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CHAPTER VII

Aspects of Partial Differential Equations

Abstract. This chapter provides an introduction to partial differential equations, particularly linear
ones, beyond the material on separation of variables in Chapter I.
Sections 1–2 give an overview. Section 1 addresses the question of how many side conditions

to impose in order to get local existence and uniqueness of solutions at the same time. The
Cauchy–Kovalevskaya Theorem is stated precisely for first-order systems in standard form and
for single equations of order greater than one. When the system or single equation is linear with
constant coefficients and entire holomorphic data, the local holomorphic solutions extend to global
holomorphic solutions. Section 2 comments on some tools that are used in the subject, particularly
for linear equations, and it gives some definitions and establishes notation.
Section 3 establishes the basic theorem that a constant-coefficient linear partial differential

equation Lu = f has local solutions, the technique being multiple Fourier series.
Section 4 proves a maximum principle for solutions of second-order linear elliptic equations

Lu = 0 with continuous real-valued coefficients under the assumption that L(1) = 0.
Section 5 proves that any linear elliptic equation Lu = f with constant coefficients has a

“parametrix,” and it shows how to deduce from the existence of the parametrix the fact that the
solutions u are as regular as the data f . The section also deduces a global existence theoremwhen f
is compactly supported; this result uses the existence of the parametrix and the constant-coefficient
version of the Cauchy–Kovalevskaya Theorem.
Section 6 gives a brief introduction to pseudodifferential operators, concentrating on what is

needed to obtain a parametrix for any linear elliptic equation with smooth variable coefficients.

1. Introduction via Cauchy Data

The subject of partial differential equations is a huge and diverse one, and a
short introduction necessarily requires choices. The subject has its origins in
physics andnowadayshas applications that includephysics, differential geometry,
algebraic geometry, and probability theory. A small amount of complex-variable
theory will be extremely helpful, and this will be taken as known for this chapter.
We shall ultimately concentrate on single equations, as opposed to systems, andon
partial differential equations that are linear. After the first two sections the topics
of this chapter will largely be ones that can be approached through a combination
of functional analysis and Fourier analysis.
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276 VII. Aspects of Partial Differential Equations

Let us for now use subscript notation for partial derivatives, as in Section I.1.
A system of p partial differential equations in N variables for the unknown
functions u(1), . . . , u(m) consists of p expressions

Fk(u(1), . . . , u(m), u(1)
x1 , . . . , u(m)

x1 , . . . , u(1)
xN , . . . , u(m)

xN , u(1)
x1x1, . . . , u

(m)
x1x1, . . . ) = 0,

1 ≤ k ≤ p, in an open set of RN ; it is assumed that the partial derivatives
that appear as variables have bounded order. When p = 1, we speak of simply
a partial differential equation. The highest order of a partial derivative that
appears is the order of the equation or system. We might expect that it would be
helpful if the number p of equations in a system equals the numberm of unknown
functions, but one does not insist on this condition as a matter of definition. A
system in which the number p of equations equals the number m of unknown
functions is said to be “determined,” but nothing is to be read into this terminology
without a theorem. We shall work only with determined systems. The equation
or system is linear homogeneous if each Fk is a linear function of its variables.
It is linear if each Fk is the sum of a linear function and a function of the N
domain variables that is taken as known.
The classical equations that we would like to include in a more general theory

are the three studied in Section I.2 in connection with the method of separation
of variables—the heat equation, the Laplace equation, and the wave equation—
and one other, namely the Cauchy–Riemann equations. With 1 denoting the
Laplacian1u = ux1x1 +· · ·+ uxN xN , the first three of these equations in N space
variables are

ut = 1u, 1u = 0, and utt = 1u.

The Cauchy–Riemann equations are ordinarily written as a system
ux = vy, uy = −vx ,

but they can be written also as a single equation if we think of u and v as real and
write f = u + iv. Then the system is equivalent to the single equation

@ f
@ z̄

= 0 or fz̄ = 0, where
@

@ z̄
=

@

@x
+ i

@

@y
.

Guided in part by the theory of ordinary differential equations of Chapter IV in
Basic, we shall be interested in existence-uniqueness questions for our equation
or system, both local and global, and in qualitative properties of solutions, such
as regularity, the propagation of singularities, and any special features. For a
particular equation or systemwe might be interested in any of the following three
problems:

(i) to find one or more particular solutions,
(ii) to find all solutions,
(iii) to find those solutions meeting some initial or boundary conditions.
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Problems of the third type as known as boundary-value problems or initial-
value problems.1 The method of separation of variables in Section I.2 is partic-
ularly adapted to solving this kind of problem in special situations.
For ordinarydifferential equationsand systems these threeproblemsare closely

related, as we saw in the course of investigating existence and uniqueness in
Chapter IV of Basic. For partial differential equations they turn out to be
comparatively distinct. We can, however, use the kind of setup with first-order
systems of ordinary differential equations to get an idea how much flexibility
there is for the solutions to the system. Let us treat one of the variables x
as distinguished2 and suppose, in analogy with what happened in the case of
ordinary differential equations, that the system consists of an expression for the
derivative with respect to x of each of the unknown functions in terms of the
variables, the unknown functions, and the other first partial derivatives of the
functions. Writing down general formulas involves complicated notation that
may obscure the simple things that happen; thus let us suppose concretely that
the independent variables are x, y and that the unknown functions are u, v. The
system is then to be

ux = F(x, y, u, v, uy, vy),
vx = G(x, y, u, v, uy, vy).

With x still regarded as special, let us suppose that u and v are known when
x = 0, i.e., that

u(0, y) = f (y),
v(0, y) = g(y).

The real-variable approach of Chapter IV of Basic is not very transparent for this
situation; an approach via power series looks much easier to apply. Thus we
assume whatever smoothness is necessary, and we look for formal power series
solutions in x, y. The question is then whether we can determine all the partial
derivatives of all orders of u and v at a point like (0, 0). It is enough to see that the
system and the initial conditions determine @ku

@xk (0, y) and
@kv
@xk (0, y) for all k ∏ 0.

For k = 0, the initial conditions give the values. For k = 1, we substitute x = 0
into the system itself and get values, provided we know values of all the variables
at (0, y). The values of u and v come from k = 0, and the values of uy and vy

1The distinction between these terms has nothing to do with the mathematics and instead is a
question of whether all variables are regarded as space variables or one variable is to be interpreted
as a time variable.

2It is natural to think of this variable as representing time and to say that the differential equation
and any conditions imposed at a particular value of this variable constitute an initial-value problem.
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come from differentiating those expressions with respect to y. For k = 2, we
differentiate each equation of the systemwith respect to x and then put x = 0. For
each equation we get a sum of partial derivatives of F , evaluated as before, times
the partial of each variable with respect to x . For the latter we need expressions
for ux , vx , uxy , and vxy; we have them since we know ux(0, y) and vx(0, y) from
the step k = 1. This handles k = 2. For higher k, we can proceed inductively by
continuing to differentiate the given system, but let us skip the details. The result
is that the initial values of u(0, y) and v(0, y) are enough to determine unique
formal power-series solutions satisfying those initial values.
Next, under the hypothesis that F , G, f , and g are holomorphic functions of

their variables near an initial point, one can prove convergence of the resulting
two-variable power series near (0, 0). This fact persists when the number of
equations and the number of unknown functions are increased but remain equal,
andwhen the domain variables are arbitrary in number. The theorem is as follows.

Theorem 7.1 (Cauchy–Kovalevskaya Theorem, first form). Let a system of
p partial differential equations with p unknown functions u(1), . . . , u(p) and N
variables x1, . . . , xN of the form

u(1)
x1 = F1(u(1), . . . , u(p), u(1)

x2 , . . . , u(p)
x2 , . . . , u(1)

xN , . . . , u(p)
xN ),

... (∗)

u(p)
x1 = Fp(u(1), . . . , u(p), u(1)

x2 , . . . , u(p)
x2 , . . . , u(1)

xN , . . . , u(p)
xN ),

be given, subject to the initial conditions

u(1)(0, x2, . . . , xN ) = f1(x2, . . . , xN ),

... (∗∗)

u(p)(0, x2, . . . , xN ) = fp(x2, . . . , xN ).

Suppose that f1, . . . , fp are holomorphic in a neighborhood inCN−1 of the point
(x2, . . . , xN ) = (x02 , . . . , x

0
N ) and that F1, . . . , Fp are holomorphic in a neighbor-

hood inCNp of thevalueof the argumentu(1), . . . , u(p)
xN of the Fj ’s that corresponds

to (0, x02 , . . . , x0N ). Then there exists a neighborhood of (x1, x2, . . . , xN ) =
(0, x02 , . . . , x0N ) in CN in which the system (∗) has a holomorphic solution satis-
fying the initial conditions (∗∗). Moreover, on any connected subneighborhood
of (0, x02 , . . . , x0N ), there is no other holomorphic solution satisfying the initial
conditions.
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We omit the proof since we shall use the theorem in this generality only as a
guide for howmuch in the way of initial conditions needs to be imposed to expect
uniqueness without compromising existence. Initial conditions of the form (∗∗)
for a system of equations (∗) are called Cauchy data.
We shall, however, make use of a special case of Theorem 7.1, where a better

conclusion is available.

Theorem 7.2. In the Cauchy–Kovalevskaya system of Theorem 7.1, suppose
that the functions Fk in the system (∗) are of the form

Fk(u(1), . . . , u(p), u(1)
x2 , . . . , u(p)

x2 , . . . , u(1)
xN , . . . , u(p)

xN )

=
pX

i=1
aiu(i) +

pX

i=1

NX

j=2
ci j u(i)

xj + hk(x1, . . . , xN )

with the ai and ci j constant and with each hj a given entire holomorphic function
onCN . Suppose further that the functions f j (x2, . . . , xN ) in the initial conditions
(∗∗) are entire holomorphic functions on CN . Then the system (∗) has an entire
holomorphic solution satisfying the initial conditions (∗∗).

This theorem is proved in Problems 6–9 at the end of the chapter without
making use of Theorem 7.1. We shall use it in proving Theorem 7.4 below,
which in turn will be applied in Section 5.
Since our interest is really in single equations and we want to allow order> 1,

we can ask whether we can carry over to partial differential equations the familiar
device for ordinary differential equations of introducing new unknown functions
to change a higher-order equation to a first-order system.
Recallwith anordinarydifferential equationof ordern for anunknown function

y(t) when the equation is y(n) = F(t, y, y0, . . . , y(n−1)): we can introduce
unknown functions y1, . . . , yn satisfying y1 = y, y2 = y0, . . . , yn = y(n−1),
and we obtain an equivalent first-order system y0

1 = y2, . . . , y0
n−1 = yn ,

y0
n = F(t, y1, y2, . . . , yn). Values for y, y0, . . . , y(n−1) at t = t0 correspond to
values at t = t0 for y1, y2, . . . , yn and give us equivalent initial-value problems.
For a single higher-order partial differential equation of order m in which the

mth derivative of the unknown function with respect to one of the variables x
is equal to a function of everything else, the same kind of procedure changes a
suitable initial-value problem into an initial-value problem for a first-order system
as above. But if we ignore the initial values, the solutions of the single equation
need not match the solutions of the system. Let us see what happens for a single
second-order equation in two variables x, y for an unknown function u under the
assumption that we have solved for uxx . Thus consider the equation

uxx = F(x, y, u, ux , uy, uxy, uyy)
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with initial data

u(0, y) = f (y),
ux(0, y) = g(y).

This is another instance in which the initial data are known as Cauchy data:
the equation has order m, and we are given the values of u and its derivatives
through order m − 1 with respect to x at the points of the domain where x =
0. For this example, introduce variables u, p, q, r, s, t equal, respectively, to
u, ux , uy, uxx , uxy, uyy . With these interpretations of the variables, the given
equation becomes r = F(x, y, u, p, q, s, t), and we differentiate this identity
to make it more convenient to use. Then u yields a solution of a system of six
first-order equations, namely

ux = p,
px = r,
qx = py,
rx = Fx + pFu + r Fp + sFq + ry Fs + sy Ft ,
sx = ry,
tx = sy .

The choice here of qx = py rather than qx = s is important; we will not be able
to invert the initial-value problem without it. The initial data will be values of
u, p, q, r, s, t at (0, y), and we can read off what we must use from the above
values of u(0, y) and ux(0, y), namely

u(0, y) = f (y),
p(0, y) = g(y),
q(0, y) = f 0(y),
r(0, y) = F(0, y, f (y), g(y), f 0(y), g0(y), f 00(y)),
s(0, y) = g0(y),
t (0, y) = f 00(y).

If u satisfies the initial-value problem for the single equation, then the definitions
of u, p, q, r, s, t give us a solution of the initial-value problem for the system.
Let us show that a solution u, p, q, r, s, t of the initial-value problem for the

system has to make u be a solution of the initial-value problem for the single
equation. What needs to be shown is that uy = q, uxy = s, and uyy = t . We use
the same kind of argument with all three.
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For uy = q, we see from the system that (uy)x = (ux)y = py = qx , so that
(uy−q)x = 0. Therefore uy(x, y)−q(x, y) = h(y) for some function h. Setting
x = 0 gives h(y) = uy(0, y) − q(0, y) = f 0(y) − f 0(y) = 0. Thus h(y) = 0,
and we obtain uy = q.
Similarly foruxy = s, we start fromuxxy = pxy = ry = sx , so that (uxy−s)x =

0. Therefore uxy(x, y) − s(x, y) = k(y) for some function k. Setting x = 0
gives k(y) = uxy(0, y) − s(0, y) = py(0, y) − s(0, y) = g0(y) − g0(y) = 0.
Thus k(y) = 0, and we obtain uxy = s.
Finally foruyy = t , we start fromuxyy = (uxy)y = sy = tx , so that (uyy−t)x =

0. Therefore uyy(x, y)− t (x, y) = l(y) for some function l. Setting x = 0 gives
l(y) = uyy(0, y) − t (0, y) = f 00(y) − f 00(y) = 0. Thus l(y) = 0, and we obtain
uyy = t .
The conclusion is that the given second-order equation with two initial con-

ditions is equivalent to the system of six first-order equations with six initial
conditions. In other words the Cauchy data for the single equation lead to Cauchy
data for an equivalent first-order system. It turns out that if a single equation of
order m has one unknown function and is written as solved for the mth derivative
of one of the variables x , and if the given Cauchy data consist of the values at
x = x0 of the unknown function and its derivatives through order m − 1, then
the equation can always be converted in this way into an equivalent first-order
system with given Cauchy data. The steps of the reduction to Theorem 7.1 are
carried out in Problems 10–11 at the end of the chapter. The result is as follows.

Theorem 7.3 (Cauchy–Kovalevskaya Theorem, second form). Let a single
partial differential equation of orderm in the variables (x, y) = (x, y1, . . . , yN−1)
of the form

Dm
x u = F(x, y; u; all Dk

x D
α
y u with k < m and k + |α| ≤ m) (∗)

be given, subject to the initial conditions

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m. (∗∗)

Here α is assumed to be a multi-index α = (α1, . . . ,αN−1) corresponding to the
y variables. Suppose that f (0), . . . , f (m−1) are holomorphic in a neighborhood
in CN−1 of the point (y1, . . . , yN−1) = (y01 , . . . , y

0
N−1) and that F is holomor-

phic in a neighborhood of the value of its argument corresponding to x = 0
and (y1, . . . , yN−1) = (y01 , . . . , y

0
N−1). Then there exists a neighborhood of

(x, y1, . . . , yN−1) = (0, y01 , . . . , y0N−1) in CN in which the system (∗) has a
holomorphic solution satisfying the initial conditions (∗∗). Moreover, on any
connected subneighborhood of (0, y01 , . . . , y0N−1), there is no other holomorphic
solution satisfying the initial conditions.
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In the special case that F is the sumof a known entire holomorphic function and
a linear combination with constant coefficients of x , y, and the various Dk

x Dα
y u,

the steps that reduce Theorem7.3 to Theorem7.1 perform a reduction to Theorem
7.2. We therefore obtain a better conclusion under these hypotheses, as follows.

Theorem 7.4. Let a single partial differential equation of order m in the
variables (x, y) = (x, y1, . . . , yN−1) of the form

Dm
x u = ax+b1y1+· · ·+bN−1yN−1+

X

0≤k<m
k+|α|≤m

ck,αDk
x D

α
y u+h(x, y1, . . . , yN−1) (∗)

be given, subject to the initial conditions

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m. (∗∗)

Suppose that f (0), . . . , f (m−1) are entire holomorphic onCN−1 and that h is entire
holomorphic on CN . Then the equation (∗) has an entire holomorphic solution
satisfying the initial conditions (∗∗).

The steps in the reduction of this theorem to Theorem 7.2 are indicated for
N = 2 in Problem 11 at the end of the chapter, and the steps for general N
are similar. We shall make use of Theorem 7.4 to prove the existence of certain
“fundamental solutions” in Section 5.
Aswe said, in this reduction from an initial-value problem for a single equation

to an initial-value problem for a first-order system, the equation without initial
values is not always equivalent to the system without initial values. A simple
example will suffice. In the second-order setup as above, let the given equation
be uxx = −uyy + 4. That is, let F(x, y, u, ux , uy, uxy, uyy) = −uyy + 4. This
equation has u = x2 + y2 as a solution, for example. If we introduce variables
u, p, q, r, s, t as above, we find that F(x, y, u, p, q, s, t) = −t + 4, and we
obtain the system

ux = p,
px = r,
qx = py,
rx = Fx + pFu + r Fp + sFq + ry Fs + sy Ft = −sy,
sx = ry,
tx = sy .

If we put
u = x2, p = 2x, q = s = 0, r = t = 2,
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we find that this tuple (u, p, q, r, s, t) solves the system. But u = x2 is not a
solution of uxx = −uyy + 4.
There is a still more general Cauchy–Kovalevskaya Theorem than anythingwe

have considered, still involving local holomorphic systems, data, and solutions.
It amounts to whatever one can get by combining the Implicit Function Theorem,
the technique of reduction of order via an increase in the number of equations,
and Theorem 7.1. We omit the precise statement. The word “noncharacteristic”
is used to describe situations in which the Implicit Function Theorem applies for
this purpose.
Cauchy data are not the only kinds of initial data that one might consider.

In fact, none of the examples with separation of variables in Section I.2 used
Cauchy data. A typical example from that section is the Dirichlet problem for
the Laplacian in the unit disk. The equation can be written as uxx = −uyy , and
Cauchy data would consist of values of u(x0, y) and ux(x0, y). This amounts to
two functions on a piece of a line in the plane, and one could handle two functions
of a suitable curve in the plane after applying the Implicit Function Theorem. By
contrast, theDirichlet problemrequires just a single functionon theunit circle for a
unique solution. Amore apt comparison is to think of a Sturm–Liouville problem
as being an ordinary-differential-equations analog of the Dirichlet problem. A
particular Sturm–Liouville problem to compare with the Dirichlet problem for
the disk is the equation uxx = 0 with boundary conditions u(0) = u(π) = 0.
The region is a ball in 1-dimensional space, and the function is specified on the
boundary; the function is uniquely determined without specifying the derivative
on the boundary. However, if the equation is changed to uxx = −∏u for some
positive constant ∏, then there is a nonunique solution when ∏ is the square of a
nonzero integer.

2. Orientation

After this essay on what is appropriate for existence and uniqueness, let us turn to
some other aspects of partial differential equations and systems. A few principles
and observations will influence what we do in the upcoming sections of this
chapter.

The subjects of linear systems and nonlinear systems of partial differential
equations cannot be completely separated.
For example let a(x, y) and b(x, y) be given functions on an open set in R2,

and consider the single linear equation

a(x, y)ux + b(x, y)uy = 0
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for an unknown function u(x, y). If we look for curves c(t) = (x(t), y(t))
along which such a function u(x, y) is constant, the condition on c is that° d
dt

¢
u(x(t), y(t)) = 0, hence that

x 0(t)ux(x(t), y(t)) + y0(t)uy(x(t), y(t)) = 0.

One way for this equation to be satisfied is that c(t) = (x(t), y(t)) satisfy the
system

x 0(t) = a(x, y),
y0(t) = b(x, y),

of two ordinary differential equations. This system is nonlinear, and the condition
for c(t) to solve it is that c(t) be an integral curve. Thus u is a solution if it is
constant along each integral curve. If we introduce two parameters, one varying
along an integral curve and the other indexing a family of integral curves, then
we obtain solutions by letting u be any function of the second parameter. Under
reasonable assumptions, these solutions turn out to be the only solutions locally,
and thus the solution of a certain linear partial differential equation reduces to
solving a nonlinear system in fewer variables. Despite this circumstance the
partial differential equations of interest to us will be the linear ones.

As we have seen, there is a distinction between the reduction of a partial
differential equation to a first-order system of Cauchy type and the reduction of
a Cauchy problem for the equation to the corresponding Cauchy problem for the
first-order system.
One consequence is that finding a several-parameter set of solutions of a partial

differential equation may not be very helpful in solving a specific boundary-
value problem about the equation. With an eye on the wave equation, let us take
as an example a homogeneous linear equation with constant coefficients. Let
P : RN+1 → C be a polynomial such as P(x0, x1, . . . , xN ) = x20 − x21 − · · ·− x2N
in the case of the wave equation, x0 being the time variable. Wewrite the equation
in our notation with D as

P(D)u = 0,
understanding as usual that @

±
@xj is to be substituted in P everywhere that xj

appears. If a is any (N + 1)-tuple, then (@
±
@xj )ea·x = ajea·x . Consequently

P(D)ea·x = P(a)ea·x , and ea·x solves the equation P(D)u = 0whenever P(a) =
0. Concretelywith thewave equation, letα be a real number, letβ = (β1, . . . ,βN )

be inRN , and write x = (t, x 0). Then eαt−β·x 0 solves the wave equation whenever
α2 = |β|2. Apart from the one constraint α2 = |β|2, we obtain an N -parameter
family of solutions of the wave equation. But this family of solutions is not of
any obvious help in solving boundary-value problems such as those encountered
in Section I.2. We shall discuss this example further shortly.
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Global problems involving linear partial differential equations with constant
coefficients lend themselves to use of the Fourier transform.
The reason is that the Fourier transform carries differentiation into multipli-

cation by a function. Specifically under suitable conditions on f , the relevant
formula is F

° @ f
@xj

¢
(ξ) = 2π iξj (F f )(ξ) if we use ξ for the Fourier transform

variable.
Thus, at least on a formal level, to find a solution of an inhomogeneous

equation P(D)u = f , we can take the Fourier transform of both sides, obtaining
P(2π iξ)(Fu)(ξ) = (F f )(ξ). Then we divide by P(2π iξ) and take the inverse
Fourier transform. In Section III.1 we carried out the steps of this process for
the equation (1 − 1)u = f when f is in the Schwartz space. In this case the
polynomial is 1+4π2|ξ |2, and we found that there is a solution u in the Schwartz
space.
In practice the function P(2π iξ) may be zero in some places, and then we

have to check what happens with the division. There will also be a matter of
ensuring that the inverse Fourier transform is well defined where we want it to
be.
In Section 3 we shall use multiple Fourier series to see that a linear equation

P(D)u = f with constant coefficients and with f in C∞
com(RN ) always has a

solution in a neighborhood of a point. It is of interest also to know what happens
when f is replaced by a function with fewer derivatives or even by a distribution
of compact support. This matter is addressed in Problem 5 at the end of the
chapter.

For a linear partial differential equation of order m, the terms with differen-
tiations of total order m are especially important. Moreover, a linear equation
with variable coefficients can sometimes be studied near a point x0 of the domain
by applying a “freezing principle.”
We explain the notion of a freezing principle in a moment. We shall nowmake

use of the notation of Chapter V for linear differential operators L , often writing
an equation under study as Lu = f with f known and u unknown. Here L is
given by

L = P(x, D) =
X

|α|≤m
aα(x)Dα

for some m, or we can write

L = P(x, Dx) =
X

|α|≤m
aα(x)Dα

x

if the variable x of differentiation needs emphasis. It is customary to assume that
m is the order of L , in which case some aα(x)with |α| = m is not identically zero.
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The domain is to be an open set in real Euclidean space, usuallyRN ; thus x varies
in that open set, and the multi-index α is an N -tuple of nonnegative integers.
The idea of a freezing principle is that the behavior of solutions of P(x, D)u =

f near x = x0 can sometimes be studied by considering solutions of the equa-
tion (P(x0, Dx)u)(x) = f (x) and making estimates for how much effect the
variability of x might have. For equations that are “elliptic” in a sense that
we define shortly, the classical approach to the equations via something called
“Gårding’s inequality” used this idea and worked well. We shall indicate a more
recent approach via “pseudodifferential operators” in Section 6 and will omit any
discussion of details concerning Gårding’s inequality in our development. The
freezing principle is somewhat concealed within the mechanism of pseudodif-
ferential operators, but it is at least visible in the notation that is used for such
operators.
As far as theorems for nonelliptic operators are concerned, the idea of a

freezing principle is meaningful but has its limitations. We have noted that linear
differential equations with constant coefficients are at least locally solvable, a
result that will be proved in Section 3. But the same is not always true for
equations with variable coefficients. In 1957 Hans Lewy gave an example in R3
involving the linear differential operator

P(x, D) = −(D1 + i D2) + 2i(x1 + i x2)D3.

For a certain function f of class C∞ that is nowhere real analytic, the equation
P(x, D)u = f admits no solution in any nonempty open set. By contrast, if f
is holomorphic, the Cauchy–Kovalevskaya Theorem (Theorem 7.3) ensures the
existence of local solutions.
In the linear differential operator P(x, Dx) =

P
|α|≤m aα(x)Dα

x , the terms of
highest order are of special interest; we group them and give them their own
name:

Pm(x, Dx) =
X

|α|=m
aα(x)Dα

x .

In line with the freezing principle, when one takes a Fourier transform, one
does not apply the Fourier transform to the coefficients of L , only to the various
Dα
x ’s. Recalling that Dα

x goes into multiplication by (2π i)|α|ξα under the Fourier
transform, we introduce the expressions3

3The Fourier transform variable ξ lies in the dual space of RN . To take maximum advantage of
this fact in more advanced treatments, one wants to identify RN with the tangent space at x to the
domain open set. Then ξ is to be regarded as a member of the dual of the tangent space of x , and
to some extent, the formalism makes sense on smooth manifolds. We elaborate on these remarks in
Chapter VIII.
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P(x, 2π iξ) =
X

|α|≤m
aα(x)(2π iξ)α

Pm(x, 2π iξ) =
X

|α|=m
aα(x)(2π iξ)α.and

These are called the symbol and the principal symbol of L , respectively.

EXAMPLES. The Laplacian, thewave operator, and the heat operator have order
m = 2, while the Cauchy–Riemann operator hasm = 1. In all these cases except
the heat operator, the symbol and the principal symbol coincide. The operators
written with the notation D are

1 = 1x = D21 + · · · + D2N in RN (Laplacian),
@

@ z̄
= D1 + i D2 (Cauchy–Riemann operator),

§ = D20 − 1x in RN+1 (wave operator),

D0 − 1x in RN+1 (heat operator).

The principal symbols Pm(x, 2π iξ) in each case are independent of x and are as
follows:

−4π2(ξ 21 + · · · + ξ 2N ) (Laplacian),
2π iξ1 − 2πξ2 (Cauchy–Riemann operator),

−4π2ξ 20 + 4π2(ξ 21 + · · · + ξ 2N ) (wave operator),

4π2(ξ 21 + · · · + ξ 2N ) (heat operator).

Complex analysis inevitably plays an important role in the study of partial
differential equations.
We already saw that complex analysis is useful in addressing the Cauchy

problem. The Lewy example shows that complex analysis has to play a role in
drawing a distinction between linear equations with constant coefficients, where
we always have local existence of solutions, and linear equations with variable
coefficients, where local existence can fail if the inhomogeneous term of the
equation is merely C∞. Actually, the complex analysis that enters the local
existence theorem in Section 3 for linear equations with constant coefficients
is rather primitive and can be absorbed into facts about polynomials in several
variables. Complex analysis enters in a more serious way for more advanced
theorems about partial differential equations, but we shall not pursue theorems
that go in this direction beyond one application in Section 5 of Theorem 7.4.
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Linear partial differential equations can exhibit behavior of kinds not seen in
ordinary differential equations.
Theoperator L onanopen set inRN is said tobe ellipticat x if Pm(x, 2π iξ) = 0

for ξ ∈ RN only when ξ = 0. The operator L is elliptic if it is elliptic at every
point x of its domain. The Laplacian and the Cauchy–Riemann operator are
elliptic, but the wave operator and the heat operator are not. A linear ordinary
differential operatorwith nonvanishing coefficient for the highest-order derivative
is automatically elliptic. We shall be especially interested in elliptic operators,
which are relatively easy to handle.
In Section I.2 we considered the Dirichlet problem for the unit disk in R2,

namely the problem of finding a function u satisfying 1u = 0 in the interior
and taking prescribed values on the boundary. The problem was solved by the
Poisson integral formula. No matter how rough the function on the boundary
was, the solution u in the interior was a smooth function. Theorem 3.16 extended
this conclusion of smoothness, showing that solutions of 1u = 0 in any open
set of RN are automatically C∞. This behavior is typical of solutions of linear
elliptic differential equations with smooth coefficients.
Other partial differential equations can behave quite differently. Consider the

wave equation
°°

@
@t

¢2
− 1x

¢
u = 0 with x ∈ Rn . We have seen that u(t, x) =

eαt−β·x is a solution if α is a number and β is a vector withα2 = |β|2. But actually
the exponential function is not important here. If f is any C2 function of one
variable, then f (αt −β · x) is a solution as long as α2 = |β|2 is satisfied: in fact,°°

@
@t

¢2
−1x

¢
f (αt−β ·x) = f 00(αt−β ·x)(α2−|β|2). Such a solution represents

an undistorted progressing wave; the roughness of the wave is maintained as time
progresses. Again, this kind of behavior is not exhibited by elliptic equations.
In the special case that L is of order 2 with real coefficients and a point x0 is

specified, we can make a linear change of variables in ξ to bring the order-two
terms of the operator into a certain standard form at x0 that makes the question of
ellipticity transparent. This change of variables amounts to replacing the standard
basis e1, . . . , eN used for determining the first partial derivatives D1, . . . , DN by a
new basis e0

1, . . . , e
0
N and the corresponding first partial derivatives D0

1, . . . , D
0
N .

The result is as follows.

Proposition 7.5. If L = P(x, D) is of order 2 and has real coefficients in
an open set of RN and if a point x0 is specified, then there exists a nonsingular
N -by-N realmatrixM = [Mi j ] such that the definition D0

j =
P

k Mjk Dk exhibits
L at x0 as of the form ∑1D0

1
2 + · · · + ∑N D0

N
2 with each ∑j equal to+1, −1, or 0.

The principal symbol of L at x0 is then −4π2
P

j ∑jξ
0
j
2, where ξ 0

j =
P

k Mjkξk .

REMARKS. We see immediately that L is elliptic at x0 if and only if all ∑j
are +1 or all are −1. This is the situation with the Laplacian. In Section 4 we
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shall prove a maximum principle for certain elliptic operators of order 2 with
real coefficients, generalizing the corresponding result for the Laplacian given in
Corollary 3.20. If one ∑j is+1 and the others are−1, or if one is−1 and the others
are +1, the operator is said to be hyperbolic at x0; this is the situation with the
wave operator. Much is known about hyperbolic operators of this kind and about
generalizations of them, but the study of such operators remains a continuing
subject of investigation.

Lemma 7.6 (Principal Axis Theorem). If B is a real symmetric matrix, then
there exist a nonsingular real matrix M and a diagonal matrix C whose diagonal
entries are each +1, −1, or 0 such that B = M trCM .
PROOF. By the finite-dimensional Spectral Theorem for self-adjoint operators,

choose an orthogonal matrix P such that PBP−1 is some real diagonal matrix E .
Any real number is the product of a square and one of +1, −1, and 0, and thus
E = QCQ with C as in the lemma and with Q = Qtr diagonal and nonsingular.
Since P is orthogonal, P−1 = P tr, and therefore B = P trQtrCQP . This proves
the lemma with M = QP . §

PROOF OF PROPOSITION 7.5. Let the principal symbol be

P2(x, 2π iξ) =
X

|α|=2
aα(x)(2π iξ)α = −4π2

X

|α|=2
aα(x)ξα.

We rewrite this in matrix notation, viewing ξ = (ξ1, . . . , ξN ) as a column vector
and converting {aα(x)} into a matrix by defining

bj j (x) = aα(x) if α is 2 in the j th entry and 0 elsewhere,

bjk(x) = 1
2aα(x) if α is 1 in the j th and kth entries and 0 elsewhere.

Then B(x) = [bjk(x)] is a symmetric matrix, and

P2(x, 2π iξ) = −4π2
X

j,k
bjk(x)ξjξk = −4π2ξ trB(x)ξ.

We apply the lemma to the real symmetric matrix B = B(x0) to obtain B(x0) =
M trC(x0)M with M nonsingular and with C(x0) diagonal of the form in the
lemma. Define C(x) by B(x) = M trC(x)M , write C(x) = [cjk(x)] and
M = [mjk], and put ξ 0 = Mξ . Then P2(x, 2π iξ) = −4π2ξ trB(x)ξ =
−4π2ξ tr(M trC(x)M)ξ = −4π2ξ 0 trC(x)ξ 0. If we set D0

j =
P

k Mjk Dk , then
the algebraic manipulations for the order-two part of L are the same as with
the principal symbol and show that the order-two part of the operator is given
by P2(x, D) =

P
j,k bjk(x)Dj Dk =

P
j,k cjk(x)D0

j D
0
k . The matrix C(x0) is

diagonal with diagonal entries +1, −1, and 0, and the proposition follows. §
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Ways are needed for making routine the passage via the Fourier transform
between differentiations and multiplications by polynomials.
We are going to be using the Fourier transform to transform any linear equation

Lu = f , at least in the constant-coefficient case, into a problem involving division
by a polynomial and inversion of a Fourier transform. It is inconvenient to check
repeatedly the technical conditions in Proposition 8.1 ofBasic that relate differen-
tiations andmultiplicationsby polynomials. Weakderivatives andSobolev spaces
as discussed in Chapter III, and distributions as discussed in Chapter V, all help
us handle easily the passage via the Fourier transform between differentiations
and multiplications by polynomials.

“Fundamental solutions” are useful for obtaining all solutions of a linear
partial differential equation, especially for constant-coefficient equations. In the
case of an elliptic equation, a substitute for a fundamental solution that is easier
to find is a “parametrix,” which at least reveals qualitative properties of solutions.
In Section I.3 we encountered Green’s functions in connection with Sturm–

Liouville theory. The operator L under study in that section was a second-order
ordinary differential operator, and a Green’s functionwas the kernel of an integral
operator T1 that we used. To understand symbolically what was happening there,
let us take r = 1 in Section I.3, and then the operator T , which is the same as the
operator T1 for r = 1 in that section, sets up a one-one correspondence between a
class of functions u and a class of functions f , the relationship being that u = T f
and Lu = f . In other words T was a two-sided inverse of L . The operator T
was of the form T f (x) =

R b
a G(x, y) f (y) dy. If we think symbolically of taking

f to be a point mass δx0 at x0, then we find that T (δx0)(x) = G(x, x0), and the
relationship is to be L(G( · , x0)) = δx0 . In other words the Green’s function at x0
is a fundamental solution u of the equation Lu = f in the sense that application
of L to it yields a point mass at x0.
These matters can easily be made rigorous with distributions of the kind intro-

duced in Chapter V. In the case that L has constant coefficients, the notion of a
fundamental solution is especially useful because the operator L commutes with
translations. If a certain u produces Lu = δ0, then translation of that u by some
x0 produces a solution of Lu = δx0 . In short, one obtains a fundamental solution
for each point by finding it just for one point, and all solutions may be regarded
as the sum of a weighted average of fundamental solutions at the various points
plus a solution of Lu = 0. In practice we can carry out this process of weighted
average by means of convolution of distributions. Corollary 5.23 carried out the
details for the Laplacian in RN , once Theorem 5.22 had identified a fundamental
solution at 0.
In the case of the Laplacian in all of RN , Theorem 5.22 showed that a funda-

mental solution at 0 is amultiple of |x |−(N−2) if N > 2. But fundamental solutions
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are at best inconvenient to obtain for other equations, and a certain amount of
the qualitative information they yield, at least in the elliptic case, can be obtained
more easily from a “parametrix,” which is a kind of approximate fundamental
solution. To illustrate matters, consider the inhomogeneous version 1u = f of
the Laplace equation, which is known as Poisson’s equation. Suppose that f
is in C∞

com(RN ) and we seek information about a possible solution u. We shall
use the Fourier transform, and therefore u had better be a function or distribution
whose Fourier transform is well defined. But let us leave aside the question of
what kind of function u is, going ahead with the computation. If we take the
Fourier transform of both sides, we are led to ask whether the following inverse
Fourier transform is meaningful:

−4π2
Z

RN
e2π i x ·ξ |ξ |−2 bf (ξ) dξ.

Here bf (ξ) is in the Schwartz space, but the singularity of |ξ |−2 at the origin does
not put |ξ |−2 bf (ξ) into any evident space of Fourier transforms. To compensate,
we use Proposition 3.5f to introduce a functionχ ∈ C∞

com(RN ) that is identically 0
near the origin and is identically 1 away from the origin. Then χ(ξ)|ξ |−2 bf (ξ)
has no singularity and is in fact in the Schwartz space. It thus makes sense to
define

Q f (x) = −4π2
Z

RN
e2π i x ·ξχ(ξ)|ξ |−2 bf (ξ) dξ,

where Q f (x) is the Schwartz function with

dQ f (ξ) = −4π2χ(ξ)|ξ |−2 bf (ξ).

Since 1 f is in C∞
com(RN ) and Q f is a Schwartz function, Q1 f and 1Q f are

Schwartz functions. Applying the Fourier transform operator F, as it is defined
on the Schwartz space, we calculate that

F(Q1 f ) = χ bf = F(1Q f ).

Hence F(Q1 f − f ) = F(1Q f − f ) = (χ − 1) bf .

The function χ − 1 on the right side is in C∞
com(RN ), and it is therefore the

Fourier transform of some Schwartz function K . Since F carries convolutions
into products, we have bK bf = \K ∗ f , and consequently

Q1 = 1Q = 1+ (convolution by K ).

The operator of convolution by K is called a “smoothing operator” because,
as follows from the development of Chapter V, it carries arbitrary distributions of
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compact support into smooth functions. The operator Q that gives a two-sided
inverse for 1 except for the smoothing term is called a parametrix for 1.
The parametrix does not solve our equation for us, but it does supply useful

information. As we shall see in Section 5, a parametrix will enable us to see that
whenever u is a distribution solution of 1u = f on an open set U , with f an
arbitrary distribution onU , then u is smooth wherever f is smooth. In particular,
any distribution solution of 1u = 0 is a smooth function. The argument will
apply to any elliptic linear partial differential equation with constant coefficients.
A first application of the method of pseudodifferential operators in Section 6
shows that the same conclusion is valid for any elliptic linear partial differential
equation with smooth variable coefficients.

3. Local Solvability in the Constant-Coefficient Case

We come to the local existence of solutions to linear partial differential equations
with constant coefficients.

Theorem7.7. LetU be an open set inRN containing 0, and let f be inC∞(U).
If P(D) is a linear differential operator with constant coefficients and with order
∏ 1, then the equation P(D)u = f has a smooth solution in a neighborhood of 0.

The proof will use multiple Fourier series as in Section III.7. Apart from that,
all that we need will be somemanipulationswith polynomials in several variables
and an integration. As in Section III.7, let us write ZN for the set of all integer
N -tuples and [−π,π]N for the region of integration defining the Fourier series.
We shall give the idea of the proof, state a lemma, prove the theorem from

the lemma, and then return to the proof of the lemma. The idea of the proof of
Theorem 7.7 is as follows: We begin by multiplying f by a smooth function
that is identically 1 near the origin and is identically 0 off some small ball
containing the origin (existence of the smooth function by Proposition 3.5f),
so that f is smooth of compact support, the support lying well inside [−π,π]N .
If we regard f as extended periodically to a smooth function, we can write
f (x) =

P
k∈ZN dkeik·x by Proposition 3.30e. Let the unknown function u be

given by u(x) =
P

k∈ZN ckeik·x . Then P(D)u(x) is given by

P(D)u(x) =
X

k∈ZN

ck P(ik)eik·x ,

and thus we want to take ck P(ik) = dk . We are done if dk
P(ik) decreases faster

than any |k|−n , by Proposition 3.30c and our computations. So we would like to
prove that

|P(ik)|−1 ≤ C(1+ |k|2)M for all k ∈ ZN
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and for some constantsC and M , and then we would be done. Unfortunately this
is not necessarily true; the polynomial P(x) = |x |2 is a counterexample. What is
true is the statement in the following lemma, and we can readily adjust the above
idea to prove the theorem from this lemma.

Lemma 7.8. If R(x) is any complex-valued polynomial not identically 0 on
RN , then there exist α ∈ RN and constants C and M such that

|R(k + α)|−1 ≤ C(1+ |k|2)M for all k ∈ ZN .

PROOF OF THEOREM 7.7. Apply the lemma to R(x) = P(i x). Because of the
preliminary step ofmultiplying f by something,we are assuming that f is smooth
and has support near 0. Instead of extending f to be periodic, as suggested in
the discussion before the lemma, we extend the function f (x)e−iα·x to be smooth
and periodic. Thus write

f (x)e−iα·x =
X

k∈ZN

dkeik·x ,

and put ck = dk
R(k+α)

. Since the |dk | decrease faster than |k|−n for any n,
Lemma 7.8 and Proposition 3.30c together show that

P
k∈ZN ckeik·x is smooth

and periodic. Define

u(x) = eiα·x
X

k∈ZN

ckeik·x =
X

k∈ZN

ckei(k+α)·x .

This function is smooth but maybe is not periodic. Application of P(D) gives

P(D)u(x) =
X

k∈ZN

ck P(i(k + α))ei(k+α)·x

= eiα·x
X

k∈ZN

dk
R(k + α)

P(i(k + α))eik·x

= eiα·x
X

k∈ZN

dkeik·x = eiα·x( f (x)e−iα·x) = f (x),

and hence u solves the equation for the original f in a neighborhood of the origin.
§

The proof of Lemma 7.8 requires two lemmas of its own.
Lemma 7.9. For each positive integer m and positive number δ < 1

m , there
exists a constant C such that

R 1
−1 |x − c1|−δ · · · |x − cm |−δ dx ≤ C

for any m complex numbers c1, . . . , cm .
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PROOF. For 1 ≤ j ≤ m, let Ej be the subset of [−1, 1] where |x − cj |−δ is the
largest of the m factors in the integrand. The integral in question is then

≤
Pm

j=1
R
Ej |x − c1|−δ · · · |x − cm |−δ dx

≤
Pm

j=1
R
Ej |x − cj |−mδ dx ≤

Pm
j=1

R 1
−1 |x − cj |−mδ dx

≤
Pm

j=1
R 1
−1 |x − Re cj |−mδ dx ≤ m supr∈R

R 1
−1 |x − r |−mδ dx .

On the right side the integrand decreases pointwise with |r | when |r | ∏ 1, and
hence the expression is equal to

m sup−1≤r≤1
R 1
−1 |x − r |−mδ dx

= m sup−1≤r≤1
° R r

−1 (r − x)−mδ dx +
R 1
r (x − r)−mδ dx

¢

= m(1− mδ)−1 sup−1≤r≤1
°
(1+ r)1−mδ + (1− r)1−mδ

¢

≤ 22−mδm(1− mδ)−1. §

Lemma 7.10. If R(x) is any complex-valued polynomial on RN of degree
m > 0, then |R(x)|−δ is locally integrable whenever δ < 1

m .

PROOF. We first treat the special case that xm1 has coefficient 1 in R(x) and that
integrability on the cube [−1, 1]N is to be checked. Write x 0 for (x2, . . . , xN ),
so that x = (x1, x 0). Then R(x) = xm1 +

Pm−1
j=0 x

j
1 pj (x 0), where each pj is a

polynomial. For fixed x 0, R(x1, x 0) is a monic polynomial of degree m in x1 and
factors as (x1−c1) · · · (x1−cm) for some complex numbers c1, . . . , cm depending
on x 0. Applying Lemma 7.9, we see that

R 1
−1 |R(x1, x 0)|−δ dx1 ≤ C . Integration

in the remaining N − 1 variables therefore gives
R
[−1,1]N |R(x)|−δ dx ≤ 2N−1C .

Turning to the general case, suppose that R(x) and a point x0 are given. We
want to see that F(x) = R(x + x0) has the property that |F(x)|−δ is integrable
on some neighborhood of the origin in RN . The function F is still a polynomial
of degree m. Let Fm be the sum of all its terms of total degree m. This cannot be
identically 0 on the unit sphere since it is a nonzero homogeneous function,4 and
thus Fm(v1) 6= 0 for some unit vector v1. Extend {v1} to an orthonormal basis
of RN , and define G(y1, . . . , yN ) = Fm(y1v1 + · · · + yNvN ). The function G is
a polynomial of degree m whose coefficient of ym1 is Fm(v1) and hence is not 0,
and it is obtained by applying an orthogonal transformation to the variables of
F . Therefore |G|−δ and |F |−δ have the same integral over a ball centered at the
origin. The special case shows that |G|−δ is integrable over some such ball, and
hence so is |F |−δ. §

4A function Fm of several variables is homogeneous of degree m if Fm(r x) = rm Fm(x) for all
r > 0 and all x 6= 0.
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PROOF OF LEMMA 7.8. Let R have degreem, which wemay assume is positive
without loss of generality. The function S(x) = |x |2mR

° x
|x |2

¢
is then a polynomial

of degree ≤ 2m, and Lemma 7.10 shows that any number δ with δ < 1
2m has

the property that |R|−δ and |S|−δ are integrable for |x | ≤ 1. Using spherical
coordinates and making the change of variables r 7→ 1/r in the radial direction,
we see that

R
|x |∏1 |R(x)|−δ|x |−2N dx =

R ∞
r=1

R
ω∈SN−1 |R(rω)|−δr−2N dω r N−1 dr

=
R 1
r=0

R
ω∈SN−1 |R(r−1ω)|−δ dω r N−1 dr

=
R
|x |≤1 |R(x/|x |2)|−δ dx

=
R
|x |≤1 |S(x)|−δ|x |2mδ dx

≤
R
|x |≤1 |S(x)|−δ dx .

The right side is finite. Since (1+ |x |2)−N ≤ 1+ |x |−2N , we see that

R
RN |R(x)|−δ(1+ |x |2)−N dx < ∞.

Define E = {α ∈ RN | 0 ≤ αj < 1 for all j}. By complete additivity, we can
rewrite the above finiteness condition as

R
α∈E

£P
k∈ZN |R(k + α)|−δ(1+ |k + α|2)−N

§
dα < ∞.

Every pair (l,β)with l ∈ Z and β ∈ [0, 1) has (l+β)2 ≤ 2(1+ l2). Summing N
such inequalities gives |k + α|2 ≤ 2N + 2|k|2 ≤ 2N (1+ |k|2). Thus we obtain
1+ |k + α|2 ≤ 3N (1+ |k|2), (1+ |k + α|2)−N ∏ (3N )−N (1+ |k|2)−N , and

R
α∈E

£P
k∈ZN |R(k + α)|−δ(1+ |k|2)−N

§
dα < ∞.

Therefore
P

k∈ZN |R(k+α)|−δ(1+|k|2)−N is finite almost everywhere [dα]. Fix
an α for which the sum is finite. If

P
k∈ZN |R(k + α)|−δ(1+ |k|2)−N = K < ∞,

then |R(k + α)|−δ(1 + |k|2)−N ≤ K for all k ∈ ZN and hence |R(k + α)|−1 ≤
K 1/δ(1+ |k|2)N/δ for all k ∈ ZN . This proves Lemma 7.8. §
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4. Maximum Principle in the Elliptic Second-Order Case

In this section we work with a second-order linear homogeneous elliptic equation
Lu = 0 with continuous real-valued coefficients in a bounded connected open
subset U of RN . It will be assumed that only derivatives of u, and not u itself,
appear in the equation; in other words we assume that L(1) = 0. The conclusion
will be that a real-valued C2 solution u cannot have an absolute maximum or
an absolute minimum inside U without being constant. This result was proved
already in Corollary 3.20 for the special case that L is the Laplacian1.
Let us use notation for L of the kind in Proposition 7.5 and its proof. Then L

is of the form
Lu =

X

i, j
bi j (x)Di Dju +

X

k
ck(x)Dku

with the matrix [bi j (x)] real-valued and symmetric. Ellipticity of L at x means
that

P
i, j bi j (x)ξiξj 6= 0 for ξ 6= 0. Thus

Ø
ØP

i, j bi j (x)ξiξj
Ø
Ø has a positive

minimum value µ(x) on the compact set where |ξ | = 1. By homogeneity ofØ
ØP

i, j bi j (x)ξiξj
Ø
Ø and |ξ |2, we conclude that

Ø
Ø
X

i, j
bi j (x)ξiξj

Ø
Ø ∏ µ(x)|ξ |2

for some µ(x) > 0 and all ξ . The positive number µ(x) is called the modulus
of ellipticity of L at x .

EXAMPLE. Let L be the sum of the Laplacian and first-order terms, i.e.,
Lu = 1u +

P
k ck(x)Dku. Suppose that u is a real-valued C2 function on U

and that u attains a local maximum at x0 in U . By calculus, Diu(x0) = 0 for
each i and D2i u(x0) ≤ 0, so that Lu(x0) ≤ 0. Therefore if we know that Lu(x)
is > 0 everywhere in U , then u can have no local maximum in U . To obtain
a maximum principle, we want to relax two conditions and still get the same
conclusion. One is that we want to allow more general second-order terms in L ,
and the other is that we want to get a conclusion from knowing only that Lu(x)
is ∏ 0 everywhere. The first step is carried out in Lemma 7.11 below, and the
second step will be derived from the first essentially by perturbing the situation
in a subtle way.

Lemma 7.11. Let L =
P

i, j bi j (x)Di Dj +
P

k ck(x)Dk , with [bi j (x)] sym-
metric, be a second-order linear elliptic operator with real-valued coefficients in
an open subset U of RN such that for every x in U , there is a number µ(x) > 0
such that

P
i, j bi j (x)ξiξj ∏ µ(x)|ξ |2 for all ξ ∈ RN . If u is a real-valued C2

function on U such that Lu > 0 everywhere in U , then u has no local maximum
in U .
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PROOF. Suppose that u has a local maximum at x0. Applying Proposition 7.5,
we can find a nonsingular matrix M such that the definition D0

i =
P

j Mi j Di

makes the second-order terms of L at x0 take the form ∑1D0
1
2 + · · · + ∑N Dk 0

N
2

with each ∑i equal to +1, −1, or 0. Examining the hypotheses of the lemma, we
see that all ∑i must be +1. Hence the change of basis at x0 via M converts the
second-order terms of L into the form D0

1
2 + · · · + D0

N
2. The argument in the

example above is applicable at x0, and the lemma follows. §

Theorem 7.12 (Hopf maximum principle). Let

L =
X

i, j
bi j (x)Di Dj +

X

k
ck(x)Dk,

with [bi j (x)] symmetric, be a second-order linear elliptic operator with real-
valued continuous coefficients in a connected open subset U of RN . If u is a
real-valued C2 function on U such that Lu = 0 everywhere in U , then u cannot
attain its maximum or minimum values in U without being constant.

PROOF. First we normalize matters suitably. We have
Ø
ØP

i, j bi j (x)ξiξj
Ø
Ø ∏

µ(x)|ξ |2 with µ(x) > 0 at every point. By continuity of the coefficients and
connectedness of U , the expression within the absolute value signs on the left
side is everywhere positive or everywhere negative. Possibly replacing L by−L ,
we shall assume that it is everywhere positive:

X

i, j
bi j (x)ξiξj ∏ µ(x)|ξ |2 for all x ∈ U.

Because of the continuity of the coefficients of L , the coefficient functions are
bounded on any compact subset ofU and the functionµ(x) is bounded below by a
positive constant on any such compact set. Since u can always be replaced by−u,
a result about absolute maxima is equivalent to a result about absolute minima.
Thus we may suppose that u attains its absolute maximum value M at some x1 in
U , and we are to prove that u is constant inU . Arguing by contradiction, suppose
that x0 is a point in U with u(x0) < M .
The idea of the proof is to use x0 and x1 to produce an open ball B with Bcl ⊆ U

and a point s in the boundary @B of B such that u(s) = M and u(x) < M for all
x in Bcl − {s}. See Figure 7.1. For a suitably small open ball B1 centered at s,
we then produce a C2 function w on RN such that Lw > 0 in B1 and w attains
a local maximum at the center s of B1. The existence of w contradicts Lemma
7.11, and thus the configuration with x0 and x1 could not have occurred.
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x1

x2

ex x 0 seB B1

B

x0

FIGURE 7.1. Construction in the proof of the Hopf maximum principle.

Since U is a connected open set in RN , it is pathwise connected. Let
p : [0, 1] → U be a path with p(0) = x0 and p(1) = x1. Let τ be the first
value of t such that u(p(t)) = M; necessarily 0 < τ ≤ 1. Define x2 = p(τ ).
Choose d > 0 such that B(d; p(t))cl ⊆ U for 0 ≤ t ≤ τ , and then fix a
point ex = p(t) with 0 ≤ t < τ and with |ex − x2| < 1

2d. By definition of d,
B(d;ex)cl ⊆ U . Let eB be the largest open ball contained in U , centered atex , and
having u(x) < M for x ∈ eB. Since u(x2) = M and |ex − x2| < 1

2d, eB has radius
< 1

2d. Thus eBcl ⊆ B(d;ex)cl ⊆ U . The construction of eB and the continuity of
u force some point s of the boundary @eB to have u(s) = M . Let B be any open
ball properly contained in eB and internally tangent to eB at s. Then Bcl ⊆ eB∪ {s},
and hence u(x) < M everywhere on Bcl except at s, where u(s) = M . Write
B = B(R; x 0).
To construct B1, fix R1 > 0 with R1 < 1

2 R, and let B1 = B(R1; s). If x is
in Bcl1 , then |x − ex | ≤ |x − s| + |s − ex | ≤ R1 + 1

2d < 1
2 R + 1

2d ≤ d, and
hence Bcl1 ⊆ B(d;ex)cl ⊆ U . Since Bcl and Bcl1 are compact subsets of U , the
coefficients of L are bounded on Bcl∪ Bcl1 , and the ellipticity modulus is bounded
below by a positive number. Let us say that

|bi j (x)| ≤ β, |ck(x)| ≤ ∞ , µ(x) ∏ µ > 0 for x ∈ Bcl ∪ Bcl1 .

The next step is to construct an auxiliary function z(x) on RN to be used in
the definition of w(x). Let α be a (large) positive number to be specified, and set

z(x) = e−α|x−x 0|2 − e−αR2 .

The function z(x) is > 0 on B, is 0 on @B, and is < 0 off Bcl. Let us see that
we can choose α large enough to make L(z)(x) > 0 for x in B1. Performing the
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differentiations explicitly, we obtain

L(z)(x) = 2αe−α|x−x 0|2
≥
2α

X

i, j
bi j (x)(xi − x 0

i )(xj − x 0
j )

−
X

k

°
bkk(x) − ck(x)(xk − x 0

k)
¢¥

∏ 2αe−α|x−x 0|2°2αµ|x − x 0|2 − (β + ∞ |x − x 0|)
¢
.

All points x in B1 have 12 R < |x − x 0| < 3
2 R and therefore satisfy

L(z)(x) ∏ 2αe−α|x−x 0|2(2αµ 1
4 R

2 − (β + 3
2∞ R)).

Consequently we can choose α large enough so that L(z)(x) > 0 for x in B1. Fix
α with this property.
Let ≤ > 0 be a (small) positive number to be specified, and define

w = u + ≤z.

For x in B1, we have Lw = Lu + ≤Lz > 0. Also,

w(s) = u(s) + ≤z(s) = u(s) = M since s is in @B.

Let us see that we can choose ≤ to make w(x) < M everywhere on @B1. We
consider @B1 in two pieces. LetC0 = @B1∩Bcl. SinceC0 is a subset of Bcl−{s},
u(x) < M at every point of C0. By compactness of C0 and continuity of u, we
must therefore have u(x) ≤ M − δ on C0 for some δ > 0. Since the function
z(x) is everywhere ≤ 1− e−αR2 , any x in C0 must have

w(x) = u(x) + ≤z(x) ≤ M − δ + ≤(1− e−αR2).

By taking ≤ small enough, we can arrange that w(x) ≤ M − 1
2δ on C0. Fix such

an ≤. The remaining part of @B1 is @B1 − C0. Each x in this set has

w(x) = u(x) + ≤z(x) ≤ M + ≤z(x) < M.

Thus w(x) < M everywhere on @B1, as asserted.
Sincew(s) = M andw(x) < M everywhere on @B1,w attains itsmaximum in

Bcl1 somewhere in the open set B1. Since Lw > 0 on B1, we obtain a contradiction
to Lemma 7.11. This completes the proof. §
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5. Parametrices for Elliptic Equations with Constant Coefficients

In this section we use distribution theory to derive some results about an elliptic
equation P(D)u = f with constant coefficients. Initially we work on RN , yet
in the end we will be able to work on any nonempty open set. We think of f as
known and u as unknown. But we allow f to vary, so that we can see the effect
on u of changing f . It will be important to be able to allow solutions that are not
smooth functions, and thus u will be allowed to be some kind of distribution.
We begin by obtaining a parametrix, which at first will be a tempered distri-

bution that approximately inverts P(D) on S 0(RN ). More specifically it inverts
P(D) on S 0(RN ) up to an error term given by an operator equal to convolution
with a Schwartz function.
At this point we can use the version Theorem 7.4 of the Cauchy–Kovalevskaya

Theorem to obtain a fundamental solution, i.e., a member u of D 0(RN ) such
that P(D)u = δ. This step is carried out in Corollary 7.15 below. Convolution
of P(D)u = δ with a member f of E 0(RN ) shows that Corollary 7.15 implies a
global existence theorem: any elliptic equation P(D)u = f with f in E 0(RN )
has a solution in D 0(RN ).
But it is not necessary, for purposes of examining regularity of solutions, to

have an existence theorem. The next step is to modify the parametrix to have
compact support. Once that has been done, the parametrix will invert P(D)
on D 0(RN ), up to a smoothing term, and we will deduce a regularity theorem
about solutions saying that the singular support of u is contained in the singular
support of f . In particular, solutions of P(D)u = 0 on RN are smooth. Finally
we localize this result to see that the inclusion of singular supports persists even
when the equation P(D) = f is being considered only on an open set U .
The starting point for our investigation is the following lemma.

Lemma 7.13. If P(D) is an elliptic operator with constant coefficients, then
the set of zeros of P(2π iξ) in RN is compact.

REMARK. The polynomial P(2π iξ) is the symbol of P(D), as defined in
Section 2. The important fact about the symbol is that the Fourier transform
satisfies F(P(D)T ) = P(2π iξ)F(T ), which follows immediately from the
formula F(DαT ) = (2π i)|α|ξαF(T ). This fact accounts for our studying the
particular polynomial P(2π iξ).

PROOF. Let P have order m, and let Z be the set of zeros of P(2π iξ) in RN .
Since P(D) is elliptic, the principal symbol Pm(2π iξ) is nowhere 0 on the unit
sphere ofRN . By compactness of the sphere, |Pm(2π iξ)| ∏ c > 0 there, for some
constant c. Taking into account the homogeneity of Pm , we see that |Pm(2π iξ)| ∏
c|ξ |m for all ξ in RN . If we write P(2π iξ) = Pm(2π iξ) + Q(2π iξ), then
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Q(2π iξ)| ≤ C|ξ |m−1 for |ξ | ∏ 1 and for some constant C . If ξ is in Z and
|ξ | ∏ 1, then we have c|ξ |m ≤ Pm(2π iξ)| = |Q(2π iξ)| ≤ C|ξ |m−1, and we
conclude that |ξ | ≤ C/c. This proves the lemma. §

Fix an elliptic operator P(D), and choose R > 0 by the lemma such that all the
zeros in RN of P(2π iξ) lie in the closed ball of radius R centered at the origin.
Fix numbers R0 and R00 with R0 > R00 > R. Let χ be a smooth function on RN

with values in [0, 1] such that χ(ξ) is 0 when |ξ | ≤ R00 and is 1 when |ξ | ∏ R0.
The formal computation is as follows: if we define v in terms of f by

v(x) =
Z

RN
e2π i x ·ξ

F( f )(ξ)

P(2π iξ)
χ(ξ) dξ,

then Fourier inversion gives

(P(D)v)(x) =
Z

RN
e2π i x ·ξF( f )(ξ)χ(ξ) dξ

= f (x) +
Z

RN
e2π i x ·ξ (χ(ξ) − 1)F( f )(ξ) dξ,

and the second term on the right side will be seen to be a smoothing term. Let
us now state a precise result and use properties of distributions to make this
computation rigorous.

Theorem 7.14. Let P(D) be an elliptic operator on RN with constant coef-
ficients. Then there exist a distribution k ∈ S 0(RN ) and a Schwartz function
h ∈ F−1(C∞

com(RN )) such that

P(D)k = δ + Th,

as an equality in S 0(RN ). Here δ is the Dirac distribution hδ,ϕi = ϕ(0). Con-
sequently whenever f is in E 0(RN ), then the distribution v = k ∗ f is tempered
and satisfies P(D)v = f + (h ∗ f ).

REMARKS. The convolution operator f 7→ k ∗ f is called a parametrix for
P(D) on E 0(RN ). More precisely it is a right parametrix, and a left parametrix
can be defined similarly. The operator f 7→ h∗ f is called a smoothing operator
because h ∗ f is in C∞(RN ) whenever f is in E 0(RN ). To see the smoothing
property, we observe that h, as a Schwartz function, is identified with a tempered
distribution when we pass to Th . Theorem 5.21 shows that Th ∗ f is a tempered
distribution with Fourier transform F(h)F( f ). Both factors F(h) and F( f ) are
smooth functions, and F(h) has compact support. Therefore F(h ∗ f ) is smooth
of compact support, and h ∗ f is a Schwartz function.
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PROOF. The function σ (ξ) = χ(ξ)/P(2π iξ) is smooth and is bounded on
RN because, in the notation used in the proof of Lemma 7.13, |P(2π iξ)| ∏
|Pm(2π iξ)|− |Q(2π iξ)| ∏ (c|ξ |−C)|ξ |m−1 and because (c|ξ |−C)|ξ |m−1 ∏ 1
as soon as |ξ | is large enough. Since σ is bounded, integration of the product of σ
and any Schwartz function is meaningful, and Tσ is therefore in S 0(RN ). Define
k = F−1(Tσ ). This is in S 0(RN ) and has F(k) = Tσ . Define h = F−1(χ − 1).
Since χ − 1 is in C∞

com(RN ), h is in S(RN ).
Now let f in E 0(RN ) be given, and define v = k ∗ f . Theorem 5.21 shows

that v is in S 0(RN ) and that F(v) = F(k)F( f ) = σF( f ). Then

F(P(D)v) = P(2π iξ)F(v) = P(2π iξ)σ (ξ)F( f )
= χ(ξ)F( f ) = F( f ) + (χ(ξ) − 1)F( f ) = F( f ) + F(h)F( f ).

Taking the inverse Fourier transform of both sides yields P(D)v = f + h ∗ f
as asserted. For the special case f = δ, we have v = k ∗ δ = k, and then
P(D)k = δ + Th . This completes the proof. §

The function h is the inverse Fourier transform of a member of C∞
com(RN ),

specifically h(x) =
R

RN e2π i x ·ξ (χ(ξ) − 1) dξ . Since the integration is really
taking place on a compact set, we see that we can replace x by a complex variable
z and obtain a holomorphic function in all of CN . In other words, h extends
to a holomorphic function on CN . If we single out any variable, say x1, then
the ellipticity of P(D) implies that Dm

x1 has nonzero coefficient in P(D), and
P(D)w = h is therefore an equation to which the global Cauchy–Kovalevskaya
Theorem applies in the form of Theorem 7.4. The theorem says that the equation
P(D)w = h, in the presence of globally holomorphic Cauchy data, has not just a
local holomorphic solution but a global holomorphic one. Therefore P(D)w =
h has an entire holomorphic solution w. Let us regard w and h as yielding
distributions Tw and Th on C∞

com(RN ), so that the equation reads P(D)Tw = Th .
Subtracting this from P(D)k = δ + Th yields P(D)(k − Tw) = δ. In summary
we have the following corollary.

Corollary 7.15. If P(D) is an elliptic operator on RN with constant coeffi-
cients, then there exists e in D 0(RN ) with P(D)e = δ.

The distribution e is called a fundamental solution for P(D) in D 0(RN ).
A consequence of the existence of e is that P(D)u = f has a solution u in
D 0(RN ) for each f in E 0(RN ). This represents an improvement in the conclusion
(fundamental solution vs. parametrix) of Theorem 7.14.
Think of Corollary 7.15 as being an existence theorem. We now turn to a

discussion of the regularity of solutions. For this we do not need the existence
result, and thus we shall proceed without making further use of Corollary 7.15.
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Proposition 7.16. Let P(D) be an elliptic operator on RN with constant
coefficients. Then the tempered distribution k = F−1(Tσ ), where σ (ξ) =
χ(ξ)/P(2π iξ), is a smooth function on RN − {0}. Therefore, for any neigh-
borhood of 0, the elliptic operator P(D) has a parametrix k0 ∈ E 0(RN ) with
compact support in that neighborhood. In particular, there is a smooth function
h1 with support in that neighborhood such that whenever f is in E 0(RN ), then
the distribution v = k0 ∗ f is in E 0(RN ) and satisfies P(D)v = f + (h1 ∗ f ).

SKETCH OF PROOF. One checks that

Dβ(ξαk) = (2π i)|β|(−2π i)−|α|F−1(TξβDασ ).

Here ξβDασ is a C∞ function, and we are interested in its integrability. It is
enough to consider what happens for |ξ | ∏ R0, where σ (ξ) = 1/P(2π iξ). The
function 1/P(2π iξ) is bounded above by a multiple of |ξ |−m , and an inductive
argument on the order of the derivative shows that |ξβDασ | ≤ C|ξ ||β|−|α|−m for
|ξ | ∏ R0, for a constant C independent of ξ .
Take β = 0. If |α| is large enough, we see that Dασ is in L1(RN ). Then

F−1(Dασ ) = (2π i)|α|ξαk is given by the usual integral formula for F, but with
e−2π i x ·ξ replaced by e2π i x ·ξ . Therefore ξαk is a bounded continuous function
when |α| is large enough. Applying this observation to

°Pn
j=1 |ξj |2l

¢
k for large

enough l, we find that k is a continuous function on RN − {0}.
Next take |β| = 1 and increase l by 1, writing α0 for the new α. Then ξβDα0

σ

is integrable, and it follows5 that ξα0k has a pointwise partial derivative of type β
and is continuous. Thus the same thing is true of k on RN − {0}.
Iterating this argument by adding 1 to one of the entries of β to obtain β 0,

we find for each β that we consider, that the functions Dβ
°Pn

j=1 |ξj |2l
0¢k and

Dβ 0°Pn
j=1 |ξj |2l

0¢k are integrable for l 0 sufficiently large, andwe deduce that Dβk
has all first partial derivatives continuous. Since β 0 is arbitrary, k equals a smooth
function on RN − {0}.
Tofinish the argument, let k andh be as inTheorem7.14, and let√ inC∞

com(RN )
be identically 1 near 0 and have support in whatever neighborhood of 0 has been
specified. If we write k = √k+ (1−√)k, then k0 = √k has support in that same
neighborhood, and T = (1 − √)k is of the form Th0 for some smooth function
h0, by what we have shown. Substituting k = k0+ Th0 into P(D)k = δ + Th , we
find that P(D)k0 = δ +Th −TP(D)h0 . The function h1 = h− P(D)h0 is smooth,
and it must have compact support since P(D)k0 and δ have compact support. §

Corollary 7.17. If u is in D 0(RN ) and P(D) is elliptic, then sing supp u ⊆
sing supp P(D)u, where “sing supp” denotes singular support.

5The precise result to use is Proposition 8.1f of Basic.
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REMARK. At first glance it might seem that the rough spots of P(D)u are
surely at least as bad as the rough spots of u for any D. But consider a function
on R2 of the form u(x, y) = g(y) and apply P(D) = @/@x . The result is 0, and
thus sing supp u can properly contain sing supp P(D)u for P(D) = @/@x . The
corollary says that this kind of thing does not happen if P(D) is elliptic.

PROOF. Let E = (sing supp P(D)u)c. By definition the restriction of P(D)u
to C∞

com(E) is of the form T√ with √ in C∞(E). Let U be any nonempty open
set with U cl compact and with U cl ⊆ E . It is enough to exhibit a smooth
function η equal to u on U . Choose an open set V with V cl compact such that
U cl ⊆ V ⊆ V cl ⊆ E . Multiply √ by a smooth function of compact support in E
that equals 1 on V cl, obtaining a function√0 ∈ C∞

com(E) such that √0 = √ on V .
Choose an open neighborhood W of 0 such that W = −W and such that the

set of sumsU cl+W cl is contained in V . Applying Proposition 7.16, we can write
P(D)k0 = δ + h0 with k0 ∈ E 0(RN ) and h0 ∈ C∞

com(RN ). The proposition allows
us to insist that the support of k∨

0 be contained in W . Then also h0 has support
contained in W .
We are to produce η ∈ C∞(U) with hTη,ϕi = hu,ϕi for all ϕ ∈ C∞

com(U).
Our choice of W forces k∨

0 ∗ ϕ to have support in V . Hence

hk0∗P(D)u,ϕi = hP(D)u, k∨
0 ∗ϕi = hT√ , k∨

0 ∗ϕi = hT√0, k
∨
0 ∗ϕi = hk0∗√0,ϕi.

On the other hand, application of Corollary 5.14 gives

hk0 ∗ P(D)u,ϕi = hP(D)k0 ∗ u,ϕi = h(δ + h0) ∗ u,ϕi = hu,ϕi + hh0 ∗ u,ϕi.

Combining the two computations, we see that hu,ϕi = hk0 ∗√0− h0 ∗ u,ϕi, and
the proof is complete if we take η to be k0 ∗ √0 − h0 ∗ u. §

The final step is to localize the result of Corollary 7.17.

Corollary 7.18. If P(D) is ellipticwith constant coefficients, ifU is nonempty
and open in RN , and if u and f are members of D 0(U) with P(D)u = f , then
sing supp u ⊆ sing supp f . Consequently if f is a smooth function on U , then
so is u.

REMARKS. For the Laplacian this result gives something beyond the results in
Chapter III: Part of the statement is that any distribution solution u of1u = 0 on
an open set U equals a smooth function on U . Previously the best result of this
kind that we had was Corollary 3.17, which says that any distribution solution
equal to a C2 function is a smooth function.
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PROOF. It is enough to prove that E ∩ sing supp u ⊆ E ∩ sing supp f for each
open set E with Ecl compact and Ecl ⊆ U . Choose √ in C∞

com(U) with √ equal
to 1 on Ecl. The equality h√u,ϕi = hu,√ϕi = hu,ϕi for all ϕ ∈ C∞

com(E) shows
that E ∩ sing supp u = E ∩ sing supp√u. Regard √u as in E 0(RN ), and define
g = P(D)(√u). Both √u and g are in E 0(RN ), and every ϕ ∈ C∞

com(E) satisfies

hg,ϕi = hP(D)(√u),ϕi = h√u, P(D)trϕi

= hu, P(D)trϕi = hP(D)u,ϕi = h f,ϕi.

Hence E ∩ sing supp g = E ∩ sing supp f . Application of Corollary 7.17
therefore gives

E ∩ sing supp u = E ∩ sing supp√u ⊆ E ∩ sing supp g = E ∩ sing supp f,

and the result follows. §

6. Method of Pseudodifferential Operators

Linear elliptic equations with variable coefficients were already well understood
by the end of the 1950s. The methods to analyze them combined compactness
arguments for operators between Banach spaces with the use of Sobolev spaces
and similar spaces of functions. Those methods were of limited utility for other
kinds of linear partial equations, but some isolated methods had been developed
to handle certain cases of special interest. In the 1960s a general theory of
pseudodifferential operators was introduced to include all these methods under
a single umbrella, and it and its generalizations are now a standard device for
studying linear partial differential equations. They provide a tool for taking
advantage of point-by-point knowledge of the zero locus of the principal symbol.
As with distributions, pseudodifferential operators make certain kinds of cal-

culations quite natural, and many verifications lie behind their use. We shall omit
most of this detail and concentrate on some of the ideas behind extending the
theory of the previous section to variable-coefficient operators.
We startwith a nonemptyopen subsetU ofRN and a linear differential operator

P(x, D) =
P

|α|≤m aα(x)Dα whose coefficients aα(x) are in C∞(U). If u is in
C∞
com(U), we can regard u as in C∞

com(RN ). The function u is then a Schwartz
function, and the Fourier inversion formula holds:

u(x) =
Z

RN
e2π i x ·ξbu(ξ) dξ,
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wherebu is the Fourier transformbu(ξ) =
R

RN e−2π i x ·ξu(x) dx . Applying P gives

P(x, D)u(x) =
X

|α|≤m
aα(x)(2π i)|α|

Z

RN
e2π i x ·ξ ξαbu(ξ) dξ

=
Z

RN
e2π i x ·ξ

≥ X

|α|≤m
aα(x)(2π i)|α|ξα

¥
bu(ξ) dξ =

Z

RN
e2π i x ·ξ P(x, 2π iξ)bu(ξ) dξ,

where P(x, 2π iξ) is the symbol. The basic idea of the theory is to enlarge the
class of allowable symbols, thereby enlarging the class of operators under study,
at least enough to include the parametrices and related operators of the previous
section. The enlarged class will be the class of pseudodifferential operators.
In the constant-coefficient case, in which P(x, 2π iξ) reduces to P(2π iξ),

what we did in essencewas to introduce an operator of the above kind, at first with
1/P(2π iξ) in the integrand in place of P(2π iξ) but then with χ(ξ)/P(2π iξ)
instead of 1/P(2π iξ) in the integrand in order to eliminate the singularities.
When we composed the two operators, the result was the sum of the identity and
a smoothing operator.
In the variable-coefficient case, the operator we use has to be more com-

plicated. Suppose that we want P(x, D)G = 1 + smoothing, with G given
by the same kind of formula as P(x, D) but with its symbol g(x, ξ) in some
wider class. If the equation in question is P(x, D)u = f , then our computation
above shows that we want to work with P(x, D)

° R
RN e2π i x ·ξg(x, ξ) bf (ξ) dξ

¢
.

The effect of putting P(x, D) under the integral sign is not achieved by in-
cluding P(x, 2π iξ) in the integrand, because the product e2π i x ·ξg(x, ξ) is being
differentiated. A brief formal computation shows that Dα(e2π i x ·ξg(x, ξ)) =
e2π i x ·ξ ((Dx + 2π iξ)αg(x, ξ)), where the subscript x is included on Dx to
emphasize that the differentiation is with respect to x . Thus we want
P(x, Dx + 2π iξ)g(x, ξ) to be close to identically 1, differing by the symbol of
a “smoothing operator.” We cannot simply divide by P(x, Dx + 2π iξ) because
of the presence of the Dx . What we can do is expand in terms of degrees of
homogeneity in ξ and sort everything out. When degrees of homogeneity are
counted, ξα has degree |α| while Dx has degree 0. Expansion of P gives

P(x, Dx + 2π iξ) = Pm(x, 2π iξ) +
m−1X

j=0
pj (x, ξ, Dx),

where Pm is the principal symbol and pj is homogeneous in ξ of degree j . No
Dx is present in Pm because degree m in ξ can occur only from terms (2π iξ)α in
(Dx + 2π iξ)α. Since the constant function of ξ has homogeneity degree 0 and
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since degrees of homogeneity add, let us look for an expansion of g(x, ξ) in the
form

g(x, ξ) =
∞X

j=0
gj (x, ξ),

with gj homogeneous in ξ of degree −m − j . Expanding the product

°
Pm(x, 2π iξ) +

Pm−1
k=0 pk(x, ξ, Dx)

¢°P∞
j=0 gj (x, ξ)

¢
= 1

and collecting terms by degree of homogeneity, we read off equations

Pm(x, 2π iξ)g0(x, ξ) = 1,
Pm(x, 2π iξ)g1(x, ξ) + pm−1(x, ξ, Dx)g0(x, ξ) = 0,

Pm(x, 2π iξ)g2(x, ξ) + pm−1(x, ξ, Dx)g1(x, ξ) + pm−2(x, ξ, Dx)g0(x, ξ) = 0,

and so on. Dividing each equation by Pm(x, 2π iξ), we obtain recursive formulas
for the gj (x, ξ)’s, except for the problem that Pm(x, 2π iξ) vanishes for ξ = 0. To
handle this vanishing, we again have to introduce a function like χ(ξ) by which
to multiply gj , and it turns out that in order to produce convergence, χ has to be
allowed to depend on j . After the gj ’s have been adjusted, we need to assemble an
adjusted g from themand forma right parametrix, namely the pseudodifferential
operatorG corresponding to symbol g(x, ξ) such that P(x, D)G = 1+R, where
R is a “smoothing operator.”
To make all this at all precise, we need to be more specific about a class of

symbols, about the definition of the corresponding pseudodifferential operators,
about the recognition of “smoothing operators,” and about the assembly of the
symbol from the sequence of homogeneous terms.
Fix a nonempty open set U in RN , and fix a real number m, not necessarily

an integer. The symbol class known as Sm1,0(U) and called the class of standard
symbols of order m consists of the set of all functions g in C∞(U × RN ) such
that for each compact set K ⊆ U and each pair of multi-indices α and β, there
exists a constant CK ,α,β with6

|Dα
ξ D

β
x g(x, ξ)| ≤ CK ,α,β(1+ |ξ |)m−|α| for x ∈ K , ξ ∈ RN .

Then Dα
ξ D

β
x g will be a symbol in the class Sm−|α|

1,0 (U). Let S−∞
1,0 (U) be the

intersection of all S−n
1,0(U) for n ∏ 0.

6The symbol class Sm1,0(U) is not the historically first class of symbols to have been studied, but
it has come to be the usual one. Classes Smρ,δ(U) occur frequently as well, but we shall not discuss
them.
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EXAMPLES.
(1) If P(x, D) =

P
|α|≤m aαDα with all aα in C∞(U), then its symbol

P(x, 2π iξ) =
P

|α|≤m aα(x)(2π i)|α|ξα is in Sm1,0(U).
(2) If P(x, D) in Example 1 is elliptic, then the parametrix g(x, ξ) that we

construct will be in S−m
1,0 (U).

(3)With P and g formed as inExamples 1 and 2, the error term r(x, ξ) such that
P(x, Dx + 2π iξ)g(x, ξ) = 1+ r(x, ξ) will be in S−∞

1,0 (U). The corresponding
pseudodifferential operatorwill be a “smoothing operator” in a sense to be defined
below.

To a standard symbol g, we associate a pseudodifferential operator G =
G(x, D) first on smooth functions and then on distributions.7 The associated
G : C∞

com(U) → C∞(U) for a symbol g ∈ Sm1,0(U) is given by

(Gϕ)(x) =
Z

RN
e2π i x ·ξg(x, ξ)bϕ(ξ) dξ for ϕ ∈ C∞

com(U), x ∈ U.

One readily checks thatGϕ is indeed inC∞(U) and thatG : C∞
com(U) → C∞(U)

is continuous. The associated G : E 0(U) → D 0(U) is given by8

hG f,ϕi =
Z

RN

h Z

U
e2π i x ·ξg(x, ξ)ϕ(x) dx

i
F( f )(ξ) dξ for f ∈ E 0(U).

(Recall thatF( f ) is a smooth function, according to Theorem 5.20.) One readily
checks that hG f,ϕi is well defined, that G f is in D 0(U), and that when f = T√

for some √ ∈ C∞
com(U), then G(T√) = TG√ .

The error term in constructing a parametrix is ultimately handled by the fol-
lowing fact: if g is a symbol in S−∞

1,0 (U), then G carries E 0(U) into C∞(U). For
this reason the pseudodifferential operators with symbol in S−∞

1,0 (U) are called
smoothing operators.
With the definitionsmade, let us return to the construction of a right parametrix

for the elliptic differential operator P(x, D). Let us write pm(x, ξ, Dx) for
the principal symbol Pm(x, 2π iξ) in order to make the notation uniform. The

7Pseudodifferential operators can be used with other domains, such as Sobolev spaces, in order
to obtain additional quantitative information. But we shall not pursue such lines of investigation
here. Further comments about this matter occur in Section VIII.8.

8Our standard procedure for defining operations on distributions has consistently been to define
the operation on smooth functions, to exhibit an explicit formula for the transpose operator on
smooth functions and observe that the transpose is continuous, and to use the transpose operator
to define the operator on distributions. This procedure avoids the introduction of topologies on
spaces of distributions. In the present discussion of the operation of a pseudodifferential operator
on distributions, we defer the introduction of transpose to Section VIII.6.
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recursive computation given above produces expressions gj (x, ξ) for j ∏ 0 such
that °Pm

k=0 pk(x, ξ, Dx)
¢°P∞

j=0 gj (x, ξ)
¢

= 1

in a formal sense. The actual gj (x, ξ)’s are not standard symbols because the
formula for gj (x, ξ) involves division by (pm(x, ξ)) j+1 and because pm(x, ξ)

vanishes at ξ = 0. However, the product χj (ξ)gj (x, ξ) is a standard symbol if χj
is a smooth function identically 0 near ξ = 0 and identically 1 off some compact
set. Thus we attempt to form the sum

g(x, ξ) =
∞X

j=0
χj (ξ)gj (x, ξ)

and use it as parametrix. Again we encounter a problem: we find that con-
vergence is not automatic. More care is needed. What works is to define
χj (ξ) = χ(R−1

j |ξ |), where χ : R → [0, 1] is a smooth function that is 0 for
|t | ≤ 1

2 and is 1 for |t | ∏ 1. One shows that positive numbers Rj tending
to infinity can be constructed so that the partial sums in the series for g(x, ξ)
converge in C∞(U × RN ) and the result is in the symbol class S−m

1,0 (U). Let G
be the pseudodifferential operator corresponding to g(x, ξ).
A little computation shows that

P(x, Dx + ξ)g(x, ξ) = 1+ r(x, ξ),

r(x, ξ) = −1+ χ0(ξ) −
∞X

j=1
rj (x, ξ)where

rj (x, ξ) =
min{ j,m}X

k=1
[χj−k(ξ) − χj (ξ)]pm−k(x, ξ, Dx)gj−k(x, ξ).and

The function rj (x, ξ) is in C∞(U × RN ) and vanishes for |ξ | > Rj . This fact,
the identities already established, and the construction of the numbers Rj allow
one to see that

P∞
j=n+1 rj (x, ξ) is in S−n

1,0(U). Since the remaining finite number
of terms of r(x, ξ) have compact support in ξ , they too are in S−n

1,0(U) and then so
is r(x, ξ). Since n is arbitrary, r(x, ξ) is in S−∞

1,0 (U). Hence the corresponding
pseudodifferential operator is a smoothing operator. Consequently we obtain, as
an identity on C∞

com(U) or on E 0(U),

P(x, D)G = 1+ R

with R a smoothing operator. Therefore G is a right parametrix for P(x, D).
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From the existence of a right parametrix, it can be shown that P(x, D)u = f is
locally solvable.9 If we could obtain a left parametrix, i.e., a pseudodifferential
operator H with HP(x, D) = 1 + S for a smoothing operator S, then it would
follow that singular supports satisfy
sing supp u = sing supp f whenever f is in E 0(U) and P(x, D)u = f .

Inclusion in one direction follows from the local nature of P(x, D) in its action
on u: sing supp f = sing supp P(x, D)u ⊆ sing supp u. Inclusion in the reverse
direction uses the “pseudolocal” property of any pseudodifferential operator and
of H in particular, namely that sing supp H f ⊆ sing supp f . It goes as follows:

sing supp u = sing supp (1+ S)u = sing supp HP(x, D)u
= sing supp H f ⊆ sing supp f.

In particular, if f is in C∞
com(U), then u is in C∞(U). Constructing a left

parametrix H with the techniques discussed so far is, however, more difficult
than constructing the right parametrix G because we cannot so readily determine
the symbol of HP(x, D) for a general pseudodifferential operator H .
Let us again work with the general theory, taking g to be in Sm1,0(U) and

denoting the corresponding pseudodifferential operatorG : C∞
com(U) → C∞(U)

by
(Gϕ)(x) =

Z

RN
e2π i x ·ξg(x, ξ)bϕ(ξ) dξ for ϕ ∈ C∞

com(U).

The distribution TGϕ , which we write more simply as Gϕ, acts on a function √
in C∞

com(U) by
hGϕ,√i =

R
RN

R
U e

2π i x ·ξg(x, ξ)√(x)bϕ(ξ) dx dξ

=
R

RN

R
U

R
U e

2π i(x−y)·ξg(x, ξ)√(x)ϕ(y) dy dx dξ.

If we think of√(x)ϕ(y) as a particular kind of functionw(x, y) inC∞
com(U ×U),

then we can extend the above formula to define a linear functional G on all of
C∞
com(U ×U) by

hG, wi =
Z

RN

h Z

U×U
e2π i(x−y)·ξg(x, ξ)w(x, y) dx dy

i
dξ.

It is readily verified that G is continuous on C∞
com(U × U) and hence lies in

D 0(U ×U). The expression written formally as

G(x, y) =
Z

RN
e2π i(x−y)·ξg(x, ξ) dξ

is called the distribution kernel of the pseudodifferential operator G. This
expression is not to be regarded as a function but as a distribution that is evaluated
by the formula for hG, wi above.
The first serious general fact in the theory is as follows.
9More detail about this matter is included in Section VIII.8.
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Theorem 7.19. If G is a pseudodifferential operator on an open set U in RN ,
then the distribution kernel G ofG is a smooth function off the diagonal ofU×U ,
and G is pseudolocal in the sense that

sing suppG f ⊆ sing supp f for all f ∈ E 0(U).

We give only a few comments about the proof, omitting all details. The first
conclusionof the theorem is proved by using the knowndecrease of the derivatives
of g(x, ξ). For example, to see that G is given by a continuous function, one uses
the decrease of Dα

ξ g(x, ξ) in the ξ variable to exhibit (x− y)αG, for |α| > m+N ,
as equal to a multiple of the continuous function

R
RN e2π i(x−y)·ξDα

ξ g(x, ξ) dξ .
The second conclusion of the theorem, the pseudolocal property, can be derived
as a consequence by using an approximate-identity argument.
To establish a general theory of pseudodifferential operators, the next step is

to come to grips with the composition of two pseudodifferential operators. If we
have two pseudodifferential operatorsG and H on the open setU , then eachmaps
C∞
com(U) into C∞(U), and their composition G ◦ H need not be defined. But the
composition is sometimes defined, as in the case that H is a differential operator
and in the case that H is replaced by √(x)H , where √ is a fixed member of
C∞
com(U). Thus let us for the moment ignore this problem concerning the image
of H and make a formal calculation of the symbol of the composition anyway.
Say that G = G(x, D) and H = H(x, D) are defined by the symbols g(x, ξ)
and h(x, ξ). Substituting from the definition of H(x, D)ϕ(x) and allowing any
interchanges of limits that present themselves, we have

G(x, D)H(x, D)ϕ(x) = G(x, D)
R

RN e2π i x ·ξh(x, ξ)bϕ(ξ) dξ

=
R

RN G(x, Dx)[e2π i x ·ξh(x, ξ)]bϕ(ξ) dξ

=
R

RN e2π i x ·ξ
°
e−2π i x ·ξG(x, Dx)[e2π i x ·ξh(x, ξ)]

¢
bϕ(ξ) dξ.

This formula suggests that the composition J = G ◦ H ought to be a pseudo-
differential operator with symbol

j (x, ξ) = e−2π i x ·ξG(x, Dx)[e2π i x ·ξh(x, ξ)]

= e−2π i x ·ξ R
RN e2π i x ·ηg(x, η)[e2π i x ·ξh(x, ξ)]b(η) dη.

Let us suppose that the Fourier transform of h(x, ξ) in the first variable is mean-
ingful, as it is when h( · , ξ) has compact support. Writebh( · , ξ) for this Fourier
transform. Then the above expression is equal to

R
RN e2π i x ·(η−ξ)g(x, η)bh(η − ξ, ξ) dη =

R
RN e2π i x ·ηg(x, η + ξ)bh(η, ξ) dη.
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If we form the infinite Taylor series expansion of g(x, η + ξ) about η = 0 and
assume that it converges, we have

g(x, η + ξ) =
P

α
1
α! D

α
ξ g(x, ξ) ηα.

Substituting and interchanging sum and integral, we can hope to get

j (x, ξ) =
P

α
1
α!

R
RN e2π i x ·ηDα

ξ g(x, ξ)ηα bh(η, ξ) dη

=
P

α
(2π i)−|α|

α! Dα
ξ g(x, ξ)

R
RN e2π i x ·η(Dα

x h)b(η, ξ) dη.

In view of the Fourier inversion formula, we might therefore expect to obtain

j (x, ξ) =
X

α

(2π i)−|α|

α!
Dα

ξ g(x, ξ)Dα
x h(x, ξ).

We shall see that such a formula is meaningful, but in an asymptotic sense and
not as an equality.
This discussion suggests four mathematical questions that we want to address:
(i) If we are given a possibly divergent infinite series of symbols as on the
right side of the formula for j (x, ξ) above, how can we extract a genuine
symbol to represent the sum of the series?

(ii) Put G(x, Dx + ξ)ϕ(x) =
R

RN e2π i x ·ηg(x, η + ξ)bϕ(η) dη. In what sense
of ∼ is it true that G(x, Dx + ξ)ϕ(x) ∼

P
α

(2π i)−|α|

α! Dα
ξ g(x, ξ)Dα

x ϕ(x)?
(iii) How can we handle the matter of compact support?
(iv) How can we show, under suitable hypotheses that take (iii) into account,

that j (x, ξ) is given by G(x, Dx + ξ)
°
h(x, ξ)

¢
and therefore that we

obtain a formula from (ii) for j (x, ξ) involving ∼ ?
The path that we shall follow is direct but not optimal. In Section VIII.6 we shall
take note of an approach that is tidier and faster, but insufficiently motivated by
the present considerations.
Question (i) is fully addressed by the following theorem.

Theorem 7.20. Suppose that {mj }j∏0 is a sequence in R decreasing to −∞,
and suppose for j ∏ 0 that gj (x, ξ) is a symbol in Smj

1,0(U). Then there exists a
symbol g(x, ξ) in Sm01,0(U) such that for all n ∏ 0,

g(x, ξ) −
n−1X

j=0
gj (x, ξ) is in Smn

1,0(U).

The theorem is proved in the same way that we constructed a right parametrix
for an elliptic differential operator earlier in this section. We can now give a
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precise meaning to ∼ in terms of a notion of an asymptotic series. If {mj }j∏0
is a sequence in R decreasing to −∞, if g(x, ξ) is a symbol in Sm01,0(U), and if
gj (x, ξ) is a symbol in Smj

1,0(U) for each j ∏ 0, then we write

g(x, ξ) ∼
∞X

j=0
gj (x, ξ)

if for all n ∏ 0,

g(x, ξ) −
n−1X

j=0
gj (x, ξ) is in Smn

1,0(U).

If the given sequence {mj }j∏0 is a finite sequence ending with mr , we can
extend it to an infinite sequence with gj (x, ξ) = 0 for j > r , and in this case the
definition of ∼ is to be interpreted to mean that g(x, ξ) −

Pr
j=0 gj (x, ξ) is the

symbol of a smoothing operator.
For (ii), we have just attached a meaning to∼. We defineG(x, Dx +ξ)ϕ(x) =R

RN e2π i x ·ηg(x, η + ξ)bϕ(η) dη. The precise statement that is proved to yield the
asymptotic expansion of (ii) is the following.

Proposition 7.21. Let U be open in RN , fix g in Sm1,0(U), and let K be a
compact subset of U . Then for any nonnegative integers M and R such that
R > m + N , there exists a constant C such that

Ø
ØG(x, Dx + ξ)ϕ(x) −

P
|α|<n

(2π i)−|α|

α! Dα
ξ g(x, ξ)Dα

x ϕ(x)
Ø
Ø

≤ C
©
(1+ |ξ |m)

R
|ξ+η|≤|ξ |/2 |bϕ(η| dη

+
P

|α|=N |ξ |m−R supy
£
|Dαϕ(y)|(1+ |ξ ||x − y|)−M

§™

for all ϕ in C∞
K , all x in K , and all ξ with |ξ | ∏ 1.

We shall not make further explicit use of this proposition. The proof of the
result is long, and we omit any discussion of it.
We turn to questions (iii) and (iv). Question (iii) is addressed by a definition

and some remarks concerning it, and question (iv) is addressed by the theorem
that comes after those remarks. Continuing with our pseudodifferential operator
G on the open setU , we say thatG isproperly supported if the subset support(G)
ofU×U has compact intersectionwith K×U andwithU×K for every compact
subset K of U . See Figure 7.2.
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K ⊆ U

U

FIGURE 7.2. Nature of the support of the distribution kernel
of a properly supported pseudodifferential operator. The
open set U in this case is an open interval, and the oval-
shaped region represents support(G). The shaded region

is an example of a set (U × K ) ∩ support(G).

Suppose that G is properly supported, K is compact inU , and ϕ is inC∞
com(U)

with support contained in K . Introduce projections p1(x, y) = x and p2(x, y) =
y. Define L = p1

°
(U × K ) ∩ support(G)

¢
; the set L is compact since G is

properly supported and since the continuous image of a compact set is compact.
Let us see that Gϕ has support contained in L . To do so, we write √ ⊗ ϕ for the
function (x, y) 7→ √(x)ϕ(y), and then we have

hGϕ,√i =
R

RN

R
U

R
U e

2π i(x−y)·ξg(x, ξ)√(x)ϕ(y) dy dx dξ = hG,√ ⊗ ϕi.

If √ is in C∞
com(Lc ∩ U), then F = p−1

1 (support √) ∩ p−1
2 (support ϕ) is the

compact support of √ ⊗ ϕ, and

F ∩ support(G) ⊆ p−1
1 (Lc) ∩ (U × K ) ∩ support(G) = p−1

1 (Lc) ∩ p−1
1 (L) = ∅.

Thus hG,√ ⊗ ϕi = 0, hGϕ,√i = 0, and Gϕ is supported in L .
Thus the properly supported pseudodifferential operator G carries C∞

com(U)
into itself, and Lemma 5.2 shows that it does so continuously. Then G is
continuous also as a mapping of the dense vector subspace C∞

com(U) of C∞(U)
into C∞(U). Because of the completeness of C∞(U), G extends to a continuous
map of C∞(U) into itself.
Similarly one checks that any properly supported pseudodifferential operator

carries E 0(U) into E 0(U). Therefore the compositionG ◦ H of two pseudodiffer-
ential operators, whether regarded as acting on C∞

com(U) or as acting on E 0(U),
is well defined if H is properly supported.
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Theorem 7.22. Let U be an open subset of RN .
(a) If G is a pseudodifferential operator on U , then there exists a properly

supported pseudodifferential operator G# on U such that G − G# is in S−∞
1,0 (U),

hence such that G − G# is a smoothing operator.
(b) If G and H are properly supported pseudodifferential operators onU with

symbols g in Sm1,0(U) and h in Sm0

1,0(U), then G ◦ H is a properly supported
pseudodifferential operator with symbol j in Sm+m0

1,0 (U), and

j (x, ξ) ∼
X

α

(2π i)−|α|

α!
Dα

ξ g(x, ξ)Dα
x h(x, ξ).

All that is needed from (b) in many cases is the following weaker statement.

Corollary 7.23. Let U be an open subset of RN . If G and H are properly
supported pseudodifferential operators on U with symbols g in Sm1,0(U) and h in
Sm0

1,0(U), then G ◦ H is a properly supported pseudodifferential operator whose
symbol j (x, ξ) is in Sm+m0

1,0 (U) and has the property that

j (x, ξ) − g(x, ξ)h(x, ξ)

is a symbol in Sm+m0−1
1,0 (U).

This is enough of the general theory so that we can see how to prove a the-
orem with consequences beyond the subject of pseudodifferential operators. A
pseudodifferential operator G on U with symbol g(x, ξ) in Sm0,1(U) is said to be
elliptic of order m if for each compact subset K of U , there are constants CK
and MK such that

|g(x, ξ)| ∏ CK (1+ |ξ |)m for x ∈ K and |ξ | ∏ MK .

In particular, an elliptic differential operator of orderm satisfies this condition. A
(two-sided) parametrix H for a properly supported pseudodifferential operator
G with symbol g ∈ Sm1,0(U) is a properly supported pseudodifferential operator
H of order−m such that H ◦G = 1+ smoothing and G ◦ H = 1+ smoothing.

Theorem7.24. IfG is a properly supported elliptic pseudodifferential operator
of order m, then G has a parametrix H .

REMARKS. We saw in Theorem 7.19 that sing suppG f ⊆ sing supp f for f in
E 0(U). The same argument as with the left parametrix before that theorem shows
now from the parametrix of Theorem 7.24 that sing suppG f ⊇ sing supp f and
therefore that sing suppG f = sing supp f for f inE 0(U). In particular, solutions
of elliptic equations are smooth wherever the given data are smooth.
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PARTIAL PROOF. Let ρ : U × Rn → [0, 1] be a smooth function with the
properties that

(i) ρ equals 1 in a neighborhood of each point (x, ξ) where g(x, ξ) = 0,
(ii) for each compact subset K ofU , there is a constantTK such thatρ(x, ξ) =

0 for x in K and |ξ | ∏ TK .
We omit the verification that ρ exists and is the symbol of a smoothing operator.
Put

h0(x, ξ) = (1− ρ(x, ξ))g(x, ξ)−1.

This is a smooth function by (i), and we omit the step of checking that h0 is
in S−m

1,0 (U). Let H0 be the pseudodifferential operator with symbol h0. Apply
Theorem 7.22a to find a properly supported H#

0 whose symbol h#0 has h#0 ∼ h0.
We write h#0 = h0 + r0 with r0 in S−∞

1,0 (U).
Corollary 7.23 shows that H#

0G is a well-defined properly supported operator
whose symbol j0(x, ξ) is in S01,0(U) and has the property that j0 − h#0g is in
S−1
1,0(U). Since

j0 − h#0g = j0 − (h0 + r0)g = j0 − [(1− ρ)g−1 + r0]g = j0 − 1+ ρ − r0g

and since ρ and r0g are the symbols of smoothing operators, j0 − 1 must be in
S−1
1,0(U). Therefore H#

0G = 1 + R for a pseudodifferential operator R whose
symbol r is in S−1

1,0(U).
The equality H#

0G = 1+ R shows that R is properly supported. By Corollary
7.23, Rk is a properly supported pseudodifferential operator for all integers k ∏ 1,
and its symbol rk is in S−k

1,0(U). We form the asymptotic series

1− r1 + r2 − r3 + · · ·

anduseTheorems7.20and7.22a toobtainaproperly supportedpseudodifferential
operator E whose symbol is in S01,0(U) and has

e ∼ 1− r1 + r2 − r3 + · · · . (∗)

For any integer n ∏ 1, we have

(1− R + R2 − R3 + · · · ± Rn−1)H#
0G

= (1− R + R2 − R3 + · · · ± Rn−1)(1+ R) = 1∓ Rn. (∗∗)

Because of (∗), E − (1 − R + R2 − R3 + · · · ± Rn−1) has symbol in S−n
1,0(U).

Since the symbol j0 of H#
0G is in S01,0(U), the product

°
E − (1− R + R2 − R3 + · · · ± Rn−1)

¢
H#
0G has symbol in S−n

1,0(U).
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Also, (∗∗) implies that

(1− R + R2 − R3 + · · · ± Rn−1)H#
0G − 1 = ∓Rn has symbol in S−n

1,0(U).

Adding shows that

EH#
0G − 1 has symbol in S−n

1,0(U).

Since n is arbitrary, EH#
0G − 1 is a smoothing operator. Thus H = EH#

0 is a
left parametrix for G.
In similar fashion we can use the assumption “properly supported” to obtain a

right parametrix eH for G. We omit the details. The operators H and eH give us
equations

HG = 1+ S and G eH = 1+ eS
for suitable properly supported smoothing operators S and eS. Computing the
product HG eH in two ways shows that

HG eH = (1+ S) eH = eH + S eH = eH + smoothing

HG eH = H(1+ eS) = H + HeS = H + smoothing.and

Hence H = eH + S0 with S0 properly supported smoothing. Consequently

GH = G eH + GS0 = 1+ eS + GS0 = 1+ smoothing,

and the left parametrix H is also a right parametrix. §

BIBLIOGRAPHICAL REMARKS. The proof of Theorem 7.7 is adapted from
Taylor’s Pseudodifferential Operators, and the proof of Theorem 7.12 is taken
from the book by Bers, John, and Schechter. The approach to pseudodifferential
operators used in Section 6 is now considered outdated, and a more streamlined
approach requiring additional motivation appears in Section VIII.6.

7. Problems

1. Suppose that P(x, D) =
P

|α|≤m aα(x)Dα with each aα in C∞(ƒ). Prove that
if P(x, D)u = 0 for all functions u ∈ Cm(ƒ), then all the coefficients aα are 0.

2. (Harmonic measure) Let ƒ be a bounded nonempty connected open subset
of RN , let @ƒ be its boundary @ƒ = ƒcl − ƒ, and let L be an elliptic linear
differential operator onƒof the form L(u) =

P
i, j bi j (x)Di Dju+

P
k ck(x)Dku

with real-valued coefficients of classC2 such that bi j (x) = bji (x) for all i and j .
Let S be the vector subspace of real-valued continuous functions u on ƒcl such
that Lu(x) = 0 for all x ∈ ƒ. Prove for each point p in ƒ that there exists a
Borel measure µp on @ƒ with µp(@ƒ) = 1 such that u(p) =

R
@ƒ u(x) dµp(x)

for all u in S.
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3. This problem identifies a fundamental solution of the Cauchy–Riemann operator
in R2. It makes use of Green’s Theorem, which relates line integrals in R2 with
double integrals, for an annulus centered at the origin.
(a) For ϕ inC∞

com(R2), let P(x, y) = xϕ(x,y)
x2+y2 and Q(x, y) = yϕ(x,y)

x2+y2 . Prove that
limε↓0

H
|(x,y)|=ε (P dx + Q dy) = 0.

(b) With P and Q as in (a), verify that @Q
@x − @P

@y = yϕx−xϕy
x2+y2 .

(c) Conclude from (a) and (b) that
RR

R2
yϕx−xϕy
x2+y2 dx dy = 0.

(d) Repeat (a) with P(x, y) = − yϕ(x,y)
x2+y2 and Q(x, y) = xϕ(x,y)

x2+y2 , showing that
limε↓0

H
|(x,y)|=ε (P dx + Q dy) = 2πϕ(0, 0) if the line integral is taken

counterclockwise around the circle.
(e) With P and Q as in (d), verify that @Q

@x − @P
@y = xϕx+yϕy

x2+y2 .
(f) Conclude from (d) and (e) that

RR
R2

xϕx+yϕy
x2+y2 = −2πϕ(0, 0).

(g) Conclude from (c) and (f) that 1
2π

RR
R2

1
z

@ϕ
@ z̄ dx dy = −ϕ(0, 0).

(h) Let T be the locally integrable function 1
±
(2πz), regarded as a member of

D 0(R2). Prove that @
@ z̄ (T ) = δ.

4. On R1, theHeaviside distribution H is the distribution given by theHeaviside
function H(x) equal to 1 for x ∏ 0 and to 0 for x < 0.
(a) Prove that Dx H = δ, so that H is a fundamental solution for the elliptic

operator Dx on R1.
(b) Show that the function f (x) = max{x, 0} onƒ = (−1, 1) has the Heaviside

function as weak derivative on ƒ and that f is in L p1 (ƒ) for every p with
1 ≤ p < ∞.

(c) Does the restriction of the Heaviside function to ƒ = (−1, 1) have a weak
derivative on ƒ? Why or why not?

(d) Show that the distribution H×δ onR2 given by hH×δ,ϕi =
R ∞
0 ϕ(x, 0) dx

for ϕ ∈ C∞
com(R2) is a fundamental solution of the operator Dx on R2.

(e) Find the support and the singular support of the distribution H onR1 and of
the distribution H × δ on R2.

5. Let U be an open set in RN containing 0, let f be in E 0(U), and let P(D) be
a linear differential operator with constant coefficients and with order ∏ 1. By
taking into account the theory of periodic distributions in Problems 12–13 of
Chapter V and by suitably adapting the proof that Lemma 7.8 implies Theorem
7.7, prove that the equation P(D)u = f has a distribution solution in some
neighborhood of 0.

Problems 6–9 prove the global version of the Cauchy–Kovalevskaya Theorem given
as Theorem 7.2 for the linear constant-coefficient case. The result is an ingredient
used in deriving Corollary 7.15 from Theorem 7.14. For the statement the domain
variables are t and x with x = (x1, . . . , xN ), and the unknown functions are the p
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components of a function u(t, x) with values in Cp. Write Dt for @
±
@t and Dj for

@
±
@xj . The Cauchy problem in question is

Dtu =
PN

j=1 Aj Dju + Bu + F(t, x),
u(0, x) = g(x),

where Aj and B are p-by-pmatrices of complex constants, F is an entire holomorphic
function from CN+1 to Cp, and g is an entire holomorphic function from CN to Cp.
The conclusion is that the unique formal power-series solution of the Cauchy problem
converges and defines an entire holomorphic function from CN+1 to Cp that solves
the problem. For a vector v = (v1, . . . , vp) in Cp, let kvk∞ = max

©
|v1|, . . . , |vp|

™
.

6. Let α denote a multi-index α = (α1, . . . ,αN ) of integers ∏ 0. Prove that

α! ≤ (|α|)!, that
P

|α|=l
1
α! = Nl

l! , and that
∞P

l=0

°q+l
l

¢
zl = (1− z)−q−1 if |z| < 1.

7. Show that iterated substitution into the system Dtu =
PN

j=1 Aj Dju + Bu + F
leads to an expression for Dm

t u as the sum of two kinds of terms: For one kind,
there are 2m terms of the form

P
T1 · · · TmDα

x u with each Ti equal to an Aji or
to B, with Dα equal to the product of the Dji for which Ti = Aji , and with the
sum taken over ji from 1 to N . For the other kind, there are

Pm−1
s=0 2s = 2m − 1

terms with something operating on F , the terms corresponding to s being the
ones

P
T1 · · · TsDα

x D
m−1−s
t F with each Ti , the Dα , and the sum all as above.

8. (a) How does one compute Dβ
x Dm

t u(0, 0) from the expression in the previous
problem?

(b) Why is it enough to prove, for any given r > 0, that the values Dβ
x Dm

t u(0, 0)
satisfy

P

m∏0

P

β

(β!m!)−1kDβ
x Dm

t u(0, 0)k∞ r |β|+m < ∞?

9. Choose a constant M ∏ 1 with kBvk∞ ≤ Mkvk∞ and kAjvk∞ ≤ Mkvk∞
for all j . Let R be a positive number to be specified. Choose C = C(R) such
that

P

m∏0

P

β

(β!m!)−1kDm
t D

β
x F(0, 0)k∞R|β|+m and

P

β

(β!)−1kDβ
x g(0)k∞R|β|

are both ≤ C .
(a) Among the 2m terms of the first kind in Problem 7, show that each one for

which k of them factors T1, . . . , Tm are B is≤ MmNm−kCR−(m−k)(m−k)!,
so that the sum of the contributions from the terms of the first kind to
kDm

t u(0, 0)k∞ is ≤
Pm

k=0
°m
k
¢
MmNm−kCR−(m−k)(m − k)!.

(b) Taking into account the result of Problem 8a, adjust the estimate in part (a)
of the present problem to bound the sum of the contributions from the terms
of the first kind to kDm

t D
β
x u(0, 0)k∞.

(c) Summing over m ∏ 0, l ∏ 0, and β with |β| = l the estimate in part (b) and
using the formulas in Problem 6, show that the contribution of the terms of
the first kind to the series in Problem 8b is finite if R is chosen large enough
so that Nr/R ≤ 1

2 and 2MrN/R < 1.
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(d) For the 2m − 1 terms of the second kind in Problem 7, replace T1 · · · Ts by
T1 · · · Tm−1, treating the missing factors as the identity I , each such factor
accompanying a differentiation Dt . If there are k factors of B, show that
the term is ≤ Mm−1(N + 1)m−1−kCR−(m−1−k)(m−1−k)!. Arguing in a
fashion similar to the previous parts to this problem, show that consequently
the contribution of the terms of the second kind to the series in Problem 8b is
finite if R is chosen large enough so that Nr/R ≤ 1

2 and 2Mr(N+1)/R < 1.
Problems 10–12 concern the reduction to a first-order system of the Cauchy problem
for a singlemth-order partial differential equation that has been solved for Dm

x u. They
generalize the discussion of a second-order equation in two variables that appeared
in Section 1 and reduce Theorems 7.3 and 7.4 to Theorems 7.1 and 7.2, respectively.
In two variables (x, y), the equation is

Dm
x u = F(x, y; u; Dxu, Dyu; D2xu, . . . ; D

m−1
x Dyu, . . . , Dm

y u),

and the Cauchy data are

Di
xu(0, y) = f (i)(y) for 0 ≤ i < m.

10. In the case of two variables (x, y), introduce variables ui, j for i + j ≤ m. Show
that the given Cauchy problem is equivalent to the following Cauchy problem
for a first-order system

Dxui, j+1 = Dyui+1, j for i + j + 1 ≤ m,

Dxui,0 = ui+1,0 for 0 ≤ i < m,

Dxum,0 = Fx+u1,0Fu0,0+u2,0Fu1,0+(Dyu1,0)Fu0,1+· · ·+(Dyu1,m−1)Fu0,m

with Cauchy data

ui, j (0, y) = D j
y f

(i)(y) for i + j ≤ m, (i, j) 6= (m, 0),

um,0(0, y) = F(0, y; f (0)(y); f (1)(y), Dy f (0)(y); . . . , Dm
y f

(0)(y)).

11. What changes to the setup and argument in Problem 10 are needed to handle
more variables, say (x, y1, . . . , yN−1)?

12. Back in the situation of two variables (x, y) as in Problem 10, suppose that F
is a linear combination, with constant coefficients, of u, Dxu, Dyu, . . . , Dm

y u,
plus an entire holomorphic function of (x, y), and suppose that f (0), . . . , f (m−1)

are entire holomorphic functions of y. Prove that the reduction to first order as
in Problem 10 leads to a Cauchy problem for a first-order system of the type in
Problems 6–9. Conclude that the Cauchy problem for the given mth-order equa-
tion in the situation of constant coefficients has an entire holomorphic solution.




