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9. THE NATURE OF THE SINGULARITY AT pH-

The arguments of Sykes and Essam (1964) which led them (not quite 
rigorously) to values for ph (Q) for certain graphs were based on "the 
average number of clusters per site". In a one parameter problem with

(9.1) Pp{v is occupied} = p

for all vertices v this average is, of course, a function, A(p,Q) say, 

of p. Sykes and Essam's motivation for introducing this function lay 
in analogies with statistical mechanics, and on the basis of such 
analogies they assumed that A(p) has exactly one singularity as a 
function of p, and that this singularity is located at p = p̂ . This 
assumption was actually their only non rigorous step. They then proved 
that for a matching pair of graphs (Q,Q*) one has the remarkable 
relationship

(9.2) A(p,Q) - A(l-p,Q*) = a polynomial in p.

It was for this relation that Sykes and Essam introduced matching pairs
of graphs. They then proceeded to locate p^, which was presumably the
singularity of A, by means of (9.2) for certain matching pairs in which

2Q and Q* have a close relation. E.g. for bond percolation on TL ,
Q| is isomorphic to Q-j and hence A(-,Q1) = A(*,Q|).

In this chapter we shall first give the precise definition and show 
the existence of A(p), following Grimmett (1976) and Wierman (1978).
We then derive the Sykes-Essam relation (9.2) and show that for the 
matching pairs (Q,Q*) to which Theorem 3.1 applies A(p,Q) is analy

tic in p for p f ph (Q). This justifies part of the Sykes-Essam 
assumption: For various matching pairs A(-,Q) has at most one singu

larity, and if there is one it must be at PH(Q)- Unfortunately we have 
been unable to show that A(-,Q) has any singularity at p^ as a func
tion of p only. (There is an obvious singularity if one brings in 
additional variables; compare the study of the function f(h) in Kunz
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and Souillard (1978) or Remark 9.3 (iv) below.) We shall prove that for 
site- or bond-percolation on TL A(p) is twice continuously differ
entiable at all p e [0,1], including at p̂ . The belief is (see 
Stauffer (1979), formula (6a) and Essam (1980), Formula (2.22)) that 
A(p) also satisfies a power law, i.e.,

2 -a +
A(p ,Q) ~ Cq |p-Ph | - , p PH,

for some 0 < a , < 1 (a, corresponding to p + pu and a to p + p„).
In particular (-ĝ -)JA(p) should blow up as p -* p̂ . So far we have 
been unable to show that any derivative of A fails to exist at p̂ .

9.1 The existence of A(p).
Intuitively, the average number of clusters per site should be the 

limit (in some sense) of

(9.3) (# of sites in Bn)_1(# of occupied clusters in Bn)

as Bn runs through a sequence of blocks which increase to the whole
space. Sykes and Essam (1964) did not show that such a limit exists.
This was first done by Grimmett (1976), and an expression for the limit
was given by Wierman (1978). Their results follow quickly from the
ergodic theorem and are reproduced in Theorem 9.1. Of course we must
first define the expression in (9.3) properly.

d
Def. 9.1. For a block B = n [a,. ,b..] and a vertex v of Q in B, the
-------- i i i
occupied cluster of v (on Q) in B is the union of all edges and
vertices of Q which belong to an occupied path on Q contained in B
and with initial point v. ///

This is the obvious analogue of Def. 2.7. Note that two vertices 
v-j and v2 may belong to different occupied clusters in B, even 
though they belong to the same occupied cluster on the graph as a whole. 

This will happen if and only if there exists one or more occupied paths 
from v-j to v2, but all such paths go outside of B. When counting 
the number of occupied clusters in B the clusters of v-| and v2 will
be counted as two separate clusters in this situation.

We also need the following notation. For any block B = n[a^,b.] 
and v a vertex of Q in B we set
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(9.4)

Also

(9.5)

r ( v , B )

0 if v is vacant,

< (# of vertices of Q in the occupied

cluster of v in B)  ̂ if v is occupied.

r ( v )
0 if v is vacant,

(#W(v))"^ if v is occupied.

(If #W(v) = * , then r(v) = 0.)

Theorem 9.1. Let Q be a periodic graph imbedded in with

y = number of vertices of Q in_ [0,1) . Let Pp be the one-parameter 
probability distribution on the occupancy configurations of Q deter- 
mined by (9.1) and let B(n^,...,nd) = [0,n-j ] x ... x [0,nd]. Then

# of occupied clusters in B(n.|,... ,n̂ )
(96) # of vertices of Q Tn B(n^,...,n

1  y
y ve[0 ,l )d

1  y
y ve[0 ,l )d

ep{#wW ;#w(v) ^ 1}

I ^ Pn{#W(v) = n} 
n=1 n p

9

as n̂  + °°,... ,n^ °° independently. The convergence in (9.6) holds
a.e. [Pp] and in every Lr(P ), r > 0 .

Special case: When all vertices of Q play the same role such as on
the graphs Qq , Q-j, Qg and Q| considered in the last chapter, then 
the right hand side of (9.6) reduces to

I l PD{#W(v) = n} . 
n=l n p

Remarks.

(i) Theorem 9.1 remains valid if B(n^,...jn̂ ) is replaced by the 
box [-n-| ,n-|] x ... x [-n^n^] which is symmetric with respect to the 
origin. This follows easily by writing [-n-j ,n-| ] x ... * [-n^n^] as the 
union of 2^ boxes, to each of which one can apply Theorem 9.1 after an 
interchange of the positive and negative direction along a number of 
coordinate axes.

(ii) One can easily generalize Theorem 9.1 to X-parameter periodic



probability measures P , but we shall have no use for this generaliza- 
ti on.

Proof of Theorem 9.1. By the periodicity of Q

Tim---— (# of vertices of Q in B(n15... ,n .)) = p .
nT  d i d

It is also clear that

(9.7) # of occupied clusters in B(n-|,... ,n̂ )

= l r(v,B(n,....n,)),
v e B ^ ....nd) 1 d

since for any occupied cluster U in B, containing exactly the n 
vertices v-|,...,v e B, the right hand side of (9.7) contains

r(v1 ,B) + r(v1 ,B) + ...+r(vn,B) = n x 1 =  1 .

It is clear from the definitions (9.4) and (9.5) that

(9.8) r(v,B) > r(v), v e B.
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Moreover, the ergodic theorem (Dunford and Schwartz (1958), Theorem 
VIII.6 .9 or Tempel'man (1972), Theorem 6.1 and Cor. 6.2; see also Harris 
(1960), Lemma 3.1) applied to the bounded function r shows that

n1n2 ‘' 'nd 0<ki<ni T
l r(v + I ki5i) ■+ E (r(v)} a.e. [P ]

as n-j,... sn̂  °o for every v e  [0,1 )d. Since

oo
ED{T(V)} = I ^ P D(#W(v) = n} 
p n=l n p

it follows that

(9.9) (# of vertices in B(n,,...,nH) l T(v)
veB(n1 ..,nd)

1 l H P_(#W(v) = n} a.e. [P ].
 ̂ ve[0,l)d n=l n P P

This together with (9.7) and (9.8) also shows that
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(9.10)
# of occupied clusters in B(n-j 9... 9nd) 

vertices of Q Tn B(n^9... 9nd)

- V  rn n d Ji " V #W(v) = n} ’ a‘e‘ [Pp]-H ve[0 9l) n=l K p

To obtain a bound in the other direction we note that r(v,B) = r(v) 
whenever W(v) is contained entirely in B. Consequently

(9.11) # of occupied clusters in B(n-j 9... 9nd)

veB(n^
l r(v,B(n]9...9nd)) 
»•’*,nd̂

£  l r(v) + # of occupied clusters in B(n, ,...,n.)
veB(n-j,... ,nd)

which are part of an occupied cluster on Q which contains 
vertices outside B(n^9... 9nd).

The last term in the right hand side of (9.11) is bounded by z xthe number 
of vertices of Q in 9(B(n-|,... 9nd)) 9 i.e. 9 z x the number of vertices 
outside B(n-|S...9nd) but adjacent to a vertex in B(n^,... ,nd). This 
is so because each occupied component which contains vertices inside 
and outside B must contain a vertex in 3B (cf. (2.3) for z). If 
A > diameter of any edge of Q, then any v e 3B satisfies

-A £ v(j) £ n .+A for 1 < j < d and
J

-A £ v(i) < 0 or n̂  < v(i) £ n^+A for some 1 £ i £ d.

Thus the last term in (9.11) is bounded by

#3(B(n,.. ,n ,)) £ 2y(A+l) (-L+-L+ ... +-L) n(n .+2A+1). 
i a nl n2 nd 1 3

This together with (9.11) and (9.9) shows

# of occupied clusters in B(n^9...9nd) 
]-jm SUp | of vertices of Q fn B(n-, 9... 9n ,)n -xx) i q

Thus the convergence in (9.6) holds a.e. [Pp]. The convergence in
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Lr(Pp) follows from this since the left hand side of (9.6) lies between 
zero and one. [~1

9.2 The Sykes-Essam relation for matching graphs.
In view of Theorem 9.1 we define for any periodic graph Q and one- 

parameter probability measure Pp the "average number of occupied 

clusters per site" as

i 00 i
(9.12) A(p) = A(P,Q) = -7 l d l £P_{#W(v) = n]

y ve[0,1 )a n=1 n p

1
p ve[0 J ) d Ep{#WTvT #W(v) >1} .

We now prove (9.2).
p

Theorem 9.2. Let (Q,Q*) be a matching pair of periodic groups in 3R . 
Then there exists a polynomial $(p) = $(p,Q) for which

(9.13) A(p,Q) - A(l-p,Q*) = $(p,Q), 0 < p < 1.

Remarks.

(iii) The pair (Q*,Q) is also a matching pair (Comment 2.2 (v)). 
It is obvious from (9.13) that the corresponding <Kp,Q*) is given by

(9.14) $(p,Q*) = -*(1-P,Q).

(iv) The proof below will give an explicit expression for $:

(9.15) $(p,Q) = + (l-C^)p + (C3-Cpp2

_  ° o  _  00

4  l ( 1 - P ) V ( » ! , » ) + J -  l p \ * M ,
y n=l n y n=1 n

where and C.! are given in (9.21)-(9.25) and

Yn(^,3)(y *(5̂ ,«?)) = # of central vertices in [0 ,1 )x [0 ,1)

of a face F of % in 3 (not in 3) with exactly n 
vertices of % on the perimeter of F.

For example, when Q = Qq , the simple quadratic lattice (see Ex. 2.1 (i) 

and Ex. 2.2 (i)) one has y = 1, Yn = 0 for all n, y* = 0 for m f 4
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while y| = 1 , and

<i>(psQ0) = p-2p2 + p4 ,

«(p.Qg) = 1 + (1-4)p+(4-2)p2 - (1-p)4 = p-4p2 + 4p3 -p4 ///

Proof: Sykes and Essam's proof works with Q directly. We find it
easier to work with Qp£ and so we shall first prove

(9.16) A(p,Qp£) - Ml-p,Q*£) is a polynomial in p, $(p5Qp£) say.

Following Sykes and Essam (1964) we first define the occupied and vacant 
graphs. For some mosaic J5p and subset 3° of its faces, let (Q°,Q0*) 
be the matching pair based on (2?f ,3°), and let Q°£, Q°* and be

the corresponding planar modifications as in Sect. 2.3. Any occupancy 
configuration go of W  is also an occupancy configuration of Q° 
and Q0*, and can be extended to an occupancy configuration of 52^, Qp  ̂
and Q°* by taking all central vertices of a face of 24° in 3° (not 
in 3°) as occupied (vacant) as we did in (2.15), (2.16). For a fixed 
configuration go we define Q° ( g o ,  occupied) as the graph whose vertex 
set consists of the occupied vertices of Q° and whose edge set consists 
of all edges of Q° connecting two occupied vertices of Q°. Q° ( g o ,pjo
occupied) is defined in the same way by replacing Q° by Q° .pic
Similarly Q°* ( g o ,  vacant) .and Q°* ( g o ,  vacant) are defined by replacing 
Q° by Q°* and Q°* , respectively, and "occupied" by "vacant". Note 
that the components of Q° ( g o ,  occupied) are precisely the occupied 
clusters of Q°, and similarly the components of Q°* ( g o ,  vacant) are 
the vacant clusters of Q°*.

Now, let our periodic pair (Q,Q*) be based on (24,3), a periodic 

mosaic and periodic subset of its faces. We shall apply Euler's rela
tion to the planar graph Qp^ ( g o ,  occupied), or rather to a "truncated 
modification" of this graph, which we construct as follows. Let Jn 
be a circuit made up of edges of 2?^, surrounding (A3 ,n-A3) x (A3 ,n-A3), 
and contained in the annulus

(9.17) [O.n] x [0,n]\(A,,n-AJ x (A,,n-A?).

Here A3 is a suitably large constant depending on 2?^ only; we con
structed this kind of circuit already in the proof of Lemma 7.1. Let 
2̂  be the graph obtained by removing from 27^ all edges and vertices 
which are not contained in J11 = Jn U int(Jn). Thus 2?ĵ  has exactly
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one unbounded face, namely ext(Jn), and the other faces of 5$^ are 
exactly the faces of 71̂  in int(Jn). The unbounded face of 
contains no vertices and does not intersect any edges of An

occupancy configuration w of 57^ can be restricted to an occupancy 
configuration on and the corresponding graph Qp£ (w, occupied)
is then defined as above. It is a planar graph since it is a subgraph 
of the planar graph Qp .̂ We therefore have Euler's relation

(9.18)

where

Vnp£"

and .nV"p£, Ep ,̂ Fp^ and Cp^ are the number of vertices, edges, faces 

and components of (oj, occupied), respectively. (Cf. Bollobas
jr i

(1979), Theorem 1.11 if C . = 1; the general case follows easily by 
induction on Cp^.) We need to look closer at Fp  ̂ . Note first that 

each vacant vertex of must be a vertex of Q*^, since the only
vertices of 2̂  which do not belong to are central vertices of 
some face in 3 , and these have all been taken as occupied. Therefore, 

if a face F of Qpĵ  (w, occupied) contains a vacant vertex of 57^, 
then it belongs to Qp* (w, vacant), and in this case F contains at 

least one component of Q* (w,vacant). Some examples will convince the*p£
reader that in this case F contains exactly one component of Q'n*p£
(u), vacant). A formal statement and proof of this fact is given in

.n*
'p£Prop. A.l in the Appendix. Thus, if denotes the number of com

ponents of Qp£ (a), vacant)

(9.19) F ^  = Cp* + # of faces of Qpil (w, occupied) which contain 

no vacant vertex of 57^.

Let us call the faces of Qp^ (oj, occupied) which contain no vacant 
vertex of empty faces. Recall now that is completely
triangulated (Comment 2.3 (vi)). In other words each face of 
is a "triangle", bounded by three edges of 57^ , and containing exactly 
three vertices of 57^ on its perimeter. We claim that the bounded 
empty faces of q[J0 (w , occupied) are precisely those triangular faces 
of in int(Jn) with all three of its boundary vertices belonging
to Q and occupied. Such faces are therefore also faces of Q Q . To 
see this consider a face G of Q ^ (w, occupied) and let e be an 
edge of >7^ in Fr(G) . e necessarily is an edge of Qp  ̂ in Jn , and 
its endpoints, v-! and v?, say, are necessarily occupied, e belongs



246

to the boundary of exactly two triangular faces, F-j and F2 say, of

Each F.j belongs to a unique face, say, of (w, occupied), 
e belongs only to the boundary of G-j and G2, but not to the boundary 
of any other face of (w, occupied), so that G is one of G-j or 

G2 (G1 = G2 is Possible’ though). Let the third vertex of ^  
on the perimeter of F̂  (in addition to v-j and v2). If F.. lies

in ext(J ) then F. is contained in the unbounded face of Qn0, andn i pX/
hence also in the unbounded face of Q" (oj, occupied). In this case

nG. equals the unbounded face of Q 0 (co, occupied). If F. c int(J )i p)6 I n
and w. is occupied, then in particular w. cannot be a central vertex 
of Q* , since these are taken vacant. Therefore all vertices on the

r ̂ |T|
perimeter of F̂  belong to Qp^ and are occupied, and consequently
belong to q[J0 (oj, occupied). In this case F. is itself a face of
n 'Qp£ (a), occupied) and G.. = F̂  . Finally if F̂  c int(Jn) but wi is
vacant, then Ĝ  contains the vacant vertex w.. (Since no edges of

(u), occupied) are incident to w ., so that a full neighborhood of
p n 1

ŵ  belongs to one face of Qp^ (u), occupied); this face must therefore 
contain F.. and cannot be any other face than G..) The only bounded 
empty faces of (w, occupied) which we encountered in the above list 
was the triangle F.., in the case where w. was occupied and 

F. c int(J ). This proves our claim. As a consequence (9.19) can be 
written as

(9.20)

where

cn _ rn* , Tn , ^
Fp«. cp£ Tp«, en 5

TpS, =  ̂ triangular faces of in Jn with all

three vertices on their perimeter occupied

and

en = '

1 if the unbounded face of (oj, occupied) 
is an empty face,

0 otherwise.

We substitute (9.20) into (9.18), divide by yn^ and take limits 

as n This gives

lim 
n-*°° yn *•■• [p-]-
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It therefore suffices for (9.16) to show that a.e. [Pp]

1 i m J 2 V"p* = C1 + ClP ’ n-x® yn p

lim e" = C^p + C^p2 .
n-*°° yn H

1 Tn _ r  J- 1 i m — o' n - C gp
n-*°° yn2 ‘ pS,

H m - ^  C" = Mp.Q) and l i m - L  C*" = A(l-p,Q*) 
n-x» yn  ̂ n-*» yn "

for suitable C-j ,Ĉ ',... ,C.. In fact these relations are easily proved 
from the ergodic theorem, with the constants and C! determined 
as follows: Order the vertices of Qp  ̂ lexicographically, i.e.,

v = (v(l),v(2 )) precedes w = (w(l),w(2 )) iff v(l) < w(l) or v(l) = w(l) 

and v{2) < w(2). Then

(9.21) C-j = ~{# of central vertices of Qp£ in [0,1) x [0,1)},

(9 .2 2) C 1̂ = ”{# of vertices of Q in [0 ,1 ) x [0 ,1)} = 1 ,

(9.23) Ĉ, = of edges of Qp^ between two vertices, v-j and v^

say, such that v-j precedes v-| e [0 ,1 )x [0 ,1) 

and such that v-j or is a central vertex of Qp }̂

(9.24) C£ = 1 (# of edges of Qp^ between two vertices, v-j and

V2 say, such that v-j precedes v2s v-j e [0 ,1 )x [0 ,1 ) 

and such that v-| and v2 are both non-central 

vertices of Qp£}

(9.25) C3 = ^{# of triangular faces of Qp£ with vertices v, v-j

and V2 , say, on its perimeter, with v preceding v-|

and v2 and v e [0 ,1) x [0 ,1)).

We only prove

l i m - L T "
n-x» yn ^

C,P
2(9.26)
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The other relations are proved in a similar way. Now, Jn is contained 
in the annulus (9.17). Therefore

(9.27) Tp^ £ number of triangular faces of contained in

[0 ,n]x[o,n] with all three vertices on their 

perimeter occupied,

while the inequality has to be reversed if [0 ,n]x[o,n] is replaced 
by (A3 ,n-A3) x (A3-n-A3). Now let

with vertices v, ŵ  

and W£, say, on their perimeter such that v 

precedes ŵ  and w2 and such that v, w-j and w^ 

are occupied .

Then the right hand side of (9.27) clearly equals

N(v) = # of triangular faces of

(9.28)
ve[0 ,l)x[0 ,l)

l N(v+k,£,+k„£?)+ 0(n)
0<l<i<n 1 1 L c

0lk2<n

where ^  = (1 ,0 ), = and the 0 (n) term is at most equal to
the number of triangular faces of whose closure intersects
Fr([0,n]x [0,n]). Thus, by (9.27) and the ergodic theorem (Dunford and 
Schwartz (1958) Theorem VIII.6 .9 or TempeVman (1972), Theorem 6.1 and 
Cor. 6.2)

(9.29) 1im SUP Tno 1 1  I E„N(v) a.e. [P i.
y iT  p£ y v e [0 ,1) x [0 ,1) p p

To calculate l EpN(v) we have to recall that is constructed by
inserting a central vertex in each face F of %  and by connecting 
this central vertex v say by an edge to each vertex of ft? on the peri
meter of F. This means that the triangular faces of 57^ all have one 
central vertex w and two non-central vertices v-j and v2 say on 
their perimeter. If w is a central vertex of Q* , i.e., lies in ap)6
face F i 3 9 then it is vacant and the triangle with vertices w, v-j 
and v2 cannot contribute to any N(v). If w is a vertex of 
i.e., lies in a face F e 3, then it is occupied with probability one, 
the triangle with vertices w, v-j and v2 is a face of and all
three vertices w, v-j and v2 are occupied with probability p̂ .
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Consequently
y e n (v) = p%  .

ve[0 ,1 )x[0 ,l) P 3

Together with (9.29) this shows that

lim sup -Jy T" < C3p2 a.e. [P ].
yn p H

It follows similarly from the lower bound given after (9.27) that

L  j n
2 pi — U3KTim inf — W  t " 0 > C^p2 a.e. [Pp],

y n

This proves (9.26) and (9.16).
To obtain (9.13) from (9.16) we merely have to show that

i  00
(9.30) A(p,Q J  - A(p,Q) = - T l (l-p)nI[v is a

p)t y ve[0,1)x [0,1) n=l

central vertex of a face of ^ in 3 with n vertices 
on its perimeter].

Indeed the right hand side of (9.30) is only a finite sum by (2.3), 

(2.4), hence a polynomial in p. Also, interchanging the roles of Q 

and Q*,

A(l-p,Q*£)-A(l-p,Q*) is a polynomial in p.

To prove (9.30) we use Cor. 2.1. This corollary shows that each occupied
cluster on Q belongs to a unique occupied cluster on Q 0. Moreover,px,
if W(v-j) and W(v2) are two distinct occupied clusters on Q, then 
the occupied clusters Wp£(v-j) and Wp£(v2) on Qp£ to which they 

belong are also disjoint, since by (2 .2 0) any vertex w of 
W 0 (V-.) fl W 0(v9) would have to be a central vertex of Q, adjacent to 
some ŵ  e W(v.j) for i = 1,2. But then w-j and w2 would lie on the 
perimeter of a close-packed face of Q (cf. Comment 2.3 (iv)) and would 
be adjacent on Q and hence belong to the same cluster. On the other 
hand it is possible to have an occupied cluster on Qp£ which does not 
contain an occupied cluster on Q. Again by (2.20), this can occur only 
if the cluster on Qp£ contains no vertex v of Q - otherwise it 
equals Wp£(v) which contains W(v). Since two central vertices are 
never adjacent on Qp£ (Comment 2.3 (iv)) this means that the only
occupied clusters on Q 0 which do not contain a cluster on Q arepx,
isolated central vertices, i.e., central vertices of a face F e 3 with
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all vertices on the perimeter of F vacant (the central vertex is auto

matically occupied by (2.15)). From the above observations it follows 

that

|(# of occupied clusters on Q 0 on B(n,n))pjc
-(# of occupied clusters on Q in B(n,n))

-(# of central vertices of Q & in B(n,n) which belong to 

a face with only vacant vertices on its perimeter)| 

lz-(# of vertices of Q ^ in 3(B(n,n))

(compare with the estimate for the last term in (9.11)). (9.30) now

follows from Theorem 9.1 and another application of the ergodic theorem.

□
9.3 Smoothness of A(p).

o
Theorem 9.3. Let (Q,Q*) be a matching pair of periodic graphs in F . 
Then A(p,Q) is an analytic function of p outside the interval 

[Py(Q)>l-Pj(Q*)] (see (3.63) for pT). If the conditions of Theorem 
3.1 are fulfilled for X = 1 (i.e., in the one-parameter problem) and 
some 0 < pQ < 1, then A(p,Q) is analytic for p f pH(Q) = pQ.

Remarks.

(i) In particular if Q = Qq or Q = , then A(p,Q) is analytic,
except possibly at ph(Q).

(ii) The proof will also show that Ep{ir(#W(zQ))} is an analytic

function of p on 0 <_ p < Py(Q), for any polynomial tt . Theorem 5.3 
shows that the function p -*■ Ep{Tr(#W(zQ));#W(z q) < °°} is infinitely 
often differentiable on ph (Q) < p £ 1 (cf. Russo (1978)). Ill

Proof: This theorem is immediate from Theorems 5.1, 9.1 and 9.2. Indeed

for p 1 P-j < Py(Q) we have by (5.11) and Lemma 4.1
-C9n

(9.31) Pp{#W(z0) > n} < Ppi{#W(z0) > n} < ^ e  *

for each vertex Zq and some constants C-|, depending on p-j and 
Q only. Now take a(n,£) = a(n,JL,z0) as in (5.18), (5.19). By (5.24) 

(with q = 1-p)

(9.32) M #w(zn) " n> = I a(n,A)pnqA = \ a(n,£)pn(l-p)£ ,
p  u  % i
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and by (5.25) the sum over l may be restricted to i = l,...,zn. Thus 

(9.12) can be written as

A(p) 1
y ve[0 ,l )x[0 ,1)

oo zn -|
l ^ a(n,JL,v)pn(l-p)J' . 

£=1 n

It therefore suffices to prove for fixed Zq that

00 z n  i
1 l l a(n,£)pn(l-p)£ 
n=l A=1 n

is analytic in p on [O.p^], whenever p1 < pT(Q). But for any such 
p f 0 and a complex number £ with

(9.33) |c-PI 1 5

we have for £ < zn

|a(n,t)5"(l-£)l| 1  (SM)"(tjlS)1 s(„,i)pl,(>-p)1

1  ( ^ ) " ( ^ ) e V  »<*„> i »>

i C , ( A < ^ ) ( ^ ) z>n .

Thus for 0 < p p-j, we can choose 6 such that

00 zn -i
1 l !a(n,JDsnO - ?)*
n=l i=l n

converges uniformly in the disc defined by (9.33). For p close to 
zero we have the estimate

|a(n,*kn(l-?)*| < a(n,Jt)|e|n < {z“z(z+l) z+1 |C|}n ,

by virtue of (5.22), so that anaiyticity holds on |s| < zz(z+1)"z-1.
A slightly improved version of this last argument already appears in Kunz 
and Souillard (1978). This proves the analyticity of A(p,Q) on 

[0,pT(Q)) and consequently also of A(p,Q*) on [0,pT(Q*)). But then 
A(psQ) is also analytic on (}-pT(Q*),1], by virtue of (9.13). This 

proves the first statement in the theorem.

If for some Pq e (0,1) Condition A or B of Sect. 3.2 holds, and 
Q has an axis of symmetry as required in Theorem 3.1, then Theorem 3.1 

shows that
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PT(Q) = Ph (Q) = P0 = i-pt (Q*) = i-ph (Q*).

In such a case we obtain that A(p,Q) is analytic for all p f PH(Q) 

as claimed. [~]

Theorem 9.4. Let Q = Qq , Q-j , Qg _or_ (see Ex. 2.1 (i), 2.1 (ii), 
2.2 (i), 2.2 (ii) for these graphs). Then A(p,Q) is twice continuous
ly differentiable in p on all of [0 ,1].

Proof: In view of Theorem 9.3 and its proof it suffices to show that

00 zn -i , r
1 l iTa(n’£)l4 ) Pn(1-P)£| - 0  (N-»)

n=N £=1 H

uniformly for p in some neighborhood of ph (Q), and r = 1,2. Now, 

with q = 1-p,

d_
dp 3nO - P)J = ( k Wp q' 9

> n ( l - p ) J = p q
n £ / n ,
P q - (~2 + 2 

p q
)pnc

We shall only prove that

(9.34) l T  la(n,il)^-f)2p V - 0  (N -*■ <=°)
n=N £= 1 n p q

uniformly in a neighborhood of p̂ . The other terms can all be handled 
in the same way. To estimate (9.34) we split the sum over £ into two 
pieces: the £ with

(9.35) l f - f l 9

and the £ with

(9.36)
1 . J

,n 1 1 ^ 2 8y 5
l p - q l  > n

where y5 is as in Theorem 8.2. The sum over the £

(9.35) contributes at most
»  zn 4-Yc n 5 ”  4 y c
Y I n 4 5  a(n,t)pnql = l n4 5P {#w = 

n=N *=1 n=N p

*  ___y —  I

< N 4 5 Ep{(#w)2 5;#W < »} < C-jqN 4 5
n'tc - k

satisfying 

n} (see (9.32))

9

(9.37)
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by Theorem 8.2. For the sum over the l 

Lemma 5.1. We take

x n ^ 5 ' 2

satisfying (9.36) we use

in (5.23). We then find that the sum over the 

contributes at most

00 i
1 i ( -

n=N n P
z n i
q

+ — ) zn exp - ̂  n4y 5 2
p q

i

5

satisfying (9.36)

which obviously tends to zero as N -* *>, uniformly for p in some 

neighborhood of p^(Q) c (0 ,1). | [

Remarks.

(iii) Since we only know that > 0 we cannot push the argument 
above further to obtain a third derivative of A(-)- As observed in the 
introduction to this Chapter it is assumed that (^-) A(p) blows up at 
pu. It should be noted that one needs none of the difficult estimates 
of Ch. 8 for the present proof if p <_p h (Q). Indeed, for such p one 

obtai ns

P {#w > n} < pn {#W > n} < C„n “2 
P — Ph L£-

from the very simple Lemma 8.5 (cf. (8.113)). This is enough to make 
the above estimates go through for p £ pH(Q) and to conclude that 

A(-) has two continuous derivatives on [0,PH(Q)) and these have finite 
limits as p t p H(Q). Applying this to Q* and using Theorem 9.2 we see 
that there also exist two continuous derivatives on (ph (Q),1] and that 
these have finite limits as p f p H(Q). Thus the hard part of the above 
theorem is that A 1 and A" do not have a jump at p̂ . In fact Grimmett 
(1981) already gave a simple proof of this for the first derivative.

For Q = Q-j we can use the fact that Q| is isomorphic to Q-| whence 

A(-.Qp = A(-,Q-|) and

a(p ,q1) = A(1-p,Q1) + $(p,Q1) .

The polynomial $ must be an odd function of p-i therefore, and
I  ^

$"(>f5Q) = 0 is then automatic. This shows that for Q = Q-j even the 
second derivative of A must be continuous at P̂ (Q-j) = j  • It does 
not seem possible to handle A"(p,Qq ) in the same simple way.

(iv) Kunz and Souillard (1978) discuss the series



254

? e"nhir(n)Pn{#W = n} = En{-rr(#W)e-h#W} 
n=l p p

for a polynomial tt or ir(n) = 1 . The series converges for all 

P £ [0,1], h 0. It is not analytic in h at h = 0, p > pH(Q), when- 

ever tt is always nonnegative. In fact, if we write c for e , then

l e'nhn6 Pp{#W = n} = y cnn6Pp{#W = n}

is a power series with positive coefficients in 5 , whose radius of 
convergence equals 1 whenever p > ph (Q) (by Theorem 5.2). The same 

is true for p = pH(Q) if Q = Qq or Q-| by (8.9). Such a power 
series has a singularity at 5 = 1 by Pringsheim's theorem (Hi 11e 

(1959), Theorem 5.7.1).
We also point out that if we view

00 _

A(p) = l l ^ a(n,!!)pV
n=l SL n

as a function of two independent variables p and q, then

(9.38) -4- l Z J-a(n,a)pV
n=l l n

= \  l l (n-l)a(n,£)pV = 4- En{(#W-1);#W < <»}
p n=l l p p

on the set {q = 1-p}. By (5.17) the right hand side of (9.38) blows 
up as p Pj(Q). Despite these facts we could not show that A(p) has

a singularity at p = PH when viewed as a function of the single 

variable p.


