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Digital Second Edition, not to be sold, no ISBN
c�2016 Anthony W. Knapp, corrected version issued in 2017
Published by the Author

All rights reserved. This file is a digital second edition of the above named book. The text, images, 
and other data contained in this file, which is in portable document format (PDF), are proprietary to 
the author, and the author retains all rights, including copyright, in them. The use in this file of trade 
names, trademarks, service marks, and similar items, even if they are not identified as such, is not 
to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
All rights to print media for the first edition of this book have been licensed to Birkhäuser Boston, 
c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA, and 
this organization and its successor licensees may have certain rights concerning print media for the 
digital second edition. The author has retained all rights worldwide concerning digital media for 
both the first edition and the digital second edition.
The file is made available for limited noncommercial use for purposes of education, scholarship, and 
research, and for these purposes only, or for fair use as understood in the United States copyright law. 
Users may freely download this file for their own use and may store it, post it online, and transmit it 
digitally for purposes of education, scholarship, and research. They may not convert it from PDF to 
any other format (e.g., EPUB), they may not edit it, and they may not do reverse engineering with it. 
In transmitting the file to others or posting it online, users must charge no fee, nor may they include 
the file in any collection of files for which a fee is charged. Any exception to these rules requires 
written permission from the author.
Except as provided by fair use provisions of the United States copyright law, no extracts or quotations 
from this file may be used that do not consist of whole pages unless permission has been granted by 
the author (and by Birkhäuser Boston if appropriate).
The permission granted for use of the whole file and the prohibition against charging fees extend to 
any partial file that contains only whole pages from this file, except that the copyright notice on this 
page must be included in any partial file that does not consist exclusively of the front cover page. 
Such a partial file shall not be included in any derivative work unless permission has been granted 
by the author (and by Birkhäuser Boston if appropriate).
Inquiries concerning print copies of either edition should be directed to Springer Science+Business 
Media Inc.



CHAPTER V

Distributions

Abstract. This chapter makes a detailed study of distributions, which are continuous linear func-
tionals on vector spaces of smooth scalar-valued functions. The three spaces of smooth functions
that are studied are the space C∞

com(U) of smooth functions with compact support in an open set
U , the space C∞(U) of all smooth functions on U , and the space of Schwartz functions S(RN ) on
RN . The corresponding spaces of continuous linear functionals are denoted by D 0(U), E 0(U), and
S 0(RN ).
Section 1 examines the inclusions among the spaces of smooth functions and obtains the conclu-

sion that the corresponding restrictionmappings on distributions are one-one. It extends from E 0(U)

to D 0(U) the definition given earlier for support, it shows that the only distributions of compact
support in U are the ones that act continuously on C∞(U), it gives a formula for these in terms of
derivatives and compactly supported complex Borel measures, and it concludes with a discussion of
operations on smooth functions.
Sections 2–3 introduce operations on distributions and study properties of these operations.

Section2brieflydiscussesdistributionsgivenby functions, and it goeson toworkwithmultiplications
by smooth functions, iterated partial derivatives, linear partial differential operators with smooth
coefficients, and the operation ( · )∨ corresponding to x 7→ −x . Section 3 discusses convolution at
length. Three techniques are used—the realization of distributions of compact support in terms of
derivatives of complex measures, an interchange-of-limits result for differentiation in one variable
and integration in another, and a device for localizing general distributions to distributions of compact
support.
Section 4 reviews the operation of the Fourier transform on tempered distributions; this was

introduced in Chapter III. The two main results are that the Fourier transform of a distribution
of compact support is a smooth function whose derivatives have at most polynomial growth and
that the convolution of a distribution of compact support and a tempered distribution is a tempered
distribution whose Fourier transform is the product of the two Fourier transforms.
Section 5 establishes a fundamental solution for the Laplacian in RN for N > 2 and concludes

with an existence theorem for distribution solutions to1u = f when f is any distribution of compact
support.

1. Continuity on Spaces of Smooth Functions

Distributions are continuous linear functionals on vector spaces of smooth func-
tions. Their properties are deceptively simple-looking and enormously helpful.
Some of their power is hidden in various interchanges of limits that need to be
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180 V. Distributions

carried out to establish their basic properties. The result is a theory that is easy to
implement and that yields results quickly. In the last section of this chapter, we
shall see an example of this phenomenonwhen we show how it gives information
about solutions of partial differential equations involving the Laplacian.
The three vector spaces of scalar-valued smooth functions that we shall con-

sider in the text1 of this chapter are C∞(U), S(RN ), and C∞
com(U), where U is a

nonempty open set inRN . Topologies for these spaceswere introduced in Section
IV.2, Section III.1, and Section IV.7, respectively. Let {Kp} be an exhausting
sequence of compact subsets of U , i.e., a sequence such that Kp ⊆ Ko

p+1 for all
p and such that U =

S∞
p=1 Kp.

The vector spaceC∞(U) of all smooth functions onU is given by a separating
family of seminorms such that a countable subfamily suffices. The members of
the subfamilymay be taken to be k f kp,α = supx∈Kp

|Dα f (x)|, where 1 ≤ p < ∞

andwhereα varies over all differentiationmulti-indices.2 The spaceof continuous
linear functionals is denoted by E 0(U), and the members of this space are called
“distributions of compact support” for reasons that we recall in a moment.
The vector space S(RN ) of all Schwartz functions is another space given by

a separating family of seminorms such that a countable subfamily suffices. The
members of the subfamily may be taken to be k f kα,β = supx∈RN |xαDβ f (x)|,
where α and β vary over all differentiation multi-indices.3 The space of contin-
uous linear functionals is denoted by S 0(RN ), and the members of this space are
called “tempered distributions.”
The vector space C∞

com(U) of all smooth functions of compact support on U
is given by the inductive limit topology obtained from the vector subspaces C∞

Kp
.

The spaceC∞
Kp
consists of the smooth functions with support contained in Kp, the

topology on C∞
Kp
being given by the countable family of seminorms k f kp,α =

supx∈Kp
|Dα f(x)|. The space of continuous linear functionals is traditionally4

written D 0(U), and the members of this space are called simply “distributions.”
Since the field of scalars is a locally convex topological vector space, Proposition
4.29 shows that the members of D 0(U) may be viewed as arbitrary sequences of
consistently defined continuous linear functionals on the spaces C∞

Kp
.

1A fourth space, the space of periodic smooth functions onRN , is considered in Problems 12–19
at the end of the chapter and again in the problems at the end of Chapter VII.

2The notation for the seminorms in Chapter IV was chosen for the entire separating subfamily
and amounted to k f kKp ,Dα . The subscripts have been simplified to take into account the nature of
the countable subfamily.

3The notation for the seminorms in Chapter III was chosen for the entire separating subfamily
and amounted to k f kxα ,xβ . The subscripts have been simplified to take into account the nature of
the countable subfamily.

4The tradition dates back to Laurent Schwartz’s work, in which D(U) was the notation for
C∞
com(U) and D 0(U) denoted the space of continuous linear functionals.
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For the spaces of smooth functions, there are continuous inclusions
C∞
com(U) ⊆ C∞(U) for all U,

C∞
com(RN ) ⊆ S(RN ) ⊆ C∞(RN ) for U = RN .

We observed in Section IV.2 that C∞
com(U) ⊆ C∞(U) has dense image, and it

follows that S(RN ) ⊆ C∞(RN ) has dense image. Proposition 4.12 showed that
C∞
com(RN ) ⊆ S(RN ) has dense image.
If i : A → B denotes one of these inclusions and T is a continuous linear

functional on B, then T ◦ i is a continuous linear functional on A, and we can
regard T ◦ i as the restriction of T to A. Since i has dense image, T ◦ i cannot
be 0 unless T is 0. Thus each restriction map T 7→ T ◦ i as above is one-one.
We therefore have one-one restriction maps

E 0(U) → D 0(U) for all U,

E 0(RN ) → S 0(RN ) → D 0(RN ) for U = RN .

This fact justifies using the term “distribution” for any member of D 0 and for
using the term “distribution” with an appropriate modifier for members of E 0 and
S 0.
As in Section III.1 it will turn out often to be useful to write the effect of a

distribution T on a function ϕ as hT,ϕi, rather than as T (ϕ), and we shall adhere
to this convention systematically for the moment.5
We introduced inSection IV.2 thenotionof “support” for anymemberofE 0(U),

and we now extend that discussion to D 0(U). We saw in Proposition 4.10 that if
T is an arbitrary linear functional on C∞

com(U) and if U 0 is the union of all open
subsetsU∞ ofU such that T vanishes onC∞

com(U∞ ), then T vanishes onC∞
com(U 0).

We accordingly define the support of any distribution to be the complement in
U of the union of all open sets U∞ such that T vanishes on C∞

com(U∞ ). If T has
empty support, then T = 0 because T vanishes onC∞

com(U) and becauseC∞
com(U)

is dense in the domain of T . Proposition 4.11 showed that the members of E 0(U)
have compact support in this sense; we shall see in Theorem 5.1 that no other
members of D 0(U) have compact support.
An example of a member of E 0(U) was given in Section IV.2: Take finitely

many complex Borel measures ρα of compact support withinU , the indexing be-
ing bymulti-indicesαwith |α| ≤ m, and put hT,ϕi=

P
|α|≤m

R
U Dαϕ(x) dρα(x).

Then T is in E 0(U), and the support of T is contained in the union of the supports
of the ρα’s. Theorem 5.1 below gives a converse, but it is necessary in general
to allow the ρα’s to have support a little larger than the support of the given
distribution T .

5A different convention is to write
R
U ϕ(x) dT (x) in place of hT,ϕi. This notation emphasizes

an analogy between distributions and measures and is especially useful when more than one RN

variable is in play. This convention will provide helpful motivation in one spot in Section 3.
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Theorem 5.1. If T is a member ofD 0(U)with support contained in a compact
subset K of U , then T is in E 0(U). Moreover, if K 0 is any compact subset of
U whose interior contains K , then there exist a positive integer m and, for each
multi-index α with |α| ≤ m, a complex Borel measure ρα supported in K 0 such
that

hT,ϕi =
X

|α|≤m

Z

K 0
Dαϕ dρα for all ϕ ∈ C∞(U).

REMARK. Problems 8–10 at the end of the chapter discuss the question of
taking K 0 = K under additional hypotheses.

PROOF. Let √ be a member of C∞
com(U) with values in [0, 1] that is 1 on a

neighborhood of K and is 0 on K 0c; such a function exists by Proposition 3.5f.
If ϕ is in C∞

com(U), then we can write ϕ = √ϕ + (1 − √)ϕ with √ϕ in C∞
K 0

and with (1− √)ϕ in C∞
com(Kc). The assumption about the support of T makes

hT, (1− √)ϕi = 0, and therefore

hT,ϕi = hT,√ϕi + hT, (1− √)ϕi = hT,√ϕi for all ϕ in C∞
com(U). (∗)

Since the inclusionC∞
K 0 → C∞

com(U) is continuous, we can define a continuous
linear functional T1 onC∞

K 0 by T1(φ) = hT,φi forφ inC∞
K 0 . For anyϕ inC∞

com(U),
φ = √ϕ is in C∞

K 0 , and (∗) gives hT,ϕi = hT,√ϕi = T1(√ϕ). The continuity
of T1 on C∞

K 0 means that there exist m and C such that

|T1(φ)| ≤ C
P

|α|≤m
sup
x∈K 0

|Dαφ(x)| for all φ ∈ C∞
K 0 . (∗∗)

Let M be the number of multi-indices α with |α| ≤ m.
We introduce the Banach space X of M-tuples of continuous complex-valued

functions on K 0, the norm for X being the largest of the norms of the components.
The Banach-space dual of this space is the space of M-tuples of continuous linear
functionals on the components, thus the space of M-tuples of complex Borel
measures on K 0.
We can embedC∞

K 0 as a vector subspace of X bymappingφ to theM-tuplewith
components Dαφ for |α| ≤ m. We transfer T1 from C∞

K 0 to its image subspace
within X , and the result, which we still call T1, is a linear functional continuous
relative to the norm on X as a consequence of (∗∗). Applying the Hahn–Banach
Theorem, we extend T1 to a continuous linear functional eT1 on all of X without
an increase in norm. Then eT1 is given on X by an M-tuple of complex Borel
measures ρ0

α on K 0, i.e., eT1({ fα}|α|≤m) =
P

|α|≤m
R
K 0 fα dρ0

α. Therefore any ϕ in
C∞
com(U) has

hT,ϕi = T1(√ϕ) = eT1
°
{Dα(√ϕ)}|α|≤m

¢
=

P

|α|≤m

R
K 0 Dα(√ϕ) dρ0

α. (†)
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The right side of (†) is continuous on C∞(U), and therefore T extends to a
member of E 0(U). The formula in the theorem follows by expanding out each
Dα(√ϕ) in (†) by the Leibniz rule for differentiation of products, grouping the
derivatives of √ with the complex measures, and reassembling the expression
with new complex measures ρα. §

In Chapters VII and VIII we shall be interested also in a notion related to
support, namely the notion of “singular support.” If f is a locally integrable
function on the open set U , then f defines a member Tf of D 0(U) by

hTf ,ϕi =
Z

U
f ϕ dx for ϕ ∈ C∞

com(U).

If U 0 is an open subset of U and T is a distribution on U , we say that T equals
a locally integrable function on U 0 if there is some locally integrable function
f on U 0 such that hT,ϕi = hTf ,ϕi for all ϕ in C∞

com(U). We say that T equals
a smooth function on U 0 if this condition is satisfied for some f in C∞(U 0). In
the latter case the member of C∞(U 0) is certainly unique.
The singular support of a member T of D 0(U) is the complement of the

union of all open subsets U 0 of U such that T equals a smooth function on U 0.
The uniqueness of the smooth function on such a subset implies that if T equals
the smooth function f1 on U 0

1 and equals the smooth function f2 on U 0
2, then

f1(x) = f2(x) for x in U 0
1 ∩U 0

2. In fact, T equals the smooth function f1
Ø
Ø
U 0
1∩U

0
2

on U 0
1 ∩U 0

2 and also equals the smooth function f2
Ø
Ø
U 0
1∩U

0
2
there. The uniqueness

forces f1
Ø
Ø
U 0
1∩U

0
2
= f2

Ø
Ø
U 0
1∩U

0
2
. Taking the union of all the open subsets on which T

equals a smooth function, we see that T is a smooth function on the complement
of its singular support.

EXAMPLE. Take U = R1, and define

hT,ϕi = lim
ε↓0

Z

|x |∏ε

ϕ(x) dx
x

for ϕ ∈ C∞
com(R1).

To see that this is well defined, we choose η in C∞
com(R1) with η identically 1

on the support of ϕ and with η(x) = η(−x) for all x . Taylor’s Theorem gives
ϕ(x) = ϕ(0) + x R(x) with R in C∞(R1). Multiplying by η(x) and integrating
for |x | ∏ ε, we obtain

R
|x |∏ε

ϕ(x) dx
x = ϕ(0)

R
|x |∏ε

η(x) dx
x +

R
|x |∏ε R(x)η(x) dx .

The first term on the right side is 0 for every ε, and therefore

hT,ϕi =
R

R1 R(x)η(x) dx .
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It follows that T is inD 0(R1). On any function compactly supported inR1− {0},
the original integral defining T is convergent. Thus T equals the function 1/x
on R1 − {0}. Since 1/x is nowhere zero on R1 − {0}, the (ordinary) support of
T has to be a closed subset of R1 containing R1 − {0}. Therefore T has support
R1. On the other hand, T does not equal a function on all of R1, and T has {0}
as its singular support.

Starting in Section 2, we shall examine various operations on distributions.
Operations on distributions will be defined by duality from corresponding opera-
tions on smooth functions. For that reason it is helpful to know about continuity
of various operations on spaces of smooth functions. These we study now.
We begin with multiplication by smooth functions and with differentiation. If

√ is in C∞(U), then multiplication ϕ 7→ √ϕ carries C∞
com(U) into itself and also

C∞(U) into itself. The same is true of any iterated partial derivative operator
ϕ 7→ Dαϕ. We shall show that these operations are continuous. A multiplication
ϕ 7→ √ϕ need not carry S(RN ) into itself, and we put aside S(RN ) for further
consideration later.
The kind of continuity result for C∞(U) that we are studying tends to follow

from an easy computation with seminorms, and it is often true that the same
argument can be used to handle also C∞

com(U). Here is the general fact.

Lemma 5.2. Suppose that L : C∞(U) → C∞(U) is a continuous linear map
that carries C∞

com(U) into C∞
com(U) in such a way that for each compact K ⊆ U ,

C∞
K is carried into C∞

K 0 for some compact K 0 ⊇ K . Then L is continuous as a
linear map from C∞

com(U) into C∞
com(U).

PROOF. Proposition 4.29b shows that it is enough to prove for each K that
the composition of L : C∞

K → C∞
K 0 followed by the inclusion of C∞

K 0 into
C∞
com(U) is continuous, and we know that the inclusion is continuous. Fix

K , choose Kp in the exhausting sequence containing the corresponding K 0,
and let α be a multi-index. By the continuity of L : C∞(U) → C∞(U),
there exist a constant C , some integer q with q ∏ p, and finitely many multi-
indices βi such that kL(ϕ)kp,α ≤ C

P
i kϕkq,βi

. Since L(ϕ) has support in
K 0 ⊆ Kp and ϕ has support in K ⊆ K 0 ⊆ Kp ⊆ Kq , this inequality shows that
supx∈K 0 |Dα(L(ϕ))(x)| ≤ C

P
i supx∈K |Dβiϕ(x)|. Hence L : C∞

K → C∞
K 0 is

continuous, and the lemma follows. §

Proposition 5.3. If√ is in C∞(U), then ϕ 7→ √ϕ is continuous from C∞(U)
to C∞(U) and fromC∞

com(U) to C∞
com(U). If α is any differentiation multi-index,

then ϕ 7→ Dαϕ is continuous from C∞(U) to C∞(U) and from C∞
com(U) to

C∞
com(U).
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PROOF. The Leibniz rule for differentiation of products gives Dα(√ϕ) =P
β≤α cβ(Dβ−α√)(Dβϕ) for certain integers cβ . Then

k√ϕkp,α ≤
P

β≤α cβmβkϕkp,β,

where mβ = supx∈Kp
|Dβ−α√(x)|, and it follows that ϕ 7→ √ϕ is continuous

from C∞(U) into itself. Taking K 0 = K in Lemma 5.2, we see that ϕ 7→ √ϕ is
continuous from C∞

com(U) into itself.
Since kDαϕkp,β = kϕkp,α+β , the function ϕ 7→ Dαϕ is continuous from

C∞(U) into itself, and Lemma 5.2 with K 0 = K shows that ϕ 7→ Dαϕ is
continuous from C∞

com(U) into itself. §

We can combine these two operations into the operation of a linear partial
differential operator

P(x, D) =
X

|α|≤m
cα(x)Dα with all cα in C∞(U)

by means of the formula P(x, D)ϕ =
P

|α|≤m cα(x)Dαϕ. It is to be understood
that the operator has smooth coefficients. It is immediate from Proposition 5.3
that P(x, D) is continuous from C∞(U) into itself and from C∞

com(U) into itself.
An operator P(x, D) as above is said to be of order m if some cα(x) with

|α| = m has cα not identically 0. The operator reduces to an operator of the form
P(D) if the coefficient functions cα are all constant functions.
We introduce the transpose operator P(x, D)tr by the formula

P(x, D)trϕ(x) =
X

|α|≤m
(−1)|m|Dα

°
cα(x)ϕ(x)

¢
.

Expanding out the terms Dα
°
cα(x)ϕ(x)

¢
by means of the Leibniz rule, we see

that P(x, D)tr is some linear partial differential operator of the form Q(x, D).
The next proposition gives the crucial property of the transpose operator.

Proposition 5.4. Suppose that P(x, D) is a linear partial differential operator
on U . If u and v are in C∞(U) and at least one of them is in C∞

com(U), then
Z

U

°
P(x, D)tru(x)

¢
v(x) dx =

Z

U
u(x)

°
P(x, D)v(x)

¢
dx .

PROOF. It is enough to prove that the partial derivative operator Dj with respect
to xj satisfies

R
U (Dju)v dx = −

R
U u(Djv) dx since iteration of this formula

gives the result of the proposition. Moving everything to one side of the equation
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and putting w = uv, we see that it is enough to prove that
R

RN IU Djw dx = 0
if w is in C∞

com(U), where IU is the indicator function of U . We can drop the
IU from the integration since Djw is 0 off U , and thus it is enough to prove thatR
RN Djw dx = 0 for w in C∞

com(RN ). By Fubini’s Theorem the integral may be
computed as an iterated integral. The integral on the inside extends over the set
where xj is arbitrary in R and the other variables take on particular values, say
xi = ci for i 6= j . The integral on the outside extends over all choices of the ci
for i 6= j . The inside integral is already 0, because for suitable a and b, it is of
the form

R b
a Djw dxj = [w]xj=bxj=a = 0− 0 = 0. §

Next let us consider convolution, taking U = RN . We shall be interested in
the function √ ∗ ϕ given by

√ ∗ ϕ(x) =
R

RN √(x − y)ϕ(y) dy =
R

RN √(y)ϕ(x − y) dy,

under the assumption that √ and ϕ are in C∞(RN ) and that one of them has
compact support.
A simple device of localization helps with the analysis of this function: If K

is the support of √ , then the values of √ ∗ ϕ(x) for x in a bounded open set S
depend only on the value of ϕ on the bounded open set of differences S − K .
Consequently we can replace ϕ by ηϕ, where η is a member of C∞

com(RN ) that
is 1 on S − K , and the values of √ ∗ ϕ(x) will match those of √ ∗ (ηϕ)(x) for x
in S. The latter function is the convolution of two smooth functions of compact
support and is smooth by Proposition 3.5c. Therefore√ ∗ϕ is always inC∞(RN )
if √ is in C∞

com(RN ) and ϕ is in C∞(RN ). We shall use this same device later in
treating convolution of distributions.

Proposition 5.5. If √ is in C∞
com(RN ) and ϕ is in C∞(RN ), then

(a) Dα(√ ∗ ϕ) = (Dα√) ∗ ϕ = √ ∗ (Dαϕ),
(b) convolution of three functions in C∞(RN ) is associative when at least

two of the three functions have compact support,
(c) convolution with √ is continuous from C∞(RN ) into itself and from

C∞
com(RN ) into itself,

(d) convolution with ϕ is continuous from C∞
com(RN ) into C∞(RN ).

PROOF. For (a), let K be the support of √ . Concentrating on x’s lying in a
bounded open set S, choose a function η in C∞

com(RN ) that is 1 on S − K , and
then √ ∗ ϕ(x) = √ ∗ (ηϕ)(x) for x in S. Proposition 3.5c says that

Dα(√ ∗ (ηϕ))(x) = (Dα√) ∗ (ηϕ)(x) = √ ∗ Dα(ηϕ)(x)

for all x in RN , and consequently

Dα(√ ∗ ϕ)(x) = (Dα√) ∗ ϕ(x) = √ ∗ Dαϕ(x)
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for all x in S. Since S is arbitrary, (a) follows. The proof of (b) is similar.
For (c), again let K be the support of √ , and apply (a). Then

k√ ∗ ϕkp,α = sup
x∈Kp

|Dα(√ ∗ ϕ)(x)| = sup
x∈Kp

|√ ∗ (Dαϕ)(x)|

≤ sup
x∈Kp

R
K |√(y)||Dαϕ(x − y)| dy

Ø
Ø ≤ k√k1 supz∈Kp−K |Dαϕ(z)|,

and the right side is ≤ k√k1kϕkq,α if q is large enough so that Kp − K ⊆ Kq .
This proves the continuity on C∞(RN ), and the continuity on C∞

com(RN ) then
follows from Lemma 5.2.
For (d), Proposition 4.29b shows that it is enough to prove that √ 7→ √ ∗ ϕ is

continuous from C∞
K into C∞(RN ) for each compact set K . The same estimate

as for (c) gives

k√ ∗ ϕkp,α ≤ k√k1kϕkq,α ≤ |K |kϕkq,α(sup
x∈K

|√(x)|)

if q is large enough so that Kp − K ⊆ Kq . The result follows. §

2. Elementary Operations on Distributions

In this section we take up operations on distributions. If f is a locally integrable
function on the open set U , we defined the member Tf of D 0(U) by

hTf ,ϕi =
Z

U
f ϕ dx

for ϕ in C∞
com(U). If f vanishes outside a compact subset of U , then Tf is in

E 0(U), extending to operate on all of C∞(U) by the same formula.
Starting from certain continuous operations L on smooth functions, we want

to extend these operations to operations on distributions. So that we can regard
L as an extension from smooth functions to distributions, we insist on having
L(Tf ) = TL( f ) if f is smooth. To tie the definition of L on distributions Tf to the
definition on general distributions T , we insist that L be the “transpose” of some
continuous operation M on functions, i.e., that hL(T ),ϕi = hT,M(ϕ)i. Taking
T = Tf in this equation, we see thatwemust have

R
U L( f )ϕ dx =

R
U f M(ϕ) dx .

On the other hand, once we have found a continuousM on smooth functions withR
U L( f )ϕ dx =

R
U f M(ϕ) dx , then we can make the definition hL(T ),ϕi =

hT,M(ϕ)i for the effect of L on distributions. In particular the operator M on
smooth functions is unique if it exists. We write L tr = M for it. In summary, our
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procedure6 is to find, if we can, a continuous operator L tr on smooth functions
such that Z

U
L( f )ϕ dx =

Z

U
f L tr(ϕ) dx

and then to define
hL(T ),ϕi = hT, L tr(ϕ)i.

We begin with the operations of multiplication, whose continuity is addressed
in Proposition 5.3. If L is multiplication by the function √ in C∞(U), then
we can take L tr = L because

R
U L( f )ϕ dx =

R
U (√ f )ϕ dx =

R
U f (√ϕ) dx =R

U f L tr(ϕ) if f and ϕ are in C∞(U) and one of them has compact support. Thus
our definition of multiplication of a distribution T by √ in C∞(U) is

h√T,ϕi = hT,√ϕi.

Here we assume either that T is in D 0(U) and ϕ is in C∞
com(U) or else that T is

in E 0(U) and ϕ is in C∞(U). Briefly we say that at least one of T and ϕ has
compact support.
The operation of multiplication by a function can be used to localize the effect

of a distribution in a way that is useful in the definition below of convolution
of distributions. First observe that if T is in D 0(U) and η is in C∞

com(U), then
the support of ηT is contained in the support of η; in fact, if ϕ is any member
of C∞

com(U ∩ support(η)c), then ηϕ = 0 and hence hηT,ϕi = hT, ηϕi = 0. In
particular, ηT is in E 0(U). On the other hand, we lose no information about T
by this operation if we allow all possible η’s, because if T is in D 0(U) and if ϕ
is a member of C∞

com(U) with support in a compact subset K of U , then ϕ = ηϕ
and hence hT,ϕi = hT, ηϕi = hηT,ϕi.
Next we consider differentiation, which is a continuous operation by Proposi-

tion 5.3. When L gives the iterated derivative Dα of a distribution, we can take
the operation L tr on smooth functions to be (−1)|α| times Dα. The definition is
then

hDαT,ϕi = (−1)|α|hT, Dαϕi.

Again we assume that at least one of T and ϕ has compact support.
Putting these definitions together yields the definition of the operation of a lin-

ear partial differential operator P(x, D)with smooth coefficients on distributions.
The formula is

hP(x, D)T,ϕi = hT, P(x, D)trϕi,

6Another way of proceeding is to use topologies on E 0(U) andD 0(U) such thatC∞
com(U) is dense

in E 0(U) and C∞(U) is dense in D 0(U). The approach in the text avoids the use of such topologies
on spaces of distributions, and it will not be necessary to consider them.
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where P(x, D)tr is the transpose differential operator defined in Section 1. This
definition is forced to satisfy P(x, D)T = TP(x,D) f on smooth f .
For further operations let us specialize to the setting that U = RN . The first

is the operation of acting by −1 in the domain. For a function ϕ, we define
ϕ∨(x) = ϕ(−x). It is easy to check that this operation is continuous on C∞(RN )
and onC∞

com(RN ). Since
R

RN f ∨ϕ dx =
R

RN f ϕ∨ dx by a change of variables, the
operator L tr corresponding to L( f ) = f ∨ is just L itself. Thus the corresponding
operation T 7→ T∨ on distributions is given by

hT∨,ϕi = hT,ϕ∨i.

The operation ( · )∨ has the further property that (ϕ∨)∨ = ϕ and (T∨)∨ = T .

3. Convolution of Distributions

The next operation, again in the setting of RN , is the convolution of two dis-
tributions. Convolution is considerably more complicated than the operations
considered so far because it involves two variables.
The method of Section 2 starts off easily enough. An easy change of variables

shows that any three smooth functions, two of which have compact support,
satisfy

R
RN (√ ∗ f )ϕ dx =

R
RN (√)( f ∨ ∗ ϕ) dx , where f ∨(−x) = f (−x).

This means that
R

RN L(√)ϕ dx =
R

RN √L tr(ϕ) dx , where L(√) = √ ∗ f and
L tr(ϕ) = f ∨∗ϕ. Thus Section 2 says to define T ∗ f by hT ∗ f,ϕi = hT, f ∨∗ϕi.
To handle the other convolution variable, however, we have to know that T ∗ f
is a smooth function and that the passage from f to T ∗ f is continuous, and
neither of these facts is immediately apparent. In addition, there are several cases
to handle, depending on which two of the functions f , √ , and ϕ at the start have
compact support.
Sorting out all these matters could be fairly tedious, but there is a model for

what happens that will help us anticipate the results. We shall follow the path
that the model suggests. Then afterward, if we were to want to do so, it would
be possible to go back and see that all the arguments with transposes in the style
of Section 2 can be carried through with the tools that we have had to establish
anyway.
The model takes a cue from Theorem 5.1, which says that members of E 0(RN )

are given by integration with compactly supported complex Borel measures and
derivatives of them. In particular our definitions ought to specialize to famil-
iar constructions when they are given by compactly supported positive Borel
measures. In the case of measures, convolution is discussed in Problem 5 of
Chapter VIII of Basic. The definition and results are as follows:

(i) (µ1 ∗ µ2)(E) =
R

RN µ1(E − x) dµ2(x) by definition,
(ii)

R
RN ϕ d(µ1∗µ2) =

R
RN

R
RN ϕ(x+ y) dµ1(x) dµ2(y) for ϕ ∈ Ccom(RN ),
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(iii) µ1 ∗ µ2 = µ2 ∗ µ1,
(iv) ϕ dx∗µ is the continuous function (ϕ dx∗µ)(x) =

R
RN ϕ(x−y) dµ(y) =R

RN (ϕ∨)−x dµ for ϕ ∈ Ccom(RN ), where the subscript −x refers to the
translate ht(y) = h(y + t).

The measures and the function ϕ in these properties are all assumed compactly
supported, but some relaxation of this condition is permissible. For example the
function ϕ can be allowed to be any continuous scalar-valued function on RN .
In defining convolution of distributions and establishing its properties, we shall

face three kinds of technical problems: One is akin to Fubini’s Theorem and will
be handled for E 0(RN ) by appealing to Theorem 5.1 and using the ordinary form
of Fubini’s Theorem with measures. A second is a regularity question—showing
that certain integrations in one variable of functions of two variables lead to
smooth functions of the remaining variable—and will be handled for E 0(RN ) by
Lemma 5.6 below. A third is the need to work with D 0(RN ), not just E 0(RN ),
and will be handled by the localization device T 7→ ηT mentioned in Section 2.
We begin with the lemma that addresses the regularity question.

Lemma 5.6. Let K be a compact metric space, and let µ be a Borel measure
on K . Suppose that 8 = 8(x, y) is a scalar-valued function on RN × K such
that 8( · , y) is smooth for each y in K , and suppose further that every iterated
partial derivative Dα

x8 in the first variable is continuous on RN × K . Then the
function

F(x) =
Z

K
8(x, y) dµ(y)

is smooth on RN and satisfies DαF(x) =
R
K D

α
x8(x, y) dµ(y) for every multi-

index α.

REMARKS. The lemma gives us a new proof of the smoothness shown in
Section 1 for √ ∗ ϕ when √ is in C∞

com(RN ) and ϕ is in C∞(RN ). In fact,
we write the convolution as √ ∗ ϕ(x) =

R
RN ϕ(x − y)√(y) dy and apply the

lemma with µ equal to Lebesgue measure on the compact set support(√) and
with F(x) = √ ∗ ϕ(x) and 8(x, y) = ϕ(x − y)√(y).

PROOF. In the proof we may assume without loss of generality that 8 is real-
valued. We begin by showing that F is continuous. If xn → x0, then the uniform
continuity of 8 on the compact set {xn}n∏0 × K implies that limn 8(xn, y) =
8(x0, y) uniformly. Dominated convergence allows us to conclude that
limn

R
K 8(xn, y) dµ(y) =

R
K 8(x0, y) dµ(y). Therefore F is continuous.

Let B be a (large) closed ball in RN , and suppose that x is a member of B that
is at distance at least 1 from Bc. If ej denotes the j th standard basis vector of RN
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and if |h| < 1, then the Mean Value Theorem gives
8(x + hej , y) − 8(x, y)

h
=

@8

@xj
(c, y)

for some c on the line segment between x and x + h. If ≤ > 0 is given, choose
the δ of uniform continuity of @8

@xj on the compact set B × K . We may assume
that δ < 1. For |h| < δ and for y in K , we have

Ø
Ø
Ø
8(x + hej , y) − 8(x, y)

h
−

@8

@xj
(x, y)

Ø
Ø
Ø =

Ø
Ø
Ø
@8

@xj
(c, y) −

@8

@xj
(x, y)

Ø
Ø
Ø < ≤,

the inequality holding since (c, y) and (x, y) are both in B×K and are at distance
at most δ from one another. As a consequence, if L is any compact subset ofRN ,
then

lim
h→0

8(x + hej , y) − 8(x, y)
h

=
@8

@xj
(x, y)

uniformly for (x, y) in L × K . Because of this uniform convergence we have

lim
h→0

Z

K

8(x + hej , y) − 8(x, y)
h

dµ(y) =
Z

K

@8

@xj
(x, y) dµ(y).

The integral on the left side equals h−1[F(x + hej , y) − F(x, y)], and the
limit relation therefore shows that @

@xj

R
K 8(x, y) dµ(y) exists and equals

R
K

@8
@xj (x, y) dµ(y).
This establishes the formula DαF(x) =

R
K D

α
x8(x, y) dµ(y) for α equal to

the multi-index that is 1 in the j th place and 0 elsewhere. The remainder of the
proof makes the above argument into an induction. If we have established the for-
mula DαF(x) =

R
K D

α
x8(x, y) dµ(y) for a certain α, then the first paragraph of

the proof shows that DαF is continuous. The secondparagraphof the proof shows
for each partial derivative operator Dj in one of the x variables that the operator
Dβ = Dj Dα has DβF(x) =

R
K D

β
x 8(x, y) dµ(y). The lemma follows. §

For our definitions let us beginwith the convolutionof twomembers ofE 0(RN ).
As indicated at the start of the section, we shall jump right to the final formula.
The justification via formulas for transpose operations can be done afterward if
desired. If we use notation that treats distributions like measures, the formula (ii)
above suggests trying

hS ∗ T,ϕi =
R

RN

R
RN ϕ(x + y) dT (y) dS(x) = hS, hT,ϕxii = hT, hS,ϕyii,

where the subscript again indicates a translation: ϕx(z) = ϕ(z+ x). The outside
distribution acts on the subscripted variable, and the inside distribution acts on
the hidden variable. To make this into a rigorous definition, however, we have
to check that hT,ϕxi and hS,ϕyi are smooth, that the last equality in the above
display is valid, and that the resulting dependence on ϕ is continuous. We carry
out these steps in the next proposition.
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Proposition 5.7. Let S and T be in E 0(RN ), and let ϕ be in C∞(RN ). Then
(a) the functions x 7→ hT,ϕxi and y 7→ hS,ϕyi are smooth on RN ,
(b) Dα(x 7→ hT,ϕxi) = hT, (Dαϕ)xi,
(c) the function ϕ 7→ hT,ϕxi is continuous from C∞(RN ) into itself and

from C∞
com(RN ) into itself,

(d) hS, hT,ϕxii = hT, hS,ϕyii,
(e) the function ϕ 7→ hS, hT,ϕxii is continuous from C∞(RN ) into the

scalars,
(f) the formula

hS ∗ T,ϕi = hS, hT,ϕxii = hT, hS,ϕyii

determines a well-defined member of E 0(RN ) such that S ∗ T = T ∗ S,
(g) the supports of S, T , and S ∗ T are related by

support(S ∗ T ) ⊆ support(S) + support(T ).

PROOF. Let expressions for S and T in Theorem 5.1 be

hS,ϕi =
P

α

R
RN Dαϕ(x) dρα(x) and hT,ϕi =

P
β

R
RN Dβϕ(y) dσβ(y),

the sums both being over finite sets of multi-indices and the complex measures
being supported on some compact subset of RN . Then

hT,ϕxi =
P

β

R
RN Dβϕ(x + y) dσβ(y). (∗)

If we apply Lemma 5.6 with8(x, y) = Dβϕ(x + y) and treat y as varying over
the union of the compact supports of the σβ’s, then we see that each term in
the sum over β is a smooth function of x . Hence x 7→ hT,ϕxi is smooth, and
symmetrically y 7→ hS,ϕyi is smooth. This proves (a).
Applying to (∗) the conclusions of Lemma 5.6 about passing the derivative

operator Dα under the integral sign, we obtain

Dα(x 7→ hT,ϕxi) =
P

β

R
RN Dα+βϕ(x + y) dσβ(y) = hT, (Dαϕ)xi.

This proves (b).
If K denotes a subset of RN containing the supports of all the σβ’s, then

|DαhT,ϕxi| ≤
P

β

sup
y∈K

|Dα+βϕ(x + y)|kσβk,
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where kσβk denotes the total-variation norm of σβ . Hence

sup
x∈L

|DαhT,ϕxi| ≤
P

β

sup
z∈K+L

|Dα+βϕ(z)|kσβk.

This proves (c) for C∞(RN ). Combining this same inequality with Lemma 5.2,
we obtain (c) for C∞

com(RN ).
The formula for hS, · i and the identity (∗) together give

hS, hT,ϕxii =
P

α,β

R
RN

R
RN DαDβϕx(y) dσβ(y) dρα(x)

=
P

α,β

R
RN

R
RN Dα+βϕ(x + y) dσβ(y) dρα(x). (∗∗)

By Fubini’s Theorem the right side is equal to
P

α,β

R
RN

R
RN Dα+βϕ(x + y) dρα(x) dσβ(y) = hT, hS,ϕyii.

This proves (d).
Conclusion (e) is immediate from (c) and the continuity of S on C∞(RN ).

Thus S ∗ T is in E 0(RN ). The equality in (d) shows that S ∗ T = T ∗ S. This
proves (f).
Finally let L be the compact set support(S) + support(T ), and suppose that ϕ

is in C∞
com(Lc). Let d > 0 be the distance from support(ϕ) to L , and let D be the

function giving the distance to a set. Define

LS = {x | D(x, support(S)} ≤ 1
3d

LT = {x | D(x, support(T )} ≤ 1
3d.and

If xS is in LS and xT is in LT , then |xS − s| ≤ 1
3d and |xT − t | ≤ 1

3d for some
s in support(S) and t in support(T ). Thus |(xS + xT ) − (s + t)| ≤ 2

3d. Hence
xS + xT is at distance ≤ 2

3d from L . Since every member of support(ϕ) is at
distance ∏ d from L , xS + xT is not in support(ϕ). Therefore

(LS + LT ) ∩ support(ϕ) = ∅. (†)

Also, support(S) ⊆ (LS)o and support(T ) ⊆ (LT )o. Since LS contains a neigh-
borhood of support(S), Theorem 5.1 allows us to express S in terms of complex
Borel measures ρα supported in LS . Similarly we can express T in terms of
complex Borel measures σβ supported in LT . By (†) the integrand in (∗∗) is iden-
tically 0 on LS+LT , and hence hS, hT,ϕxii = 0. Thus hS∗T,ϕi = 0 for all ϕ in
C∞
com(Lc), and we conclude that support(S ∗T ) ⊆ L = support(S)+support(T ).
This proves (g). §
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Proposition 5.7 establishes facts about the convolution of two members of
E 0(RN ) as a member of E 0(RN ). If one of the two members is in fact a smooth
function of compact support, then the corresponding results about convolution of
measures suggest that the convolution shouldbe a smooth function. Thenecessary
tools for carrying out a proof are already in place in Proposition 5.7 and Theorem
5.1.

Corollary 5.8. If S is in E 0(RN ), f is in C∞
com(RN ), and ϕ is in C∞(RN ), then

hS ∗ Tf ,ϕi = hS, f ∨ ∗ ϕi.

Moreover, S ∗ Tf is given by the C∞ function y 7→ hS, ( f ∨)−yi, i.e.,

S ∗ Tf = TF with F(y) = hS, ( f ∨)−yi.

REMARKS. For S in E 0(RN ) and f in C∞
com(RN ), we write S ∗ f for the

C∞
com(RN ) function F of the corollary such that S ∗ Tf = TF . The specific
formula that we shall use to simplify notation is

S ∗ Tf = TS∗ f ,

with the right side written as TS∗ f rather than TS∗Tf .

PROOF. Proposition 5.7f gives

hS ∗ Tf ,ϕi = hS, hTf ,ϕxii =
≠
S,

R
RN f (y)ϕ(x + y) dy

Æ

=
≠
S,

R
RN f (−y)ϕ(x − y) dy

Æ
= hS, f ∨ ∗ ϕi.

(∗)

This proves the first displayed formula. For the rest let S be written according to
Theorem 5.1 as hS,√i =

P
α

R
RN Dα√ dρα. Then

hS, f ∨ ∗ ϕi =
P

α

R
RN Dα( f ∨ ∗ ϕ)(x) dρα(x)

=
P

α

R
RN (Dα f ∨ ∗ ϕ)(x) dρα(x)

=
P

α

R
RN

R
RN Dα f ∨(x − y)ϕ(y) dy dρα(x)

=
R

RN

£P
α

R
RN (Dα f ∨)−y dρα(x)

§
ϕ(y) dy

=
R

RN hS, ( f ∨)−yiϕ(y) dy,

the next-to-last equality following from Fubini’s Theorem. Combining this cal-
culation with (∗), we see that S ∗ Tf = TF with F(y) = hS, ( f ∨)−yi. The
function F is smooth by Proposition 5.7a. §
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Corollary 5.9. Convolution of members of E 0(RN ) is consistent with convo-
lution of members ofC∞

com(RN ) in the sense that if f and g are inC∞
com(RN ), then

Tg ∗ Tf is given by the C∞ function Tg ∗ f , and this function equals g ∗ f .
PROOF. The first conclusion is the result of Corollary 5.8 with S = Tg.

For the second conclusion Corollary 5.8 gives Tg ∗ Tf = TF with F(y) =
hTg, ( f ∨)−yi =

R
RN g(x) f ∨(x − y) dx =

R
RN g(x) f (y − x) dy = (g ∗ f )(y).

Hence TTg∗ f = Tg∗ f , and the second conclusion follows. §

Corollary 5.10. If T is in E 0(RN ) and ϕ is in C∞
com(RN ), then

(T∨ ∗ ϕ)(x) = hT,ϕxi.

PROOF. Corollary 5.8 gives (T∨ ∗ ϕ)(x) = hT∨, (ϕ∨)−xi, and the latter is
equal to hT, ((ϕ∨)−x)

∨i = hT,ϕxi. §

Corollary 5.11. If S and T are in E 0(RN ) and ϕ is in C∞
com(RN ), then

hS ∗ T,ϕi = hS, T∨ ∗ ϕi.

PROOF. Proposition 5.7f and Corollary 5.10 give hS ∗ T,ϕi = hS, hT,ϕxii =
hS, T∨ ∗ ϕi. §

Corollary 5.12. If T is in E 0(RN ), then the map ϕ 7→ T∨ ∗ ϕ is continuous
from C∞

com(RN ) into itself and extends continuously to a map of C∞(RN ) into
itself under the definition

(T∨ ∗ ϕ)(x) = hT,ϕxi.

The derivatives of T∨ ∗ϕ satisfy Dα(T∨ ∗ϕ) = T∨ ∗Dαϕ, and also (T∨ ∗ϕ)∨ =
T ∗ ϕ∨.
PROOF. The equality (T∨ ∗ ϕ)(x) = hT,ϕxi restates Corollary 5.10, and the

statements about continuity follow from Proposition 5.7c. For the derivatives we
use Proposition 5.7b to write Dα(T∨ ∗ ϕ)(x) = DαhT,ϕxi = hT, (Dαϕ)xi =
(T∨∗Dαϕ)(x). Finally (T∨∗ϕ)∨(x)=(T∨∗ϕ)(−x)=hT,ϕ−xi=hT∨, (ϕ−x)

∨i
= hT∨, (ϕ∨)xi = (T ∗ ϕ∨)(x). §

Since T∨ ∗ ϕ is now well defined for T in E 0 and ϕ in C∞(RN ), we can use
the same formula as in Corollary 5.11 to make a definition of convolution of two
arbitrary distributions when only one of the two distributions being convolved has
compact support. Specifically if S is in D 0(RN ) and T is in E 0(RN ), we define
S ∗ T in D 0(RN ) by the first equality of

hS ∗ T,ϕi = hS, T∨ ∗ ϕi = hS, hT,ϕxii for ϕ ∈ C∞
com(RN ),

the second equality holding by Corollary 5.12. Corollary 5.12 shows also that
S∗T has the necessary property of being continuous onC∞

com(RN ), and Corollary
5.11 shows that this definition extends the definition of S ∗ T when S and T are
in E 0(RN ).
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What is missing with this definition of S ∗ T is any additional relationship that
arises for distributions that equal smooth functions. For example:

• Does this new definition make Tf ∗ T = TT∗ f when T is compactly
supported and f does not have compact support?

• Is S ∗Tf equal to a function when f is compactly supported and S is not?
• If so, are the formulas of Corollaries 5.8, 5.9, and 5.10 valid?
• If so, can we equally well define S ∗ T by hS ∗ T,ϕi = hT, S∨ ∗ ϕi =

hT, hS,ϕyii when T is compactly supported and S is not?
The answers to these questions are all affirmative. To get at the proofs, we
introduce a technique of localization for members of D 0(RN ). Proposition 5.13
below is a quantitative statement of what we need. We apply the technique to
obtain smoothness of functions of the form hS,ϕyi when S is in D 0(RN ) and
ϕ is in C∞

com(RN ); this step does not make use of the above enlarged definition
of S ∗ T . Then we gradually make the connection with the new definition of
convolution and establish all the desired properties.

Proposition5.13. Let N be a boundedopen set inRN . Let S be inD 0(RN ), and
let ϕ be in C∞

com(RN ). If η ∈ C∞
com(RN ) is identically 1 on the set of differences

support(ϕ) − N , then hS,ϕyi = hηS,ϕyi for y in N . Consequently y 7→ hS,ϕyi
is in C∞(RN ). Moreover, Dα(y 7→ hS,ϕyi) = hS, (Dαϕ)yi, and the linear map
ϕ 7→ hS,ϕyi of C∞

com(RN ) into C∞(RN ) is continuous.

PROOF. Let y be in N . If x + y is in support(ϕ), then x is in support(ϕ) − N ,
and η(x) = 1. Hence η(x)ϕ(x + y) = ϕ(x + y). If x + y is not in support(ϕ),
then η(x)ϕ(x+ y) = ϕ(x+ y) because both sides are 0. Hence ηϕy = ϕy for y in
N , and hS,ϕyi = hS, ηϕyi = hηS,ϕyi. The function y 7→ hηS,ϕyi is smooth by
Proposition 5.7a, and hence y 7→ hS,ϕyi is smooth on N . Since N is arbitrary,
y 7→ hS,ϕyi is smooth everywhere.
For the derivative formula Proposition 5.7b gives us Dα(y 7→ hηS,ϕyi) =

hηS, (Dαϕ)yi for y in N . For y in N , hηS,ϕyi = hS,ϕyi and hηS, (Dαϕ)yi =
hS, (Dαϕ)yi. Therefore Dα(y 7→ hS,ϕyi) = hS, (Dαϕ)yi for y in N . Since N
is arbitrary, Dα(y 7→ hS,ϕyi) = hS, (Dαϕ)yi everywhere.
For the asserted continuity of ϕ 7→ hS,ϕyi, it is enough to prove that this map

carriesC∞
K continuously intoC∞(RN ) for each compact set K . If N is a bounded

open set on which we are to make some C∞ estimates, choose η ∈ C∞
com(RN )

so as to be identically 1 on the set of differences K − N . We have just seen that
hS,ϕyi = hηS,ϕyi for all y in N . Proposition 5.7c shows that √ 7→ hηS,√yi
is continuous from C∞

com(RN ) into C∞
com(RN ), hence from C∞

K into C∞
com(RN ),

hence from C∞
K into C∞(RN ). Therefore ϕ 7→ hS,ϕyi is continuous from C∞

K
into C∞(RN ). §
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Corollary 5.14. Let S be inD 0(RN ), T be in E 0(RN ), and ϕ be in C∞
com(RN ).

Then
hS ∗ T,ϕi = hS, T∨ ∗ ϕi = hS, hT,ϕxii = hT, hS,ϕyii.

Moreover, Dα(S ∗ T ) = (DαS) ∗ T = S ∗ (DαT ) for every multi-index α.

REMARKS. The first two equalities follow by definition of S ∗ T and by
application of Corollary 5.12. The new statements in the corollary are the third
equality and the derivative formula. The right side hT, hS,ϕyii of the displayed
equation is well defined, since Proposition 5.13 shows that hS,ϕyi is inC∞(RN ).

PROOF. Let N be a boundedopen set containing support(T ), and choose a func-
tion η ∈ C∞

com(RN ) that is identically 1 on the set of differences support(ϕ) − N .
Proposition 5.7g shows that

support(T∨ ∗ ϕ) ⊆ support(ϕ) + support(T∨)

= support(ϕ) − support(T )

⊆ support(ϕ) − N ,

and the fact that η is identically 1 on support(ϕ) − N implies that

(η)(T∨ ∗ ϕ) = T∨ ∗ ϕ. (∗)

Meanwhile, Proposition 5.13 shows that

hS,ϕyi = hηS,ϕyi (∗∗)

for all y in N , hence for all y in support(T ). Therefore

hT, hS,ϕyii = hT, hηS,ϕyii by (∗∗)

= hT, (ηS)∨ ∗ ϕi by Corollary 5.10
= hηS ∗ T,ϕi by Corollary 5.11
= hηS, T∨ ∗ ϕi by Corollary 5.10
= hS, η(T∨ ∗ ϕ)i by definition
= hS, T∨ ∗ ϕi by (∗). (†)

For one of the derivative formulas, we have

hDα(S ∗ T ),ϕi = (−1)|α|hS ∗ T, Dαϕi = (−1)|α|hS, hT, (Dαϕ)xii.

Proposition 5.7b shows that this expression is equal to

(−1)|α|hS, DαhT,ϕxii = hDαS, hT,ϕxii,
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and the definition of convolution shows that the latter expression is equal to
h(DαS)∗T,ϕi. Hence Dα(S∗T ) = (DαS)∗T . For the other derivative formula
we have

hDα(S ∗ T ),ϕi = (−1)|α|hS ∗ T, Dαϕi = (−1)|α|hT, hS, (Dαϕ)yii.

Proposition 5.13 shows that this expression is equal to

(−1)|α|hT, DαhS,ϕyii = hDαT, hS,ϕyii,

and step (†) shows that the latter expression is equal to

hS, (DαT )∨ ∗ ϕi = hS ∗ (DαT ),ϕi.

Hence Dα(S ∗ T ) = S ∗ (DαT ). §

For S in D 0(RN ) and ϕ in C∞
com(RN ), we now define

(S∨ ∗ ϕ)(y) = hS,ϕyi.

Corollary 5.8 shows that this definition is consistent with our earlier definition
when S is in the subset E 0(RN ) ofD 0(RN ). Proposition 5.13 shows that the linear
map ϕ 7→ S ∗ ϕ is continuous from C∞

com(RN ) into C∞(RN ).

Corollary 5.15. Let S be inD 0(RN ), T be in E 0(RN ), and ϕ be in C∞
com(RN ).

Then

hS ∗ T,ϕi = hS, T∨ ∗ ϕi = hS, hT,ϕxii = hT, hS,ϕyii = hT, S∨ ∗ ϕi,

and (S ∗ T )∨ = S∨ ∗ T∨.

PROOF. The displayed line just adds the above definition to the conclu-
sion of Corollary 5.14. For the other formula we use Corollary 5.12 to write
h(S ∗ T )∨,ϕi = hS ∗ T,ϕ∨i = hS, T∨ ∗ ϕ∨i = hS, (T ∗ ϕ)∨i = hS∨, T ∗ ϕi =
hS∨ ∗ T∨,ϕi. §

With the symmetry that has been established in Corollary 5.15, we allow
ourselves to write T ∗ S for S ∗ T when S is inD 0(RN ) and T is in E 0(RN ). This
notation is consistent with the equality S ∗ T = T ∗ S established in Proposition
5.7f when S and T both have compact support.
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Corollary 5.16. Suppose that S is in D 0(RN ), that f is in C∞(RN ), and that
at least one of S and f has compact support. If ϕ is in C∞

com(RN ), then

hS ∗ Tf ,ϕi = hS, f ∨ ∗ ϕi.

Moreover, S ∗ Tf is given by the C∞ function y 7→ hS, ( f ∨)−yi, i.e.,

S ∗ Tf = TF with F(y) = hS, ( f ∨)−yi.

REMARK. If both S and f have compact support, Corollary 5.16 reduces to
Corollary 5.8.

PROOF. First suppose that S has compact support. Theorem 5.1 allows us to
write S as hS,√i =

P
α

R
RN Dα√ dρα, with the sum involving only finitelymany

terms and with the complex Borel measures ρα compactly supported. Applying
Corollary 5.15 to S ∗ Tf and using the definition of S∨ ∗ ϕ, we obtain

hS ∗ Tf ,ϕi =
R

RN f (y)(S∨ ∗ ϕ)(y) dy
=

R
RN f (y)

P
α

R
RN Dαϕy(x) dρα(x) dy

=
R

RN

P
α

R
RN f (y)Dαϕ(x + y) dρα(x) dy.

Since ϕ and the ρα’s are compactly supported, we may freely interchange the
order of integration to see that the above expression is equal to

P
α

R
RN

£ R
RN f (y)Dαϕ(x + y) dy

§
dρα(x)

=
P

α

R
RN ( f ∨ ∗ Dαϕ)(x) dρα(x)

=
P

α

R
RN (Dα( f ∨) ∗ ϕ)(x) dρα(x)

=
P

α

R
RN

£ R
RN Dα( f ∨)(x − y)ϕ(y) dy

§
dρα(x)

=
R

RN

£P
α

R
RN Dα( f ∨)(x − y) dρα(x)

§
ϕ(y) dy

=
R

RN hS, ( f ∨)−yiϕ(y) dy
= hTF ,ϕi,

as asserted.
Next suppose instead that f has compact support. Then

hS ∗ Tf ,ϕi = hS, (Tf )∨ ∗ ϕi = hS, Tf ∨ ∗ ϕi = hS, f ∨ ∗ ϕi. (∗)

We are to show that this expression is equal to

hTF ,ϕi = hThS,( f ∨)−yi,ϕi =
R

RN hS, ( f ∨)−yiϕ(y) dy. (∗∗)
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We introduce a member η of C∞
com(RN ) that is identically 1 on the set of sums

support( f ∨) + support(ϕ). Since ηS is in E 0(RN ), Corollary 5.8 shows that

hηS, f ∨ ∗ ϕi =
R

RN hηS, ( f ∨)−yiϕ(y) dy =
R

RN hS, η( f ∨)−yiϕ(y) dy.

In view of (∗) and (∗∗), it is therefore enough to prove the two identities

hηS, f ∨ ∗ ϕi = hS, f ∨ ∗ ϕi (†)

and R
RN hS, η( f ∨)−yiϕ(y) dy =

R
RN hS, ( f ∨)−yiϕ(y) dy. (††)

Since support( f ∨ ∗ ϕ) ⊆ support( f ∨) + support(ϕ), we have η( f ∨ ∗ ϕ) =
f ∨ ∗ ϕ and therefore hηS, f ∨ ∗ ϕi = hS, η( f ∨ ∗ ϕ)i = hS, f ∨ ∗ ϕi. This proves
(†).
To prove (††), it is enough to show that η( f ∨)−y = ( f ∨)−y for every y in

support(ϕ). For a given y in support(ϕ), there is nothing to prove at points x
where ( f ∨)−y(x) = 0. If ( f ∨)−y(x) 6= 0, then f ∨(x − y) 6= 0 and x − y is
in support( f ∨). Hence x = y + (x − y) is in support(ϕ) + support( f ∨), and
η(x)( f ∨)−y(x) = ( f ∨)−y(x). This proves (††). §

Corollary 5.17. Convolution of two distributions, one of which has compact
support, is consistent with convolution of smooth functions, one of which has
compact support, in the sense that if f and g are smooth and one of them has
compact support, then Tg ∗ Tf is given by the C∞ function Tg ∗ f and by the C∞

function Tf ∗ g, and these functions equal g ∗ f .

PROOF. We apply Corollary 5.16 with S = Tg, and we find that Tg ∗ Tf
is given by the smooth function that carries y to hTg, ( f ∨)−yi. In turn, this
latter expression equals

R
RN g(x)( f ∨)−y(x) dx =

R
RN g(x) f ∨(x − y) dx =R

RN g(x) f (y − x) dx = (g ∗ f )(y). Hence Tg ∗ f = g ∗ f . Reversing the
roles of f and g, we obtain Tf ∗ g = f ∗ g = g ∗ f . §

Corollary 5.18. If R, S, and T are distributions and √ and ϕ are smooth
functions, then

(a) (T ∗ √) ∗ ϕ = T ∗ (√ ∗ ϕ) provided at least two of T , √ , and ϕ have
compact support,

(b) (S ∗ T ) ∗ ϕ = (S ∗ ϕ) ∗ T provided at least two of S, T , and ϕ have
compact support,

(c) R ∗ (S ∗ T ) = (R ∗ S) ∗ T provided at least two of R, S, and T have
compact support.
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PROOF. Let η be in C∞
com(RN ). We make repeated use of Corollaries 5.15

through 5.17 in each part. For (a), we use associativity of convolution of smooth
functions (Proposition 5.5b) to write

hT ∗ T√∗ϕ, ηi = hT, (√ ∗ ϕ)∨ ∗ ηi = hT, (√∨ ∗ ϕ∨) ∗ ηi

= hT,√∨ ∗ (ϕ∨ ∗ η)i = hT ∗ T√ ,ϕ∨ ∗ ηi

= h(T ∗ T√) ∗ Tϕ, ηi.

Thus T ∗ T√∗ϕ = (T ∗ T√) ∗ Tϕ . Since T ∗ T√∗ϕ = TT∗(√∗ϕ) and (T ∗ T√) ∗ Tϕ =
TT∗√ ∗ Tϕ = T(T∗√)∗ϕ , we obtain T ∗ (√ ∗ ϕ) = (T ∗ √) ∗ ϕ. This proves (a).
For (b), we use (a) to write

h(S ∗ T ) ∗ Tϕ, ηi = hS ∗ T,ϕ∨ ∗ ηi = hS, T∨ ∗ (ϕ∨ ∗ η)i

= hS, (T∨ ∗ ϕ∨) ∗ ηi = hS, (T ∗ ϕ)∨ ∗ ηi

= hS, (T ∗ Tϕ)∨ ∗ ηi = hS ∗ (T ∗ Tϕ), ηi.

Thus (S∗T )∗Tϕ = S∗(T ∗Tϕ). Since (S∗T )∗Tϕ = T(S∗T )∗ϕ and S∗(T ∗Tϕ) =
S ∗ TT∗ϕ = TS∗(T∗ϕ), we obtain (S ∗ T ) ∗ ϕ = S ∗ (T ∗ ϕ).
For (c), we use (b) to write

hR ∗ (S ∗ T ), ηi = hR, (S ∗ T )∨ ∗ ηi = hR, (S∨ ∗ T∨) ∗ ηi

= hR, S∨ ∗ (T∨ ∗ η)i = hR ∗ S, T∨ ∗ ηi

= h(R ∗ S) ∗ T, ηi.

Thus R ∗ (S ∗ T ) = (R ∗ S) ∗ T , and (c) is proved. §

We conclude with a special property of one particular distribution. The Dirac
distribution at the origin is the member of E 0(RN ) given by hδ,ϕi = ϕ(0). It
has support {0}. The proposition below shows that the differentiation operation
Dα on distributions equals convolution with the distribution Dαδ.

Proposition 5.19. If T is in D 0(RN ) and if δ denotes the Dirac distribution at
the origin, then δ ∗ T = T . Consequently Dαδ ∗ T = DαT for every multi-index
α.

PROOF. For ϕ in C∞
com(RN ), Corollary 5.14 gives hδ ∗ T,ϕi = hδ, hT,ϕxii =

hT,ϕi, and therefore δ ∗ T = T . Applying Dα and using the second conclusion
of Corollary 5.14, we obtain Dα(δ ∗ T ) = δ ∗ (DαT ) = DαT . §
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4. Role of Fourier Transform

The final tool we need in order to make the theory of distributions useful for
linear partial differential equations is the Fourier transform. Let us write F for
the Fourier transform on the various places it acts, its initial definition being
F( f )(ξ) =

R
RN f (x)e−2π i x ·ξ dx on L1(RN ). Since the Schwartz space S(RN )

is contained in L1(RN ), this definition of F is applicable on S(RN ), and it was
shown in Basic that F is one-one from S(RN ) onto itself. We continue to use the
same angular-brackets notation forS 0(RN ) as forD 0(RN ) andE 0(RN ). Then, as a
consequence of Corollary 3.3b, the Fourier transform is well defined on elements
T of S 0(RN ) under the definition hF(T ),ϕi = hT,F(ϕ)i for ϕ ∈ S(RN ), and
Proposition 3.4 shows that F is one-one from S 0(RN ) onto itself. On tempered
distributions that are L1 or L2 functions, F agrees with the usual definitions on
functions. For f in L1, the verification comes down to themultiplication formula:

hF Tf ,ϕi = hTf ,Fϕi =
R
f (x)(Fϕ)(x) dx =

R
(F f )(x)ϕ(x) dx = hTF f ,ϕi.

For f in L2, we choose a sequence { fn} in L1 ∩ L2 tending to f in L2, obtain
hF Tfn ,ϕi = hTF fn ,ϕi for each n, and then check by continuity that we can pass
to the limit.
The formulas that are used to establish the effect of F on S(RN ) come from

the behavior of differentiation and multiplication by polynomials on Fourier
transforms and are

Dα(F f )(x) = F((−2π i)|α|xα f )(x)

xβ(F f )(x) = F((2π i)−|β|Dβ f )(x).and

Let us define the effect of Dα and multiplication by xβ on tempered distributions
and then see how the Fourier transform interacts with these operations. If ϕ is
in S(RN ), then Dαϕ is in S(RN ), and hence it makes sense to define DαT for
T ∈ S 0(RN ) by hDαT,ϕi = (−1)αhT, Dαϕi. The product of an arbitrary smooth
function onRN by a Schwartz function need not be a Schwartz function, and thus
the product of an arbitrary smooth function and a tempered distribution need not
make sense as a tempered distribution. However, the product of a polynomial
and a Schwartz function is a Schwartz function, and thus we can define xβT for
T ∈ S 0(RN ) by hxβT,ϕi = hT, xβϕi. The formulas for the Fourier transform
are then

F(DαT ) = (2π i)|α|xαF(T )

F(xβT ) = (−2π i)−|β|DβF(T ).and
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In fact, we compute that hF(DαT ),ϕi = hDαT,Fϕi = (−1)|α|hT, DαFϕi =
(−1)|α|hT,F((−2π i)|α|xαϕ)i = (2π i)|α|hF(T ), xαϕi = (2π i)|α|hxαF(T ),ϕi
and that hF(xβT ),ϕi = hxβT,Fϕi = hT, xβFϕi = hT,F((2π i)−|β|Dβϕ)i =
(2π i)−|β|hF(T ), Dβϕi = (−2π i)−|β|hDβF(T ),ϕi.
We have seen that the restriction map carries E 0(RN ) in one-one fashion into

S 0(RN ). Therefore we can identify members of E 0(RN ) with certain members
of S 0(RN ) when it is convenient to do so, and in particular the Fourier transform
becomes a well-defined one-one map of E 0(RN ) into S 0(RN ). (The Fourier
transform is not usable, however, withD 0(RN ).) The somewhat surprising fact is
that the Fourier transform of a member of E 0(RN ) is actually a smooth function,
not just a distribution. We shall prove this fact as a consequence of Theorem
5.1, which has expressed distributions of compact support in terms of complex
measures of compact support.

Theorem 5.20. If T is a member of E 0(RN ) with support in a compact subset
K of RN , then the tempered distribution F(T ) equals a smooth function that
extends to an entire holomorphic function on CN . The value of this function at
z ∈ CN is given by

F(T )(z) = hT, e−2π i z·( · )i,

and there is a positive integer m such that this function satisfies

|Dβ(F T )(ξ)| ≤ Cβ(1+ |ξ |)m

for ξ ∈ RN and for every multi-index β.
REMARK. The estimate shows that the product of hT, e−2π i z·( · )i by a Schwartz

function is again a Schwartz function, hence that the tempered distribution F(T )
is indeed given by a certain smooth function.
PROOF. Fix a compact set K 0 whose interior contains K . Theorem 5.1 allows

us to write
hT,ϕ0i =

P
|α|≤m

R
K 0 Dαϕ0 dρα

for all ϕ0 ∈ C∞(RN ). Replacing ϕ0 by e−2π i z·( · ) gives

hT, e−2π i z·( · )i =
P

|α|≤m
R
K 0 Dα

ξ e−2π i z·ξ dρα(ξ),

which shows that z 7→ hT, e−2π i z·( · )i is holomorphic inCN and gives the estimate

|Dβ
x hT, e−2π i x ·( · )i| ≤

P
|α|≤m

R
ξ∈K 0 |Dβ

x Dα
ξ e−2π i x ·ξ | d|ρα|(ξ) ≤ Cβ(1+ |x |)m .

Replacing ϕ0 by Fϕ with ϕ in C∞
com(RN ) gives

hF(T ),ϕi = hT,Fϕi =
P

|α|≤m
R
ξ∈K 0 Dα

ξ Fϕ(ξ) dρα(ξ)

=
P

|α|≤m
R
ξ∈K 0 Dα

ξ

R
x∈RN e−2π i x ·ξϕ(x) dx dρα(ξ)
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=
P

|α|≤m
R
ξ∈K 0

R
x∈RN Dα

ξ e−2π i x ·ξϕ(x) dx dρα(ξ)

=
R
x∈RN

°P
|α|≤m

R
ξ∈K 0 Dα

ξ e−2π i x ·ξ dρα(ξ)
¢
ϕ(x) dx

=
R
x∈RN hT, e−2π i x ·( · )iϕ(x) dx .

Both sides are continuous functions of the Schwartz-space variableϕ on the dense
subsetC∞

com(RN ), and hence the formula extends to be valid for ϕ in S(RN ). This
proves that F(T ) is given on S(RN ) by the function x 7→ hT, e−2π i x ·( · )i. The
estimate on Dβ

x of this function has been obtained above, and the theorem follows.
§

EXAMPLE. There is an important instance of the formula of the proposition
that can be established directly without appealing to the proposition. The Dirac
distribution δ at the origin, defined by hδ,ϕi = ϕ(0), has Fourier transform F(δ)
equal to the constant function 1 because hF(δ),ϕi = hδ,F(ϕ)i = F(ϕ)(0) =R

RN ϕ dx = hT1,ϕi, where T1 denotes the distribution equal to the smooth func-
tion 1. Therefore F(Dαδ) = (2π i)|α|xαT1, i.e., F(Dαδ) equals the function
x 7→ (2π i)|α|xα. The formula of the proposition when T = Dαδ says that this
function equals (Dαδ)(e−2π i x ·( · )), and we can see this equality directly because
hDαδ, e−2π i x ·( · )i= (−1)|α|hδ, Dαe−2π i x ·( · )i= (−1)|α|(−2π i)|α|xαhδ, e−2π i x ·( · )i
= (2π i)|α|xα.

We know that the convolution of two distributions is meaningful if one of them
has compact support. Since the (pointwise) product of two general tempered
distributions is undefined, we might not at first expect that the Fourier transform
could be helpful with understanding this kind of convolution. However, Theorem
5.20 says that there is reason for optimism: the product of the Fourier transform
of a distribution of compact support by a tempered distribution is indeed defined.
This is the clue that suggests the second theorem of this section.

Theorem 5.21. If S is in E 0(RN ) and T is in S 0(RN ), then S ∗T is in S 0(RN ),
and F(S ∗ T ) = F(S)F(T ).

PROOF. We know that S ∗ T is in D 0(RN ), and we shall check that S ∗ T is
actually in S 0(RN ), so that F(S ∗ T ) is defined: We start with ϕ in C∞

com(RN )
and the identity hS ∗ T,ϕi = hS, T∨ ∗ ϕi = hS∨, T ∗ ϕ∨i. Since S has compact
support, there is a compact set K and there are constants C and m such that

|hS ∗ T,ϕi ≤ C
P

|α|≤m
sup
x∈K

|Dα(T ∗ ϕ∨)(x)| = C
P

|α|≤m
sup
x∈K

|T ∗ Dα(ϕ∨)(x)|

= C
P

|α|≤m
sup
x∈K

|hT, ((Dα(ϕ∨))∨)xi| = C
P

|α|≤m
sup
x∈K

|hT, (Dαϕ)xi|.
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Since T is tempered, there exist constants C 0, m0, and k such that the right side is

≤ CC 0 P

|α|≤m,

|β|≤m0

sup
x∈K ,

y∈RN

Ø
Ø(1+ |y|2)k Dβ(Dαϕ)x(y)

Ø
Ø;

in turn, this expression is estimated by Schwartz-space norms for ϕ, and thus
S ∗ T is in S 0(RN ).
Now let ϕ and √ be Schwartz functions with ϕ and F(√) in C∞

com(RN ). Then

hF(Tϕ ∗ T ),√i = hTϕ ∗ T,F(√)i = hT,ϕ∨∗ F(√)i

= hF(T ),F−1(ϕ∨∗ F(√))i = hF(T ), (F−1(ϕ∨))F−1(F(√))i

= hF(T ),F−1(ϕ∨)√i = hF(T ), (F(ϕ))√i = hF(ϕ)F(T ),√i,

the next-to-last equality following since F−1(ϕ∨) = F(ϕ) by the Fourier inver-
sion formula. Since the √’s with F(√) in C∞

com(RN ) are dense in S(RN ),

F(Tϕ ∗ T ) = F(ϕ)F(T ). (∗)

Finally let ϕ and √ be in C∞
com(RN ). Corollary 5.18 gives Tϕ ∗ (S ∗ T ) =

(Tϕ ∗ S) ∗ T . Taking the Fourier transform of both sides and applying (∗) three
times, we obtain

F(ϕ)F(S ∗ T ) = F(Tϕ ∗ (S ∗ T )) = F((Tϕ ∗ S) ∗ T )

= F(Tϕ ∗ S)F(T ) = F(ϕ)F(S)F(T ).

Hence we have hF(ϕ)F(S ∗ T ),√i = hF(ϕ)F(S)F(T ),√i and therefore

hF(S ∗ T ),F(ϕ)√i = hF(S)F(T ),F(ϕ)√i for all ϕ ∈ C∞
com(RN ).

The set of functions F(ϕ) is dense in S(RN ). Moreover, if ηk → η in S(RN ),
then ηk√ → η√ in S(RN ). Choosing a sequence of ϕ’s for which F(ϕ) tends in
S(RN ) to a function in C∞

com(RN ) that is 1 on the support of √ , we obtain

hF(S ∗ T ),√i = hF(S)F(T ),√i.

Since the set of √’s is dense in S(RN ), we conclude that F(S ∗ T ) = F(S)F(T ).
§
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5. Fundamental Solution of Laplacian

The availability of distributions makes it possible to write familiar partial differ-
ential equations in a general but convenient notation. For example consider the
equation1u = f inRN , where1 is the Laplacian. We regard f as known and u
as unknown. Ordinarilywemight think of f as some function, possiblywith some
smoothness properties, and we are seeking a solution u that is another function.
However, we can regard any locally integrable function f as a distribution Tf and
seek a distribution T with 1T = Tf . In this sense the equation 1u = f in the
sense of distributions includes the equation in the ordinary sense of functions.
In this section we shall solve this equation when the distribution on the right

side has compact support. To handle existence, the technique is to exhibit a
fundamental solution for the Laplacian, i.e., a solution of the equation1T = δ,
where δ is the Dirac distribution at 0, and then to use the rules of Sections 2–3 for
manipulating distributions.7 The argument for this special case will avoid using
the full power of Theorem 5.21, but a generalization to other “elliptic” operators
with constant coefficients that we consider in Chapter VII will call upon the full
theorem.
In this sectionwe shallmake use ofGreen’s formula for a ball, as in Proposition

3.14. As we observed in a footnote when applying the proposition in the proof of
Theorem 3.16, the result as given in that proposition directly extends from balls
to the difference of two balls. The extended result is as follows: If BR and B≤

are closed concentric balls of radii ≤ < R and if u and v are C2 functions on a
neighborhood of E = BR ∩ (Bo≤ )c, then

Z

E
(u1v − v1u) dx =

Z

@E

≥
u

@v

@n
− v

@u
@n

¥
dσ,

where dσ is “surface-area” measure on @E and the indicated derivatives are
directional derivatives pointing outward from E in the direction of a unit normal
vector.

Theorem 5.22. In RN with N > 2, let T be the tempered distribution
−ƒ−1

N−1(N − 2)−1|x |−(N−2) dx , whereƒN−1 is the area of the unit sphere SN−1.
Then 1T = δ, where δ is the Dirac distribution at 0.

REMARK. The statement uses the name f (x) dx for a certain distribution,
rather than Tf , for the sake of readability.

7Although a fundamental solution for the Laplacian is being shown to exist, it is not unique. One
can add to it the distribution Tf for any smooth function f that is harmonic in all of RN .
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PROOF. We are to prove that each ϕ in C∞
com(RN ) satisfies h1T,ϕi = hδ,ϕi,

i.e., that the second equality holds in the chain of equalities

ϕ(0) = hδ,ϕi = h1T,ϕi = hT,1ϕi = − 1
ƒN−1(N−2)

R
RN

1ϕ(x) dx
|x |N−2 .

WeapplyGreen’s formula as abovewith the closed balls BR and B≤ centered at the
origin, with R chosen large enough so that support(ϕ) ⊆ BoR , with u = |x |−(N−2),
and with v = ϕ. Writing r for |x | and observing that 1u = 0 on BR − B≤ and
that @ϕ

@n = −∇ϕ · x
r on the boundary of B≤ , we obtain

R
@B≤

°
−r−(N−2) x ·∇ϕ

r −
°
(ϕ)

°
− d

dr (r−(N−2))
¢¢

≤N−1 dω =
R
BR−B≤

r−(N−2)1ϕ dx .

On the left side the first term has |x · ∇ϕ|
±
r bounded; hence its absolute value

is at most a constant times
R
@B≤

≤ dω, which tends to 0 as ≤ decreases to 0. The
second term on the left side is −(N − 2)≤−(N−1) R

@B≤
ϕ≤N−1 dω, and it tends, as

≤ decreases to 0, to −(N − 2)ƒN−1ϕ(0). The result in the limit as ≤ decreases
to 0 is that

−(N − 2)ƒN−1ϕ(0) =
R

RN r−(N−2)1ϕ dx,

and the theorem follows. §

Corollary 5.23. In RN with N > 2, let T be the tempered distribution
−ƒ−1

N−1(N − 2)−1|x |−(N−2) dx , whereƒN−1 is the area of the unit sphere SN−1.
If f is in E 0(RN ), then u = T ∗ f is a tempered distribution and is a solution of
1u = f .

PROOF. Let δ be the Dirac distribution at 0, so that1T = δ by Theorem 5.22.
Theorem 5.21 shows that T ∗ f is a tempered distribution, and Corollaries 5.14
and 5.19 give 1(T ∗ f ) = (1T ) ∗ f = δ ∗ f = f , as required. §

BIBLIOGRAPHICAL REMARKS. The development in Sections 2–4 is adapted
from Hörmander’s Volume I of The Analysis of Linear Partial Differential
Equations.

6. Problems

1. Prove that if U and V are open subsets of RN with U ⊆ V , then the inclusion
C∞
com(U) → C∞

com(V ) is continuous.
2. Prove that if ϕ is in C∞

com(U), then the map √ 7→ √ϕ of C∞(U) into C∞
com(U)

is continuous.
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3. Let U be a nonempty open set in RN . Any member TU of E 0(U) extends to a
member T of E 0(RN ) under the definition hT,ϕi = hTU ,ϕ

Ø
Ø
U i for ϕ ∈ C∞(RN ).

Prove that this is truly an extension in the sense that if ϕ1 is in C∞(U) and if ϕ
is in C∞(RN ) and agrees with ϕ1 in a neighborhood of the support of TU , then
hT,ϕi = hTU ,ϕ

Ø
Ø
U i = hTU ,ϕ1i.

4. Prove the following variant of Theorem 5.1: Let K and K 0 be closed balls ofRN

with K contained in the interior of K 0. If T is a member of E 0(RN )with support
in K , then there exist a positive integer m and members gα of L2(K 0, dx) for
each multi-index α with |α| ≤ m such that

hT,ϕi =
P

|α|≤m
R
K 0 (Dαϕ)gα dx for all ϕ ∈ C∞(RN ).

5. Let K be a compact metric space, and let µ be a Borel measure on K . Suppose
that 8 = 8(x, y) is a scalar-valued function on RN × K such that 8( · , y) is
smooth for each y in K , and suppose further that every iterated partial derivative
Dα
18 in the first variable is continuous on RN × K . Define

F(x) =
R
K 8(x, y) dµ(y).

(a) Prove that any T in E 0(RN ) satisfies hT, Fi =
R
K hT,8( · , y)i dµ(y).

(b) Suppose that8 has compact support inRN ×K . Prove that any S inD 0(RN )

satisfies hS, Fi =
R
K hS,8( · , y)i dµ(y).

6. Suppose that T is a distribution on an open set U in RN such that hT,ϕi ∏ 0
whenever ϕ is a member of C∞

com(U) that is ∏ 0. Prove that there is a Borel
measure µ ∏ 0 on U such that hT,ϕi =

R
U ϕ dµ for all ϕ in C∞

com(U).

7. Verify the formula of Theorem 5.22 for ϕ(x) = e−π |x |2 , namely that
R

RN |x |−(N−2)(1ϕ)(x) dx = −ƒN−1(N − 2)ϕ(0)

for this ϕ, by evaluating the integral in spherical coordinates.

Problems 8–11 deal with special situations in which the conclusion of Theorem 5.1
can be improved to say that a distribution with support in a set K is expressible as the
sum of iterated partial derivatives of finite complex Borel measures supported in K .

8. This problem classifies distributions on R1 supported at {0}. By Proposition
3.5f let η be a member of C∞

com(R1) with values in [0, 1] that is identically 1 for
|x | ≤ 1

2 and is 0 for |x | ∏ 1. Suppose that T is a distribution with support at {0}.
Choose constants C , M , and n such that |hT,ϕi| ≤ C

Pn
k=0 sup|x |≤M |Dkϕ(x)|

for all ϕ in C∞(R1).
(a) For ε > 0, define ηε(x) = η(ε−1x). Prove for each k ∏ 0 that there is a

constant Ck independent of ε such that supx |( d
dx )

k ηε(x)| ≤ Ckε−k .
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(b) Using the assumption that T has support at {0}, prove that hT,ϕi = hT, ηεϕi
for every ϕ in C∞(R1).

(c) Suppose that ϕ is of the form ϕ(x) = √(x)xn+1 with √ in C∞(R1). By
applying (b) and estimating |hT, ηεϕi| by means of the Leibniz rule and (a),
prove that this special kind of ϕ has T (ϕ) = 0.

(d) Using a Taylor expansion involving derivatives through order n and a re-
mainder term, prove for general ϕ in C∞(R1) that hT,ϕi is a linear combi-
nation of ϕ(0), D1ϕ(0), . . . , Dnϕ(0), hence that T is a linear combination
of δ, D1δ, . . . , Dnδ.

9. By suitably adapting the argument in the previous problem, show that every
distribution on RN that is supported at {0} is a finite linear combination of the
distributions Dαδ, where δ is the Dirac distribution at 0.

10. Let the members x of RN be written as pairs (x 0, x 00) with x 0 in RL and x 00

in RN−L . Suppose that T is a compactly supported distribution on RN that is
supported inRL . By using aTaylor expansion in the variables x 00with coefficients
involving x 0 and by adapting the argument for the previous two problems, prove
that T is a finite sum of the form hT,ϕi =

P
|α|≤nhTα, (Dαϕ)

Ø
Ø
RL i, the sum

being over multi-indices α involving only x 00 variables and each Tα being in
E 0(RL). (Educational note: The operators Dα of this kind are called transverse
derivatives to RL . The result is that T is a finite sum of transverse derivatives
of compactly supported distributions on RL .)

11. Using the result of Problem 9, prove the following uniqueness result to accom-
pany Corollary 5.23: if f is a distribution of compact support inRN with N > 2,
then any two tempered distributions u on RN that solve 1u = f differ by
a polynomial function annihilated by 1. Is this uniqueness still valid if u is
allowed to be any distribution that solves 1u = f ?

Problems 12–13 introduce a notion of periodic distribution as any continuous linear
functional on the space of periodic smooth functions on RN . Write T for the circle
R/2πZ, and letC∞(T N ) be the complex vector space of all smooth functions onRN

that are periodic of period 2π in each variable. RegardC∞(T N ) as a vector subspace
ofC∞((−2π, 2π)N ), and give it the relative topology. Then defineP 0(T N ) to be the
space of restrictions to C∞(T N ) of members of E 0((−2π, 2π)N ). For S in P 0(T N ),
define the Fourier series of S to be the trigonometric series

P
k∈ZN ckeik·x with

ck = hS, e−ik·x i.
12. Prove that the Fourier coefficients ck for such an S satisfy |ck | ≤ C(1+ |k|2)m/2

for some constant C and positive integer m.
13. Prove that any trigonometric series

P
k∈ZN ckeik·x in which the ck’s satisfy |ck | ≤

C(1+ |k|2)m/2 for some constant C and positive integer m is the Fourier series
of some member S of P 0(T N ).

Problems 14–19 establish the Schwartz Kernel Theorem in the setting of periodic
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functions. Wemake use of Problems 25–34 in Chapter III concerning Sobolev spaces
L2k(T

N ) of periodic functions. As a result of those problems, the metric on C∞(T N )

may be viewed as given by the separating family of seminorms k · kL2K (T N )
, k ∏ 0,

and C∞(T N ) is a complete metric space. The Schwartz Kernel Theorem says that
any bilinear function B : C∞(T N ) ×C∞(T N ) → C that is separately continuous in
the two variables is given by “integration with” a distribution on T N × T N ∼= T 2N .
The analogous assertion about signed measures is false.
14. Let B : C∞(T N ) × C∞(T N ) → C be a function that is bilinear in the sense

of being linear in each argument when the other argument is fixed, and suppose
that B is continuous in each variable. The continuity in the first variable means
that for each √ ∈ C∞(T N ), there is an integer k and there is some constant
C√,k such that |B(ϕ,√)| ≤ C√,kkϕkL2k(T N )

for all ϕ in C∞(T N ), and a similar
inequality governs the behavior in the √ variable for each ϕ. For integers k ∏ 0
and M ∏ 0, define

Ek,M =
©
√ ∈ C∞(T N )

Ø
Ø |B(ϕ,√)| ≤ MkϕkL2k(T N )

for all ϕ ∈ C∞(T N )
™
.

(a) Prove that each Ek,M is closed and that the union of these sets on k and M
is C∞(T N ).

(b) Apply the Baire Category Theorem, and prove as a consequence that there
exist an integer k ∏ 0 and a constant C such that

|B(ϕ,√)| ≤ CkϕkL2k(T N )
k√kL2k(T N )

for all ϕ and √ in C∞(T N ).

15. Let B be as in Problem14, and suppose that k andC are chosen as in Problem14b.
Fix an integer K > N/2, and define k0 = k + K . Prove that

|B(Dαϕ, Dβ√)| ≤ CkϕkL2k0 (T
N )

k√kL2k0 (T
N )

for all ϕ and √ in C∞(T N ) and all multi-indices α and β with |α| ≤ K and
|β| ≤ K .

16. Let B, C , K , and k0 be as in Problem 15. Put blm = B(eil·( · ), eim·( · )) for l and
m in ZN , and for each pair of multi-indices (α,β) with |α| ≤ k0 and |β| ≤ k0,
define

Fα,β(x, y) =
X

l,m∈ZN

blm(−i)|α|+|β|lαmβe−il·xe−im·y
° P

|α0|≤k0
l2α0¢° P

|β 0|≤k0
m2β 0¢

for (x, y) ∈ T N × T N . Prove that this series is convergent in L2(T N × T N ).
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17. With B, C , K , and k0 be as in Problem 15 and with Fα,β as in Problem 16 for
|α| ≤ k0 and |β| ≤ k0, define

B0(ϕ,√) =
X

|α|≤k0,
|β|≤k0

(2π)−2N
Z

[−π,π]N×[−π,π]N

Fα,β(x, y)(Dαϕ)(x)(Dβ√)(y) dx dy

for ϕ and√ inC∞(T N ). Prove that B0 is well defined for all ϕ and√ inC∞(T N )

and that B0(eil·( · ), eim·( · )) = B(eil·( · ), eim·( · )) for all l and m in ZN .
18. With B0 as in the previous problem, prove that B0(ϕ,√) = B(ϕ,√) for all ϕ and

√ in C∞(T N ), and conclude that there exists a distribution S in P 0(T 2N ) such
that

B(ϕ,√) = hS,ϕ ⊗ √i

for all ϕ and √ in C∞(T N ) if ϕ ⊗ √ is defined by (ϕ ⊗ √)(x, y) = ϕ(x)√(y).
19. Let η be a function in C∞

com(R1) with values in [0, 1] that is 1 for |x | ≤ 1
2 and

is 0 for |x | ∏ 1. For f continuous on T 1, the Hilbert transform

(H(η f ))(x) = lim
ε↓0

1
π

Z

|y|∏ε

η(x − y) f (x − y) dy
y

exists as an L2(R1) limit.
(a) Let C(T 1) be the space of continuous periodic functions onR of period 2π ,

and give it the supremum norm. Taking into account that H , as an operator
from L2(R1) to itself, has norm 1, prove that

B( f, g) =
R π
−π (H(η f ))(x)(ηg)(x) dx

is bilinear on C(T 1) × C(T 1) and is continuous in each variable.
(b) Prove that there is no complex Borel measure ρ(x, y) on [−π,π]2 such that

B( f, g) =
R
[−π,π]2 f (x)g(y) dρ(x, y) for all f and g in C(T 1).




