvalues of L all have absolute value 1, the vector subspaces V∏ are mutually 
orthogonal, and any orthonormal basis of V of eigenvectors of L is the union 
of orthonormal bases of the V∏’s. Correspondingly if A is any n-by-n unitary
matrix, then there exists a unitary matrix C such that C−1 AC is diagonal; the 
diagonal entries of C−1 AC all have absolute value 1. 

PROOF. This is a special case of Corollary 3.24 since a unitary linear map L 
has LL∗ = I = L∗ L . The eigenvalues all have absolute value 1 as a consequence
of Proposition 3.18e. § 



111 3. Spectral Theorem 

Now we come to the polar decomposition of linear maps and of matrices. 
When F = C, this is a generalization of the polar decomposition z = eiθ r of 
complex numbers. When F = R, it generalizes the decomposition x = (sgn x)|x |
of real numbers. 

Theorem 3.26 (polar decomposition). If L : V → V is a linear map on a 
finite-dimensional inner-product space, then L decomposes as L = UP , where 
P is positive semidefinite and U is orthogonal if F = R and unitary if F = C. 
The linear map P is unique, and U is unique if L is invertible. Correspondingly 
any n-by-n matrix A decomposes as A = UP , where P is a positive semidefinite 
matrix and U is an orthogonal matrix if F = R and a unitary matrix if F = C. 
The matrix P is unique, and U is unique if A is invertible. 

REMARKS. As we have already seen in other situations, the motivation for the
proof comes from the uniqueness. 

PROOF OF UNIQUENESS. Let L = UP = U 0 P 0. Then L∗ L = P2 = P 02. The 
L∗ L∗∗linear map L∗ L is positive semidefinite since its adjoint is (L∗ L) ∗ = = 

L∗ L and since (L∗ L(v), v) = (L(v), L(v)) ∏ 0. Therefore Corollary 3.22c 
shows that L∗ L has a unique positive semidefinite square root. Hence P = P 0. 
If L is invertible, then P is invertible and L = UP implies that U = LP−1. The 
same argument applies in the case of matrices. § 

PROOF OF EXISTENCE. If L is given, then we have just seen that L∗ L is 
positive semidefinite. Let P be its unique positive semidefinite square root. The 
proof is clearer when L is invertible, and we consider that case first. Then we 
can set U = LP−1. Since U∗ = (P−1) ∗ L∗ = P−1 L∗, we find that U∗U = 
P−1 L∗ LP−1 = P−1 P2 P−1 = I , and we conclude that U is unitary. 
When L is not necessarily invertible, we argue a little differently with the

positive semidefinite square root P of L∗ L . The kernel K of P is the 0 eigenspace 
of P , and the Spectral Theorem (Theorem 3.21) shows that the image of P is the 
sum of all the other eigenspaces and is just K ⊥. Since K ∩ K ⊥ = 0, P is one-one 
from K ⊥ onto itself. Thus P(v) 7→ L(v) is a one-one linear map from K ⊥ into 
V . Call this function U , so that U (P(v)) = L(v). For any v1 and v2 in V , we 
have 

(L(v1), L(v2)) = (L∗ L(v1), v2) = (P2(v1), v2) = (P(v1), P(v2)), (∗) 

and hence U : K ⊥ → V preserves inner products. Let {u1, . . . , uk } be an 
orthonormal basis of K ⊥, and let {uk+1, . . . , un} be an orthonormal basis of 
K . Since U preserves inner products and is linear, {U (u1), . . . , U (uk )} is an 
orthonormal basis of U (K ⊥). Extend {U (u1), . . . , U (uk)} to an orthonormal 
basis of V by adjoining vectors vk+1, . . . , vn , define U (uj ) = vj for k + 1 ≤ 
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j ≤ n, and write U also for the linear extension to all of V . Since U carries one 
orthonormal basis {u1, . . . , un} of V to another, U is unitary. We have UP = L 
on K ⊥, and equation (∗) with v1 = v2 shows that ker L = ker P = K . Therefore 
UP = L everywhere. § 

4. Problems 

1. Let V = Mnn(C), and define an inner product on V by hA, Bi = Tr(B∗ A). The 
norm k · kHS obtained from this inner product is called the Hilbert–Schmidt 
norm of the matrix in question.
(a) Prove that kAk2 = 

P
i, j |Ai j |2 for A in V .HS 

(b) Let Ei j be the matrix that is 1 in the (i, j)th entry and is 0 elsewhere. Prove 
that the set of all Ei j is an orthonormal basis of V . 

(c) Interpret (a) in the light of (b).
(d) Prove that the Hilbert–Schmidt norm is given on any matrix A in V by 

∗kAk2 = 
P

j kAuj k2 = 
P

i, j |vi Auj |
2 ,HS 

where {u1, . . . , un} and {v1, . . . , vn} are any orthonormal bases of Cn and 
v ∗ refers to the conjugate transpose of any member v of Cn . 

(e) Let W be the vector subspace of all diagonal matrices in V . Describe 
explicitly the orthogonal complement W ⊥, and find its dimension. 

2. Let Vn be the inner-product space over R of all polynomials on [0, 1] of degree 
≤ n with real coefficients. (The 0 polynomial is to be included.) The Riesz
Representation Theorem says that there is a unique polynomial pn such that 
f 
° 1
2 

¢ 
= 

R
0
1 f (x) pn(x) dx for all f in Vn . Set up a system of linear equations 

whose solution tells what pn is. 
3. Let V be a finite-dimensional inner-product space, and suppose that L and M 

are self-adjoint linear maps from V to V . Show that LM is self-adjoint if and 
only if LM = ML . 

4. Let V be a finite-dimensional inner-product space. If L : V → V is a linear map 
with adjoint L∗, prove that ker L = (image L∗ )⊥. 

5. Find all 2-by-2 Hermitian matrices A with characteristic polynomial ∏2 +4∏+6. 
6. Let V1 and V2 be finite-dimensional inner-product spaces over the same F, the 

inner products being ( · , · )1 and ( · , · )2. 
(a) Using the case when V1 = V2 as a model, define the adjoint of a linear 

map L : V1 → V2, proving its existence. The adjoint is to be a linear map 
L∗ : V2 → V1. 
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(b) If 0 is an orthonormal basis of V1 and 1 is an orthonormal basis of V2, prove 
that the matrices of L and L∗ in these bases are conjugate transposes of one 
another. 

7. Suppose that a finite-dimensional inner-product space V is a direct sum V = 
S ⊕ T of vector subspaces. Let E : V → V be the linear map that is the identity 
on S and is 0 on T . 
(a) Prove that V = S⊥ ⊕ T ⊥. 
(b) Prove that E∗ : V → V is the linear map that is the identity on T ⊥ and is 0 

on S⊥. 
8. (Iwasawa decomposition) Let g be an invertible n-by-n complex matrix. Apply

the Gram–Schmidt orthogonalization process to the basis {ge1, . . . , gen}, where 
{e1, . . . , en} is the standard basis, and let the resulting orthonormal basis be 
{v1, . . . , vn}. Define an invertible n-by-n matrix k such that k−1 vj = ej for 
1 ≤ j ≤ n. Prove that k−1g is upper triangular with positive diagonal entries, 
and conclude that g = k(k−1g) exhibits g as the product of a unitary matrix and
an upper triangular matrix whose diagonal entries are positive. 

9. Let A be an n-by-n positive definite matrix. 
(a) Prove that det A > 0. 
(b) Prove for any subset of integers 1 ≤ i1 < i2 < · · · < ik ≤ n that the 

submatrix of A built from rows and columns indexed by (i1, . . . , ik ) is 
positive definite. 

10. Prove that if A is a positive definite n-by-n matrix, then there exists an n-by-n 
upper-triangular matrix B with positive diagonal entries such that A = B∗ B. 

11. The most general 2-by-2 Hermitian matrix is of the form A = 
≥ 
a b 

¥ 
with a andb̄ d 

d real and with b complex. Find a diagonal matrix D and a unitary matrix U 
such that D = U−1 AU . 

12. In the previous problem,
(a) what conditions on A make A positive definite? 
(b) when A is positive definite, how can its positive definite square root be

computed explicitly? 
13. Prove that if an n-by-n real symmetric matrix A has vt Av = 0 for all v in Rn , 

then A = 0. 
14. Let L : Cn → Cn be a self-adjoint linear map. Show for each x ∈ Cn that there 

is some y ∈ Cn such that (I − L)2(y) = (I − L)(x). 
15. In the polar decomposition L = UP , prove that if P and U commute, then L is 

normal. 
16. Let V be an n-dimensional inner-product space over R. What is the largest pos-

sible dimension of a commuting family of self-adjoint linear maps L : V → V ? 
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17. Let v1, . . . , vn be an ordered list of vectors in an inner-product space. The 
associated Gram matrix is the Hermitian matrix of inner products given 
by G(v1, . . . , vn) = [(vi , vj )], and det G(v1, . . . , vn) is called its Gram 
determinant. √ c1 

! 

(a) If c1, . . . , cn are in C, let c = . . . . Prove that ct G(v1, . . . , vn)c̄ = 
cn 

· + cnvnk2, and conclude that G(v1, . . . , vn) is positive semi-kc1v1 + · · 
definite. 

(b) Prove that det G(v1, . . . , vn) ∏ 0 with equality if and only if v1, . . . , vn are 
linearly dependent. (This generalizes the Schwarz inequality.)

(c) Under what circumstances does equality hold in the Schwarz inequality? 

Problems 18–23 introduce the Legendre polynomials and establish some of their 
elementary properties, including their orthogonality under the inner product hP, Qi = R 1 
−1 P(x)Q(x) dx . They form the simplest family of classical orthogonal polynomi-
als. They are uniquely determined by the conditions that the nth one Pn , for n ∏ 0,
is of degree n, they are orthogonal under h · , · i, and they are normalized so that 
Pn(1) = 1. But these conditions are a little hard to work with initially, and instead
we adopt the recursive definition P0(x) = 1, P1(x) = x , and 

(n + 1)Pn+1(x) = (2n + 1)x Pn(x) − n Pn−1(x) for n ∏ 1. 

18. (a) Prove that Pn(x) has degree n, that Pn(−x) = (−1)n Pn(x), and that Pn(1) = 
1. In particular, Pn is an even function if n is even and is an odd function if 
n is odd. 

(b) Let c(n) be the constant term of Pn if n is even and the coefficient of x if n 
is odd, so that c(0) = c(1) = 1. Prove that c(n) = − n−1 c(n−2) for n ∏ 2.n 

19. This part establishes a useful concrete formula for Pn(x). Let D = d/dx and 
X = x2−1, writing X 0 = 2x , X 00 = 2, and X 000 = 0 for the derivatives. Two parts 
of this problem make use of the Leibniz rule Dn( f g) = 

Pn ° n¢(Dn−k f )(Dkg)k=0 k
for higher-order derivatives of a product.
(a) Verify that D2(Xn+1) = (2n + 1)D(XnX 0) − n(2n + 1)X 00 Xn − 4n2 Xn−1. 
(b) By applying Dn−1 to the result of (a) and rearranging terms, show that 

Dn+1(Xn+1) = (2n + 1)X 0 Dn(Xn) − 4n2 Dn−1(Xn−1). 
(c) Put Rn(x) = (2nn!)−1 Dn(Xn) for n ∏ 0. Show that R0(x) = 1, R1(x) = x , 

and (n + 1)Rn+1(x) = (2n + 1)x Rn(x) − n Rn−1(x) for n ∏ 1. 
(d) (Rodrigues’s formula) Conclude that 2nn!Pn(x) = 

° d ¢n[(x2 − 1)n].dx 

20. Using Rodrigues’s formula and iterated integration by parts, prove that 
R 1 
−1 Pm(x)Pn(x) dx = 0 for m < n. 

Conclude that {P0, P1, . . . , Pn} is an orthogonal basis of the inner-product space 
of polynomials on [−1, 1] of degree ≤ n with inner product h · , · i. 
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21. Arguing as in the previous problem and taking for granted that 
R 
−
1
1 (1−x

2)n dx = 
2(2nn!)2 ° 

n + 1 ¢−1 
(2n+1)! , prove that hPn, Pni = .2 

22. This problem shows that Pn(x) satisfies a certain second-order differential equa-
tion. Let D = d/dx . The first two parts of this problem use the Leibniz rule
quoted in Problem 19. Let X = x2 − 1 and Kn = 2nn!, so that Rodrigues’s 
formula says that Kn Pn = Dn(Xn). 
(a) Expand Dn+1[(D(Xn))X] by the Leibniz rule. 
(b) Observe that (D(Xn))X = nXnX 0, and expand Dn+1[(nXn)X 0] by the 

Leibniz rule. 
(c) Equating the results of the previous two parts, conclude that y = Pn(x) 

satisfies the differential equation (1 − x2)y00 − 2xy0 + n(n + 1)y = 0. 

23. Let Pn(x) = 
Pn

k=0 ckxk . Using the differential equation, show that the coeffi-
cients ck satisfy k(k − 1)ck = [(k − 2)(k − 1) − n(n + 1)]ck−2 for k ∏ 2 and 
that ck = 0 unless n − k is even. 

Problems 24–28 concern the complex conjugate of an inner-product space over C. 
For any finite-dimensional inner-product space V , the Riesz Representation Theorem 
identifies the dual V 0 with V , saying that each member of V 0 is given by taking the 
inner product with some member of V . When the scalars are real, this identification
is linear; thus the Riesz theorem uses the inner product to construct a canonical
isomorphism of V onto V 0. When the scalars are complex, the identification is
conjugate linear, and we do not get an isomorphism of V with V 0. The complex
conjugate of V provides a substitute result. 
24. Let V be a finite-dimensional vector space over C. Define a new complex vector 

space V as follows: The elements of V are the elements of V , and the definition
of addition is unchanged. However, there is a change in the definition of scalar
multiplication, in that if v is in V , then the product cv in V is to equal the product 
c̄v in V . Verify that V is indeed a complex vector space. 

25. If V is a complex vector space and L : V → V is a linear map, define L : V → V 
to be the same function as L . Prove that L is linear. 

26. Suppose that the complex vector space V is actually a finite-dimensional inner-
product space, with inner product ( · , · )V . Define (u, v)V = (v, u)V . Verify 
that V is an inner-product space. 

27. With V as in the previous problem, show that the Riesz Representation Theorem
uses the inner product to set up a canonical isomorphism of V 0 with V . 

28. With V and V as in the two previous problems, let L : V → V be linear, so 
that (L) ∗ : V → V is linear. Under the identification of the previous problem 
of V with V 0, show that (L) ∗ corresponds to the contragredient Lt as defined in 
Section II.4. 
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Problems 29–32 use inner-product spaces to obtain a decomposition of polynomials
in several variables. A real-valued polynomial function p in x1, . . . , xn is said to be 
homogeneous of degree N if every monomial in p has total degree N . Let VN be 
the space of real-valued polynomials in x1, . . . , xn homogeneous of degree N . For 
any homogeneous polynomial p, we define a differential operator @(p) with constant 
coefficients by requiring that @( · ) be linear in ( · ) and that 

@k1+···+kn 

@(x1 
k1 · · · xn

kn ) = k1 kn 
. 

@x · · · @xn1 

@2 @2For example, if |x |2 stands for x1
2 + · · · + xn 

2, then @(|x |2) = 1 = 
@x1

2 + · · · + 
@xn 

2 . 
If p and q are in the same VN , then @(q)p is a constant polynomial, and we define 
hp, qi to be that constant. Then h · , · i is bilinear. 
29. (a) Prove that h · , · i satisfies hp, qi = hq, pi. 

k1 kn l1 ln(b) Prove that hx1 · · · xn , x1 · · · xn i is positive if (k1, . . . , kn) = (l1, . . . , ln) 
and is 0 otherwise. 

(c) Deduce that h · , · i is an inner product on VN . 
30. Call p ∈ VN harmonic if @(|x |2) p = 0, and let HN be the vector subspace of

harmonic polynomials. Prove that the orthogonal complement of |x |2VN−2 in 
VN relative to h · , · i is HN . 

31. Deduce from Problem 30 that each p ∈ VN decomposes uniquely as 

p = hN + |x |2hN−2 + |x |4hN−4 + · · · 

with hN , hN−2, hN−4, . . . homogeneous harmonic of the indicated degrees. 
32. For n = 2, describe a computational procedure for decomposing the element 

x1
4 + x2

4 of V4 as in Problem 31. 

Problems 33–34 concern products of n-by-n positive semidefinite matrices. They
make use of Problem 26 in Chapter II, which says that det(∏I −CD) = det(∏I − DC). 
33. Let A and B be positive semidefinite. Using the positive definite square root of 

B, prove that every eigenvalue of AB is ∏ 0. 
34. Let A, B, and C be positive semidefinite, and suppose that ABC is Hermit-

ian. Under the assumption that C is invertible, introduce the positive definite 
square root P of C . By considering P−1 ABC P−1, prove that ABC is positive 
semidefinite. 




