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CHAPTER VIII

Background for Algebraic Geometry

Abstract. This chapter introduces aspects of the algebraic theoryof systemsof polynomial equations
in several variables.
Section 1 gives a brief history of the subject, treating it as one of two early sources of questions

to be addressed in algebraic geometry.
Section 2 introduces the resultant as a tool for eliminating one of the variables in a system of

two such equations. A first form of Bezout’s Theorem is an application, saying that if f (X,Y ) and
g(X,Y ) are polynomials of respective degrees m and n whose locus of common zeros has more
than mn points, then f and g have a nontrivial common factor. This version of the theorem may be
regarded as pertaining to a pair of affine plane curves.
Section 3 passes to projective plane curves, which are nonconstant homogeneous polynomials in

three variables, two such being regarded as the same if they are multiples of one another. Versions of
the resultant and Bezout’s Theorem are valid in this context, and two projective plane curves defined
over an algebraically closed field always have a common zero.
Sections 4–5 introduce intersection multiplicity for projective plane curves. Section 4 treats a

line and a curve, and Section 5 treats the general case of two curves. The theory in Section 4 is
completely elementary, and a version of Bezout’s Theorem is proved that says that a line and a curve
of degree d have exactly d common zeros, provided the underlying field is algebraically closed,
the zeros are counted as often as their intersection multiplicities, and the line does not divide the
curve. Section 5 makes more serious use of algebraic background, particularly localizations and the
Nullstellensatz. It gives an indication that ostensibly simple phenomena in the subject can require
sophisticated tools to analyze.
Section 6 proves a version of Bezout’s Theorem appropriate for the context of Section 5: if F

and G are two projective plane curves of respective degrees m and n over an algebraically closed
field, then either they have a nontrivial common factor or they have exactlymn common zeros when
the intersection multiplicities of the zeros are taken into account.
Sections 7–10 concern Gröbner bases, which are finite generating sets of a special kind for ideals

in a polynomial algebra over a field. Section 7 sets the stage, introducing monomial orders and
defining Gröbner bases. Section 8 establishes a several-variable analog of the division algorithm for
polynomials in one variable and derives from it a usable criterion for a finite set of generators to be a
Gröbner basis. From this it is easy to give a constructive proof of the existence of Gröbner bases and
to obtain as consequences solutions of the ideal-membership problem and the proper-ideal problem.
Section 9 obtains a uniqueness theorem under the condition that the Gröbner basis be reduced.
Adjusting a Gröbner basis to make it reduced is an easy matter. A consequence of the uniqueness
result is a solution of the ideal-equality problem. Section 10 gives two theorems concerning solutions
of systems of polynomial equations. The Elimination Theorem identifies in terms of Gröbner bases
those members of the ideal that depend only on a certain subset of the variables. The Extension
Theorem, proved under the additional assumption that the underlying field is algebraically closed,
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448 VIII. Background for Algebraic Geometry

gives conditions under which a solution to the subsystem of equations that depend on all but one
variable can be extended to a solution of the whole system. The latter theorem makes use of the
theory of resultants.

1. Historical Origins and Overview

Modern algebraic geometry grew out of early attempts to solve simultaneous
polynomial equations in several variables and out of the theory of Riemann
surfaces. We shall discuss the first of these sources in the present chapter and the
second of the sources in Chapter IX.
Serious consideration of simultaneous polynomial equations of degree > 2

dates to a 1750 book1 by Gabriel Cramer (1704–1752), who may be better
known for Cramer’s rule in connection with determinants. Cramer was interested
in various aspects of the zero loci of polynomials in two variables with real
coefficients. Thinking of the zero locus, we refer to a nonconstant polynomial in
two variables as a plane curve.
One of the problems of interest to Cramer was to find the number of points in

the plane that would uniquely determine a plane curve of degree n up to a constant
multiple. Cramer gave the answer 12n(n+3) to this problem. For example, when
n = 2, if we normalize matters by taking the coefficient of x2 to be 1, then the
possible quadratic polynomials

f (x, y) = x2 + bxy + cy2 + dx + ey + f

involve five unknown coefficients. Each condition f (xi , yi ) = 0 gives a linear
condition on the coefficients, and Cramer was able to write down explicitly a
plane curve through the given points in question by introducing determinants and
applying his rule to solve the problem.
Already with this much description the reader will see a certain subtlety—that

there will be special choices of the five points for which existence or uniqueness
will fail. We could also ask about the effect of multiplicities: what does it mean
geometrically to take two or more of the points to be equal, and how does such
an occurrence affect the number of points that can be specified?
Cramer noticed a subtlety that is less easy to resolve, even in hindsight. If we

are given any two plane curves of degree 3, then Cardan’s formula says that we
can solve one equation for y in terms of x , obtaining three expressions in x ; then
we can substitute for y in the other equation each of the three expressions in x and
obtain a cubic equation in x each time. In other words, we should expect up to 9
points of intersection for two cubics, and 9 should sometimes occur. (The various

1G. Cramer, Introduction à l’Analyse des Lignes courbes algébriques, Chez les Frères Cramer
& Cl. Philibert, Geneva, 1750.
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forms of Bezout’s Theorem,which came a little later, confirm this argument.) The
number of points that determine a cubic completely is 12n(n + 3) for n = 3, i.e.,
is 9. Thus we have 9 points determining a unique cubic, and yet the second cubic
goes through these 9 points as well. What is happening? This question has come
to be known as Cramer’s paradox.
Explaining this kind of mystery became an early impetus for the development

of algebraic geometry.
The question of the number of points of intersection had been the subject of

conjecture for some time earlier, and it was expected that two plane curves of
respective total degrees m and n in some sense had mn points of intersection.
Étienne Bezout (1730–1783) took up this question and dealt with parts of it
rigorously. The quadratic case can be solved by finding one variable in terms of
the other and by substituting, but let us handle it by the method that Bezout used.
If we view each polynomial as quadratic in y and having coefficients that depend
on x , then we have a system

a0 + a1y + a2y2 = 0,

b0 + b1y + b2y2 = 0.

Instead of regarding this as a system of two equations for y, we regard it as
a system of two homogeneous linear equations for variables x0, x1, x2, where
x0 = 1, x1 = y, x2 = y2. We can get two further equations by multiplying each
equation by y:

a0y + a1y2 + a2y3 = 0,

b0y + b1y2 + b2y3 = 0,
and then we have four homogeneous linear equations for x0 = 1, x1 = y, x2 =
y2, x3 = y3. Since the system has the nonzero solution (1, y, y2, y3), the deter-
minant of the coefficient matrix must be 0. Remembering that the coefficients
depend on x , we see that we have eliminated the variable y and obtained a poly-
nomial equation for x without using any solution formula for polynomials in one
variable. The device that Bezout introduced for this purpose—the determinant of
the coefficient matrix—is called the resultant of the system and is a fundamental
tool in handling simultaneous polynomial equations. With it Bezout went on in
1779 to give a rigorous proof that when two polynomials in (x, y) are set equal
to 0 simultaneously, one of degree m and the other of degree n, then there cannot
be more than mn solutions unless the two polynomials have a common factor.
This is a first form of Bezout’s Theorem and is proved in Section 2.
In order to have a chance of obtaining a full complement of mn solutions, we

make three adjustments—allow complex solutions instead of just real solutions
(even in the case (m, n) = (2, 1) ), consider “projective plane curves” instead of
ordinary plane curves to allow for solutions at infinity (even in the case (m, n) =
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(1, 1) ), and introduce a suitable notion of intersection number of two plane curves
at a point in order to take multiplicities into account (even in the case (m, n) =
(2, 1) ). We shall allow complex solutions already in Section 2, andwe shall make
an adjustment for projective plane curves in Section 3. The issue of intersection
multiplicity is more complicated. The beginnings of a classical approach to it
are indicated in Section 4, and a somewhat more modern approach appears in
Section 5. With the full theory of intersection multiplicities of projective plane
curves in place, we obtain a general form of Bezout’s Theorem2 in Section 6.
The theory of the resultant can be extended in various ways, but we shall

largely not pursue this matter. Studies of zero loci of systems of equations took
a more geometric turn in the first part of the nineteenth century through the work
of Julius Plücker (1801–1858) and others, but these matters will be left for an
implicit discussion in Chapter X. Instead, we skip to a development that began
with the doctoral thesis of Bruno Buchberger in 1965. Buchberger was interested
in being able to decidewhen a polynomial is a member of an ideal that is specified
by a finite list of generators. For this purpose he learned that each ideal has a
special finite set of generators that is unique once certain declarations are made.
He devised an algorithm for determining such a set of generators,3 and he gave
the name “Gröbner basis” to the set, in honor of his thesis advisor.4 The special
unique such basis is called a “reduced Gröbner basis.”
Anunfortunate feature of the algorithm(and evenof later improved algorithms)

is that Gröbner bases are extraordinarily complicated to calculate. The timing
of Buchberger’s discovery was therefore especially fortuitous, coming when
computers were becoming more common, more economical, and more powerful.
Buchberger was able to give a test for membership in an ideal in terms of

a multivariable division algorithm involving any Gröbner basis. Other general
problems involving idealswere solvable aswell. Because of the uniqueness of the
reducedGröbner basis, two ideals are identical if and only if their reducedGröbner
bases are equal. When some of the theory of resultants was incorporated into
the theory of Gröbner bases, these bases could also be used to address various
questions of identifying zero loci. Other problems involving ideals could be
addressed by similar methods. The theory has flowered tremendously since its
initial discovery and by the present day has found many imaginative applications
to applied problems. Sections 7–10 give an introductory account of this important
theory.

2A correct proof of the general form of the theorem seems to have been published for the first
time by Georges-Henri Halphen (1844–1889) in 1873.

3Devising the algorithm was Buchberger’s real contribution, since the abstract existence of the
special set of generators is an easy consequence of the Hilbert Basis Theorem and had already been
used in papers of H. Hironaka in 1964.

4Wolfgang Gröbner (1899–1980). The name is often spelled out as “Groebner,” particularly
when it is used in connection with computer algorithms.
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2. Resultant and Bezout’s Theorem

Let A be a unique factorization domain. The case that A = K [X1, . . . , Xr ] for
a field K will be the main case of interest for us. If f and g are polynomials in
A[X] of the form

f (X) = f0 + f1X + · · · + fm Xm,

g(X) = g0 + g1X + · · · + gnXn,

withm and n both positive, then we letR( f, g) be the (m+n)-by-(m+n)matrix















f0 f1 · · · fm−1 fm 0 0 0 · · · 0
0 f0 · · · fm−2 fm−1 fm 0 0 · · · 0
...

. . .
. . .

...
0 · · · f0 · · · fm
g0 g1 · · · gn−1 gn 0 · · · 0
0 g0 · · · gn−2 gn−1 gn · · · 0
...

. . .
. . .

...
0 · · · g0 g1 · · · gn
















,

inwhich there aren rows above the g0 in thefirst columnand there arem remaining
rows. The resultant of f and g is the determinant

R( f, g) = detR( f, g).

Theorem 8.1. If A is a unique factorization domain and if f and g are nonzero
members of A[X] of the form f (X) =

Pm
i=0 fi X i and g(X) =

Pn
j=0 gj X j with

m > 0 and n > 0 and with at least one of fm and gn nonzero, then the following
are equivalent:

(a) f and g have a common factor of degree > 0 in X ,
(b) a f + bg = 0 for some nonzero a and b in A[X] with deg a < n and

deg b < m.
(c) R( f, g) = 0.

Regard R( f, g) as a constant polynomial in X . When R( f, g) 6= 0, there
exist unique a and b in A[X] such that a(X) f (X) + b(X)g(X) = R( f, g) with
deg a < n and deg b < m. Both the polynomials a and b are nonzero if both
f (X) and g(X) are nonconstant.
REMARKS. The theorem says that a f + bg = R( f, g) holds in every case

for which at least one of the coefficients fm and gn is nonzero. Sometimes the
theorem appears in texts with the assumption that both coefficients are nonzero;
in this connection, see Problem 5 at the end of the chapter. When R( f, g) = 0,
the theorem does not point to a useful way to identify a common factor; the
division algorithm can be used for this purpose in some circumstances, but the
use of Gröbner bases as in Section 7 will be more helpful.
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PROOF. Let us prove the equivalence of (a) and (b). Suppose that (a) holds.
If u is a nonconstant polynomial in X that divides both f and g, let us write
f = bu and g = −au. Then a f + bg = 0. Also, deg a + deg u = deg g;
since deg u > 0, deg a < deg g ≤ n. Similarly deg b < m. Thus (b) holds.
Conversely suppose that (b) holds, so that a f = −bg with a and b nonzero and
with deg a < n and deg b < m. Suppose that fm 6= 0. The equality a f = −bg
shows that f divides bg. Since deg b < m = deg f , f cannot divide b. But
A[X] is a unique factorization domain, and thus there is some prime factor p of
f of positive degree such that pk for some k divides f but not b. Then p divides
both f and g, and (a) holds. A similar argument works if gn 6= 0.
Now we prove the equivalence of (b) and (c). Let F be the field of fractions

of A. We set up a one-one correspondence between polynomials a(X) in A[X]
of degree at most n − 1 and n-dimensional row vectors ( α0 α1 · · · αn−1 )
with entries in A by the formula

a(X) = α0 + α1X + · · · + αn−1Xn−1,

and similarly we set up one-one correspondences for degrees at most m − 1 and
at most m + n − 1 by the formulas

b(X) = β0 + β1X + · · · + βm−1Xm−1,

c(X) = ∞0 + ∞1X + · · · + ∞m+n−1Xm+n−1.

Examining the form ofR( f, g), we see that the matrix equality

( α0 α1 · · · αn−1 β0 · · · βm−1 )R( f, g)
= ( ∞0 ∞1 · · · ∞m+n−1 ) (∗)

holds if and only if the polynomial equality

a(X) f (X) + b(X)g(X) = c(X). (∗∗)

holds. If (b) holds, then a f = −bg, and (∗∗) shows that c = 0. That is,
( ∞0 ∞1 · · · ∞m+n−1 ) is the 0 row vector. Interpreting (∗) as amatrix equality
over F and assuming that a and b are not both 0, we see that the transpose
of R( f, g) has a nontrivial null space. Therefore R( f, g) = detR( f, g) =
0. This proves (c). Conversely if (c) holds, then we can find row vectors
( α0 α1 · · · αn−1 ) and ( β0 β1 · · · βm−1 ) not both 0, having entries
in F , such that the left side of (∗) equals the 0 row vector. Clearing fractions, we
may assume that ( α0 α1 · · · αn−1 ) and ( β0 β1 · · · βm−1 ) have entries
in A. Referring to (∗), we obtain a f +bg = 0 with deg a at most n−1 and deg b
at most m − 1. We know that at least one of a and b is nonzero, and we have to
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see that both are nonzero. The situation is symmetric in a and b. If a were to
equal 0, then we would have bg = 0 and we could conclude that b = 0 because
g 6= 0. So we would obtain the contradiction a = b = 0. This proves (b).
For the last statementof the theorem, suppose that R( f, g) 6= 0. ThenCramer’s

rule applied over the field of fractions F of A shows that the matrix inverse of
R( f, g) is of the form

R( f, g)−1 = R( f, g)−1S( f, g),

where S( f, g) is a matrix with entries in A. Consequently the row vector

( R( f, g) 0 · · · 0 )R( f, g)−1

has entries in A, and we can define members α0, . . . , αn−1, β0, . . . , βm−1 of A by

( α0 α1 · · · αn−1 β0 · · · βm−1 )

= ( R( f, g) 0 · · · 0 )R( f, g)−1.

Then (∗) holds with ( ∞0 ∞1 · · · ∞m+n−1 ) = ( R( f, g) 0 · · · 0 ), and
the equality (∗∗) shows that a(X) f (X) + b(X)g(X) = R( f, g). If both f and
g are nonconstant, then neither a(X) nor b(X) can be 0, since otherwise the
equation would show that R( f, g) is a nonconstant polynomial. §

Theorem 8.2 (Bezout’s Theorem). Let K be any field, and let f (X,Y ) and
g(X,Y ) be nonconstant polynomials in K [X,Y ], of exact respective degrees m
and n. If the locus of common zeros of f and g in K 2 has more than mn points,
then f and g have a nonconstant common factor in K [X,Y ].

PROOF. For most of the proof, we assume that K is infinite. Arguing by
contradiction, suppose that f and g both vanish at distinct points (xi , yi ) for
1 ≤ i ≤ mn + 1, and suppose that f and g have no nonconstant common factor.
Since there are only finitely many members c of K such that yi − yj = c(xi − xj )
for some i and j with i 6= j and since K is assumed to be infinite, we can find
c in K such that yi − yj 6= c(xi − xj ) for all i and j with i 6= j . For this c,
yi − cxi 6= yj − cxj when i 6= j , and therefore the second coordinates of the
points (xi , yi − cxi ) are distinct. The common zeros of f (X,Y ) and g(X,Y )
include the points (xi , yi ), and thus the common zeros of f (X,Y + cX) and
g(X,Y + cX) include themn+1 points (xi , yi − cxi )whose second coordinates
are distinct.
In other words, there is no loss of generality in assuming that the given

polynomials f and g vanish at mn + 1 points whose second coordinates are
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distinct. Regard f (X,Y ) and g(X,Y ) as members f (X) and g(X) of A[X],
where A = K [Y ], and write

f (X) = f0 + f1X + · · · + fm0Xm0
,

g(X) = g0 + g1X + · · · + gn0Xn0
,

with each fi and gi in A and with fm0 6= 0 and gn0 6= 0. Herem0 ≤ m and n0 ≤ n.
Let us rule out the possibility thatm0 = 0 or n0 = 0. Indeed, if we hadm0 = 0,

then the polynomial f would be nonzero and would depend on Y alone. Since
f is nonzero and has degree m ∏ 1, it has at most m roots. But we are assuming
that f and g vanish at mn + 1 points whose Y coordinates are distinct, and the
inequalities m ≤ mn < mn + 1 therefore give a contradiction. Thus m0 6= 0.
Similarly n0 6= 0. So Theorem 8.1 is applicable.
Form the square matrix R( f, g) of size m0 + n0 and its determinant R( f, g).

The latter is a member of K [Y ], and Theorem 8.1 shows that it cannot be 0, since
f and g are assumed to have no nonconstant common factor in K [X,Y ].
Let us bound the degree of the member R( f, g) = detR( f, g) of K [Y ]. Each

term in the expansion of the determinant is of the form

±
Q

1≤i≤m0+n0
R( f, g)i,σ (i) (∗)

for some permutation σ of {1, . . . ,m0 + n0}. HereR( f, g)i j is given by

R( f, g)i j =






f j−i for 1 ≤ i ≤ n0 and for j with i ≤ j ≤ m0 + i,
0 for 1 ≤ i ≤ n0 and for all other j,

gj+n0−i for n0 + 1 ≤ i ≤ n0 +m0 and for j
with i ≤ n0 + j ≤ m0 + i ,

0 for n0 + 1 ≤ i ≤ n0 + m0 and for all other j.

In addition, the degree of f j−i as a member of K [Y ] is at most m − ( j − i), and
the degree of gj+n0−i is at most n − ( j + n0 − i) = (n − n0) + (i − j). Setting
j = σ(i), we see that the degree of (∗) is at most

P

1≤i≤n0
(m − σ(i) + i) +

P

n0+1≤i≤m0+n0
((n − n0) + (i − σ(i)))

= mn0 + m0(n − n0) = mn − (m − m0)(n − n0) ≤ mn.

Thus R( f, g) is a nonzero polynomial in K [Y ] of degree at most mn. Conse-
quently it has at most mn roots.
Theorem 8.1 shows that a f + bg = R( f, g) for suitable members a and b of

K [X,Y ]. Recalling that f and g are assumed to vanish at mn + 1 points whose
second coordinates are distinct, we see that R( f, g) vanishes at each of these
second coordinates, and we arrive at a contradiction.
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Now we can allow K to be finite. Let K 0 be an infinite extension. We have
just seen that f and g have a nonconstant factor in K 0[X,Y ]. Without loss
of generality, this factor depends nontrivially on X . Theorem 8.1 applied with
A = K 0[Y ] shows that R[ f, g] = 0. The same theorem with A = K [Y ]
then shows that f and g have a common factor in A[X] = K [X,Y ] depending
nontrivially on X . §

Let us introduce some geometric language for the situation in Theorem 8.2.
Affine n-space over a field K is the set of n-dimensional column vectors

An = An
Kalg =

©
(x1, . . . , xn) ∈ Kn

alg
™

with entries in a fixed algebraic closure Kalg of K . The set of K rational points,
or K points, in An is the subset

An
K =

©
(x1, . . . , xn) ∈ Kn™.

We shall comment on the appearance of Kalg in these definitions shortly.
Members of An are called points in n-dimensional affine space, and the func-

tions P 7→ xj (P) give the coordinates of the points. If L is any field between
K and Kalg, then any polynomial f in K [X1, . . . , Xn] defines a corresponding
polynomial function from An

L into L .
For algebraic geometry the case of interest for Sections 1–6 of this chapter is

the case n = 2. The way of viewing a curve is influenced by Cramer’s thinking as
discussed in Section 1: the particular polynomial that defines a curve is important,
not just the zero locus in the affine plane, but two curves are to be regarded as the
same if each is a nonzeromultiple of the other. We can incorporate this viewpoint
into algebraic language by defining an affine plane curve C over the field K to
be any nonzero proper principal ideal5 in K [X,Y ]. The curve is an affine plane
line if the degree of any generator is 1.
In practice in studying affine plane curves, there is ordinarily no need to

distinguish between a polynomial and the principal ideal that it generates, and
we shall feel free to refer to an affine plane curve C = ( f ) as f when there is no
possibility of confusion.
The zero locus of a curve is the corresponding geometric notion, but it can

readily be empty, as is the case with X2 + Y 2 + 1 when K = R. On the
other hand, the Nullstellensatz (Theorem 7.1) ensures that the zero locus will be
nonempty if the underlying field is algebraically closed. Thus we define the zero
locus V (C) = V (( f )) of the curve C = ( f (X,Y )) by6

5Warning: This definition will be changed slightly in Chapter IX and again in Chapter X to
reflect changed emphasis in those chapters.

6The letter “V ” is the letter that is commonly used in the notation for a zero locus. It stands for
“variety,” a notion that we have not yet defined. But beware: not all objects labeled with a “V ” are
actually varieties the way the term is normally defined. An affine plane curve will turn out to be a
variety exactly when the generating polynomial f is prime in Kalg[X,Y ].
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V (C) = VKalg(C) =
©
(x, y) ∈ K 2

alg | f (x, y) = 0
™
.

This is the same as the set of all (x, y) such that every member of the ideal C
vanishes at (x, y). The set of K rational points, or K points, of C is

VK (C) = VK (( f )) =
©
(x, y) ∈ K | f (x, y) = 0

™
.

When we are content to refer to an affine curve C = ( f ) as f , we are content
also to write V ( f ) in place of V (C) = V (( f )).
In Chapter X, under the assumption that K is algebraically closed, we shall

extend these definitions from the case n = 2 and C as above to the case that
n is general and C is replaced by any ideal I in K [x1, . . . , Xn]. The set V (I )
of common zeros of the members of I in Kn = Kn

alg will be called an “affine
algebraic set.” The case of affine n-space itself arises when the ideal is 0.
For general K , not necessarily algebraically closed, it ismeaningful to consider

the set VK (I ) of K rational points, i.e., the subset of common zeros lying in Kn .
For I = 0 and V (I ) = An , the distinction between VK (I ) and VKalg(I ) is hardly
worth mentioning, but the distinction is well worth making for general I and is
made for the case V (I ) = An for consistency. Although the study of sets VK (I )
is of importance in number theory, in geometry over R, and in other areas, we
shall not pursue it in Chapter X for lack of space.
Returning to Theorem8.2, we see that the statement concerns VK (C)∩VK (D),

where C and D are the principal ideals C = ( f ) and D = (g) in K [X,Y ]. The
theorem says that if VK (C) ∩ VK (D) contains more than mn points, then there is
a nonzero principal ideal h with (h) ⊆ ( f ) ∩ (g).

3. Projective Plane Curves

Section 2 dealt with intersections of affine plane curves. Even over an alge-
braically closed field, two affine plane curves need not intersect. An example is
the pair of straight lines X +Y −1 and X +Y −2, whose locus of common zeros
is empty. To get these lines to intersect, we have to introduce “points at infinity.”
The projective plane is the device for including such points.
Let K be a field, and let Kalg be an algebraic closure. The projective plane

over K is defined set theoretically as the quotient of K 3
alg−{0} by an equivalence

relation:
P2 = P2Kalg =

©
(x, y, w) ∈ K 3

alg − {0}
™±

∼,

where (x 0, y0, w0) ∼ (x, y, w) if (x 0, y0, w0) = ∏(x, y, w) for some ∏ ∈ K×
alg.

The set of K rational points, or K points, of P2 is the quotient

P2K =
©
(x, y, w) ∈ K 3 − {0}

™±
∼,
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where (x 0, y0, w0) ∼ (x, y, w) if (x 0, y0, w0) = ∏(x, y, w) for some ∏ ∈ K .
When there is a need to be careful, we shall write [x, y, w] for the member of P2K
corresponding to (x, y, w) in K 3 − {0}. But often there will not be such a need,
and we shall simply refer to (x, y, w) as a member of P2K . Both P2 and P2K have
additional structure on them, given by “affine local coordinates,” and we come to
that matter later in this section.
Let us record briefly the obvious generalization of the projective plane to other

dimensions: Projective n-space over K is defined set theoretically as the quotient
Pn = PnKalg =

©
(x1, . . . , xn+1) ∈ Kn+1

alg − {0}
™±

∼,

where (x 0
1, . . . , x

0
n+1) ∼ (x1, . . . , xn+1) if (x 0

1, . . . , x
0
n+1) = ∏(x1, . . . , xn+1) for

some ∏ ∈ K×
alg. The set PnK of K rational points of Pn is the set defined in similar

fashion using just nonzero vectors in Kn+1 and scalars in K×.
Scalar-valued functions on PnK are of little interest because they amount to

scalar-valued functions of Kn − {0} that are unchanged when (x1, . . . , xn) is
replaced by a multiple of itself. A polynomial of this kind, for example, is
necessarily constant. Instead, the polynomials of interest that are related toPnK are
“homogeneous polynomials.” Amonomial in K [X1, . . . , Xn+1] is a polynomial
of the form X j1

1 · · · X jn+1
n+1; its total degree is

Pn+1
i=1 ji . We say that a nonzero

F in K [X1, . . . , Xn+1] is homogeneous of degree d ∏ 0 if every monomial
appearing in F with nonzero coefficient has total degree d. By convention the 0
polynomial is homogeneous of every degree. We write K [X1, . . . , Xn+1]d for
the set of homogeneous polynomials of degree d. Each such F satisfies

F(∏x1, . . . , ∏xn+1) = ∏d F(x1, . . . , xn+1)
for all (x1, . . . , xn+1) ∈ Kn+1 and ∏ ∈ K×. Conversely the fact that the mapping
of polynomials into polynomial functions is one-one for an infinite field implies
that homogeneous polynomials over an infinite field can be detected by this
property.
Let us assemble some further properties of homogeneous polynomials: The

monomialsof total degreed forma K basis of thevector spaceK [X1, . . . , Xn+1]d ;
this fact follows from the definition of polynomials over K . To calculate the
dimension of K [X1, . . . , Xn+1]d , consider the problem of taking d factors X on
which to place subscripts and using n dividers to separate the X1’s from the X2’s
and so on. The number of monomials in question is just the number of ways of
selecting the n dividers from among the d + n symbols and dividers. Thus we
obtain the important formula

dimK K [X1, . . . , Xn+1]d =

µ
d + n
n

∂
.

Lemma8.3. Any polynomial factor of a homogeneous polynomial over a field
K is homogeneous.
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PROOF. Write F = F1F2 nontrivially. Let d1 and e1 be the highest and lowest
total degrees of terms in F1, and let d2 and e2 be the highest and lowest total
degrees of terms in F2. The product of the terms of total degree d1 in F1 and
the terms of total degree d2 in F2 is nonzero and is the d1d2 total-degree part
of F . The product of the terms of total degree e1 in F1 and the terms of total
degree e2 in F2 is nonzero and is the e1e2 total-degree part of F . Since F is
homogeneous, d1d2 = e1e2. It follows that d1 = e1 and d2 = e2; thus F1 and F2
are homogeneous. §

An ideal I in K [X1, . . . , Xn+1] is called a homogeneous ideal if it is the sum
over d ∏ 0 of its intersections with K [X1, . . . , Xn+1]d :

I =
∞M

d=0
(I ∩ K [X1, . . . , Xn+1]d).

The sum is to be regarded as a direct sum of vector spaces. For such an ideal, we
can compute the quotient K [X1, . . . , Xn+1]/I term by term:

K [X1, . . . , Xn+1]/I =
∞M

d=0
K [X1, . . . , Xn+1]d

±
(I ∩ K [X1, . . . , Xn+1]d).

We can often recognize a homogeneous ideal from its generators: an ideal with a
set of generators that are all homogeneous is necessarily a homogeneous ideal. In
fact, if an ideal I has homogeneous generators Fj , then the most general member
of I is a finite sum of terms Aj Fj . The terms of total degree d in Aj Fj are the
product of Fj with the terms in Aj of total degree d − deg Fj , and each such term
is in I . Hence each member of I is a sum of homogeneous polynomials that lie
in I , and the assertion follows.
In the setting of P2, projective plane curves over K are initially defined to be

nonconstant homogeneous polynomials in K [X,Y,W ]. Although such polyno-
mials are not well defined on the projective plane, their zero loci are well defined
subsets of P2. As in the affine case, the particular polynomial that defines a curve
is important, not just the zero locus, but two curves are to be regarded as the same
if each is a nonzero multiple of the other. We can incorporate this viewpoint into
algebraic language by defining a projective plane curve of degree d > 0 over
the field K to be any nonzero proper principal ideal in K [X,Y,W ] generated by a
homogeneouspolynomial of degree d. Such an ideal is necessarily homogeneous.
In the special cases that d = 1, 2, 3, or 4, the curve is called a projective line,
conic, cubic, or quartic respectively.
Just as in the affine case, in practice in studying projective plane curves,

there is often no need to distinguish between a homogeneous polynomial and
the homogeneous principal ideal that it generates, and we shall feel free to refer
to a projective plane curve C = (F) ⊆ K [X,Y,W ] as F when there is no
possibility of confusion.
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If (F) is a projective plane curve of degree d, then its zero locus is denoted by

V ((F)) = VKalg((F)) =
©
[x, y, w] ∈ P2

Ø
Ø F(x, y, w) = 0

™
.

The locus
VK ((F)) =

©
[x, y, w] ∈ P2K

Ø
Ø F(x, y, w) = 0

™

is called the set of K rational points, or K points, of the curve. When we allow
ourselves to refer to the curve simply as F , then we can write V (F) in place of
V ((F)).

The affine plane A2K = {(x, y)} has a standard one-one embedding into the
projective plane P2K . Namely we map (x, y) into [x, y, 1]. The set that is missed
by the image is the set withw = 0, which is the set of K rational points of the line
L with L(X,Y,W ) = W , a line called the line at infinity. We shall denote this
line by W . The points of VK (W ), i.e., those with w = 0, are called the points at
infinity.
Except for the line at infinity, lines in P2K correspond under restriction exactly

to lines in K 2. Namely the projective line L(X,Y,W ) = aX + bY + cW
corresponds to the affine line l(x, y) = aX + bY + c, and vice versa. In certain
ways the geometry of P2K is simpler than the geometry of A2K :

(i) Two distinct lines in P2K intersect in a unique point. In fact, we set up the
system of equations

µ
a b c
a0 b0 c0

∂√ x
y
w

!

=

µ
0
0

∂
.

Since the lines are distinct, the coefficient matrix has rank 2. Thus
the kernel has dimension 1, and there is just one point [x, y, w] in the
intersection.

(ii) Two distinct points in P2K lie on a unique line. In fact, we set up the
system of equations

µ
x y w
x 0 y0 w0

∂√ a
b
c

!

=

µ
0
0

∂

and argue in similar fashion.
Along with the embedding of A2K into P2K is a correspondence between pro-

jective curves and affine curves. Let us work with the polynomials themselves,
without identifying each polynomial with every nonzero scalar multiple of itself.
The passage from a nonzero homogeneous polynomial F(X,Y,W ) of degree
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d > 0 to a polynomial f (X,Y ) is given by f (X,Y ) = F(X,Y, 1). The mapping
F 7→ f is a substitution homomorphism, and it therefore respects products.
However, the degree may drop in the process, and in particular f (X,Y ) is a
constant if and only if F(X,Y,W ) is a multiple of Wd .
In the reverse direction if f (X,Y ) is a polynomial of degree e, then f (X,Y )

arises from a polynomial F(X,Y,W ), but we have to specify the degree d of F
and we must have d ∏ e. Operationally we obtain F by inserting a power of W
into each term of f to make the total degree of the term become d. For example,
with f (X,Y ) = Y 2 + XY + X3 if the desired degree is 3, then F(X,Y,W ) =
Y 2W+XYW+X3. On the other hand, if the desired degree is 4, then F(X,Y,W )
= Y 2W 2 + XYW 2 + X3W .
The formula for this reverse process is F(X,Y,W ) = Wd f (XW−1,YW−1).

That is, F is given by a substitution homomorphism, followed by multiplication
by a power of W . From this fact, we can read off conclusions of the following
kind:

If polynomials f (X,Y ) and g(X,Y ) are obtained from homoge-
neous polynomials F(X,Y,W ) and G(X,Y,W ) by taking W = 1,
then there exist integers r and s such that the polynomial
Wr F(X,Y,W ) + WsG(X,Y,W ) is homogeneous and such that
f (X,Y ) + g(X,Y ) is obtained from it by taking W = 1.

As we mentioned above, P2K has more structure than simply the structure of
a set. About any point in P2K we can introduce various systems of “affine local
coordinates.” The idea is to imitate what happens in the definition of a manifold:
the whole manifold is covered by charts, each giving an invertible mapping of a
set in the manifold to an open subset of Euclidean space. Here a single system
of affine local coordinates plays the role of a chart; it puts A2K into one-one
correspondence with the complement of the zero locus of a line in P2K .
Let 8 be a member of the matrix group GL(3, K ). Then 8 maps the set K 3

of column vectors in one-one fashion onto K 3 and passes to a one-one map of
P2K onto P2K called the projective transformation corresponding to8. Two8’s
give the same map of P2K if and only if they are multiples of one another. The
group action of GL(3, K ) on P2K is transitive because GL(3, K ) acts transitively
on K 3 − {(0, 0, 0)}.
If L is the projective line whose coefficients are given by the row vector

( a b c ) and if 8 is is in GL(3, K ), then the row vector ( a b c )8−1

defines a new projective line L8, and the K rational points of L8 are given by

VK (L8) = 8(VK (L)).

In fact, let
µ x

y
w

∂
be in VK (L). Then

µ
x 0

y0

w0

∂
= 8

µ x
y
w

∂
is in 8(VK (L)) and

satisfies
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( a b c )8−1

√ x 0

y0

w0

!

= 0;

hence it is inVK (L8). Conversely if
µ

x 0

y0

w0

∂
is inVK (L8), then

µ x
y
w

∂
= 8−1

µ
x 0

y0

w0

∂

satisfies

( a b c )

√ x
y
w

!

= ( a b c )8−1

√ x 0

y0

w0

!

= 0,

and thus
µ

x 0

y0

w0

∂
is 8 of something in VK (L).

To form the analog of a chart, fix [x0, y0, w0] in P2K . Choose (by transitivity)
some 8 in GL(3, K ) with 8(x0, y0, w0) = (0, 0, 1). Then we can define affine
local coordinates on 8−1(K × K × {1}) to K 2 by the one-one map

ϕ(8−1(x, y, 1)) = (x, y).

This definition generalizes the standard embedding of the affine plane K 2 into
P2K earlier; that embedding was the case 8 = 1.

EXAMPLES OF AFFINE LOCAL COORDINATES FOR P2K .

(1) Suppose (x0, y0, w0) = (x0, y0, 1). We can choose8 =

µ 1 0 −x0
0 1 −y0
0 0 1

∂
. Then

8

√ x
y
1

!

=

√ 1 0 −x0
0 1 −y0
0 0 1

!√ x
y
1

!

=

√ x − x0
y − y0
1

!

.

In this case, the local coordinates are defined on

8−1(K × K × 1) = K × K × 1

and are given by

ϕ(x, y, 1) = ϕ(8−1(8(x, y, 1)))

= ϕ(8−1(x − x0, y − y0, 1)) = (x − x0, y − y0).

This 8 is handy for reducing behavior about (x0, y0, 1) in P2K to behavior about
(0, 0) in K 2.
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(2) Suppose (x0, y0, w0) = (0, 1, 0). We can choose 8 =

µ 0 0 1
1 0 0
0 1 0

∂
. Then

8

√ x
1
w

!

=

√ 0 0 1
1 0 0
0 1 0

!√ x
1
w

!

=

√
w
x
1

!

and

ϕ(x, 1, w) = ϕ(8−1(8(x, 1, w))) = ϕ(8−1(w, x, 1)) = (w, x).

This 8 is handy for studying behavior near one of the points at infinity in P2K .

We can use affine local coordinates to examine the behavior of a projective
plane curve “near a particular point,” by which is meant “with that point as the
center point in the analysis.” To examine behavior near (0, 0, 1), we use the
correspondence f (X,Y ) = F(X,Y, 1) that we discussed earlier. For a general
point, we make use of the fact that whenever F is a homogeneous polynomial of
degreed, then so is F◦8−1. To examine thebehavior of F near a point (x0, y0, w0)
in K 3 − {(0, 0, 0)}, we choose 8 in GL(3, K ) with 8(x0, y0, w0) = (0, 0, 1),
and we define

f (X,Y ) = F(8−1(X,Y, 1)).

Under this correspondence the behavior of F at (x0, y0, w0) is reflected in the
behavior of f at (0, 0). We call f (X,Y ) the local expression for F in the affine
local coordinates determined by 8. This local expression is a polynomial in
K [X,Y ], and it is nonconstant unless F is a scalar multiple of (W ◦ 8)d for
some d.

EXAMPLES, CONTINUED.

(1) Suppose that (x0, y0, w0) = (x0, y0, 1) and that 8 =

µ 1 0 −x0
0 1 −y0
0 0 1

∂
. Compu-

tation gives

8−1

√ x
y
1

!

=

√ x + x0
y + y0
1

!

,

and the corresponding local expression for a projective plane curve F is

f (X,Y ) = F(X + x0,Y + y0, 1).

For the projective plane curve

F(X,Y,W ) = X2Y + XYW + W 3

and the same8, the local expression f (X,Y ) splits into homogeneous terms as
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f (X,Y ) = (x20 y0 + x0y0 + 1) + (x20Y + 2x0y0X + x0Y + y0X)

+ (y0X2 + 2x0XY + XY ) + (X2Y ).

We shall use this splitting in the next section in the first example of intersection
multiplicity.

(2) Suppose that (x0, y0, w0) = (0, 1, 0) and that 8 =

µ 0 0 1
1 0 0
0 1 0

∂
. Then

8−1

√ x
y
1

!

=

√ y
1
x

!

,

and the local expression for a projective plane curve F relative to this 8 is

f (X,Y ) = F(Y, 1, X).

For the same projective plane curve F as in Example 1, namely

F(X,Y,W ) = X2Y + XYW + W 3,

we obtain
f (X,Y ) = (Y 2 + XY ) + (X3).

We shall examine this example further in the next section.

In this way we have associated to each projective plane curve F and to the
system of affine local coordinates determined by amember8 of GL(3, K ) a local
expression that is a nonzero polynomial in K [X,Y ]. Conversely if the degree
d and the member 8 of GL(3, K ) are given and if f in K [X,Y ] is nonzero of
degree at most d, then we can reconstruct a projective plane curve F of degree
d whose local expression relative to 8 is f . We have only to form the unique
homogeneous polynomial G of degree d with f (X,Y ) = G(X,Y, 1) and then
put F = G ◦ 8.

With these preparations in place, we return to a consideration of resultants and
Bezout’s Theorem. Our objective is to rephrase Theorem 8.2 to take advantage
of properties of the projective plane.

Lemma8.4. Let K be a field, let A be the polynomial ring A = K [x1, . . . , xr ],
and let f and g be members of A[X] of the form

f (X) = f0 + f1X + · · · + fm Xm,

g(X) = g0 + g1X + · · · + gnXn,

where f j is a member of A homogeneous of degreem0 − j and gj is a member of
A homogeneous of degree n0 − j . Then the resultant R( f, g) is a homogeneous
member of A of degree mn0 + m0n − mn.
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REMARKS. In the application to proving Theorem 8.5, we will have m0 = m
and n0 = n, and then R( f, g) is homogeneous of degree mn. Problem 8 at the
end of the chapter concerns a situation for which m0 6= m and n0 6= n.

PROOF. There is no loss of generality in assuming thatK is algebraicallyclosed,
hence in particular is infinite. Each nonzero entryR( f, g)i j ofR( f, g) is a coeffi-
cient of f or of g. For each entry, define p(i, j) such thatR( f, g)i j (t x1, . . . , t xr )
= t p(i, j)R( f, g)i j (x1, . . . , xr ). The assembledmatrixRwith powers of t in place
is 







tm0 f0 tm0−1 f1 · · · tm0−m fm · · ·
0 tm0 f0 · · ·
...

. . .

tn0g0 tn0−1g1 · · · tn0−ngn · · ·
0 tn0g0 · · ·









. (∗)

It turns out that there is a function q(i) such that r( j) = q(i) + p(i, j) depends
only on j . Here tq(i) is the i th entry of

(tn
0
, tn

0−1, . . . , tn
0−n+1; tm

0
, tm

0−1, . . . , tm
0−m+1).

The matrix (∗) with tq(i) multiplying every entry of the i th row is









tn0 tm0 f0 tn0 tm0−1 f1 · · · tn0 tm0−m fm · · ·
0 tn0−1tm0 f0 · · ·
...

. . .

tm0 tn0g0 tm0 tn0−1g1 · · · tm0 tn0−ngn · · ·
0 tm0−1tn0g0 · · ·









. (∗∗)

In (∗∗), tr( j) is the j th entry of (tm0+n0
, tm0+n0−1, . . . , tm0+n0−m−n+1). Then we

have
tu R( f, g)(t x1, . . . , t xr ) = tvR( f, g)(x1, . . . , xr ),

where u =
P

i q(i) and v =
P

j r( j). So

R( f, g)(t x1, . . . , t xr ) = tv−u R( f, g)(x1, . . . , xr ).

In other words, R( f, g) is a homogeneous function. Since K is infinite, R( f, g)
is homogeneous as a member of A. Computing u and v, we find that u =
mm0+nn0− 1

2m(m−1)− 1
2n(n−1) andv = (m+n)(m0+n0)− 1

2 (m+n)(m+n−1).
Therefore v − u = mn0 +m0n −mn, and the degree of homogeneity of R( f, g)
is mn0 + m0n − mn. §
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Theorem 8.5 (Bezout’s Theorem). Let K be a field, let Kalg be an algebraic
closure, and suppose that F in K [X,Y,W ]m andG in K [X,Y,W ]n are projective
plane curves. Then their locus V (F) ∩ V (G) of common zeros in P2Kalg is
nonempty. If this zero locus has more than mn points, then F and G have as a
common factor some homogeneous polynomial in (X,Y,W ) of positive degree.

REMARKS. For two polynomials f (X,Y ) and g(X,Y ) in affine space, applica-
tion of Theorem 8.1 concerning the resultant in the Y variable involves checking
that at least one of the polynomials has the expected degree in the Y variable, and
doing so may not be so easy. In the projective setting, this problem disappears
if we apply a projective transformation and arrange that [0, 0, 1] not be on the
zero locus of one of the given polynomials, say F(X,Y,W ). In fact, if F is in
K [X,Y,W ]m , then the coefficient of Wm has to be a constant, and this term is
the only term of F that contributes to the value of F at (0, 0, 1). With the above
adjustment the coefficient must be nonzero, and Theorem 8.1 is applicable.

PROOF. Without loss of generality, we may assume throughout that K is
algebraically closed. Write F and G in the form

F(X,Y,W ) = f0 + f1W + · · · + fmWm with f j ∈ K [X,Y ]m− j ,

G(X,Y,W ) = g0 + g1W + · · · + gnWn with gj ∈ K [X,Y ]n− j .
(∗)

Pick a point (x, y, w) atwhich F is nonzero, andmove it to (0, 0, 1)by a projective
transformation, so that F(0, 0, 1) 6= 0. Regarding F and G as polynomials inW ,
with coefficients in A = K [X,Y ], we form R(F,G), which Lemma 8.4 identifies
as a member of K [X,Y ]mn .
Since R(F,G) is homogeneous as a member of K [X,Y ] and since K is alge-

braically closed, we can choose a point (x0, y0) 6= (0, 0) with R(F,G)(x0, y0)
= 0. Then the resultant of F(x0, y0,W ) and G(x0, y0,W ) is 0, and Theo-
rem 8.1 applies because F(x0, y0,W ) has degree m in W . The theorem says
that these two polynomials in W have a common factor. Since K is alge-
braically closed, this common factor vanishes at some w0, and then we must
have F(x0, y0, w0) = G(x0, y0, w0) = 0. This proves the first conclusion.
For the second conclusion, suppose that V (F)∩V (G) containsmn+1 points.

Join these points by lines, and pick a point of P2K that is not on any of the lines.
We can do so because K , being algebraically closed, is infinite. Applying a
projective transformation, we may assume that the point is [0, 0, 1]. Write F and
G in the form (∗). Regarding F and G as polynomials in W , with coefficients in
A = K [X,Y ], we again form R(F,G), which Lemma 8.4 identifies as a member
of K [X,Y ]mn . For fixed (x0, y0), Theorem 8.1 says that R(F,G)(x0, y0) = 0 if
and only if F(x0, y0,W ) and G(x0, y0,W ) have a common factor (necessarily a
common factor of the form W − w0 because K is algebraically closed), if and
only if F(x0, y0, w0) = G(x0, y0, w0) = 0 for somew0. So at each of ourmn+1
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points, say (xi , yi , wi ), we have R(F,G)(cxi , cyi ) = 0 for all scalars c. Since
(xi , yi ) 6= (0, 0), R(F,G) vanishes on the line yi X − xiY = 0. Consequently
yi X − xiY divides R(F,G) in K [X,Y ].
Suppose that (xi , yi ) is a multiple of (xj , yj )with i 6= j . Then (xi , yi , wi ) and

(xj , yj , wj ) both satisfy yi X−xiY = 0. Since (0, 0, 1) satisfies this also and since
(0, 0, 1) is not to be on any of the connecting lines, we obtain a contradiction.
Thus themn+1 factors yi X−xiY are nonassociate primes in K [X,Y ] dividing

R(F,G). By unique factorization for K [X,Y ], their product divides R(F,G).
Since deg R(F,G) = mn, we conclude that R(F,G) = 0. Then Theorem
8.1 shows that F and G have a nonconstant common factor in K [X,Y ][W ] =
K [X,Y,W ]. The common factor is homogeneous by Lemma 8.3, and the second
conclusion is proved. §

4. Intersection Multiplicity for a Line with a Curve

In this sectionwe begin the topic of “intersectionmultiplicity” for projective plane
curves. The idea is that the number of points in the intersection V (F) ∩ V (G) in
Bezout’s Theorem as formulated in Theorem 8.5 should actually equal mn, not
merely be bounded above bymn, if the field is algebraically closed and the points
are counted according to their “multiplicities,” whatever that might mean.
The prototype is the factorization of a polynomial of degree n in one variable.

The polynomial has at most n roots, and it has exactly n if the field is algebraically
closed and each root is counted according to its multiplicity. In this case, as we
well know, a root z0 of f (z) has multiplicity k if (z− z0)k is the largest power of
z − z0 that divides f (z).
Our objective in this section is to develop a notion of intersection multiplicity

for the case of a line and a curve at a point; the case of two curves is less
intuitive and is postponed to the next section. The main result is to be that the
sum of the intersection multiplicities at all points for a line and a projective
plane curve equals the degree of the curve, provided that the underlying field is
algebraically closed and that the line does not divide the curve. The statement
in the previous paragraph about polynomials in one variable will amount to a
special case; for this special case the projective line is Y , the projective curve is
of the formWd−1Y − F(X,W ), where F is homogeneous of degree d and where
f (X) = F(X, 1), and the divisibility proviso is that F not be the 0 polynomial,
i.e., that f (z) not be identically 0.
Let K be a field, let L be in K [X,Y,W ]1, and let F be in K [X,Y,W ]d .

The notation for intersection multiplicity will be I (P, L ∩ F), where P =
(x0, y0, w0) is in VK (F) ∩ VK (L). To make the definition, we introduce affine
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local coordinates. Choose 8 in GL(3, K ) with 8(x0, y0, w0) = (0, 0, 1), and
form the corresponding local expressions

f (X,Y ) = F(8−1(X,Y, 1)) = f1(X,Y ) + · · · + fd(X,Y ),

l(X,Y ) = L(8−1(X,Y, 1)).

Here f j is the part of f that is homogeneous of degree j . Since l(0, 0) = 0,
we see that l(X,Y ) = bX − aY for some constants a and b not both 0. Then
ϕ(t) =

≥
at
bt

¥
, for t ∈ K , is a parametrization of the locus in A2K on which

l(x, y) = 0. The composition f (ϕ(t)) is a polynomial in t with f (ϕ(0)) = 0. In
fact,

f (ϕ(t)) = f1(at, bt) + f2(at, bt) + · · · + fd(at, bt)

= t f1(a, b) + t2 f2(a, b) + · · · + td fd(a, b).

There are two possibilities. If f ◦ ϕ is not the 0 polynomial, then f (ϕ(t))
has a zero of some finite order at t = 0, and this order is defined to be the
intersection multiplicity, or intersection number, I (P, L ∩ F). If f ◦ ϕ is the
0 polynomial, then we say that I (P, L ∩ F) = +∞. It will be convenient to
define I (P, L ∩ F) = 0 if P is not in VK (L) ∩ VK (F). We need to check that
I (P, L∩F) does not depend on the choice of8, but we postpone this verification
until after we consider two examples.

EXAMPLES OF INTERSECTION MULTIPLICITY.
(1) Example 1 in the previous section showed that relative to a suitable 8 in

GL(3, K ), the projective plane curve

F(X,Y,W ) = X2Y + XYW + W 3

has local expression f (X,Y ) about P = (x0, y0, 1) given by

f (X,Y ) = (x20 y0 + x0y0 + 1) + (x20Y + 2x0y0X + x0Y + y0X)

+ (y0X2 + 2x0XY + XY ) + (X2Y )

= f0 + f1(X,Y ) + f2(X,Y ) + f3(X,Y ).

For a line L , the intersectionmultiplicity I (P, L∩F) is 0 unless P lies in VK (F),
i.e., unless f0 = x20 y0 + x0y0 + 1 = 0. Suppose that the line L is given by

L(X,Y,W ) = αX + βY + ∞W,

with local expression

l(X,Y ) = L(X + x0,Y + y0, 1) = (αx0 + βy0 + ∞ ) + (αX + βY ).
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Here α and β are not both 0. The intersectionmultiplicity I (P, L∩F) is 0 unless
P lies also in VK (L), i.e., unless αx0 + βy0 + ∞ = 0. Thus suppose that P lies
in VK (L) ∩ VK (F). Then we can parametrize the locus for which l(x, y) = 0 by≥
x
y

¥
= ϕ(t) =

≥
−βt

αt

¥
, and we obtain

f1(ϕ(t)) = f1(−βt, αt) = t (x20α − 2x0y0β + x0α − y0β),

f2(ϕ(t)) = f2(−βt, αt) = t2(y0β2 − 2x0αβ + αβ).

One point lying in VK (F) is P = (x0, y0, 1) =
°
1,− 1

2 , 1
¢
, and P lies also

in VK (L) if α − 1
2β + ∞ = 0, i.e., if ∞ satisfies ∞ = 1

2β − α. Then we
have f1(ϕ(t)) = t (2α + 3

2β) and f2(ϕ(t)) = t2(− 1
2β

2 − αβ). Consequently,
I (P, L ∩ F) is∏ 1 if and only if ∞ = 1

2β −α. In this case, I (P, L ∩ F) is∏ 2 if
and only if 2α + 3

2β = 0, i.e., if α = − 3
4β. When both conditions are satisfied,

we have f2(ϕ(t)) = t2(− 1
2β

2 − αβ) = t2( 14β
2), and this is not the 0 function

because under these conditions, β = 0 would imply that (α, β, ∞ ) = (0, 0, 0);
hence I (P, L ∩ F) = 2.
(2) Example 2 in the previous section considered the point P = (x0, y0, w0) =

(0, 1, 0) for the same F , namely F(X,Y,W ) = X2Y + XYW + W 3. This P
lies in VK (F). For a suitable 8, the earlier computations showed that the local
expression for F is

f (X,Y ) = (Y 2 + XY ) + (X3).

The most general line L for which P lies in VK (L) is αX + ∞W = 0, and the
corresponding local expression is

l(X,Y ) = L(Y, 1, X) = αY + ∞ X.

We use the parametrization ϕ(t) = (−αt, ∞ t) for L and obtain

f (ϕ(t)) = t2(∞ 2 − α∞ ) + t3(−α3).

By inspection we see that I (P, L ∩ F) ∏ 2 for all choices of α and ∞ , and that
I (P, L ∩ F) ∏ 3 if and only if ∞ = 0 or ∞ = α. If ∞ = 0 or ∞ = α, then α3

cannot be 0, and thus I (P, L ∩ F) = 3.

Let us return to the verification that I (P, L∩F) does not depend on the choice
of8. Thus suppose that9 is another member of GL(3, K )with9(x0, y0, w0) =
(0, 0, 1). Write

9 ◦ 8−1 =

√
α β 0
∞ δ 0
r s 1

!

,
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form the local expressions

f 0(X,Y ) = F(9−1(X,Y, 1)) = f 0
1(X,Y ) + · · · + f 0

d(X,Y ),

l 0(X,Y ) = L(9−1(X,Y, 1)) = b0X − a0Y,

and parametrize the locus in A2K with l 0(x, y) = 0 by
µ
x
y

∂
= ϕ0(t) =

µ
a0t
b0t

∂
.

We need a lemma.

Lemma 8.6. In the above notation, f (X,Y ) equals

(r X + sY + 1)d−1 f 0
1(αX + βY, ∞ X + δY )

+ (r X + sY + 1)d−2 f 0
2(αX + βY, ∞ X + δY )

+ · · · + f 0
d(αX + βY, ∞ X + δY ),

and therefore
f1(X,Y ) = f 0

1(αX + βY, ∞ X + δY ).

PROOF. For the first conclusion, let us justify the following computation:

f (X,Y ) = (F ◦ 9−1)(9 ◦ 8−1)(X,Y, 1)

= (F ◦ 9−1)(αX + βY, ∞ X + δY, r X + sY + 1)

= (F ◦ 9−1)
≥
(r X + sY + 1)

°
αX+βY
r X+sY+1 ,

∞ X+δY
r X+sY+1 , 1

¢¥

= (r X + sY + 1)d f 0° αX+βY
r X+sY+1 ,

∞ X+δY
r X+sY+1

¢

= (r X + sY + 1)d( f 0
1 + · · · + f 0

d)
°

αX+βY
r X+sY+1 ,

∞ X+δY
r X+sY+1

¢

= (r X + sY + 1)d−1 f 0
1(αX + βY, ∞ X + δY )

+ (r X + sY + 1)d−2 f 0
2(αX + βY, ∞ X + δY )

+ · · · + f 0
d(αX + βY, ∞ X + δY ).

In fact, the first three lines are valid if we make the computation in the field of
fractions K (X,Y ), the fourth line uses the homogeneity of F and a substitution
homomorphism that evaluates members of K [X,Y,W ] at points of K (X,Y,W ),
and the remaining lines use the homogeneity of f 0

1, . . . , f
0
d and a substitution

homomorphism that evaluates their arguments at points of K (X,Y ).
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This proves the first conclusion. To derive the second conclusion from it, we
expand each of the coefficients on the right side and group terms of the same
degree of homogeneity under (X,Y ) 7→ (∏X, ∏Y ). The only term whose degree
of homogeneity is 1 is f 0

1(αX+βY, ∞ X+δY )with a coefficient 1 coming from the
expansionof (r X+sY+1)d−1; all other termshave higher degree of homogeneity.
When f (X,Y ) on the left side is expanded as a sumof homogeneouspolynomials,
the term of degree 1 is f1(X,Y ). The second conclusion follows. §

Continuing with the verification that I (P, L ∩ F) does not depend on the
choice of 8, we apply Lemma 8.6 to L in place of F , and we obtain

l(X,Y ) = l 0(αX + βY, ∞ X + δY ).

Since l(X,Y ) = bX − aY and l 0(X,Y ) = b0X − a0Y , this equation shows that

b = b0α − a0∞ and − a = b0β − a0δ.

Putting1 = αδ − β∞ , we solve for a0 and b0 and obtain

αa + βb = 1a0 and ∞ a + δb = 1b0.

When x = at and y = bt , we thus have

αx + βy = αat + βbt = t1a0 and ∞ x + δy = ∞ at + δbt = t1b0.

Substituting these formulas into the first conclusion of Lemma 8.6 and using the
homogeneity of each f 0

j gives

f (ϕ(t)) = (art + bst + 1)d−1t1 f 0
1(a

0, b0)

+ (art + bst + 1)d−2t212 f 0
2(a

0, b0) + · · · + td1d f 0
d(a

0, b0).

If j is the smallest index for which f 0
j (a0, b0) 6= 0, then the lowest power of

t remaining on the right side after expansion of the coefficients is t j , and its
coefficient is1 j f 0

j (a0, b0). Thus we can conclude that the lowest power of t with
nonzero coefficient on the left side is t j , and its coefficient f j (a, b) must equal
1 j f 0

j (a0, b0). The equality of the lowest power of t remaining on each side shows
that I (P, L ∩ F) is the same when computed from f as when computed from f 0,
and we obtain as a bonus the formula f j (a, b) = 1 j f 0

j (a0, b0) if t j is that power.
This completes the verification that I (P, L ∩ F) does not depend on the choice
of 8.

Now we come back to the circle of ideas around Bezout’s Theorem. The first
task is to clarify the meaning of infinite intersection multiplicity.
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Proposition 8.7. Over the field K if a projective line L and a projective plane
curve F meet at a point P in P2K , then I (P, L ∩ F) = +∞ if and only if L
divides F .

PROOF. If L divides F , then in the above notation the local expression l(X,Y )
divides f (X,Y ). Since l(ϕ(t)) is the 0 polynomial, so is f (ϕ(t)).
Conversely suppose that f (ϕ(t)) is the 0 polynomial, so that fr (a, b) = 0 for

all r with 1 ≤ r ≤ d = deg F . Without loss of generality, suppose b 6= 0. The
equality

0 = fr (a, b) = c0ar + c1ar−1b + · · · + crbr

= br
°
c0(ab−1)r + c1(ab−1)r−1 + · · · + cr

¢

says that Z − ab−1 is a factor of br (c0Zr + c1Zr−1 + · · · + cr ). If we write

br (c0Zr + c1Zr−1 + · · · + cr ) = (Z − ab−1)u(Z)

and take Z = XY−1, then

br fr (X,Y ) = brY r
°
c0(XY−1)r + c1(XY−1)r−1 + · · · + cr

¢

= Yr (XY−1 − ab−1)u(XY−1) = b−1l(X,Y )
°
Yr−1u(XY−1)

¢
.

Hence l(X,Y ) divides fr (X,Y ) for all r . It follows that l(X,Y ) divides f (X,Y )
and then that L divides F . §

The full-strength version of Bezout’s Theorem says that two projective plane
curves F and G of degrees m and n meet in at most mn points even when
multiplicities are counted, and that the number is equal tomn if K is algebraically
closed and multiplicities are counted. This theorem will be proved in Section 6.
For the time being, we shall limit ourselves to the special case of the full-strength
theorem in which one of the curves is a line.

Theorem 8.8 (Bezout’s Theorem). Let K be an algebraically closed field. If
F is a projective plane curve over K of degree d and if L is a projective line such
that L does not divide F , then

P
P I (P, L ∩ F) = d.

PROOF. First we show that
P

P
I (P, L ∩ F) < +∞. (∗)

Since L is assumed not to divide F , Proposition 8.7 shows that I (P, L ∩ F)
is finite at every point of VK (L) ∩ VK (F). Thus

P
P I (P, L ∩ F) is finite if
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there are only finitely many points in VK (L) ∩ VK (F). Bezout’s Theorem in the
form of Theorem 8.5 shows that either VK (L) ∩ VK (F) is finite or else L and
F have as a common factor some homogeneous polynomial of positive degree.
Since L has degree 1, L is prime, and thus L and F can have a common factor of
positive degree only if L divides F . We are assuming the contrary, and therefore
VK (L) ∩ VK (F) is finite. This proves (∗).
Possibly by applying a projective transformation, we may assume7 that the

given line L is the line at infinity W . Then the points Pj with I (Pj ,W ∩ F) > 0
are of the form [xj , yj , 0]. Taking into account that the algebraically closed field
K is necessarily infinite, we can apply a second projective transformation, one
that translates the Y variable, and assume that no yj is 0. Then we can write
Pj = [rj , 1, 0] with rj in K . Let us see that

H(X) = F(X, 1, 0) is a nonzero polynomial of degree exactly d. (∗∗)

In fact, F(X,Y,W ) is homogeneous of degree d, and we have arranged that
[1, 0, 0], which certainly lies in VK (W ), is not in VK (F). Consequently the Xd

term in F(X,Y,W ) has nonzero coefficient, and (∗∗) follows.
Next let us prove that

I
°
(r, 1, 0),W ∩ F

¢
= multiplicity of r as a root of H(X) = F(X, 1, 0). (†)

Then it will follow that
P

P I (P,W ∩ F) equals the number of roots of
H(X) = F(X, 1, 0), each counted as many times as its multiplicity. In view
of (∗∗) and the fact that K is algebraically closed, we will then have proved thatP

P I (P,W ∩ F) = d, as required.
To prove (†), we introduce affine local coordinates about (r, 1, 0), using8−1 =µ 1 0 r
0 0 1
0 1 0

∂
, so that 8(r, 1, 0) = (0, 0, 1). The local versions f of F and l of W

relative to this 8 are

f (X,Y ) = F(8−1(X,Y, 1)) = F(X + r, 1,Y ),

l(X,Y ) = W (8−1(X,Y, 1)) = Y.

Hence l(X,Y ) is of the form bX−aY with a = −1 and b = 0. If we parametrize
l by ϕ(t) = (at, bt) = (−t, 0), then

f (ϕ(t)) = f (−t, 0) = F(−t + r, 1, 0).

7If P and P 0 are distinct points in P2K , then there exists a projective transformation carrying P
to [1, 0, 0] and P 0 to [0, 1, 0]. This transformation carries the unique line through P and P 0 to the
line at infinity.
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The order of vanishing of f (ϕ(t)) at t = 0, which is I
°
[r, 1, 0],W ∩ F

¢
, thus

equals the order of the zero of F(−t + r, 1, 0) at t = 0, which equals the
multiplicity of r as a root of H(X) = F(X, 1, 0). This proves (†), and the
theorem follows. §

5. Intersection Multiplicity for Two Curves

In this section we continue the topic of “intersection multiplicity” begun in Sec-
tion 4. That section dealt with intersection multiplicity for the special case of a
projective line and a projective plane curve, and the present section deals with
the general case of two projective plane curves. The next section will use the
general notion to address Bezout’s Theorem in full generality. In this section and
the next we shall make occasional use of material from Chapter VII, especially
Lemma 7.21 and the results in Section VII.1.
It is worth reviewing qualitatively what happened in Section 4. What we

did was refer the given line and curve to affine space, parametrize the line in a
natural way, and substitute the parametrization into the formula for the curve to
obtain a scalar-valued function of one variable. The order of vanishing of the
resulting scalar-valued function of one variable was defined to be the intersection
multiplicity. The classical approach8 for handling two curves proceeds by trying
to generalize this construction, in effect parametrizing one curve and substituting
into the other. The fact that there need be no natural parametrization of either
of the curves leads to a number of complications, and ultimately the argument
involves a complicated ring of power series.
We shall follow a somewhat more modern approach9 based on localizations.10

The definition is not particularly intuitive, and it is necessary to study some
examples to see its virtues. We give the definition, show that the definition is
consistent with the definition in the special case of Section 4, check that the
definition makes sense in general, state some properties that are useful in making
computations, work out an example, and then verify the properties. Thus let F
and G be homogeneous polynomials in (X,Y,W ) of respective degreesm and n,
and let P = [x0, y0, w0] be a point of the projective plane P2K over a field K . We
refer matters back to affine space in the usual way by letting 8 be any member
of GL(3, K ) such that 8(x0, y0, w0) = (0, 0, 1). The local expressions from 8

8An account appears in Walker, Chapter IV.
9See Fulton, Chapter 3, for the present section and Fulton, Chapter 5, for the next section.
10For a stillmoremodern andmore general approach, see Serre’sAlgèbre Locale. Serre’s opening

sentence summarizes matters by saying, “Intersection multiplicities in algebraic geometry are equal
to certain ‘Euler–Poincaré characteristics’ formedbymeans of theTor functors ofCartan–Eilenberg.”
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about (0, 0) corresponding to F and G are the polynomials f and g with

f (X,Y ) = F(8−1(X,Y, 1)),

g(X,Y ) = G(8−1(X,Y, 1)).

These polynomials break into homogeneous parts as

f (X,Y ) = f0 + f1(X,Y ) + · · · + fm(X,Y ),

g(X,Y ) = g0 + g1(X,Y ) + · · · + gn(X,Y ),

with f j and gj homogeneous of degree j in the pair (X,Y ). We assume that P
lies on the locus VK (F)∩VK (G) of common zeros of F andG, and the condition
for this to happen is that f0 = g0 = 0. The order of vanishing mP(F) of F at
P is the first j for which f j is not the zero polynomial; we saw as a consequence
of Lemma 8.6 that this quantity is well defined independently of the choice of8.
The intersection multiplicity I (P, F ∩G) of F and G at P can be defined in

either of two equivalent ways. The equivalence of the two definitions will be used
repeatedly in the discussion and follows from the fact that localization commutes
with passage to the quotient by an ideal, a fact that was proved as Lemma 7.21.
One definition is

I (P, F ∩ G) = dimK
°°
K [X,Y ]/( f, g)

¢
(0,0)

¢
,

where
°
K [X,Y ]/( f, g)

¢
(0,0) is the localization at (0, 0) of the K algebra

K [X,Y ]/( f, g). That is, we form the quotient ring of K [X,Y ] by the ideal
generated over K by f and g, localize with respect to the maximal ideal of all
members of the quotient vanishing at (0, 0), and compute the dimension of this
localization over K . The other definition is

I (P, F ∩ G) = dimK
°
S−1K [X,Y ]

±
S−1( f, g)

¢
,

where S is the multiplicative system in K [X,Y ] consisting of the complement of
themaximal ideal (X,Y ), i.e., consisting of all polynomials that are nonvanishing
at (0, 0). In either case all elements of the ring being localized have interpretations
as functions, and the multiplicative system consists of all the functions that are
nonzero at a certain point. Nevertheless, the matter is a little subtle because
some members of the multiplicative system in the first case may be zero divisors.
Here is a lower-dimensional example of that phenomenon that can also serve as
a guiding example for Theorem 8.12 below.
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EXAMPLE OF GEOMETRIC LOCALIZATION. R =
°
K [X]/((X2(X − 1)2))

¢
(0),

with the subscript indicating localization at 0. Before passage to the localization,
the quotient Q = K [X]/((X2(X−1)2)) has dimension 4, with a basis consisting
of the cosets of 1, X, X2, X3. The multiplicative system S for localization at 0
consists of all members of the quotient that are nonzero at 0. The localization as a
set consists of equivalence classes of pairs (r, s) with r in Q and s in S, two pairs
(r, s) and (r 0, s 0) being equivalent if t (rs 0−r 0s) = 0 for some t in S. Localization
is a ring homomorphism, and we therefore consider the pairs (r, s) in the class of
the additive identity. These have t (r1− 0s) = 0 for some t . Then t and r have
representatives t (X) and r(X) in K [X] such that t (X)r(X) = p(X)X2(X − 1)2
for some p(X). Furthermore, t (0) 6= 0. Then X2 must divide r(X), and this
condition is also sufficient for the choice t (X) = (X − 1)2. Thus the members
X2q(X) of K [X] give 0 in the localization, and the localization is isomorphic to
the 2-dimensional algebra K [X]/(X2).

Proposition 8.9 below will show that I (P, F ∩G) is independent of the func-
tion 8 used to introduce affine local coordinates. Assuming this independence,
we begin with an example that shows that the definition is consistent with the
definition in Section 4.

EXAMPLE 1 OF INTERSECTION MULTIPLICITY. Case of a line L and a curve
F homogeneous of degree d. Assuming that P lies in VK (L) ∩ VK (F), we
introduce affine local coordinates by means of a member 8 of GL(3, K ) that
carries a representative of P to (0, 0, 1), and we let l(X,Y ) and f (X,Y ) be
the corresponding local expressions for L and F . Let f = f1 + · · · + fd
be the decomposition of f into its homogeneous parts. Since the intersection
multiplicity is being assumed to be independent of the choice of 8 and since for
any second point on a line through (0, 0, 1), there exists a 8 that fixes (0, 0, 1)
and carries that second point to (1, 0, 1), we may assume that l(X,Y ) = Y . We
introduce the parametrization (x, y) = ϕ(t) = (t, 0) for the line l(X,Y ) and
substitute into f (X,Y ), obtaining f (ϕ(t)) = f1(t, 0) + · · · + fd(t, 0). In the
definition of Section 4, the intersectionmultiplicity is the least r such that fr (t, 0)
is not identically 0, or else it is +∞ if f (ϕ(t)) is identically 0. With the new
definition we observe from the definition of r that f is of the form

f (X,Y ) = (cr Xr + · · · + cd Xd) + Yg(X,Y ) = cr Xr (1+ Xh(X)) + Yg(X,Y )

with cr 6= 0, g(X,Y ) ∈ K [X,Y ], and h(X) ∈ K [X]. The ideal in K [X,Y ]
generated by Y and f is the same as the ideal generated by Y and Xr (1+Xh(X)).
Hence

K [X,Y ]/(Y, f ) ∼= K [X,Y ]/(Y, Xr (1+ Xh)) ∼= K [X]/(Xr (1+ Xh)).
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The polynomial 1+ Xh(X) takes a nonzero value at 0 and hence is a member of
the multiplicative system that we use to form the localization. Thus

°
K [X,Y ]/(Y, f )

¢
(0,0)

∼=
°
K [X]/(Xr (1+ Xh))

¢
(0)

∼=
°
K [X]/(Xr )

¢
(0).

The dimension of the right side is r , and thus the new definition of intersection
multiplicity matches the old one.

Proposition 8.9. The intersection multiplicity of two projective plane curves
F and G at P is well defined independently of the member of 8 that moves a
representative of P to (0, 0, 1).

PROOF. It is enough to take P = [0, 0, 1] and to compare the effect of passing
to affine local coordinates determined by the identity with the effect of passing
to the coordinates determined by a general element 8 of GL(3, K ) of the form

8 =

µ
α β 0
∞ δ 0
r s 1

∂
. Let deg F = m and degG = n. If f (X,Y ) = F(X,Y, 1) and

ef (X,Y ) = F(8−1(X,Y, 1)), then the computation in the proof of Lemma 8.6
shows that

f (X,Y ) = (1+ r X + sY )m ef
°

αX+βY
1+r X+sY , ∞ X+δY

1+r X+sY
¢
. (∗)

Similarly if g(X,Y ) = G(X,Y, 1) andeg(X,Y ) = G(8−1(X,Y, 1)), then

g(X,Y ) = (1+ r X + sY )n eg
°

αX+βY
1+r X+sY , ∞ X+δY

1+r X+sY
¢
.

Let
X 0 = αX+βY

1+r X+sY , Y 0 = ∞ X+δY
1+r X+sY , and 8−1 =

µ
α0 β 0 0
∞ 0 δ0 0
r 0 s0 1

∂
.

It is purely a formalmatter that themappingT definedby (Th)(X,Y ) = h(X 0,Y 0)
is a field isomorphism of K (X,Y ) onto K (X 0,Y 0). It sends K [X,Y ] onto
K [X 0,Y 0] and sends

°
K [X,Y ]

¢
(0,0) onto

°
K [X 0,Y 0]

¢
(0,0). Referring to the formu-

las for X 0 and Y 0, we see that the image of K [X,Y ] is contained in the localization°
K [X,Y ]

¢
(0,0); by the universal mapping property of localizations, the image of°

K [X,Y ]
¢
(0,0) is contained in

°
K [X,Y ]

¢
(0,0). Comparing these two conclusions,

we see that
°
K [X 0,Y 0]

¢
(0,0) ⊆

°
K [X,Y ]

¢
(0,0).

Meanwhile, we can solve the equations defining X 0 and Y 0 for X and Y . If we
compare the results with the formula for 8−1, we find that

X = α0X 0+β 0Y 0

1+r 0X 0+s0Y 0 and Y = ∞ 0X 0+δ0Y 0

1+r 0X 0+s0Y 0 .
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Thus the situation is symmetric, and we have
°
K [X,Y ]

¢
(0,0) ⊆

°
K [X 0,Y 0]

¢
(0,0).

Consequently the mapping

(Th)(X,Y ) = h
°

αX+βY
1+r X+sY , ∞ X+δY

1+r X+sY
¢

is an algebra automorphism of
°
K [X,Y ]

¢
(0,0).

To prove the proposition, recall that localization commutes with passage to the
quotient by an ideal. In view of (∗), it is therefore enough to show that

dimK
°°
K [X,Y ]

¢
(0,0)

±
( f, g)

¢

?
= dimK

°°
K [X,Y ]

¢
(0,0)

±
((1+ r X + sY )mT f, (1+ r X + sY )nTg)

¢
. (∗∗)

The factor (1 + r X + sY ) is a unit in
°
K [X,Y ]

¢
(0,0), and we can simplify the

quotient algebra on the right side of (∗∗) to
°
K [X,Y ]

¢
(0,0)

±
(T f, Tg).

In turn, this algebra is K isomorphic to
°
K [X,Y ]

¢
(0,0)

±
( f, g) because T is an

automorphism of
°
K [X,Y ]

¢
(0,0). The dimensional equality in (∗∗) follows. §

Let us extend the definition of intersection multiplicity to include the case
that the point of interest does not lie in the locus of common zeros. We define
I (P, F ∩ G) = 0 if P is not in VK (F) ∩ VK (G). Assume now that K is
algebraically closed. Below we compute a fairly typical example of intersection
multiplicity. To do so, we shall make use of certain properties of I (P, F ∩ G)
that we list in Theorem 8.10 below. In fact, there is an algorithm for computing
I (P, F ∩ G) using only these properties,11 but we shall not give it.
Before stating the properties, we need to make some definitions. Recall from

earlier in the section that theorderof vanishingmP(G)ofG at P is computedusing
a suitable8 in GL(3, K ) to refer G to affine local coordinates about P , defining
g(X,Y ) = G(8−1(X,Y, 1)), expanding g(X,Y ) as a sumof homogeneous terms
g(X,Y ) = g0+ g1(X,Y )+· · ·+ gn(X,Y ), and definingmP(G) to be the least j
such that gj is not the 0 polynomial. The homogeneouspolynomial gj (X,Y ) is X j

times a polynomial in the one variable Y X−1, and the fact that K is algebraically
closed implies that gj has a factorization of the form

gj (X,Y ) = c
Y

i
(αi X + βi Y )mi

11Fulton, p. 76.
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with c in K . Here j =
P

i mi , and the pairs (αi , βi ) correspond to distinct
members of P1K that are uniquely determined up to indexing if c 6= 0. Let
li (X,Y ) = αi X + βi Y , and let Li be the corresponding projective line. We
refer to all the lines Li as the tangent lines to G at P , and we say that mi is the
multiplicity of Li . The geometry of the situation is indicated in Problem 12 at
the end of the chapter.

Theorem 8.10. Let K be an algebraically closed field, let P be in P2K , and let
F and G be projective plane curves over K . Then the intersection multiplicity
I (P, F ∩ G) has the following properties:

(a) I (P, F ∩ G) = I (P,G ∩ F),
(b) I (P, F ∩ G) = I (P, F ∩ (G + HF)) for any projective plane curve H

with deg HF = degG such that G + HF 6= 0,
(c) I (P, F ∩ G) > 0 if and only if P lies in VK (F) ∩ VK (G),
(d) I (P, F ∩ G) ≤ I (P, AF ∩ BG) for any projective plane curves A and

B, with equality if A and B are nonvanishing at P ,
(e) I (P, F ∩ G) is finite if and only if F and G have no common factor of

degree ∏ 1 having P on its zero locus,
(f) I (P, F ∩GH) = I (P, F ∩G)+ I (P, F ∩ H) and consequently if F =Q

i F
ri
i and G =

Q
j G

sj
j , then I (P, F ∩ G) =

P
i, j ri sj I (P, Fi ∩ Gj ),

(g) I (P, F ∩G) ∏ mP(F)mP(G), with equality if F and G have no tangent
lines in common at P .

REMARKS. Properties (a) and (b) are evident. Properties (c) and (d) are
conversational and will be proved in these remarks. Properties (e), (f), and (g)
require proofs, and we give those proofs after computing an example. For (c), if
P lies in VK (F)∩VK (G), then the local expressions f (X,Y ) and g(X,Y ) vanish
at 0, and so does everymember of the ideal ( f, g); therefore ( f, g) is a proper ideal
in

°
K [X,Y ]

¢
(0,0), and the dimension of the quotient is positive. Conversely if P is

not in VK (F), say, then f (X,Y ) lies in the multiplicative system S of nonvanish-
ing polynomials at (0, 0), and S−1( f, g) = (1); hence S−1K [X,Y ]/S−1( f, g) =
0, and I (P, F ∩G) = 0. For (d), S−1(a f, bg) ⊆ S−1( f, g)with equality if a and
b are nonvanishing at (0, 0), and hence S−1K [X,Y ]/S−1( f, g) is a homomorphic
image of S−1K [X,Y ]/S−1(a f, bg) and is a one-one homomorphic image if a and
b are nonvanishing at (0, 0).

EXAMPLE 2 OF INTERSECTION MULTIPLICITY. Let K = C, and let the two
projective curves be the homogeneous versions of Y 2 = X3 and Y 2 = X5. In
other words, let

F(X,Y,W ) = Y 2W − X3 and G(X,Y,W ) = Y 2W 3 − X5.
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We compute I (P, F ∩ G) for all points P in VK (F) ∩ VK (G). In the affine
plane the intersections (x, y) may be found by substituting the one equation into
the other (or, with more effort in this case, by using the resultant). We obtain
x5 − x3 = 0. This gives x3(x2 − 1) = 0. The factor x2 − 1 has two distinct
roots, and each gives two distinct y’s. Thus we obtain the five affine solutions
(+1,±1), (−1,±i), (0, 0). The fact that the first four occurred routinely with
multiplicity 1 translates into intersectionmultiplicity 1 for each: In fact, (b) shows
that I (P, F ∩G) = I (P, F ∩ (W 2F −G)), and W 2F −G restricts at (X,Y, 1)
to X5 − X3 = X3(X2 − 1). At each of the points (+1,±1), X5 − X3 when
viewed as equal to 0 has a vertical tangent X −1 of multiplicity 1, while Y 2− X3
has a tangent that is not vertical. A similar argument applies at each of the points
(−1,±i). By (g), the intersection multiplicity is 1 at each of the four points
(+1,±1) and (−1,±i).
Next let us consider (0, 0). The order of X5 − X3 is 3, and the homogeneous

term of degree 3, namely −X3, factors as the cube of a linear factor that gives
the vertical line X . Meanwhile, Y 2 − X3 has order 2 at (0, 0), and Y 2 factors
as the square of a linear factor that gives the horizontal line Y . The two curves
have no tangents in common. Hence equality holds in (g), and the intersection
multiplicity is 6 at (0, 0).
Finally let us check points (x, y, w) on the line at infinity, i.e., those with

w = 0. Putting w = 0 in the formula F = G = 0 shows that x = 0. Thus
the only point of VK (F) ∩ VK (G) on the line at infinity is P = [x0, y0, w0] =
[0, 1, 0]. The local versions of F and G may be given in the variables X and
W by restricting (X,Y,W ) to (X, 1,W ) and considering the polynomials about
(x, w) = (0, 0). As above, (b) gives I (P, F ∩G) = I (P, F ∩ (W 2F −G)), but
F = Y 2W − X3 restricts to W − X3 and W 2F − G = −W 2X3 + X5 remains
unchanged upon restriction. The respective lowest-order terms, in factored form,
are W and −X3(X + W )(X − W ). None of the factors of the first polynomial
matches a factor of the second polynomial, and (g) says that the intersection
multiplicity is 1 · 5 = 5.
The upshot is that we get multiplicity 6 from (0, 0), multiplicity 1 apiece from

four other points in the affine plane, and multiplicity 5 from P = [0, 1, 0]. The
total is 15, the product of the degrees of the given curves, as it must be if we are
to have any chance of obtaining the desired generalization of Bezout’s Theorem.

To get at Theorem 8.10, we make use of a structure theorem about ideals I in
K [X1, . . . , Xn] for which V (I ) is a finite set. To prove the structure theorem,
which appears as Theorem 8.12 below, we first prove a lemma about the radicalp
I of an ideal I , a notion defined in Section VII.1.

Lemma 8.11. If R is a commutative Noetherian ring and I is an ideal in R,
then (

p
I )m ⊆ I for some integer m ∏ 1.
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PROOF. Since R is Noetherian, the ideal
p
I is finitely generated. Let

{a1, . . . , an} be a set of generators for it. By definition of radical, choose integers
k1, . . . , kn such that a

kj
j is in I for 1 ≤ j ≤ n, and put m =

Pn
j=1 kj . The most

general element of
p
I is of the form

Pn
j=1 rjaj with all rj in R. The mth power

of this element is a sum of terms of the form ral11 · · · alnn with
Pn

j=1 lj = m. In
view of the definition of m, we must have lj ∏ kj for some j . Then the factor a

lj
j

is in I , and hence the whole term ral11 · · · alnn is in I . §

Theorem 8.12. Let K be an algebraically closed field, and let I be an ideal
in the polynomial ring K [X1, . . . , Xn] whose locus of common zeros in Kn is
a finite set {P1, . . . , Pk}. Then K [X1, . . . , Xn]/I is isomorphic as a ring to the
product of its localizations at the points Pj :

K [X1, . . . , Xn]/I ∼=
kY

j=1

°
K [X1, . . . , Xn]/I

¢
(Pj )

.

Consequently

dimK (K [X1, . . . , Xn]/I ) =
kX

j=1
dimK

°
K [X1, . . . , Xn]/I

¢
(Pj )

.

REMARKS. The one-variable case is a guide: The ideal I is principal, and we
can write K [X]/I as K [X]/(

Qk
j=1 (X − cj )mj ). The points Pj of the theorem are

themembers cj of K , and the same argument as for the first example of the section
shows that

°
K [X]/(

Q
j (X−cj )mj )

¢
(cj )

∼= K [X]/(X−cj )mj . The isomorphismof
the theorem therefore reduces to an instance of the Chinese Remainder Theorem.

PROOF. Let ϕj : K [X1, . . . , Xn]/I →
°
K [X1, . . . , Xn]/I

¢
(Pj )

be the canoni-
cal homomorphism, and letϕ = (ϕ1, . . . , ϕk). Themappingϕ is a ring homomor-
phism into

Qk
j=1

°
K [X1, . . . , Xn]/I

¢
(Pj )
, and we shall prove that ϕ is one-one

onto. Doing so requires some preparation.
Let Ij be the maximal ideal of all polynomials vanishing at Pj . The Null-

stellensatz (Theorem 7.1) shows that
p
I consists of all f ∈ K [X,Y ] such

that f vanishes at each Pi , i.e., that
p
I =

Tk
j=1 Ij . Lemma 8.11 shows that

(
p
I )m ⊆ I for some m, and thus

°Tk
j=1 Ij

¢m
⊆ I . For i 6= j , I mi + I mj is an

ideal whose locus of common zeros is empty, and the Nullstellensatz shows that
I mi + I mj = K [X1, . . . , Xn]. The Chinese Remainder Theorem (Theorem 8.27
of Basic Algebra) therefore applies and shows that the intersection

Tk
j=1 I

m
j and
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the product
Qk

j=1 I
m
j coincide. Similarly Ii + Ij = K [X1, . . . , Xn], and henceTk

j=1 Ij =
Qk

j=1 Ij . Putting these facts together, we conclude that

kT

j=1
I mj =

kQ

j=1
I mj =

° kQ

j=1
Ij

¢m
=

° kT

j=1
Ij

¢m
⊆ I. (∗)

Let us now denote members of K [X1, . . . , Xn] by uppercase letters and their
cosets modulo I by the corresponding lowercase letters. Let us observe for
1 ≤ i ≤ k that there exists Fi ∈ K [X1, . . . , Xn] with Fi (Pj ) = δi j . In fact, we
start from the special case that if P 6= Q, then there exists F with F(P) = 1
and F(Q) = 0. For the special case, P and Q differ in some coordinate; say that
xl(P) 6= xl(Q). Then the polynomial

F(X1, . . . , Xn) = (Xl − xl(Q))(xl(P) − xl(Q))−1

has the required properties. To construct F1 with F1(Pj ) = δ1 j , choose Gj
with Gj (P1) = 1 and Gj (Pj ) = 0. Then F1 =

Q
i 6=1 Gi has F1(P1) = 1 and

F1(Pj ) = 0 for j 6= 1. The polynomials F2, . . . , Fk are constructed similarly.
With m as in the second paragraph of the proof, fix j and define Ei =

1 − (1 − Fm
i )m . This is divisible by Fm

i and hence lies in I mj if i 6= j . In
addition, 1− Fm

j lies in Ij , and hence 1− Ej = (1− Fm
j )m is in I mj . Therefore

1−
Pk

i=1 Ei = (1− Ej )−
P

i 6= j Ei lies in I mj . Since the left side is independent
of j , 1−

Pk
i=1 Ei lies in

Tk
j=1 I

m
j , and we conclude from (∗) that

1−
kP

i=1
Ei lies in I . (∗∗)

We just saw that Ei lies in
T

j 6=i I
m
j . Hence if i 6= j , then Ei Ej lies in

Tk
l=1 I

m
l ⊆

I . Passing to cosets modulo I , we find from this fact and from (∗∗) that

ei ej = 0 for i 6= j, and that
kP

i=1
ei = 1. (†)

Multiplying the second equation by ej and substituting from the first equation,
we obtain

e2i = ei for all i . (††)

Using (†) and (††), let us prove for each i that

to each G ∈ K [X1, . . . , Xn] with G(Pi ) 6= 0
corresponds a polynomial H with hg = ei . (‡)
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In fact, we may assume that G(Pi ) = 1. Let Q be the member of Ii given by
Q = 1 − G. The element QmEi is in I mi because Q is in Ii , and it is in I mj
for j 6= i because Ei is in I mj for j 6= i . Thus QmEi is in

Tk
j=1 I

m
j ⊆ I , and

qmei = 0. Consequently

g(ei +qei +· · ·+qm−1ei ) = (1−q)ei (1+q+· · ·+qm−1) = ei (1−qm) = ei ,

and H = Ei (1+ Q + · · · + Qm−1) is a polynomial as in (‡).
Now we can prove that ϕ is one-one. If f is a member of K [X1, . . . , Xn]/I

such that ϕ( f ) = 0, then ϕi ( f ) = 0 for all i . This means that there exists a
member gi of the multiplicative system for localization at Pi such that gi f = 0.
Any corresponding polynomial Gi has Gi (Pi ) 6= 0. By (‡), there exists hi with
hi gi = ei . Then (†) gives f =

Pk
i=1 ei f =

Pk
i=1 hi gi f = 0. Thus ϕ is

one-one.
For the proof that ϕ is onto, we recall that the multiplicative system used to

obtain
°
K [X1, . . . , Xn]/I

¢
(Pj )

consists of the elements K [X1, . . . , Xn]/I that
are nonzero at Pj , and ϕj carries these to units in

°
K [X1, . . . , Xn]/I

¢
(Pj )
. Since

Ej (Pj ) = 1, ϕj (ej ) is a unit. For i 6= j , we have ϕj (ei )ϕj (ej ) = ϕj (ei ej ) = 0,
and therefore ϕj (ei ) = 0. Consequently

ϕj (ej ) =
kP

l=1
ϕj (el) = ϕj

° kP

l=1
el

¢
= ϕj (1) = 1,

and ϕj (ej ) is the identity of
°
K [X1, . . . , Xn]/I

¢
(Pj )
. The localization at

Pj consists of the equivalence classes of all pairs (rj , sj ) with rj and sj in
K [X1, . . . , Xn]/I and sj in the multiplicative system for index j . Thus let
such pairs (rj , sj ) be given for 1 ≤ j ≤ k. We are to produce an element a
of K [X1, . . . , Xn]/I such that ϕj (a) = ϕj (rj )(ϕj (sj ))−1 for all j . Use of (‡)
produces hj with hj sj = ej for all j , and this element has the property that
ϕj (hj )ϕj (sj ) = ϕj (ej ) = 1, hence that ϕj (hj ) = ϕj (sj )−1. Consequently the
element a =

P
j rj h j ej has the property that

ϕj (a) = ϕj
°P

i
ri hi ei

¢
=

P

i
ϕj (ri )ϕj (hi )ϕj (ei ) = ϕj (rj )(ϕj (sj ))−1

and exhibits ϕ as onto. §

Corollary 8.13. Let K be an algebraically closed field, and let I be an ideal
in the polynomial ring K [X1, . . . , Xn] whose locus of common zeros in Kn is a
finite set {P1, . . . , Pk}. Then K [X1, . . . , Xn]/I is finite-dimensional, and so is
the localization

°
K [X1, . . . , Xn]/I

¢
(Pj )

for each j .
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PROOF. This is a corollary partly of the statement of Theorem 8.12 and partly
of the proof. Let m be as in the proof. If I0 is the maximal ideal (X1, . . . , Xn)
of K [X1, . . . , Xn], then I m0 is the ideal generated by all monomials of degree m,
and K [X1, . . . , Xn]/I m0 is finite-dimensional. Consequently the maximal ideal
Ij = (X1 − x1(Pj ), . . . , Xn − xn(Pj )) has the property that K [X1, . . . , Xn]/I mj
is finite-dimensional. Since I mi + I mj = K [X1, . . . , Xn] for i 6= j , the Chinese
Remainder Theorem shows that

K [X1, . . . , Xn]
± kT

j=1
I mj ∼=

kQ

j=1
K [X1, . . . , Xn]/I mj ,

and the left side is therefore finite-dimensional. By (∗) in the proof of Theorem
8.12,

Tk
j+1 I

m
j ⊆ I , and hence K [X1, . . . , Xn]/I is finite-dimensional. Then°

K [X1, . . . , Xn]/I
¢
(Pj )

is finite-dimensional as a consequence of the statement
of Theorem 8.12. §

PROOF OF THEOREM 8.10e. If F and G have a common factor H of degree
∏ 1 such that H(P) = 0, we may assume that H is irreducible. Introduce affine
local coordinates about P . If f, g, h denote the local versions of F,G, H , then
the ideal ( f, g) of K [X,Y ] is contained in the principal ideal (h). The latter
ideal is proper because h(0, 0) = 0, and the irreducibility of H thus implies that
(h) is prime. If S denotes the multiplicative system in K [X,Y ] of polynomials
that are nonvanishing at (0, 0), then S−1( f, g) ⊆ S−1(h), and we have a natural
quotient homomorphism of S−1K [X,Y ]/S−1( f, g) onto S−1K [X,Y ]/S−1(h).
The latter is isomorphic as a K algebra to (K [X,Y ]/(h))(0,0), and the dimension
of this localization is a lower bound for I (P, F ∩ G). Since K [X,Y ]/(h) is an
integral domain, K [X,Y ]/(h) maps one-one into any localization of itself, and
dimK (K [X,Y ]/(h)) is a lower bound for I (P, F ∩ G). Since h is nonconstant,
either X or Y actually occurs in it, say Y . Then h divides nomember of K [X], and
the mapping of K [X] into cosets modulo (h) is one-one. Therefore K [X,Y ]/(h)
contains a subalgebra isomorphic to K [X] and must be infinite-dimensional.
Conversely if F and G have no common factor of degree ∏ 1 with P on its

locus, then (d) shows that we may assume F and G to have no common factor of
degree∏ 1 of any kind. In this case Theorem 8.5 shows that the locus of common
zeros of F and G is finite, and Corollary 8.13 shows that I (P, F ∩G) is finite.§

PROOF OF THEOREM 8.10f. We are to prove that

I (P, F ∩ GH) = I (P, F ∩ G) + I (P, F ∩ H). (∗)

If F and GH have a common factor of degree∏ 1 that vanishes at P , then F and
one of G and H have such a factor. By symmetry we may assume that F and G
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have that common factor. Then the left side of (∗) and the first term on the right
are infinite by (e), and (∗) is verified.
Thus we may assume that F and GH have no common factor that vanishes

at P . If F has a prime factor that does not vanish at P , then (d) shows that we
can drop that factor from all three appearances of F in (∗). In other words, it is
enough to prove (f) under the assumption that F and GH have no common factor
of degree ∏ 1 of any kind.
With this assumption in place, introduce affine local coordinates about P , let S

denote themultiplicative system in K [X,Y ] of polynomials that are nonvanishing
at (0, 0), and let f, g, h be the local versions of the given curves F,G, H . The
inclusion of ideals ( f, gh) ⊆ ( f, g) induces an inclusion S−1( f, gh) ⊆ S−1( f, g)
and then an onto algebra homomorphism

ϕ : S−1K [X,Y ]/S−1( f, gh) → S−1K [X,Y ]/S−1( f, g).

We shall exhibit a K vector-space isomorphism√ of S−1K [X,Y ]/S−1( f, h) onto
kerϕ, and the resulting dimensional equality

dimK
°
S−1K [X,Y ]/S−1( f, gh)

¢

= dimK
°
S−1K [X,Y ]/S−1( f, g)

¢
+ dimK

°
S−1K [X,Y ]/S−1( f, h)

¢
(∗∗)

will prove (∗) and hence (f). We define

9 : S−1K [X,Y ] → S−1K [X,Y ]/S−1( f, gh)

as a K linear map by 9(u) = gu + S−1( f, gh). If a f + bh is in S−1( f, h), then
9(a f + bh) = a f g + bgh + S−1( f, gh) = S−1( f, gh). Thus 9 descends to a
K linear map √ of S−1K [X,Y ]/S−1( f, h) into S−1K [X,Y ]/S−1( f, gh). It is
evident that ϕ9 = 0 and hence that ϕ√ = 0, i.e., image√ ⊆ kerϕ.
If anymember u+S−1( f, gh) of kerϕ is given, then 0 = ϕ(u+S−1( f, gh)) =

u + S−1( f, g) shows that u is in S−1( f, g). Say that u = a f + bg. Then
√(b+S−1( f, h)) = bg+S−1( f, gh) = bg+a f +S−1( f, gh) = u+S−1( f, gh)
shows that image√ ⊇ kerϕ. Hence image√ = kerϕ, i.e., √ is onto.
To see that √ is one-one, suppose that √(u + S−1( f, h)) is the 0 coset, i.e.,

that gu + S−1( f, gh) = S−1( f, gh). Then gu = a f + bgh with u, a, b in
S−1K [X,Y ]. Clearing fractions, we may assume that u, a, b are in K [X,Y ].
The formula g(u − bh) = a f in K [X,Y ], in the presence of the assumption that
F and G have no common factor of degree ∏ 1, implies that f divides u − bh.
Write u− bh = c f with c in K [X,Y ]. Then u = c f + bh, and u lies in the ideal
( f, h). In other words, u + S−1( f, h) is the trivial coset, and √ has been shown
to be one-one. This proves (∗∗) and hence (f). §
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Lemma8.14. For anyfield K , let {Li }i∏1 be a systemof nonzerohomogeneous
polynomials in K [X,Y ] of the form Li = ai X + biY , let {Mj }j∏1 be another
such system with Mj = cj X +djY , and suppose that no Li is a scalar multiple of
some Mj . For n ∏ 1, let B0, . . . , Bn be the system of homogeneous polynomials

Bk = L1 · · · LkM1 · · ·Mn−k for 0 ≤ k ≤ n.

Then {B0, . . . , Bn} is a vector-space basis of the space K [X,Y ]n of all homoge-
neous polynomials in (X,Y ) of degree n.

PROOF. The set {B0, . . . , Bn} has n + 1 elements, and n + 1 is the dimension
of K [X,Y ]n because {Xn, Xn−1Y, . . . ,Y n} is a basis. Thus it is enough to show
that {B0, . . . , Bn} is linearly independent. If we have a relation

Pn
k=0 ck Bk = 0

for scalars ck , then we observe that L1 divides each Bk for k ∏ 0, and L1 does
not divide B0 because by assumption L1 does not divide any factor Mj . Thus
c0 = 0. In effect, case n of the lemma has now been reduced to case n − 1, and
the result readily follows by induction. §

PROOF OF THEOREM 8.10g. Put p = mP(F) and q = mP(G). We pass
to affine local coordinates about P , letting f and g be the members of K [X,Y ]
corresponding to F andG. If I denotes themaximal ideal I = (X,Y ) in K [X,Y ],
then f lies in I p and g lies in I q . We form the following sequence of K vector
spaces and K linear mappings:

K [X,Y ]/I q⊕K [X,Y ]/I p √
−→ K [X,Y ]/I p+q ϕ

−→ K [X,Y ]/(I p+q+( f, g)) −→0.

Here the mapping ϕ is the algebra homomorphism induced by the inclusion
I p+q ⊆ I p+q + ( f, g), and it is onto K [X,Y ]/(I p+q + ( f, g)). The mapping √
is defined by

√(a + I q , b + I p) = a f + bg + I p+q

and is merely K linear.
Let us see that the sequence is exact at K [X,Y ]/I p+q . Since

ϕ√(a + I q , b + I p) = ϕ(a f + bg + I p+q) = I p+q + ( f, g),

we obtain image√ ⊆ kerϕ. If h + I p+q is in kerϕ, then h is in I p+q + ( f, g),
hence is of the form u + a f + bg with u in I p+q . Then h − u = a f + bg, and
√(a + I q , b + I p) = h − u + I p+q = h + I p+q . So image√ ⊇ kerϕ, and we
have image√ = kerϕ.
The mapping √ descends to a one-one linear map of

M = (K [X,Y ]/I q ⊕ K [X,Y ]/I p)
±
ker√
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into K [X,Y ]/I p+q . The vector space K [X,Y ]/I q may be identified with the
space of all polynomials of degree less thanq, and that space is finite-dimensional.
Similarly K [X,Y ]/I p is finite-dimensional, and therefore

dimK M = dimK K [X,Y ]/I q + dimK K [X,Y ]/I p − dimK ker√. (∗)

Meanwhile, ϕ exhibits K [X,Y ]/(I p+q + ( f, g)) as isomorphic as a vector space
to (K [X,Y ]/I p+q)/M . Consequently

dimK K [X,Y ]/I p+q = dimK M + dimK K [X,Y ]/(I p+q + ( f, g)). (∗∗)

Combining (∗) and (∗∗)with the simplevector-space isomorphismK [X,Y ]/I d ∼=
K [X,Y,W ]d−1 and with the fact from Section 3 that dimK K [X,Y,W ]d−1 =°d+1
2

¢
gives

dimK K [X,Y ]/(I p+q + ( f, g))
= dimK K [X,Y ]/I p+q − dimK K [X,Y ]/I q

− dimK K [X,Y ]/I p + dimK ker√

∏ dimK K [X,Y ]/I p+q − dimK K [X,Y ]/I q − dimK K [X,Y ]/I p

=
°p+q+1

2
¢
−

°q+1
2

¢
−

°p+1
2

¢

= pq, (†)

with equality on the fourth line if and only if ker√ = 0.
The locus of common zeros of I p+q + ( f, g) is just {0}, and Theorem 8.12

therefore shows that

dimK
°
K [X,Y ]/(I p+q + ( f, g))

¢
(0,0) = dimK K [X,Y ]/(I p+q + ( f, g)). (††)

The inclusion ( f, g) ⊆ I p+q + ( f, g) induces an algebra homomorphism of°
K [X,Y ]/( f, g)

¢
(0,0) onto

°
K [X,Y ]/(I p+q + ( f, g))

¢
(0,0). Therefore

dimK
°
K [X,Y ]/( f, g)

¢
(0,0) ∏ dimK

°
K [X,Y ]/(I p+q + ( f, g))

¢
(0,0). (‡)

Let S be the set-theoretic complement of I = (X,Y ) in K [X,Y ]. Because of the
isomorphism S−1K [X,Y ]/S−1 J ∼=

°
K [X,Y ]/J

¢
(0,0) for any ideal J , equality

will hold in (‡) if S−1( f, g) = S−1(I p+q + ( f, g)). Combining (†), (††), and
(‡), we find that

I (P, F ∩ G) ∏ pq, (‡‡)
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with equality if

I p+q ⊆ S−1( f, g) and √ is one-one. (§)

Inequality (‡‡) completes the proof of the inequality in (g) of the theorem.
Because equality holds in (‡‡) if (§) holds, we can complete the proof of all
of (g) by showing that (§) holds if F and G have no tangent line in common.
Thus for the remainder of the proof, we assume that F and G have no tangent

line in common. Let the tangent lines of F , repeated according to their multiplic-
ities, be L1, . . . , Lp, and let the tangent lines of G be M1, . . . ,Mq . Define Li for
i > p to be Lp, and define Mj for j > q to be Mq .
In order to prove that the first conclusion of (§), namely that I p+q ⊆ S−1( f, g),

we shall prove that I t ⊆ S−1( f, g) for t sufficiently large, and thenwe shall prove
by induction downward on t that I t ⊆ S−1( f, g) as long as t ∏ p + q. If f
and g were to have a nonconstant common factor, then a tangent line for that
common factor would be a tangent line for both f and g, and no such tangent
line exists according to our assumption. Therefore Bezout’s Theorem (Theorem
8.2) applies to f and g and shows that their locus of common zeros is finite. Let
it be {(0, 0), Q1, . . . , Ql}. The third paragraph of the proof of Theorem 8.12
shows that there exists a polynomial h in K [X,Y ] such that h(0, 0) = 1 and
h(Qi ) = 0 for 1 ≤ i ≤ l. Then Xh and Yh vanish on {(0, 0), Q1, . . . , Ql}, and
the Nullstellensatz (Theorem 7.1) shows that there exists N such that (Xh)N and
(Yh)N lie in ( f, g). Since h is in the multiplicative system S, XN and Y N lie in
S−1( f, g). Any monomial of degree∏ 2N contains either a factor XN or a factor
Y N , and consequently I 2N ⊆ S−1( f, g).
Proceeding inductively downward on t , suppose that I t ⊆ S−1( f, g) and

that t − 1 ∏ p + q. As in Lemma 8.14, the polynomials defined by Bk =
L1 · · · LkM1 · · ·Mt−1−k for 0≤k ≤ t−1 formavector-spacebasis ofK [X,Y ]t−1.
We show that each of these lies in S−1( f, g); then we can conclude that I t−1 ⊆
S−1( f, g), and our induction will be complete. Let f = fp + fp+1 + · · · and
g = gq + gq+1 + · · · be the expansions of f and g as sums of homogeneous
polynomials in (X,Y ). If Bk is given, then an inequality k ∏ p would imply that
Bk contains a factor L1 · · · Lp; this is fp up to a constant factor. An inequality
t − 1− k ∏ q would imply that Bk contains a factor M1 · · ·Mq ; this is gq up to a
constant factor. Since k < p and t−1−k < q would together imply the inequality
t − 1 < p + q that we are assuming not to be the case, one of the alternatives
k ∏ p and t − 1− k ∏ q must occur. Say the first occurs. Except for a constant
factor, we then have Bk = fpC for some homogeneous polynomial C(X,Y ) of
degree t − 1− p. Substituting for fp gives Bk = ( f − fp+1 − · · · )C . Each term
fp+rC with r > 0 is of degree (p+ r)+ (t −1− p) > t −1 and therefore lies in
I t ⊆ S−1( f, g). Also, the term f C lies in S−1( f, g). Hence Bk lies in S−1( f, g).
This completes the induction, and we conclude that I p+q ⊆ S−1( f, g).
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In order to prove the second conclusion of (§), namely that √ is one-one,
suppose that 0 = √(a + I q , b + I p) = a f + bg + I p+q , i.e., that all terms of
a f + bg are of order∏ p+ q. Write a = ar + ar+1 + · · · with ar 6= 0 if a is not
in I q , and write b = bs + bs+1 + · · · with bs 6= 0 if b is not in I p, so that

a f + bg = ar fp + bsgq + (higher-order terms).

The right side is assumed to be in I p+q , which means that one of the following
two conditions is satisfied:

(i) r + p = s + q < p + q and ar fp + bsgq = 0,
(ii) ar fp is in I p+q , and bsgq is in I p+q .

If (i) holds, then the facts that ar fp = −bsgq and that f and g have no tangent
lines in common imply that fp divides bs . Since s < p, we must have bs = 0.
Therefore ar = 0, and the conditions on ar and bs imply that a is in I q and b is
in I p, which we are trying to show. If (ii) holds, then the fact that ar fp is in I p+q
implies that ar = 0 or r ∏ q; in either case, a is in I q . Similarly the fact that
bsgq = 0 implies that bs = 0 or s ∏ p; in either case, b is in I p. We conclude
that √ is one-one, as was to be shown. §

6. General Form of Bezout’s Theorem for Plane Curves

With the discussion complete concerning intersection multiplicity for general
projective plane curves, we arrive at the general form of Bezout’s Theorem for
plane curves.

Theorem 8.15 (Bezout’s Theorem). Let K be an algebraically closed field,
and let F and G be projective plane curves over K of respective degrees m and
n. If F and G have no common factor of positive degree, then

X

P∈P2K

I (P, F ∩ G) = mn.

REMARKS. The sum over P has only finitely many nonzero terms by Theorem
8.5, and each intersection multiplicity in the sum is finite by Theorem 8.10e.

PROOF. Theorem 8.5 shows that the locus of common zeros of F and G is a
finite set. By applying a suitable 8 in GL(3, K ), we may assume that none of
these zeros lies on the line at infinity, namely W . To do so, we choose a point P
not in the finite set of common zeros. There are only finitely many lines passing
through P and some member of the set of common zeros, and we choose a line
through P different from all these. If 8 is chosen so as to move this line to the
line at infinity W , then none of the common zeros will lie on the line W .
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With this normalization in place, let {P1, . . . , Pk} be the set of common zeros
of F and G. We introduce local versions f and g of F and G by the definitions
f (X,Y ) = F(X,Y, 1) and g(X,Y ) = G(X,Y, 1). Application of Theorem 8.12
to the ideal I = ( f, g) in K [X,Y ] gives

dimK K [X,Y ]/( f, g) =
kP

j=1
dimK

°
K [X,Y ]/( f, g)

¢
(Pj )

=
kP

j=1
I (Pj , F ∩ G).

The theorem will therefore follow if we prove that

dimK K [X,Y ]/( f, g) = mn. (∗)

To prove (∗), we shall first prove a related equality concerning K [X,Y,W ] and
the ideal (F,G) in it, and thenwe shall use the fact that F andG have no common
zeros with W to transfer the conclusion to K [X,Y ].
Define K linear mappings ϕ : K [X,Y,W ]⊕K [X,Y,W ] → K [X,Y,W ] and

√ : K [X,Y,W ] → K [X,Y,W ]⊕ K [X,Y,W ] by

ϕ(A, B) = AF + BG and √(C) = (CG,−CF),

and form the sequence of K vector spaces and K linear maps given by

0 −→ K [X,Y,W ] √
−→ K [X,Y,W ]⊕ K [X,Y,W ] ϕ

−→ K [X,Y,W ]. (∗∗)

It is evident that √ is one-one, that ϕ√ = 0, and that imageϕ = (F,G). If
(A, B) is in kerϕ, then AF + BG = 0. Since F and G have no common factor
of positive degree, F divides B and G divides A. Setting C = AG−1 therefore
gives A = CG and B = −AG−1F = −CF . Hence (A, B) lies in image√ . In
other words, (∗∗) is exact, and imageϕ = (F,G).
Let d ∏ m + n. If we denote by √d and ϕd the restrictions of √ and ϕ to

K [X,Y,W ]d−m−n and K [X,Y,W ]d−n ⊕ K [X,Y,W ]d−m , respectively, and if
we go over the argument in the previous paragraph, then we see that the sequence

0 −→ K [X,Y,W ]d−m−n
√d

−→ K [X,Y,W ]d−n ⊕ K [X,Y,W ]d−m
ϕd−→ K [X,Y,W ]d

is exact and that imageϕd = (F,G)d . The vector spaces in question here are all
finite-dimensional, and thus we obtain

dimK (F,G)d

= dimK K [X,Y,W ]d−n + dimK K [X,Y,W ]d−m − dimK K [X,Y,W ]d−m−n

=
°d−n+2

2
¢
+

°d−m+2
2

¢
−

°d−m−n+2
2

¢

= −mn +
°d+2
2

¢

= −mn + dimK K [X,Y,W ]d . (†)



490 VIII. Background for Algebraic Geometry

The ideal (F,G) is homogeneous, and thusweknow fromSection3 that the image
of K [X,Y,W ]d in K [X,Y,W ]/(F,G) is K [X,Y,W ]d/(F,G)d . If we write°
K [X,Y,W ]/(F,G)

¢
d for this quotient, then (†) shows that

dimK
°
K [X,Y,W ]/(F,G)

¢
d = mn (††)

for all d ∏ m + n.
To prove (∗) and the theorem, we shall translate (††) into a conclusion about

K [X,Y ]/( f, g). Fix d ∏ m + n, and let {V1 + (F,G), . . . , Vmn + (F,G)} be
a K basis of

°
K [X,Y,W ]/(F,G)

¢
d . Define vj (X,Y ) = Vj (X,Y, 1) for each j .

We shall prove that the vectors

v1 + ( f, g), . . . , vmn + ( f, g) (‡)

form a K basis of K [X,Y ]/( f, g).
We need to make use of the fact that F and G have no common zeros on the

line at infinity. SinceW (F,G) ⊆ (F,G), the K linear mapping of multiplication
by W on K [X,Y,W ] descends to a K linear mapping L of K [X,Y,W ]/(F,G)
to itself defined by L(H + (F,G)) = WH + (F,G). Let us see that

L : K [X,Y,W ]/(F,G) → K [X,Y,W ]/(F,G) is one-one. (‡‡)

In fact, suppose that WH = AF + BG for some H in K [X,Y,W ]. For any
U in K [X,Y,W ], let U0(X,Y ) = U(X,Y, 0). If U is homogeneous, then so
is U0. In this notation we can write F = F0 + WM and G = G0 + WN for
homogeneous members M and N of K [X,Y,W ]. The polynomials F0 and G0
are relatively prime: in fact, if F0 and G0 have a nontrivial common factor D0,
then we can regard D0 as a projective plane curve, and it must have a common
zero Q withW , by Theorem 8.5; but then F ,G, andW have Q as a common zero,
in contradiction to the normalization in the first paragraph of the proof. Since
WH = AF + BG implies A0F0 = −B0G0, it follows that F0 divides B0 and
that G0 divides A0. In other words, B0 = C0F0 and A0 = −C0G0 for some C0
in K [X,Y ]. If we define A0 = A + C0G and B 0 = B − C0F , then the formulas
for A0 and B0 show that A0

0 = B 0
0 = 0. Hence A0 = W A00 and B 0 = WB 00

for some homogeneous polynomials A00 and B 00. Then WH = AF + BG =
(A0 −C0G)F+ (B 0 +C0F)G = A0F+ B 0G = W (A00F+ B 00G), and we obtain
H = A00F + B 00G. Thus H lies in (F,G), and (‡‡) is proved.
Left multiplication L by W carries K [X,Y,W ]d into K [X,Y,W ]d+1 and

carries (F,G)d into (F,G)d+1. Therefore L is well defined as a mapping from°
K [X,Y,W ]/(F,G)

¢
d into

°
K [X,Y,W ]/(F,G)

¢
d+1. Since it is one-one by

(‡‡) and since the spaces are finite-dimensional, it is onto. Therefore

{WrV1 + (F,G), . . . ,WrVmn + (F,G)} is a basis (§)



7. Gröbner Bases 491

of
°
K [X,Y,W ]/(F,G)

¢
d+r for every r ∏ 0.

To prove that (‡) spans K [X,Y ]/( f, g), let h be in K [X,Y ]. Let H be
a homogeneous polynomial in K [X,Y,W ] with h(X,Y ) = H(X,Y, 1), and
choose an integer s such that WsH lies in K [X,Y,W ]d+r for some r ∏ 0. Then
we can write WsH =

Pmn
j=1 cjWrVj + AF + BG for suitable scalars cj and

homogeneous polynomials A and B. Restricting the domain to points (X,Y, 1)
gives h =

Pmn
j=1 cjvj + a f + bg, and therefore h+ ( f, g) =

Pmn
j=1 cjvj + ( f, g).

This proves that (‡) spans K [X,Y ]/( f, g).
To prove that (‡) is linearly independent, suppose that

Pmn
j=1 cjvj = a f + bg

with a and b in K [X,Y ]. If A and B are homogeneous polynomials such
that a(X,Y ) = A(X,Y, 1) and b(X,Y ) = B(X,Y, 1), then Wr Pmn

j=1 cj Vj =
Ws AF + Wt BG, provided the exponents r, s, t are chosen to make the de-
grees of the terms Wr Pmn

j=1 cj Vj , Ws AF , and Wt BG match. Consequently
Wr Pmn

j=1 cj Vj lies in (F,G)d+r , and (§) shows that the coefficients are all 0.
This proves that (‡) is linearly independent. §

7. Gröbner Bases

The remainder of the chapter returns to themain question introduced in Section 1,
that of how to get information about the set of simultaneous solutions of polyno-
mial equations in several variables. The resultant introduced in Section 2 gave us
one tool, but the tool is of most use when there are only two equations. Beyond
two equations the number of cases to check quickly grows, and the resultant is of
limited usefulness.12
The tool to be introduced in this section is of a completely different nature.

Historically it was introduced in order to have a way of deciding whether an ideal
in K [X1, . . . , Xn] contains a given polynomial. We know from the Hilbert Basis
Theorem that every such ideal is finitely generated, and it is assumed that the
ideal to be tested is specified by such a set of generators.
The proof of the Hilbert Basis Theorem gives a clue how to start studying an

ideal of polynomials. In the statement of the theorem, R is a Noetherian integral
domain, and I is a nonzero ideal in R[X]. It is to be proved that I is finitely
generated. The proof by Hilbert is longer than the proof given in Basic Algebra,
but the idea is clearer. To each nonzero member f (X) of I , we associate the
coefficient of the highest power of X appearing in f (X). These coefficients,
together with 0, form an ideal L(I ) in R, and L(I ) is finitely generated because
R is Noetherian. Let a1, . . . , ar be generators, let f1(X), . . . , fr (X) be members

12The nature of the extended theory can be found in Van der Waerden, Volume II, Chapter XI.
Theorem8.31 below in effect reproduces some of this extended theory in a context that ismanageable
because of the theory of Gröbner bases.
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of I with respective highest coefficients a1, . . . , ar , and let q be the largest of the
degrees of f1(X), . . . , fr (X). If a general g(X) in I is given and if a ∈ R is its
highest coefficient, then we know that a =

P
i ciai with ci ∈ R. The polynomial

h(X) given by h(X) = g(X) −
P

i ci fi (X)Xdeg g−deg fi has degree lower than
deg g, and g(X) will be in ( f1, . . . , fr ) if h(X) is in ( f1, . . . , fr ). Iterating this
construction, we see that it is enough to account for all themembers of I of degree
≤ q − 1. To handle these, one way to proceed is to enlarge the set { f1, . . . , fr } a
little. For each k with 0 ≤ k ≤ q − 1, let Lk(I ) be the union of {0} and the set of
coefficients of Xk in members of I of degree k. Each of these is an ideal of R and
hence is finitely generated, and we adjoin to { f1, . . . , fr } a finite set of generators
for each Lk(I ) with 0 ≤ k ≤ q − 1. The result is a finite set {g1, . . . , gs} of
generators of I , as one easily checks.
In fact, the set {g1, . . . , gs} is a special set of generators. For any member f

of R[X], let LT( f ) be the complete term of f (X) containing the highest power
of X . What the argument shows is that {g1, . . . , gs} is a subset of I such that
LT(I ) =

°
LT(g1), . . . , LT(gs)

¢
, where LT(I ) denotes the ideal given as the linear

span of all polynomials LT(g) for g in I . One can show that this property of
{g1, . . . , gs} implies that {g1, . . . , gs} generates I . In essence this property will
be the defining property of a “Gröbner basis” of I . It is not automatically satisfied
for just any finite generating set { f1, . . . , fr }, as the example below shows. We
shall see that it is easy to use such a set of generators to test any polynomial in R[X]
for membership in I . Thus the original problem historically for introducing such
sets is solved except for one little detail: the proof of the Hilbert Basis Theorem is
not constructive, and we are left with no idea how actually to construct a Gröbner
basis.13

EXAMPLE. Treat K [X,Y ] as an instance of the above setting by letting
R = K [Y ] and regarding K [X,Y ] as R[X]. Consider the ideal I = ( f1, f2)
in R[X] with f1(X,Y ) = X2 + 2XY 2 and f2(X,Y ) = XY + 2Y 3 − 1. Then°
LT( f1), LT( f2)

¢
= (X2, XY ), and every monomial appearing with nonzero

coefficient in a member of the latter ideal has total degree at least 2. On the
other hand, I contains the polynomial

Y f1(X,Y ) − X f2(X,Y ) = Y (X2 + 2XY ) − X (XY + 2Y 3 − 1) = X,

and its leading term is X , whose total degree is 1. Thus LT(I ) properly contains°
LT( f1), LT( f2)

¢
.

Because of the nonconstructive nature of the proof of the Hilbert Basis Theo-
rem, it is necessary to start afresh. One message to glean from the abstract proof

13The exposition in this section and the next three is based partly on the book of Cox–Little–
O’Shea and a now-defunct Web tutorial of Fabrizio Caruso.
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is that the leading terms of the members of I are important and somewhat control
the nature of I . To handle K [X1, . . . , Xn] when K is a field, it is of course
necessary to use an additional induction that enumerates the variables. In the
example above, we treated X as more significant than Y . For the inductive step
for general K [X1, . . . , Xn], the ring R in the above argument is K with some
number m of the indeterminates included, and X is the (m + 1)st indeterminate.
Putting all the steps of the induction together, we see that the order in which the
variables are processed appears to be important.
The theory of Gröbner bases as it has evolved allows a healthy extra measure

of generality. Instead of defining leading terms by insisting on an ordering of the
indeterminates, it defines them by using a suitable kind of ordering of monomials,
and that is where we begin. Let K [X1, . . . , Xn] be given, K being a field. Let
M be the set of all monomials in K [X1, . . . , Xn]. A monomial ordering ≤ on
M is a total ordering14 with the two additional properties that

(i) M1 ≤ M2 implies M1M3 ≤ M2M3 for all M1,M2,M3 inM,
(ii) 1 ≤ M for all M inM.

We write M2 ∏ M1 to mean M1 ≤ M2. Also, M1 < M2 means M1 ≤ M2 with
M1 6= M2, and M1 > M2 means M1 ∏ M2 with M1 6= M2.

EXAMPLES OF MONOMIAL ORDERINGS. Each ordering assumes that the vari-
ables are enumerated in some way. In these examples we take this enumeration
to be X1, . . . , Xn . The first four examples all have the property that the largest
Xj is X1 and the smallest is Xn .
(1)Lexicographicordering, abbreviated as “lex” bymany authors andwritten

as≤LEX in this list of examples. This, the most important monomial ordering, is
already suggested by the proof of the Hilbert Basis Theorem. In principle it can
be used for all purposes in Sections 7–10, but one application in Chapter X will
require a differentmonomial ordering. Its disadvantage is that it sometimesmakes
lengthy computations take longer than necessary; this matter will be discussed
more in Section 9. The definition is that Xi1

1 · · · Xin
n ≤LEX X j1

1 · · · X jn
n if either

the two monomials are equal or else the first k for which ik 6= jk has ik < jk .
Thus for example, X1X22X33 ≤LEX X21. The word “lexicographic” refers to the
dictionary system for alphabetizing in which a first word comes before a second
word if for the first position in which the two words differ, the letter of the first
word in that position precedes alphabetically the letter of the second word in that
position.
(2) Graded lexicographic ordering, abbreviated as “glex” or “grlex” by

many authors. As in Section 3 the total degree of a monomial Xi1
1 · · · Xin

n is

14This means a partial ordering with the properties that each pair a, b has a ≤ b or b ≤ a and
that both hold only if a = b.
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deg(Xi1
1 · · · Xin

n ) =
Pn

k=1 ik . The definition of the ordering is that M ≤GLEX N
if either degM < deg N or else if degM = deg N and M ≤LEX N . Thus for
example, X21 ≤GLEX X1X22X

3
3 because the total degree 2 of the first monomial is

less than the total degree 6 of the second monomial. But X1X22X33 ≤GLEX X21X
4
3

because both monomials have the same total degree 6 and the second monomial
involves a higher power of X1 than does the first. This monomial ordering is not
much used; more common is the variant of it in the next example.
(3) Graded reverse lexicographic ordering, abbreviated as “grevlex” by

many authors. The definition is thatM ≤GREVLEX N if either degM < deg N or
else if degM = deg N and Nt ≤LEX Mt , where Mt is M but with the exponents
of Xj and Xn− j interchanged for each j , and where Nt is defined similarly. This
ordering takes some getting used to. For example, X21X43 ≤GREVLEX X1X22X

3
3

when n = 3 because both monomials have the same total degree and X31X22X3 =
(X1X22X

3
3)
t ≤LEX (X21X

4
3)
t = X41X

2
3. By contrast, X1X22X33 ≤GLEX X21X

4
3.

(4) Orderings of k-elimination type, where 1 ≤ k ≤ n − 1. These are
orderings such that any monomial containing one of X1, . . . , Xk to a positive
power exceeds any monomial in Xk+1, . . . , Xn alone. These will be discussed
in Section 10. Of them, one of particular importance is the Bayer–Stillman
ordering of k-elimination type. Here a monomial M is ≤ a monomial N if the
sum of the exponents of X1, . . . , Xk for M is less than the corresponding sum
for N or else the two sums are equal and M ≤GREVLEX N . This ordering is
commonly used for making computations in the context of Section 10.
(5) Ordering from a tuple of weight vectors. For 1 ≤ i ≤ n, let w(i) be a

vector in Rn of the form w(i) = (w
(i)
1 , . . . , w

(i)
n ), and assume that w(1), . . . , w(n)

are linearly independent over R. Identify the monomial Xα with the vector of
individual exponentsα = (α1, . . . , αn). The ordering given by theweight vectors
w

(i)
j is defined by saying that Xα ≤ Xβ if Xα = Xβ or if the first i such that

w(i) · α 6= w(i) · β has w(i) · α < w(i) · β. Here the dot refers to the ordinary dot
product. A condition is needed on thew(i)’s to ensure that 1 ≤ Xα for all α. (See
Problem 14 at the end of the chapter.) Here are two specific examples for which
the condition is satisfied. Let e(i) be the i th standard basis vector of Rn . The
lexicographic ordering in Example 1 is determined by the tuple of weight vectors
(e(1), . . . , e(n)). The Bayer–Stillman ordering in Example 4 is determined by the
tuple of weight vectors
°
e(1) + · · · + e(k), e(k+1) + · · · + e(n),−e(n), . . . ,−e(k+2),−e(k), . . . ,−e(2)¢.

Further discussion of monomial orderings determined by weight vectors occurs
in Problems 14–15 at the end of the chapter.

Property (i) of monomial orderings insists that the ordering respect multipli-
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cation of monomials in the natural way. Property (ii), according to the next
proposition, is a well-ordering property. The proof of the proposition will be
preceded by a lemma.

Proposition 8.16. In anymonomial ordering for K [X1, . . . , Xn], any decreas-
ing sequence M1 ∏ M2 ∏ M3 ∏ · · · is eventually constant. Consequently each
nonempty subset ofM has a smallest element in the ordering.

Lemma 8.17. If I is an ideal in K [X1, . . . , Xn] generated by monomials and
if f (X1, . . . , Xn) is in I , then each monomial appearing in the expansion of f
with nonzero coefficient lies in I . Consequently I has a finite set of monomials
as generators. Moreover, if {M1, . . . ,Ms} is a set of monomials that generate I
and if M is any monomial in I , then some Mj divides M .
PROOF. Let {Mα} be the set of monomials that generates I . If f is in I , then

we can write f =
Pk

j=1 hj Mαj for polynomials hj . Let hj =
Plj

i=1 ci j Mi j be
the expansion of hj in terms of monomials. If M0 is a monomial appearing in f
with nonzero coefficient c, then the only possible monomial Mi j in hj that can
contribute toward c is one with Mi j Mαj = M0 if such a monomial exists. For
some j , such a monomial must exist, or c would be 0; thus M0 lies in I .
For the second conclusion, write { f1, . . . , fl} by the Hilbert Basis Theorem.

The first conclusion shows that each monomial contributing to each f j lies in
I , and the set of all these monomials, as j varies, is therefore a finite set of
monomials generating I .
For the third conclusion, write M =

Ps
i=1 ai Mi for polynomials ai . Expand-

ing each ai in terms of monomials, we see that some ai contains with nonzero
coefficient a monomial M 0 such that M = M 0Mi . The divisibility follows. §

PROOF OF PROPOSITION 8.16. Let M be a monomial, and let I be the linear
span of all monomials M 0 with M 0 ∏ M . If M 0 is a such a monomial and N is
any monomial, then NM 0 ∏ NM by (i), and NM ∏ 1M = M by (i) and (ii).
Therefore NM 0 lies in I , and I is an ideal.
From such an ideal I , we can recover M as the unique monomial M0 in I such

that M0 ≤ M 0 for every monomial M 0 in I , since any such M0 has M0 ≤ M as
well as M ≤ M0.
With M1,M2, . . . given as in the proposition, let Ik be the linear span of all

monomials M 0 ∏ Mk . We have just seen that Ik is an ideal, and the Ik’s are
increasing in k. Then I =

S∞
k=1 Ik is an ideal generated by monomials, and

Lemma 8.17 shows that it has a finite set of monomials as a set of generators.
Each such monomial generator lies in some Ik . Since the Ik’s are nested, all the
generators lie in some Ik0 , and we conclude that I = Ik0 . The previous paragraph
of the proof shows that Ik0 determines Mk0 , and therefore Mk = Mk0 for all
k ∏ k0.
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For the last statement of the proposition, if therewere no least element, then for
any element in the subset, we could always find a smaller element in the subset.
In this way, we would be able to construct a strictly decreasing infinite sequence
inM, in contradiction to what has just been proved. §

Fix a monomial ordering for K [X1, . . . , Xn]. If f is any nonzero member of
K [X1, . . . , Xn] and if f is expanded as a K linear combination of monomials,
then we define the leading monomial, leading coefficient, and leading term of f
by

LM( f ) = largest monomial with nonzero coefficient in expansion of f,
LC( f ) = coefficient of LM( f ) in f,
LT( f ) = LC( f ) LM( f ).

It will be convenient to be able to use these definitions without having to dis-
tinguish the cases f 6= 0 and f = 0. Accordingly, let us adjoin 0 to the set
M, agreeing that 0 < M and 0M = 0 for every monomial M . We adopt the
convention that LM(0) = 0, LT(0) = 0, and LC(0) = 0.
Since any monomial that occurs in a sum of two polynomials occurs in one or

the other of them, it is immediate from the definition that

LM( f1 + f2) ≤ max(LM( f1), LM( f2))

if f1, f2, and f1 + f2 are nonzero. Checking the various cases, we see that this
inequality persists if one or more of f1, f2, and f1 + f2 are 0.
The comparable results concerning multiplication are contained in the next

proposition.

Proposition 8.18. If f1 and f2 are two nonzero members of K [X1, . . . , Xn],
then

LM( f1 f2) = LM( f1) LM( f2) and LC( f1 f2) = LC( f1) LC( f2);

hence
LT( f1 f2) = LT( f1) LT( f2).

These equalities persist if one or both of f1 and f2 are 0. Moreover, if f1 and f2
are nonzero and have LT( f1) = LT( f2), then LM( f1 − f2) < LM( f1).
PROOF. For the first statement, let the expansions of f1 and f2 as linear

combinations of distinct monomials be f1 = a1 LM( f1) +
P

i ci Mi and f2 =
a2 LM( f2) +

P
j dj Nj with Mi < LM( f1) for all i and Nj < LM( f2) for all j .

Then f1 f2 equals

a1a2 LM( f1) LM( f2) + a2
P

i
ci Mi LM( f2) + a1

P

j
dj LM( f1)Nj +

P

i, j
ci dj Mi Nj ,
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and the conclusions in the first sentence of the proposition will follow if it is
shown that Mi LM( f2) < LM( f1) LM( f2), that LM( f1)Nj < LM( f1) LM( f2), and
that Mi Nj < LM( f1) LM( f2). The first inequality follows from (i) because Mi <
LM( f1), and the second inequality is similar. For the third we apply (i) twice to
obtainMi Nj ≤ Mi LM( f2) ≤ LM( f1) LM( f2) andobserve that the endexpressions
can be equal only if equality holds in both instances. The latter is impossible
because K [X1, . . . , Xn] is an integral domain, and thus Mi Nj < LM( f1) LM( f2).
The three displayed equalities persist if one or both of f1 and f2 are 0 because

LM( f ), LT( f ), and LC( f ) can be 0 only if f = 0.
Finally if f1 and f2 are nonzero and have expansions as in the first paragraph of

the proofwithLT( f1) = LT( f2), thenLC( f1) = a1 andLC( f2) = a2. Hence f1− f2
has an expansion involving only the monomials Mi and Nj . Consequently if
f1− f2 6= 0, then the largest of theMi ’s and Nj ’s is< LM( f1). ThusLM( f1− f2) <
LM( f1). This inequality holds also if f1 − f2 = 0. §

If I is a nonzero ideal in K [X1, . . . , Xn], we define LT(I ) to be the vector
space of all K linear combinations of polynomials LT( f ) with f in I . It fol-
lows from Proposition 8.18 that K [X1, . . . , Xn] LT(I ) ⊆ LT(I ), and therefore
LT(I ) is an ideal in K [X1, . . . , Xn]. A finite unordered subset {g1, . . . , gk}
of nonzero elements of the ideal I is called a Gröbner basis of I if LT(I ) =°
LT(g1), . . . , LT(gk)

¢
. The inclusion ⊇ follows from the definition, and the

question is whether LT(g1), . . . , LT(gk) generate LT(I ).
Among the examples below, Example 3 is particularly suggestive of the utility

of a Gröbner basis. The idea is that an ordinary set of generators may have
the property that certain “small” elements of I can be expanded in terms of the
generators only using “large” coefficients and that this property is reflected in the
failure of (LT(g1), . . . , LT(gk)) to exhaust LT(I ).

EXAMPLES WITH LEXICOGRAPHIC ORDERING.
(1) Principal ideal. If I = ( f (X1, . . . , Xn)), then { f } is a Gröbner basis. In

fact, the most general member of I is of the form h f with h in K [X1, . . . , Xn],
and Proposition 8.18 gives LT(h f ) = LT(h) LT( f ). Therefore LT(I ) = (LT( f )),
as required.
(2) Ideal generated by members of K [X1, . . . , Xn]1. Suppose that I =

(L1, . . . , Lk), where each L j is a homogeneous linear polynomial of degree 1. For
example, I could be (X1 + X2 + X3, X1 − X3). Let us form the corresponding
k-by-n coefficient matrix, specifically

≥
1 1 1
1 0 −1

¥
in the 3-variable example. If

we perform row operations to transform this matrix into reduced row-echelon
form and let L 0

1, . . . , L
0
k0 be the members of K [X1, . . . , Xn]1 corresponding to

the reduced matrix, specifically X1 − X3 and X2 + 2X3 for the reduced form
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≥
1 0 −1
0 1 2

¥
of

≥
1 1 1
1 0 −1

¥
, then I = (L 0

1, . . . , L
0
k0) and moreover {L 0

1, . . . , L
0
k0 } is a

Gröbner basis of I . This fact is not particularly obvious in the full generality of
this example, but it will be shown to be an easy consequence of Theorem 8.23 in
the next section.
(3) Earlier example in this section. In K [X,Y ], let I = ( f1, f2)with f1(X,Y )

= X2 + 2XY 2 and f2(X,Y ) = XY + 2Y 3 − 1. Then
°
LT( f1), LT( f2)

¢
=

(X2, XY ). We saw that X is a member of I and that LT(X) = X is not in°
LT( f1), LT( f2)

¢
. So { f1, f2} is not a Gröbner basis. If we enlarge the set

of generators of I to { f1, f2, X}, then we still do not have a Gröbner basis
because f2 − Y X = 2Y 3 − 1 is in I and LT( f2 − Y X) = 2Y 3 does not lie
in

°
LT( f1), LT( f2), LT(X)

¢
= (X2, XY, X) = (X). We can enlarge the set of

generators still further to { f1, f2, X, 2Y 3 − 1}. Is this a Gröbner basis? Here
we have

°
LT( f1), LT( f2), LT(X), LT(2Y 3 − 1)

¢
= (X,Y 3), and it seems as if this

equals LT(I ). But we need a way of checking easily. We shall obtain a way of
checking in Theorem 8.23 in the next section.

The question of existence–uniqueness of a Gröbner basis will be addressed
constructively in Sections 8–9; however, we did observe at the beginning of this
section that Hilbert’s proof of the Hilbert Basis Theorem essentially handles exis-
tence when the monomial ordering is the usual lexicographic ordering. Actually,
the argument at the beginning of the section had two parts to it—a nonconstructive
argument producing a certain finite set of leading terms and a verification that
those leading terms lead to a set of generators of the ideal. The first part, being
a nonconstructive existence proof, does not help us in our current efforts, and
we defer to Problem 13 at the end of the chapter the question of adapting it to
a general monomial order. The second part, on the other hand, is a useful kind
of verification in our current efforts. It shows that a certain kind of finite subset
of an ideal is necessarily a set of generators, and it generalizes as follows. The
generalization will play a role in Section 9.

Proposition 8.19. If K is a field, if a monomial ordering is specified for
K [X1, . . . , Xn], and if {g1, . . . , gk} is a Gröbner basis for a nonzero ideal I of
K [X1, . . . , Xn], then {g1, . . . , gk} generates I .

PROOF. First we prove that if f 6= 0 is in I , then there exist a gj , a monomial
M0, and a nonzero scalar c such that LM( f −cM0gj ) < LM( f ). To see this, we use
the hypothesis that {g1, . . . , gk} is a Gröbner basis to find polynomials h1, . . . , hk
such that LM( f ) =

Pk
i=1 hi LM(gi ). Then it must be true for i equal to some

index j that LM( f ) = M0 LM(gj ) for one of the monomials M0 that appears in
hj with nonzero coefficient. Since M0 LM(gj ) = LM(M0) LM(gj ) = LM(M0gj ),
we can rewrite this equality as LT( f ) = c LT(M0gj ) for some scalar c 6= 0. Then
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LT( f ) = LT(cM0gj ), and Proposition 8.18 shows that LM( f − cM0gj ) < LM( f ),
as asserted.
Iterating this construction and assuming that we never get 0, we can find

successively nonzero scalars ci , monomials Mi , and members gji of the Gröbner
basis such that the sequence LM

°
f −

Pl
i=1 cj Mj gji

¢
indexed by l is strictly

decreasing, in contradiction to Proposition 8.16. To avoid the contradiction, we
must have f −

Pl
i=1 cj Mj gji = 0 for some l, and then f is exhibited as in the

ideal (g1, . . . , gk). Hence the Gröbner basis generates I . §

8. Constructive Existence

Throughout this section, K denotes a field, and we work with a fixed monomial
ordering on K [X1, . . . , Xn]. Ideals in K [X1, . . . , Xn] will always be specified by
giving finite sets of generators. Our objective is to obtain a constructive proof of
the existence of a Gröbner basis for each nonzero ideal in K [X1, . . . , Xn], along
with a useful test procedure for decidingwhether a given finite set of generators of
I is a Gröbner basis. As is often the case with existence proofs, the motivation for
the proof comes from a certain amount of deduction of properties that a Gröbner
basis must satisfy if its exists. It was mentioned in the previous section that the
failure of a set of generators to be a Gröbner basis has something to do with
its failure to be able to represent all “small” elements of the ideal by means of
expansions in terms of the generators that use “small” coefficients. The first part
of this section will explore this idea, seeking to make it precise. The main step
will be a checkable text for a set to be a Gröbner basis; this is Theorem 8.23.
The existence argument will be an easy corollary. A by-product of the existence
argument will be a way of testing a polynomial for membership in I .
In the one-variable case any ideal is principal, necessarily of the form (g(X)),

and the test for membership of a polynomial f in the ideal is to apply the division
algorithm, writing f (X) = q(X)g(X) + r(X) with r = 0 or deg r < deg g.
Then f is a member of the ideal if and only if r = 0. The starting point for the
several-variable theory is to do the bestwe can to generalize the division algorithm
to several variables, recognizing that we cannot expect too much because of the
complicated ideal structure in several variables.

Proposition 8.20 (generalized division algorithm). Let ( f1, . . . , fs) be a fixed
enumeration of a set of nonzero members of K [X1, . . . , Xn], and let f be an
arbitrary nonzero member of K [X1, . . . , Xn]. Then there exist polynomials
a1, . . . , as and r such that

f = a1 f1 + · · · + as fs + r,



500 VIII. Background for Algebraic Geometry

such that LM(aj fj ) ≤ LM( f ) for all j , and such that no monomial appearing in r
with nonzero coefficient is divisible by LM( f j ) for any j .

REMARK. The proof below will stop short of giving an algorithm, because
omitting the details of the algorithm will make the invariant of the construction
clearer. To make the proof into an algorithm, one merely needs to be systematic
about the choices in the proof. There is no claim of any uniqueness of a1, . . . , as
or r in the statement; in fact, Problem 16 at the end of the chapter shows that
more than one kind of nonuniqueness is possible. Corollary 8.21 below, however,
will show that if the given f1, . . . , fs form a Gröbner basis of an ideal I , then
r is independent of the enumeration of the Gröbner basis, even without the
requirement that LM(aj fj ) ≤ LM( f ) for all j .

PROOF. We shall do a kind of induction involving decompositions of f of the
form

f = (a1 f1 + · · · + as fs) + p + r, (∗)

where a1, . . . , as, p, r are polynomials with the properties that
(i) LM(p) ≤ LM( f ),
(ii) LM(ai fi ) ≤ LM( f ) for all i ,
(iii) no monomial M appearing in r with nonzero coefficient has M divisible

by any LM( fi ),
and we shall demonstrate that LM(p) decreases at every step of the induction as
long as p 6= 0. Initially we take all ai = 0, p = f , and r = 0. Then (∗) and the
three properties hold at the start. Let us describe the inductive step.
If LT( f j ) divides LT(p) for some j , then we replace aj by aj + LT(p)/ LT( f j ),

we change p to p −
°
LT(p)/ LT( f j )

¢
f j , and we leave r alone. The equality (∗)

is maintained, and (iii) continues to hold. Since

LT
°°
LT(p)/ LT( f j )

¢
f j

¢
= LT

°
LT(p)/ LT( f j )

¢
LT( f j )

=
°
LT(p)/ LT( f j )

¢
LT( f j ) = LT(p),

(∗∗)

Proposition 8.18 shows that LM(p) strictly decreases. Consequently (i) continues
to hold. By the same kind of computation as for (∗∗),

LM
°°
aj + LT(p)/ LT( f j )

¢
f j

¢
≤ max

°
LM(aj fj ), LM

°
LT(p)/ LT( f j )

¢
f j

¢

≤ max(LM( f ), LM(p)) = LM( f ),

and therefore (ii) continues to hold. This completes the inductive step if LT( f j )
divides LT(p) for some j .
The contrary case is that LT(p) is divisible by LT( fi ) for no i . Then we replace

p by p − LT(p), we change r to r + LT(p), and we leave all ai alone. The
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equality (∗) is maintained, and (ii) continues to hold. Since LM(p) = LM(LT(p)),
Proposition 8.18 shows that LM(p) strictly decreases. Consequently (i) continues
to hold. Also, (iii) continues to hold because of the assumption that LT(p) is
divisible by LT( fi ) for no i . This completes the inductive step if LT(p) is divisible
by LT( fi ) for no i .
Proposition 8.16 shows that the induction can continue for only finitely many

steps. Since it must continue as long as p 6= 0, the conclusion is that p = 0 after
some stage, and then the decomposition of the proposition has been proved. §

Corollary 8.21. If {g1, . . . , gs} is a Gröbner basis of a nonzero ideal I of
K [X1, . . . , Xn] and if f is any nonzero member of K [X1, . . . , Xn], then there
exist polynomials g and r such that f = g+r , g is in I , and nomonomial appear-
ing in r with nonzero coefficient is divisible by LM(gj ) for any j . Moreover, r is
uniquely determined by these properties, and g has an expansion g =

Ps
i=1 ai gi

with LM(ai gi ) ≤ LM( f ) for all i .
REMARKS. The uniqueness statement implies in particular that r is independent

of the enumeration of the set {g1, . . . , gs}. This corollarywill give us some insight
into the way a Gröbner basis can resolve cancellation. Shortly we shall introduce
specific members of I that have cancellation built into their definition. Being in
I , they have expansions with remainder term 0, according to this corollary. Since
the remainder is unique, the corollary says that they can be rewritten in terms of
the Gröbner basis in a way that eliminates the cancellation.
PROOF. For existence, let {g1, . . . , gs} be a Gröbner basis of I , and apply

Proposition 8.20 to f and the ordered set (g1, . . . , gs). Then the existence follows
immediately.
For uniqueness, suppose that f = g1 + r1 = g2 + r2. Then r1 − r2 = g2 − g1

exhibits r1 − r2 as in I . Arguing by contradiction, suppose that r1 6= r2. The
hypothesis on r1 and r2 shows that no monomial with nonzero coefficient in
r1 − r2 is divisible by any LM(gj ), and in particular LM(r1 − r2) is not divisible
by any of the generators of the monomial ideal

°
LM(g1), . . . , LM(gs)

¢
= LM(I ).

Since LM(r1 − r2) is a monomial in this ideal, this conclusion contradicts the last
conclusion of Lemma 8.17. §

Suppose that Xα = Xα1
1 · · · Xαn

n and Xβ = Xβ1
1 · · · Xβn

n are two monomials in
K [X1, . . . , Xn]. Then we define their least commonmultiple LCM(Xα, Xβ) to
be

LCM(Xα, Xβ) = X∞ = X∞1
1 · · · X∞n

n with ∞j = max(αj , βj ) for all j .

This notion does not depend on the choice of a monomial ordering. Observe
for any two monomials M and N that LCM(M, N )/M and LCM(M, N )/N are
monomials.
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If f1 and f2 are nonzero polynomials, then the expression

LCM
°
LM( f1), LM( f2)

¢

LT( f1)
f1 =

LCM
°
LM( f1), LM( f2)

¢

LM( f1)
f1

LC( f1)

is a polynomial whose leading monomial is LCM
°
LM( f1), LM( f2)

¢
and whose

leading coefficient is 1. We define the S-polynomial of f1 and f2 to be

S( f1, f2) =
LCM

°
LM( f1), LM( f2)

¢

LT( f1)
f1 −

LCM
°
LM( f1), LM( f2)

¢

LT( f2)
f2.

This is the difference of two polynomials with the same leading monomial
LCM

°
LM( f1), LM( f2)

¢
and with the same leading coefficient 1. Accordingly,

Proposition 8.18 shows that

LM(S( f1, f2)) < LCM
°
LM( f1), LM( f2)

¢
.

The elements S( f1, f2) are the elements mentioned in the remarks with Corollary
8.21; the above inequality is a precise formulation of their built-in cancellation.
Lemma 8.22 below says that whenever cancellation of this kind occurs in

any sum of products with functions f1, . . . , fs , then the sum of products can be
rewritten in terms of the S-polynomials S( f j , fk). In this way the nature of the
cancellation has been made more transparent, partly being accounted for by the
definitions of the individual polynomials S( f j , fk).

Lemma8.22. LetM andM1, . . . ,Ms bemonomials, let f1, . . . , fs be nonzero
polynomials, and suppose thatMi LM( fi ) = M for all i . If c1, . . . , cs are constants
such that LM

°Ps
i=1 ci Mi fi

¢
< M , then the sum

Ps
i=1 ci Mi fi can be rewritten

in the form
sX

i=1
ci Mi fi =

X

j<k

djkM
LCM

°
LM( f j ), LM( fk)

¢ S( f j , fk)

for suitable constants djk . In the sum on the right side, each nonzero term has
leading monomial< M .

PROOF. Let us write Li j = LCM
°
LM( fi ), LM( f j )

¢
for i 6= j . We may assume

that all the ci are nonzero, and we proceed by induction on s. There is nothing to
prove for s = 1. The key step is s = 2, for which we are given that the M term
of c1M1 f1 + c2M2 f2 is 0, i.e., that

c1 LC( f1) + c2 LC( f2) = 0. (∗)
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Substituting for LC( f2) from (∗) gives

ML−1
12 S( f1, f2) = M f1/ LT( f1) − M f2/ LT( f2)

= M1 f1/ LC( f1) − M2 f2/ LC( f2)

= c−1
1 LC( f1)−1(c1M1 f1 + c2M2 f2),

and this proves the displayed formula of the lemma with d12 = c1 LC( f1).
Assume the result for s−1 ∏ 2. We are given that

Ps
i=1 ci LC( fi ) = 0, which

we break into two parts as

c1 LC( f1) − c1 LC( f1)
LC( f2) LC( f2) = 0,

≥
c2 + c1 LC( f1)

LC( f2)

¥
LC( f2) +

sP

i=3
ci LC( fi ) = 0.

The inductive hypothesis gives

c1M1 f1 − c1 LC( f1)
LC( f2) M2 f2 = d12ML−1

12 S( f1, f2),
≥
c2 + c1 LC( f1)

LC( f2)

¥
M2 f2 +

sP

i=3
ci Mi fi =

P

2≤ j<k
djkML−1

jk S( f j , fk).

Adding these two formulas, we obtain the displayed formula of the lemma for
the case s, and the induction is complete. §

Theorem 8.23. Let {g1, . . . , gs} be a set of generators of a nonzero ideal I of
K [X1, . . . , Xn], and assume that gi 6= 0 for all i . Then the following conditions
on {g1, . . . , gs} are equivalent:

(a) {g1, . . . , gs} is a Gröbner basis of I ,
(b) for each pair (gj , gk) with S(gj , gk) 6= 0, every expansion of S(gj , gk) as

S(gj , gk) =
Ps

i=1 ai jkgi + r with the two properties that
(i) LM(ai jkgi ) ≤ LM(S(gj , gk)) and
(ii) no monomial appearing in r with nonzero coefficient is divisible

by LM(gj ) for any j
has r = 0,

(c) for each pair (gj , gk) with S(gj , gk) 6= 0, there is an expansion of the
form S(gj , gk) =

Ps
i=1 ai jkgi with LM(ai jkgi ) ≤ LM(S(gj , gk)).

REMARKS. Because of the equivalence of (b) and (c), the generalized divi-
sion algorithm (Proposition 8.20) gives us a procedure for testing whether these
conditions are satisfied by {g1, . . . , gs}. Namely we follow through the steps in
the proof of Proposition 8.20 in whatever fashion we please for each nonzero
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S(gj , gk). If we get remainder r = 0 for each pair ( j, k), then the conditions are
satisfied. If we get a nonzero remainder r for some pair, then the conditions are
not satisfied. In view of the equivalence of (a) with these conditions, we have an
effective (though somewhat tedious) way of checking whether {g1, . . . , gs} is a
Gröbner basis.

PROOF. We prove that (a) implies (b) and that (c) implies (a). Since (b)
certainly implies (c), the proof will be complete.
Let (a) hold, i.e., let {g1, . . . , gs} be a Gröbner basis. If S(gj , gk) 6= 0, then

S(gj , gk) is a nonzero member of I because each gi lies in I , and S(gj , gk)
consequently has an expansion as

Ps
i=1 ai gi +r with r = 0. By Corollary 8.21 it

has a possibly different expansionwith r = 0 andwith LM(ai gi ) ≤ LM(S(gj , gk))
for each i . On the other hand, in any expansion of S(gj , gk) as

Ps
i=1 ai gi + r

such that (ii) holds, whether or not LM(ai gi ) ≤ LM(S(gj , gk)), r must be 0 by
Corollary 8.21. This proves (b).
To prove that (c) implies (a), we argue by contradiction. Among all expan-

sions of members of I as
Ps

i=1 bi gi such that LT
°Ps

i=1 bi gi
¢
is not in the ideal°

LT(g1), . . . , LT(gs)
¢
, choose one for which

M = max
1≤i≤s

LM(bi gi )

is as small as possible; this choice exists by Proposition 8.16. For this choice, let

f =
sP

i=1
bi gi . (∗)

Define Mi = LM(bi ) for each i with bi 6= 0. If i0 is an index with M =
LM(bi0gi0), then M = Mi0 LM(gi0) by Proposition 8.18, and hence M lies in°
LT(g1), . . . , LT(gs)

¢
. Since LT

°Ps
i=1 bi gi

¢
is not in

°
LT(g1), . . . , LT(gs)

¢
, it

follows that LT
°P

i bi gi
¢

< M . Within the set {1, . . . , s}, define a subset E to
consist of those i for which Mi LM(gi ) = M . This set contains i0, and it has the
property that all i not in E have LM(bi gi ) < M . We regroup f as

f =
P

i∈E
bi gi +

P

i /∈E
bi gi =

P

i∈E
LC(bi )Migi +

P

i∈E
(bi − LT(bi ))gi +

P

i /∈E
bi gi .

Every term in the second and third sums on the right side has leading monomial
< M , and so does f . Therefore LM

°P
i∈E LC(bi )Migi

¢
< M . It follows that

the expression
P

i∈E LC(bi )Migi is of the form considered in Lemma 8.22 with
ci = LC(bi ) for i ∈ E (and ci = 0 for i /∈ E). The lemma tells us that

P

i∈E
LC(bi )Migi =

P

j,k
djk(M/L jk)S(gj , gk)
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for suitable scalars djk , where L jk = LCM
°
LM(gj ), LM(gk)

¢
.

Now we apply the hypothesis (c), expanding each S(gj , gk) in some way as
S(gj , gk) =

Ps
i=1 ai jkgi with the ai jk equal to polynomials such that

LM(ai jkgi ) ≤ LM(S(gj , gk)). (∗∗)

Substituting for S(gj , gk), we obtain

f =
P

i, j,k
djk(M/L jk)ai jkgi +

P

i∈E
(bi − LT(bi ))gi +

P

i /∈E
bi gi . (†)

We know that every term in the second and third sums on the right side of (†)
has leading monomial< M , and we shall estimate the leading monomial of each
term in the first sum. Multiplying the inequality

LM(S(gj , gk)) < LCM
°
LM(gj ), LM(gk)

¢
= L jk

by the monomial M/L jk yields

(M/L jk) LM(S(gj , gk)) < M (††)

for every pair ( j, k). Combining (∗∗) and (††) gives

LM
°
(M/L jk)ai jkgi

¢
= (M/L jk) LM(ai jkgi ) ≤ (M/L jk) LM(S(gj , gk)) < M.

Since each djk is a scalar, every term in the first sum on the right side of (†)
has leading monomial < M . Thus (†) is an expansion of a member of I that
contradicts the minimality of maxi LM(bi gi ) in the expansion (∗). From this
contradiction we conclude that (a) holds. §

EXAMPLE OF A VERIFICATION THAT A SET IS A GRÖBNER BASIS. This example
continues Example 2 of “Examples with lexicographic ordering” in the previous
section. A nonzero ideal I is generated by members of K [X1, . . . , Xn]1 of the
form (L1, . . . , Ls), where each L j is a linear combination of X1, . . . , Xn . After
initial manipulations we assume that the matrix of coefficients of L1, . . . , Ls is in
reduced row-echelon form. The assertion is that {L1, . . . , Ls} is then a Gröbner
basis of I . To prove this, we write L j = Xnj + lj , where Xnj is the associated
corner variable and lj is a linear combination of Xnj+1, . . . , Xn such that the
coefficient of each corner variable is 0. If j < k, then

S(L j , Lk) = −lk Xnj + lj Xnk = −lk(Xnj + lj ) + lj (Xnk + lk) = −lk L j + lj Lk .

The second term on the right side contains no variable X1, . . . , Xnj , but the first
term on the right side contains Xnj . Therefore, relative to the lexicographic
ordering, we have LM

°
S(L j , Lk)

¢
= LM(−lk L j ) = LM(lk)Xnj . Consequently

LM(lj Lk) ≤ LM
°
S(L j , Lk)

¢
(and actually strict inequality must hold). Thus the

displayed formula shows that S(L j , Lk) = a1L j + a2Lk in the form demanded
by (c) of Theorem 8.23. Since (c) implies (a) in the theorem, {L1, . . . , Ls} is a
Gröbner basis of I .
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Corollary 8.24 (Buchberger’s algorithm).15 Each nonzero ideal in the poly-
nomial ring K [X1, . . . , Xn] has a Gröbner basis. Such a basis can be obtained by
the following procedure: Start from any set { f1, . . . , ft} of nonzero generators,
apply the generalized division algorithm in some fashion to each S( f j , fk) and
to the generating set { f1, . . . , ft}, and adjoin to the set of generators any nonzero
remainders obtained from this process. Iterate this process for enlarging a set
{ f 0
1, . . . , f

0
t 0 } of generators as long as a nonzero remainder is obtained for some

S( f 0
j , f

0
k). This process must terminate at some point with all remainders equal

to 0, and the resulting generating set is a Gröbner basis.

PROOF. At the stage of the iteration that works with the set { f 0
1, . . . , f

0
t 0 } of

generators, any nonzero remainder r that arises has the property that nomonomial
occurring in r is divisible by any LM( f 0

j ). By Lemma 8.17, LT(r) is not a member
of

°
LT( f 0

1), . . . , LT( f 0
t )

¢
. However, at the next stage when r has been designated

as one of the generators of I , LT(r) has become one of the generators of this
ideal. Therefore the ideal

°
LT( f 0

1), . . . , LT( f 0
t )

¢
strictly increases as we pass from

one stage to the next. Since K [X1, . . . , Xn] is Noetherian, its ideals satisfy the
ascending chain condition, and this chain of ideals must stabilize. Consequently
all the remainders must be 0 at some point, and then Theorem 8.23 shows that
the set of generators is a Gröbner basis. §

EXAMPLE OF THE COMPUTATION OF A GRÖBNER BASIS. We return to Example
3 of “Exampleswith lexicographic ordering” in the previous section. In K [X,Y ],
we let f1(X,Y ) = X2 + 2XY 2 and f2(X,Y ) = XY + 2Y 3 − 1, and we define
I = ( f1, f2). We seek a Gröbner basis of I , using the lexicographic ordering.
Direct computation gives S( f1, f2) = Y (X2+2XY 2)− X (XY +2Y 3−1) = X .
Since X is not divisible by LM( f1) or by LM( f2), S( f1, f2) = 0 f1 + 0 f2 + X
is an expansion of S( f1, f2) as in Theorem 8.23c with r = X . The procedure
of Corollary 8.24 says to adjoin f3 = X to the generating set and test again.
Direct computation gives S( f1, f3) = 1(X2 + 2XY 2) − X · X = 2XY , and
S( f1, f3) = 0 f1 + 0F2 + (2Y ) f3 + 0 is an expansion of S( f1, f3) as in (c),
since LM(2Y f3) ≤ LM

°
S( f1, f3)

¢
. Thus S( f1, f3) gives us a 0 remainder, hence

nothing new to process. In addition, we have S( f2, f3) = 1(XY + 2Y 3 − 1) −
Y · X = 2Y 3− 1. No term of this is divisible by any of the leading monomials of
f1, f2, f3, namely X2, XY, X . Hence2Y 3−1 is a nonzero remainder.16 Therefore
we are to adjoin f4 = 2Y 3 − 1 to our set. Computation gives S( f1, f4) =
2XY 4 + X2 = (2Y 4 + X) f3, S( f2, f4) = 2Y 5 − Y 2 + 1

2 X = 1
2 f3 + Y 2 f4,

15Computer programs typically use an improved version of this algorithm to compute Gröbner
bases.

16It was not a bad choice of decomposition that led to a nonzero remainder when some other
decomposition might have given us 0; the equivalence of (b) and (c) in Theorem 8.23 assures us of
that fact.
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and S( f3, f4) = 1
2 X = 1

2 f3. In every case each term has leading monomial at
most the leading monomial of the S-polynomial. Hence all remainders are 0, and
Corollary 8.24 says that { f1, f2, f3, f4} is a Gröbner basis of I .

Corollary 8.25 (solution of the ideal-membership problem). If I is a nonzero
ideal in K [X1, . . . , Xn] and f is a polynomial, then a procedure for deciding
whether f lies in I is as follows: introduce a monomial ordering, construct
a Gröbner basis {g1, . . . , gs} of I by means of Corollary 8.24, and apply the
generalized division algorithm to write f =

Ps
i=1 ai gi + r for polynomials

a1, . . . , ar , r such that no monomial appearing in r with nonzero coefficient is
divisible by LM(gj ) for any j . Then f lies in I if and only if r = 0.

PROOF. Corollary 8.24 produces the Gröbner basis, and Corollary 8.21 affirms
that this procedure decides whether f lies in I . §

Corollary 8.26 (solution of the proper-ideal problem). If I is a nonzero ideal
in K [X1, . . . , Xn], then a procedure for deciding whether I = K [X1, . . . , Xn]
is to compute a Gröbner basis for I and to see whether one of its members is a
nonzero scalar c.

PROOF. If I has a nonzero scalar as one of its generators, then 1 lies in I ,
and hence I certainly equals K [X1, . . . , Xn]. Conversely if I is given, then
Corollary 8.24 produces a Gröbner basis {g1, . . . , gs}. Since LT(1) = 1 and since
LT(I ) =

°
LT(g1), . . . , LT(gs)

¢
, the monomial 1 must lie in

°
LT(g1), . . . , LT(gs)

¢
.

Since 1 is a monomial, Lemma 8.17 shows that it must be divisible by LM(gj )
for some j . Therefore LM(gj ) = 1. Since 1 is the smallest monomial in any
monomial ordering, it is the only monomial appearing with a nonzero coefficient
in gj . Therefore gj is a nonzero scalar. §

In many applications of Gröbner bases, there is some flexibility in what mono-
mial ordering to impose in obtaining the Gröbner basis. In Corollaries 8.25 and
8.26, for example, absolutely any monomial ordering works fine. The actual
calculation of Gröbner bases is often computationally demanding, and thus it
is worthwhile to use such a basis that takes relatively little time to compute.
According to computer scientists,17 Gröbner bases are the most widely useful
when computed relative to the lexicographic ordering, but they are then also
the most time-consuming to compute. The monomial orderings that make the
computation of Gröbner bases proceed quickly tend to be ones that first bound

17The Web essay “Representation and monomial orders,” http://magma.usyd.edu/au/
magma/handbook/1177, within the documentation of the Magma computer algebra system
at the University of Sydney contains a discussion of various monomial orders and their uses and
advantages.
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the total degree in one or two steps. One of the reasons that this kind of monomial
ordering works so efficiently is that once the total degree is bounded, there are
only finitely many monomials less than any given monomial M .

9. Uniqueness of Reduced Gröbner Bases

In this section, K continues to denote a field, and we work with a fixed monomial
ordering on K [X1, . . . , Xn]. Ideals in K [X1, . . . , Xn] will always be specified
by giving finite sets of generators. Our objective in this section is to show how
any Gröbner basis can be “reduced” and that a “reduced” Gröbner basis for an
ideal is unique. A by-product of the uniqueness argument will be a way of testing
two ideals for equality.

Anyfinite set of generators of I that contains aGröbner basis is again aGröbner
basis. Thus a constructed Gröbner basis will often be unnecessarily large. One
simple kind of redundance is addressed by Lemma 8.27 below.

Lemma 8.27. If {g1, . . . , gs} is a Gröbner basis for a nonzero ideal I in
K [X1, . . . , Xn] and if LM(g1) lies in the ideal

°
LT(g2), . . . , LT(gs)

¢
, then

{g2, . . . , gs} is a Gröbner basis of I .
REMARK. Lemma 8.17 shows how to check whether LM(g1) lies in the ideal°
LT(g2), . . . , LT(gs)

¢
; all we have to do is see whether some LM(gj ) for j ∏ 1

divides LM(g1).
PROOF. By hypothesis,

°
LT(g2), . . . , LT(gs)

¢
=

°
LT(g1), . . . , LT(gs)

¢
=LT(I ).

Therefore {g2, . . . , gs} is a Gröbner basis of I . (Recall that the definition of
Gröbner basis does not assume that the set generates the ideal; Proposition 8.19
deduces that it generates.) §

A Gröbner basis {g1, . . . , gs} of a nonzero ideal I is said to be minimal if
LC(gj ) = 1 for all j and if no LM(gi ) is divisible by LM(gj ) for some j 6= i .
Lemma 8.27 shows that in trying to transform a Gröbner basis into a form for
which a uniqueness result will apply, there is no loss of generality in assuming
that the given Gröbner basis is minimal.

EXAMPLE. As in the example following Corollary 8.24, let I be the ideal in
K [X,Y ] given by I = ( f1, f2) with f1(X,Y ) = X2 + 2XY 2 and f2(X,Y ) =
XY + 2Y 3 − 1. Then we saw that { f1, f2, f3, f4} is a Gröbner basis of I in
the lexicographic ordering, where f3(X,Y ) = X and f4(X,Y ) = 2Y 3 − 1.
The leading monomials are LM( f1) = X2, LM( f2) = XY , LM( f3) = X , and
LM( f4) = Y 3. The first two are divisible by the third. Therefore {X,Y 3 − 1

2 } is
the corresponding minimal Gröbner basis.
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Unfortunately an ideal can have more than one minimal Gröbner basis, as is
shown in Problem 17 at the end of the chapter. A Gröbner basis {g1, . . . , gs} of
an ideal I is said to be reduced if it is minimal and if for each i , no monomial
appearing in gi with nonzero coefficient is divisible by LM(gj ) for some j 6= i .

Theorem 8.28 (uniqueness of reduced Gröbner basis). If I is a nonzero ideal
in K [X1, . . . , Xn], then I has a unique reduced Gröbner basis, and this can be
obtained algorithmically starting from any minimal Gröbner basis.

PROOF OF UNIQUENESS. Let {g1, . . . , gs} be any Gröbner basis. Since LT(I ) =°
LT(g1), . . . , LT(gs)

¢
, Lemma8.17 shows that any LM( f ) for f ∈ I is divisible by

LM(gj ) for some j . If {h1, . . . , ht} is a second Gröbner basis, then this argument
shows that each LM(hi ) is divisible by some LM(gj ). Turned around, the argument
shows that LM(gj ) is divisible by some LM(hk). Since {h1, . . . , ht} is assumed
minimal, LM(hk) cannot be divisible by LM(hi ) if i 6= k. Thus LM(hi ) = LM(hk),
and these equal LM(gj ). Then it follows that s = t and that we may enumerate
any two minimal Gröbner bases in such a way that the leading monomial of the
i th member of each basis is the same for each i with 1 ≤ i ≤ s.
With this normalization in place, let us show that gi = hi . To do so, we expand

gi −hi as gi −hi =
Ps

j=1 ajhj with LM(gi −hi ) = maxj LM(ajhj ) in accordance
with (b) of Theorem 8.23. Choose k such that the maximum on the right side is
attained at k, i.e., such that

LM(ak) LM(hk) = LM(gi − hi ). (∗)

Arguing by contradiction, suppose that the right side of (∗) is nonzero. Then it
must be a monomial occurring in either gi or hi . Since the two Gröbner bases are
reduced, no monomial occurring in gi is divisible by LM(gk) = LM(hk) if k 6= i ,
and similarly for monomials occurring in hi . We conclude that k = i and that
LM(hi ) = LM(gi − hi ). But this is impossible by Proposition 8.18 if gi − hi 6= 0,
since LM(gi ) = LM(hi ) and LC(gi ) = LC(hi ) = 1. Therefore the right side of (∗)
is 0, and gi = hi . §

PROOF OF EXISTENCE. Let {g1, . . . , gs} be a minimal Gröbner basis of I . As
was shown in the proof of uniqueness, the leadingmonomialsLM(g1), . . . , LM(gs)
are independentof the choiceof the actualminimalbasis. Lookingat thedefinition
of “reduced,” we see therefore that the property of being reduced is a property of
each member gi of the basis separately. That is, it is meaningful to say that gi
is reduced if no monomial appearing in gi with nonzero coefficient is divisible
by LM(gj ) for some j 6= i . We shall show how to replace gi by an element g0

i
with the same leading monomial in such a way that the new set is still a Gröbner
basis and g0

i is reduced, and then the proof will be complete. There is no loss of
generality in taking i = 1.
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Applying the generalized division algorithm (Proposition 8.20), we write

g1 =
sP

j=2
aj gj + r (∗∗)

in such a way that
LM(g1) = max

2≤ j≤s
LM(aj gj ) (†)

and that no monomial appearing in r with nonzero coefficient is divisible by
LM(gj ) for any j ∏ 2. If we define g0

1 to be this element r , then the element g0
1

is reduced in the above sense, and the only question is whether {g0
1, g2, . . . , gs}

is a Gröbner basis. Since {g1, . . . , gs} is minimal, LM(g1) is not divisible by any
LM(gj ) for j ∏ 2. Consequently LM(g1) appears with nonzero coefficient on the
left side of (∗∗), and it does not appear in any of the terms aj gj with nonzero
coefficient on the right side. Consequently it appears in r = g0

1, and LM(g1) ≤
LM(g0

1). On the other hand, the equality (†) implies that LM(g0
1) ≤ LM(g1).

Therefore LM(g1) = LM(g0
1), and LT(I ) =

°
LT(g1), LT(g2) . . . , LT(gs)

¢
=°

LT(g0
1), LT(g2) . . . , LT(gs)

¢
. Consequently {g0

1, g2, . . . , gs} is a Gröbner basis
by definition. §

Corollary 8.29 (solution of the ideal-equality problem). Let I and J be two
nonzero ideals in K [X1, . . . , Xn] specified in terms of finite sets of generators.
Then I = J if and only if the reduced Gröbner bases of I and J relative to a
single monomial ordering are the same.

REMARK. As with the solution of problems listed in Corollaries 8.25 and 8.26,
the desired end is independent of the monomial ordering, and in practice one
might just as well start from a monomial ordering for which the computation of
Gröbner bases is relatively easy.

PROOF. This result is immediate from Corollary 8.24 (constructive existence
of Gröbner bases) and Theorem 8.28. §

10. Simultaneous Systems of Polynomial Equations

In this section we combine our techniques concerning the resultant and Gröbner
bases to attack the original problemdiscussed in Section 1, that of solving systems
of simultaneouspolynomial equations in several variables. Our interest ultimately
will be in the case that the underlying field is algebraically closed.
Corollary 8.26 and the Nullstellensatz already combine to give a criterion for

such a system to have no solutions: We regard the system as the zero locus of
an ideal, and we calculate a Gröbner basis for the ideal. Then the system has no
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solutions if and only if the Gröbner basis contains a constant polynomial, i.e., if
and only if the reduced Gröbner basis is {1}.
Let us now consider the problem of finding the solutions when solutions exist.

We begin with the case of two equations in two unknowns over the field C,
recalling what we know from the theory of the resultant. Consider the system

X2Y + Y 2 = 5,
XY = 2.

Set f (X,Y ) = X2Y +Y 2−5 and g(X,Y ) = XY −2. To find points (x, y)with
f (x, y) = g(x, y) = 0, using the style of Sections 1–3, we compute the resultant
of f and g in the X variable, say, and obtain the polynomial Y 4 − 5Y 2 + 4Y .
Setting this equal to 0 gives us y = 0, y = 1, and y = 1

2 (−1 ±
p
17 ). We can

then substitute each such y into x2y+ y2 = 5 and get candidates (x, y). Doing so
for y = 0 gives us no candidates, and doing so for each of the other three values
of y gives us two values of x , differing only in a sign. So we get six pairs (x, y).
However, only three of these satisfy the second given equation, xy = 2, one for
each nonzero value of y. Thus the resultant gives us a handle on the problem of
finding solutions, but it has two shortcomings: it produced a value of y yielding
no solution pairs (x, y), and it produced extraneous x values.
To find points (x, y) with f (x, y) = g(x, y) = 0, using the style of Sec-

tions 7–10, we consider ( f, g) as an ideal in C[X,Y ], and we are interested
in the locus of common zeros VC(( f, g)) of the ideal. We start by finding a
reducedGröbner basiswith respect to a suitable ordering. Theusual lexicographic
ordering will do fine here, and the result is {X + 1

2Y
2 − 5

2 ,Y
3 − 5Y + 4}. By

what may seem to be good fortune, the second element depends on Y alone, and
the roots are y = 1 and y = 1

2 (−1 ±
p
17 ). If we substitute these values into

the equation x + 1
2 y
2 − 5

2 = 0, we get one value of x for each y. We can solve
because the coefficient 1 of x is nonzero for each y in question. No pair (x, y)
that we obtain is superfluous because the locus of common zeros of f and g is
identical with the locus of common zeros of the members of the Gröbner basis.
This approach raises several questions about a possible generalization:
(i) Under what conditions can we expect that a Gröbner basis for an ideal I
in K [X,Y ] will contain a member that depends just on Y ?

(ii) If the Gröbner basis contains no element that depends just on Y , then
what can we expect?

(iii) If we are able to solve for values of y, under what conditions can we use
the remaining member(s) of the Gröbner basis to solve for x?

Part of the answer to (i) is contained in the Elimination Theorem proved as
Theorem 8.30 below. This theorem says for the lexicographic ordering that the
members of a Gröbner basis that depend just on Y generate I ∩ K [Y ]; in fact,
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they form a Gröbner basis of this ideal of K [Y ]. For the case that I = ( f, g), the
resultant is a member of I ∩ K [Y ]. Thus a nonzero resultant ensures that some
member of the Gröbner basis will depend just on Y ; on the other hand, I ∩ K [Y ]
has to be a principal ideal in K [Y ], and any Gröbner basis of that principal ideal
has to contain the ideal’s generator (up to a scalar factor). By contrast, a zero
resultant leads us to question (ii) because it says, by Theorem 8.1, that f and
g have a common factor h(X,Y ) of positive degree in X as long as both f and
g have positive degree in X . The largest power of X in h has as coefficient
a polynomial in Y that has only finitely many roots, and if K is algebraically
closed, then every y unequal to one of these roots will produce an x such that
h(x, y) = 0 and therefore such that f (x, y) = g(x, y) = 0. In other words,
except in degenerate cases a zero resultant implies that there cannot be a member
of the Gröbner basis that depends just on Y . Finally the answer to (iii) lies deeper
and is contained in the Extension Theorem, which is proved as Theorem 8.31
below.
Let I be a nonzero ideal in K [X1, . . . , Xn], K being any field for now. If

0 ≤ k ≤ n − 1, then the kth elimination ideal of I is the ideal
I ∩ K [Xk+1, . . . , Xn] in K [Xk+1, . . . , Xn]. A monomial ordering on
K [X1, . . . , Xn] will be said to be of k-elimination type if any monomial con-
taining any of X1, . . . , Xk to a positive power is greater than any monomial in
Xk+1, . . . , Xn alone. The usual lexicographic ordering is of k-elimination type
for every k. An example of a monomial ordering of k-elimination type that is of
great interest in applications is the one of Bayer–Stillman described in Example 4
of monomial orderings in Section 7.

Theorem 8.30 (Elimination Theorem). Let K be any field, let I be a
nonzero ideal in K [X1, . . . , Xn], let 0 ≤ k ≤ n, and fix a monomial ordering
of k-elimination type. If {g1, . . . , gs} is a Gröbner basis of I , then the subset of
members of {g1, . . . , gs} depending only on Xk+1, . . . , Xn is a Gröbner basis of
the kth elimination ideal J = I ∩ K [Xk+1, . . . , Xn].

PROOF. Relabeling the members of {g1, . . . , gs}, we may assume that the gj ’s
lying in J are g1, . . . , gt . The first step is to show that J = (g1, . . . , gt). If
f ∈ J is given, we apply the generalized division algorithm (Proposition 8.20)
and write f =

Ps
i=1 ai gi + r with LM(ai gi ) ≤ LM( f ) for all i and with no

monomial appearing in r with nonzero coefficient divisible by LM(gj ) for any
j . Corollary 8.21 shows that r = 0. If ai 6= 0 and i is not ≤ t , then LM(ai gi )
involves at least one of X1, . . . , Xk , and the definition of monomial ordering of
k-elimination type implies that LM(ai fi ) > LM( f ). It follows that ai = 0 for
i > t , and thus J = (g1, . . . , gt).
To see that {g1, . . . , gt} is a Gröbner basis of J , we apply Theorem 8.23. We

are to show for each pair (gj , gk) with S(gj , gk) 6= 0 and { j, k} ⊆ {1, . . . , t} that
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there is an expansion S(gj , gk) =
Pt

i=1 ai gi with LM(ai gi ) ≤ LM
°
S(gj , gk)

¢
. In

view of the argument with f in the previous paragraph, it is enough to show that
S(gj , gk) lies in J . The formula is

S(gj , gk) =
LCM

°
LM(gj ), LM(gk)

¢

LT(gj )
gj −

LCM
°
LM(gk), LM(gk)

¢

LT(gk)
gk .

The coefficient fractions are members of K [Xk+1, . . . , Xn], since the monomial
ordering is of k-elimination type, and thus S(gj , gk) is indeed in J . §

EXAMPLE. Formula for discriminant of a polynomial in one variable. This
example is one thatwe have addressed before by specializedmethods. We include
it anyway because the use of Gröbner bases allows one to solve many similar
problems that the specialized methods do not address. By way of illustration,
let (X − r)(X − s)(X − t) be a cubic polynomial. The discriminant is D =
(r − s)2(s − t)2(r − t)2. This is a polynomial that is symmetric in r, s, t , and the
general theory of symmetric polynomials (in the problems for Chapter VIII in
Basic Algebra) shows that it has to be a polynomial in the elementary symmetric
polynomials a = r + s + t , b = rs + rt + st , c = rst . We seek a formula for D
in terms of a, b, c. We form the ideal I in K [r, s, t, D, a, b, c] given by
I =

°
D− (r − s)2(s − t)2(r − t)2, a− (r + s + t), b− (rs + rt + st), c− rst

¢
.

With the variables enumerated as r, s, t, D, a, b, c, we use any monomial order-
ing of 4-elimination type, the lexicographic ordering for example, and form the
reduced Gröbner basis of I . Calculation best done with the aid of a computer
gives D− a2b2 + 4b3 + 4a3c− 18abc+ 27c2 and three other members of I that
involve r , s, or t . Theorem 8.30 shows that the 4th elimination ideal is principal
with generator D−a2b2+4b3+4a3c−18abc+27c2. Thus the desired formula
is D = a2b2 − 4b3 − 4a3c + 18abc − 27c2.

Let us come to theExtensionTheorem. The statement andproofof this theorem
do not make use of Gröbner bases, but they do refer to the kth elimination ideal,
which is identified explicitly in Theorem 8.30 with the aid of a Gröbner basis.
The intention is that the theorem be applied inductively in any application, taking
into account one additional variable at each step of an induction.

Theorem8.31 (ExtensionTheorem). Let K be an algebraically closedfield, let
I = ( f1, . . . , fs) be an ideal in K [X1, . . . , Xn], and let J be the first elimination
ideal of I in K [X2, . . . , Xn]. For each fi , expand fi in powers of X1 as

fi (X1, . . . , Xn) = gi (X2, . . . , Xn)Xl11 + (lower powers of X1)
with gi in K [X2, . . . , Xn] and gi nonzerounless fi = 0. Suppose that (c2, . . . , cn)
lies in the zero locus VK (J ) ⊆ Kn−1. If gi (c2, . . . , cn) 6= 0 for some i , then there
exists c1 in K such that (c1, . . . , cn) is in the zero locus VK (I ) ⊆ Kn .
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Before giving the proof, we need to extend the theory of the resultant slightly
in such a way that it applies to s polynomials f1, . . . , fs rather than just to two.
To do so, we introduce new indeterminatesU2, . . . ,Us and regard

F = U2 f2 + · · · +Us fs

as a member of K [U2, . . . ,Us, X1, . . . , Xn] whose degree deg1 F in X1 is the
maximumof the degrees of f2, . . . , fs in X1. We can then view f1 as amember of
the same polynomial ring K [U2, . . . ,Us, X1, . . . , Xn] of degree deg1 f1 and form
the resultant of f1 and F in the X1 variable. This is computed as the determinant
of some square matrix of size deg1 f1 + deg1 F , and we are interested only in
the case that deg1 f1 ∏ 1 and deg1 F ∏ 1. When expanded in monomials
Uα = Uα2

2 · · ·Uαs
s , the determinant is of the form

R( f1, F) =
X

α

hα(X2, . . . , Xn)Uα

with each hα in K [X2, . . . , Xn]. The polynomials hα will be called the general-
ized resultants in the X1 variable of the ordered pair ( f1, { f2, . . . , fs}).

PROOF OF THEOREM 8.31. Let us abbreviate X = (X2, . . . , Xn) and c̄ =
(c2, . . . , cn); we shall write

(X1, X) = (X1, . . . , Xn) and (X1, c̄) = (X1, c2, . . . , cn).

We seek c1 ∈ K with f j (c1, c) = 0 for all j . The assumption is that gi (c̄) 6= 0
for some i , and we may as well assume that this i is i = 1. If deg1 f1 = 0, then
f1 is in J , and the conditions that f1 = 0 on VK (J ) and that g1(c̄) 6= 0 contradict
one another; hence deg1 f1 ∏ 1.
As in theparagraphbefore theproof, put F = U2 f2+· · ·+Us fs . If deg1 F = 0,

then f j is independent of X1 for all j ∏ 2, and hence f j is in J for j ∏ 2. In this
case it is enough to find c1 with f1(c1, c̄) = 0. Since g1(c̄) 6= 0, f1(X1, c̄) is a
one-variable polynomial of degree l1 ∏ 1, and it is 0 for some value c1. Thus the
proof is complete if deg1 F = 0.
We may therefore assume that deg1 F ∏ 1. Form the resultant in X1 given by

R( f1, F) =
P

α
hα(X)Uα,

where the hα’s are the generalized resultants mentioned above. The main step is
to prove that each hα lies in the first elimination ideal J . Since hα depends only
on X , it is enough to prove that each hα is in I . We have arranged that each of f1
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and F has positive degree and has nonzero leading coefficient in X1, and hence
Theorem 8.1 shows that

a f1 + bF = R( f1, F)

for some nonzero polynomials a and b in K [U2, . . . ,Us, X1, X]. Let the mono-
mial expansions of a and b in terms of the Uα’s be a =

P
α aαUα and b =P

α bαUα. Then we have

P

α
aα f1Uα +

°P

β

bβUβ
¢° sP

i=2
fiUi

¢
=

P

α
hαUα. (∗)

Let ei be the multi-index that is 1 in the i th place and 0 elsewhere. This has the
property that Uei = Ui for 2 ≤ i ≤ s. We can rewrite (∗) as

P

α
hαUα =

P

α
aα f1Uα +

P

α

° P

(β,i) with
2≤i≤s,
β+ei=α

bβ fi
¢
Uα.

Equating the coefficients of Uα on both sides gives

hα = aα f1 +
P

(β,i) with
2≤i≤s,
β+ei=α

bβ fi

and exhibits hα as in I . Therefore hα is in the elimination ideal J .
Since c̄ lies in VK (J ), hα(c̄) = 0 for all α. Consequently

R( f1, F)(U2, . . . ,Us, c̄) = 0.

Theorem 8.1 shows that f1(X1, c̄) and F(U2, . . . ,Us, X1, c̄) have a common
factor of positive degree in X1 provided either or both of two specific coefficients
are nonzero. These are the coefficients of Xdeg1 f11 in f1(X1, c̄) and of X

deg1 F
1 in

F(U2, . . . ,Us, X1, c̄). The coefficient of X
deg1 f1
1 in f1(X1, X) is g1(X); thus

the coefficient of Xdeg1 f11 in f1(X1, c̄) is g1(c̄) and is nonzero by assumption.
Therefore Theorem 8.1 is applicable.
The common factor of f1(X1, c̄) and F(U2, . . . ,Us, X1, c̄) may be taken to

be prime, and then it has to be a nonzero scalar multiple of X1 − c1 for some
c1 ∈ K , since that is the only kind of prime factor that divides f1(X1, c̄), K being
algebraically closed. Thus the element c1 of K satisfies

f1(c1, c̄) = 0 and F(U2, . . . ,Us, c1, c̄) = 0. (∗∗)
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Writing out F , we have
0 = F(U2, . . . ,Us, c1, c̄) = U2 f2(c1, c̄) + · · · +Us fs(c1, c̄).

This is an identity in K [U2, . . . ,Us], and each coefficient must be 0 on the right
side. Thus 0 = f2(c1, c̄) = · · · = fs(c1, c̄). Since (∗∗) shows that f1(c1, c̄) = 0,
this proves the theorem. §

11. Problems

1. How many points are in PnK if K is a finite field with q elements?
2. Resolve Cramer’s paradox as formulated in Section 1.
3. (Euler’s Theorem) Prove that if F(X1, . . . , Xn) is any homogeneous polyno-

mial of degree d, then
Pn

j=1 Xj
@F
@Xj

= dF .

4. Let A and B be unique factorization domains, and let ∂ : A → B be a one-one
homomorphism of commutative rings with identity. For each h(X) in A[X], let
h∂(X) be the member of B[X] obtained by applying the substitution homomor-
phism that acts by ∂ on the coefficients and fixes X . Using resultants, prove that
if f (X) and g(X) are two members of A[X] such that f ∂(X) and g∂(X) have a
common factor in B[X] that is not in B, then f and g have a common factor in
A[X] that is not in A.

5. Theorem 8.1 assumes that at least one of the coefficients fm and gn is nonzero.
Sometimes this theorem is phrased with the stronger hypothesis that fm and gn
are both nonzero. By comparing the resultants that are involved, show that all
parts of the theorem with at least one of fm and gn nonzero are consequences of
the theorem with both fm and gn nonzero.

6. Let K be an algebraically closed field, let f and g bemembers of K [X1, . . . , Xn]
with f irreducible, and suppose that g(a1, . . . , an) = 0 whenever f (a1, . . . , an)
= 0. Give two proofs, one using the Nullstellensatz and one using resultants,
that f divides g.

7. Factor the member Y 3 − 2XY 2 + 2X2Y − 4X3 of C[X,Y ]3 into first-degree
factors.

8. Find the intersections in P2C of the zero loci of the projective plane curves
F(X,Y,W ) = X (Y 2 − XW )2 − Y 5 and G(X,Y,W ) = Y 4 + Y 3W − X2W 2.

9. Let A be a unique factorization domain, let B = A[Y1, . . . ,Ym, Z1, . . . , Zn], let
F and G be the polynomials in B[X] given by

F(X) =
mQ

i=1
(X − Yi ) and G(X) =

nQ

j=1
(X − Zj ),

and let R(Y1, . . . ,Ym, Z1, . . . , Zn) be the resultant R(F,G) with respect to X .
(a) Show that R(Y1, . . . ,Ym, Z1, . . . , Zn) equals 0 if Yi is set equal to Zj .
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(b) Deduce from (a) that Yi − Zj divides R(Y1, . . . ,Ym, Z1, . . . , Zn).
(c) Deduce from (b) that R(Y1, . . . ,Ym, Z1, . . . , Zn) = c

Q
i, j (Yi − Zj ) for

some c 6= 0 in A depending on m and n.

10. Let f (X) be in K [X], K being a field, and let f 0(X) be the derivative of f (X).
Using the result of the previous problem and the computation at the beginning
of Section V.4, prove that R( f, f 0) is a nonzero multiple of the discriminant of
f , the multiple depending only on deg f .

11. Let F and G be the homogeneous polynomials given by F(X,Y,W ) =
(X2 + Y 2)2 + 3X2YW − Y 3W and G(X,Y,W ) = (X2 + Y 2)3 − 4X2Y 2W 2.
Calculate I (P, F ∩ G) for P = [0, 0, 1].

12. Let G be a nonconstant homogeneous polynomial in K [X,Y,W ]d vanishing at
a point P of P2K , let m = mP(G) be the order of vanishing of G at P , and let
L be a projective line through P . Show from the definitions that L is a tangent
line to G at P in the sense of Section 5 if and only if i(P, L ∩ G) ∏ m + 1 in
the sense of Section 4.

13. Deduce relative to an arbitrary monomial ordering the (nonconstructive) exis-
tence of a Gröbner basis for a nonzero ideal I in K [X1, . . . , Xn] from the form
of a set of generators of the ideal LT(I ).

14. For 1 ≤ i ≤ n, let w(i) be the weight vector w(i) = (w
(i)
1 , . . . , w

(i)
n ) in Rn , and

suppose that these vectors are linearly independent. Show that the w(i) define a
monomial ordering as in Example 5 of Section 7 if and only if for each j , the
first i with w

(i)
j 6= 0 has w

(i)
j > 0.

15. This problem shows for two variables that everymonomial ordering arises from a
systemof two independentweight vectors satisfying the condition in the previous
problem. Let a monomial ordering be imposed on K [X,Y ].
(a) If X > Yq for all q > 0, show that the ordering is lexicographic and is

determined by the system of two weight vectors {(1, 0), (0, 1)}.
(b) If X < Yq for some q > 0, show that there exists a unique real number

r ∏ 0 such that for all ordered pairs of integers u ∏ 0 and v ∏ 0, Xu > Y v

if ru > v and Xu < Y v if ru < v.
(c) If X < Yq for some q > 0 and if r is defined as in (b), prove that the

monomial ordering is determined by the system of two weight vectors
{(r, 1), (s, t)} for a suitable (s, t).

16. In K [X,Y ], define f (X,Y ) = X2Y + XY 2 + Y 2, f1(X,Y ) = XY − 1, and
f2(X,Y ) = Y 2 − 1. Show that

f (X,Y ) = (X + Y ) f1 + 1 f2 + r1 = X f1 + (X + 1) f2 + r2
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with r1(X,Y ) = X + Y + 1 and r2 = 2X + 1 gives two decompositions in the
lexicographic ordering of f relative to { f1, f2} satisfying the conditions of the
generalized division algorithm of Proposition 8.20. Conclude that the remainder
term need not be unique, nor need the coefficients of f1 and f2.

17. Observe for any scalar a that the ideal I = (X2 + cXY, XY ) in K [X,Y ] is
independent of c.
(a) Verify that {X2 + cXY, XY } is a minimal Gröbner basis of I relative to the

lexicographic ordering for any choice of c.
(b) Show that {X2, XY } is the reduced Gröbner basis for I .

Problems 18–20 characterize ideals in K [X1, . . . , Xn] whose locus of common zeros
is a finite set under the assumption that K is an algebraically closed field. Thus let
K be an algebraically closed field, and let I be a nonzero ideal in K [X1, . . . , Xn].

18. Under the assumption for each j with 1 ≤ j ≤ n that I contains a nonconstant
polynomial Pj (Xj ), prove that VK (I ) is a finite set.

19. Converselyunder the assumption thatVK (I )) is a finite set, use theNullstellensatz
to produce for each j , a nonconstant polynomial Pj (Xj ) lying in I .

20. Impose the usual lexicographic ordering on monomials. Prove that LT(I ) con-
tains some Xljj for each j with 1 ≤ j ≤ n if and only if VK (I ) is a finite
set. (Educational note: The advantage of this characterization over the one in
Problems 18–19 is that checking this one is easy by inspection once a Gröbner
basis of I has been computed.)

Problems 21–23 relate solutions of simultaneous systems of polynomial equations to
the theory of the Brauer group in Chapter III. A field L is said to satisfy condition
(C1) if every homogeneous polynomial of degree d in n variables with d < n has a
nontrivial zero. The significance of this condition was shown in Problem 20 at the
end of Chapter III: the Brauer groupB(L) of such a field is necessarily 0. The present
set of problems establishes that a simple transcendental extension of an algebraically
closed field satisfies condition (C1). No knowledge of Chapter III is needed for these
problems, but Problem 23 will take for granted a certain theorem to be proved in
Chapter X.

21. Let K be an algebraicallyclosedfield, and let L = K (X)be a simple transcenden-
tal extension. It is to be shown that anymember F(T1, . . . , Tn) of L[T1, . . . , Tn]d
of the form F(T1, . . . , Tn) =

P
i1,...,in ai1···in T

i1
1 · · · T inn has a nontrivial zero if

d < n and each ai1,...,in lies in the field L = K (X).
(a) Why is it enough to consider such polynomials with each ai1,...,in in the

polynomial ring K [X]?
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(b) With the simplification from (a) in place, let δ be the maximum degree in
X of the coefficients ai1···in . Let N be a positive integer to be specified. By
looking for a solution of the form Ti =

PN
j=0 bi j X j with each bi j in K , show

that substitution of this formula into the formula F(T1, . . . , Tn) = 0 leads
to a system of homogeneous polynomial equations over K in the unknowns
bi j , one of each degree from 0 to δ + Nd.

22. (a) In the setting of the previous problem, show that the number of unknowns
is (N + 1)n and that the number of equations is at most Nd + δ + 1.

(b) Show for N sufficiently large that the number of equations is less than the
number of unknowns.

23. The following theorem will be discussed in Chapter X: if K is algebraically
closed and if m ≤ n, then the locus of common zeros in PnK of m nonconstant
homogeneous polynomials in K [X1, . . . , Xn+1] is nonempty. Assuming this
theorem, deduce from the previous two problems the conclusion that the field
L = K (X) satisfies condition (C1) if K is algebraically closed.


