
CHAPTER 15

ADJOINTNESS AND QUANTIFIERS

“ . . .  adjoints occur almost 
everywhere in many branches of 
Mathematics. . . .  a systematic 
use of all these adjunctions il
luminates and clarifies these sub
jects.”

Saunders Maclane

The isolation and explication of the notion of adjointness is perhaps the 
most profound contribution that category theory has made to the history 
of general mathematical ideas. In this final chapter we shall look at the 
nature of this concept, and demonstrate its ubiquity with a range of 
illustrations that encompass almost all concepts that we have discussed. 
We shall then see how it underlies the proof of the Fundamental 
Theorem of Topoi, and finally examine its role in a particular analysis of 
quantifiers in a topos.

15.1. Adjunctions

The basic data for an adjoint situation, or adjunction, comprise two 
categories, and 3), and functors F  and G between them

F
<g<±3)

G

in each direction, enabling an interchange of their objects and arrows. 
Given ^-object a and 3) -object b we obtain

438
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G(b) in and F(a) in 3.  Adjointness occurs when there is an exact 
correspondence of arrows between these objects in the directions indi
cated by the broken arrows in the picture, so that any passage from a to 
G(b) in is matched uniquely by a passage from F(a) to b in 3). In other 
words we require for each a and b as shown, a bijection

(1) eab: 3 ( F ( a ) , b ) ^ ( a , G ( b ) )

between the set of -arrows of the form F(a) —> b and the ^-arrows of 
the form a —> G(b). Moreover the assignment of bijections 6ab is to be 
“ natural in a and b” , which means that it preserves categorial structure as 
a and b vary. Specifically, the assignment to the pair (a, b) of the 
“ hom-set” 3(F(a),b)  generates a functor from the product category 
<gopx 3  to Set (why 9iop and not <#? Examine the details), while the 
assignment of 9ί(α, G(b)) establishes another such functor. We require 
that the 0ab’s form the components of a natural transformation 0 between 
these two functors.

When such a 0 exists we call the triple (F, G, 0) an adjunction from 
to 3. F  is then said to be left adjoint to G, denoted F—j G, while G is right 
adjoint to F, G[— F. The relationship between F and G given by 0 as in
(1) is presented schematically by

a —> G(b)
F(a) —» b

which displays the “ left-right” distinction.
An adjoint situation is expressible in terms of the behaviour of special 

arrows associated with each object of ^  and 3:-
Let a be a particular ^-object, and put b =F(a)  in (1). Applying Θ (i.e. 

the appropriate component) to the identity arrow on F(a) we obtain the 
^-arrow r\a = 0(1F(a>), to be called the unit of a. Then for any b in 3 , we 
know that any g :a —> G(b) corresponds to a unique f :F(a)  b under 
0ab· Using the naturality of Θ in a and b we find in fact that ηα enjoys a 
certain co-universal property, namely that to any such g there is exactly 
one such f  such that

(2)

a —3 * -  G(F(a)) F(a)
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commutes. Indeed g = 6ab(f), and so

( 3 )  eab(f)  =  G ( f )  o Va.

Naturality of Θ implies also that 

a -  η“ » G(F(a)) 

k G(F(k))

a' ,a-' ♦ G(F(a'))

commutes for all such ^-arrows fc, and so the rja’s form the components 
of a natural transformation η : 1^ ->G°F, called the unit of the adjunc
tion.

Dually, let b be a particular 3  object and put a = G(b) in (1). If τ is 
the inverse to the natural isomorphism 0 (rab = 6ab), apply τ to the 
identity arrow on G(b) to get the co-unit eb = T ( 1 G ( b ) )  of b. eb has the 
universal property that to any 3)-arrow / :F ( a )—* b there is exactly one 
^-arrow g : a G{b) such that

(4)

G(b)
‘t

F(a)

commutes. Since /  = Tab( g ) ,  we get

(5) Tab( g )  = eb°F(g),

while the eb’s form the components of the natural transformation 
8 :F °G t>  1s , the co-unit of the adjunction.

On the other hand, given natural transformations rj and ε of this form, 
we could define natural transformations θ and τ by specifying their 
components by equations (3) and (5). If the universal properties of 
diagrams (2) and (4) hold, then Qab and Tab would be inverse to each 
other, hence each a bijection, giving θ as an adjunction from to 3). 

Thus, given F  and G as above, the following are equivalent:
(a) F  is left adjoint to G, F —|G
(b) G is right adjoint to F, G|— F
(c) there exists an adjunction (F, G, θ) from ^  to 3)
(d) there exist natural transformations η : 1 <gT>G°F and ε :F°G  -τ»A®



/
whose components have the universal properties of diagrams (2) and (4) 
above.

Diagrams (2) and (4) are instances of a more general phenomenon. 
Suppose that G :3) is a functor and a an object of <€. Then a pair 
(b, η) consisting of a S-object b and a Harrow η : a —> G(f>) is called free 
over a with respect to G iff for any Harrow of the form g : a —* G(c) there 
is exactly one 3) -arrow / :  b —> c such that

(6) a — ?—► G(fc) b

;G(f) jf
I II Iψ Ψ

G(c) c
commutes.

Such a pair (b, tj) is also known as a universal arrow from a to G. 
Thus, whenever F —|G, the pair (F(a), r\a) is free over a with respect to 

G.
Dually, given a functor F : ^ - ^  3) and a S)-object b, a pair (α, ε), 

comprising a ^-object a and an arrow ε :F(a) b is called co-free over b 
with respect to F  if to each pair (c ,/ )  comprising a -object c and an 
arrow f :F(c) —> b there is a unique g:c^> a in Ή such that

(7)
F(a) — -— ► b a

F(g)

F(c) c
commutes. Such a pair is also called a universal arrow from F  to b.
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E x e r c is e  1. Describe a right adjoint G to F in terms of pairs that are 
co-free over -objects with respect to F.

E x e r c is e  2 .  Suppose that (6, η )  is a universal arrow from a to G : .
Show that the arrow η : a —* G(b) is an initial object in the category a 1 F 
whose objects are ^-arrows of the form / : a  —> G(c) and whose arrows 
are ^-arrows g:c^> d such that

com m utes.
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E x e r c is e  3 . Dualise Exercise 2.

E x e r c is e  4. Suppose that for every ^-object a, there is a universal arrow 
from a to G:3)  Construct a functor F : ^ ^  3) such that F —|G.

E x e r c is e  5 . Dualise Exercise 4. □

The existence of an adjoint to a functor has important consequences for 
the properties of that functor. For example, if F —\G, then G preserves 
limits (i.e. maps the limit of a diagram in 3  to a limit for the G-image of 
that diagram in <*ί), while F  preserves co-limits.

The details of this brief account of the theory of adjoints may be found 
in any standard text on category theory.

15.2. Some adjoint situations 

Initial objects

Let ^  = 1 be the category with one object, say 0, and G the unique 
functor 3  —* 1. If F : l —> 3  is left adjoint to G then for any b in 3,

0 —> G(b)
F(0)->b

since there is exactly one arrow 0 —> G(£>), there is exactly one arrow 
F(0) —> b. Hence F(0) is an initial object in 3. The co-unit eb :F(G(b)) 
b is the unique arrow F(0) —> b.

E x e r c is e  1. Show that 3) has a terminal object iff the functor ! : 3  —>1 
has a right adjoint. □

Products

Let A :<&-><£ x^€ be the diagonal functor taking a to (a, a) and f : a b 
to ( / , / ) :  (a, a)-^>(b, b). Suppose A has a right adjoint G 

Then we have
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where c is in ^  and x = (a, b) is in <<i x<*i. The co-unit εχ : A(G(x)) —* (a, b) 
is a pair of ^-arrows p : G(x) —> a and q : G(x) —> b. Using the “ co- 
freeness” property of εΧ, for any arrows f : c  —> a, g : c -> b ,  there is a 
unique h:c^> G(x) such that

Δ (0 (χ ) ) G(x)
■t
: h

commutes. Thus G(x) is a product a xb  of a and b with εχ as the pair of 
associated projections. We have the adjunction

c —> a x b
c —> a, c —> b

The unit i\c : c c x  c is the diagonal product arrow (1C, 1c).

E x e r c is e  2 .  Show that <€ has co-products iff A : ̂  x  ^  has a left 
adjoint. □

It can be shown that the limit and co-limit of any type of diagram in a 
category Ή arise, when they exist, from right and left adjoints of a 
“ diagonal” functor <€— where J is a canonical category having the 
“ shape” of that diagram (for products, J is the discrete category {0,1}). 
The unit for the left adjoint is the universal co-cone, the co-unit for the 
right adjoint is the universal cone.

Topology and algebra

There are many significant constructions that arise as adjoints to forgetful 
functors. The forgetful functor U : Grp Set from groups to sets has as 
left adjoint the functor assigning to each set the free group generated by 
that set (here “ free” has precisely the above meaning associated with 
units of an adjunction).
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The construction of the field of quotients of an integral domain gives a 
functor left adjoint to the forgetful functor from the category of fields to 
the category of integral domains.

The specification of the discrete topology on a set gives a left adjoint to 
U :Top —* Set, while the indiscrete topology provides a right adjoint to U.

The completion of a metric space provides a left adjoint to the forgetful 
functor from complete metric spaces to metric spaces.

The reader will find many more examples of adjoints from topology 
and algebra in Maclane [71] and Herrlich and Strecker [73].

Exponentiation

If has exponentials, then there is (§3.16) a bijection

^(c x a, b) =^(c, ba)

for all objects a, 6, c, indicating the presence of an adjunction.
Let F : be the right product functor - x a of §9.1 taking any c to

c x a. Then F  has as right adjoint the functor ( )a : ̂  taking any b to 
ba and any arrow f : c —> b to f a : ca —* ba, which is the exponential adjoint 
to the composite /  ° ev' : ca x a —> c b, i.e. the unique arrow for which

bax a  ev ■-> b

f a x i j

ca x a
commutes.

The co-unit eb:F(ha)->i> is precisely the evaluation arrow ev :bax 
a —>b, and its “ co-freeness” property yields the axiom of exponentials 
given in §3.16.

The adjoint situation is

c - * b a
c x a ^ b '

Thus has exponentials ijf the functor -x a  has a right adjoint for each 
object a.

Relative pseudo-complements

This is a special case of exponentials (cf. §8.3). In any r.p.c. lattice the 
condition

c n a ^ b  iff cC a = )b
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yields the adjunction 

c —> (a =>6)
crna ■

A  lattice is r.p.c. iff the functor - γ ί  a taking c to cm a has a right adjoint for 
each a.

Natural numbers objects (cf. Lawvere [69])

A  arrow f  is endo (from “ endomorphism” ) iff dom/  = cod/, i.e. f  has 
the form f  : a —» a, or aOf. The category has as objects the ^-endo’s, 
with an arrow from aQfto bQgbeing a ^-arrow h : a - ^ b  such that

i.e.

aOf^> £>Og

commutes. Let G be the forgetful functor taking / :  a a to its
domain a.

Suppose G has a left adjoint

a —> G(b)
F(a) —* b 9

and let the endo F (l) be denoted N ^  and the unit r]1:1 —> G(F(1)) 
denoted 0 :1 —> N. The notation is of course intentional: 

the freeness of (F(l), t^) over 1

1 ---------► G(F( 1)) F(l)

G (A) A

means that for any endo A :a^>a  and any ^-arrow jc : 1—» a = G(A) 
there is a unique arrow h : F( 1) —> A, i.e.

N ^ a O f ,



446 ADJOINTNESS AND QUANTIFIERS CH. 15, § 15.2

such that

I
h

a
and hence ό

1 h
f

commutes. Thus (F(l), ηχ) is a natural numbers object.
Conversely, if ^NNNO, define O to take a to the endo

1 χ ό
a x N — > a x N

and f : a - > b  to fx*\N.
Then by the theorem 13.2.1 of Freyd, if has exponentials, then for 

any endo / :  b —> b and any arrow h0: a —> b there is a unique h for which

indicating that F —\G. The unit now becomes (11? Ο ): 1 —> 1 x N  from 
which we recover 0 :1 —> N  under the natural isomorphism lx N = iV .

Altogether then, a cartesian closed category has a natural numbers 
object iff the forgetful functor from <€Oto Ή has a left adjoint.

We also obtain the characterisation of a natural numbers object as a 
universal arrow from the terminal object to this functor.

Adjoints in posets

Let (P, EE) and (Q, Ei) be posets. A  functor from P to Q is a function 
/ :  P —> Q that is monotonic, i.e. has

pC q only if f(p)^f(q).

commutes. We have the situation

a-^-> G(b^f)

F(a) -  >b&f



Then g : Q —» P will be right adjoint to f,

P - »  g(r)
/ ( p ) - r

iff for all p e P  and r eQ ,

pCg(r) iff /(p)Cr.

On the other hand g will be left adjoint to f,

r~»f(p) 
g ( r ) - p ’

when

g(r)Cp iff rC /(p).

For example, given a function f : Λ —> β, and subsets X s A ,  Y s B , we 
have

X e f W  iff /(*)<= Y
and so the functor f _1:SP(B) —> 0>(A) taking Υ ς β  to / _1(Y) is right 
adjoint to the functor £P(f): of §9.1, that takes X ^ A  to

As well as having a left adjoint, ^ (/)H  / -1, / _1 has a right adjoint

given by / +(X) = {y e B : / _1{y} ̂  X } where / _1{y} = { x : f(x) = y} is the 
inverse image of {y}. That / _1—j / + follows from the fact that

Γ \ Υ ) ^ Χ  iff Y c f ( X ) .

Subobject classifier

The display (Lawvere [72])

d - > n
!>->d

where ?>— denotes an arbitrary subobject of d, indicates that the 
Ω -axiom expresses a property related to adjointness.

The functor S u b >Set described in §9.1, Example 11, assigns to 
each object d the collection of subobjects of d, and to each arrow 
f : c - > d  the function Sub (f) : Sub(d) —> Sub(c) that takes each subobject 
of d to its pullback along f. As it stands, Sub is contravariant. However,
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by switching to the opposite category of Si we can regard Sub as a 
covariant functor

Sub: Siop —> Set.
Now in the case Si =  g5 (a topos) the arrow true : 1 —> is a subobject of Ω  
and so corresponds to a function η : 1 =  {0} —> Sub(/2).

Now consider the diagram

1 — ^  Sub(i2) Ω

g \  ''Sub(/) \f
Sub(d) d

A  function g as shown picks out a subobject g0: a >-» d of d, for which we 
have a character xgo, and pullback

a d

1 ,rue > i2
in Thus f  =  (xg0)op is an <̂op arrow from il to d. Then Sub(/) (=  Sub(xgo) 
originally) takes ime to its pullback along xgo, i.e. to the subobject g0, and 
so the above triangle commutes. But by the uniqueness of the character 
of g0, the only arrow along which true pulls back to give g0 is χΆ) and so 
the only <gop arrow for which the triangle commutes is /  =  (xg0)op.

Thus the pair (Ω, η), i.e. (Ω, true : 1 —> Ω)  is free over 1 with respect to 
Sub.

Conversely the freeness of (Ω , η) implies that η(0) classifies subobjects 
and so we can say that any category Si with pullbacks has a subobject 
classifier iff there exists a universal anow from  1 to Sub: Siop —> Set. (cf. 
Herrlich and Strecker [73], Theorem 30.14).

E xercise  1. Let Rel(-V a) : Si —> Set take each Si-object b to the collection 
of all Si-arrows of the form R > -»bxa (“relations” from b to a). For any 
/ :  c —> h, Rel(f, a) maps R^bxa  to its pullback along f x  1a, so that 
Rel(-, a) as defined is contravariant. Show that Si (finitely complete) has 
power objects iff for each Si-object a, there is a universal arrow from 1 to

Rel(~, a):Siop^  Set.
E xercise 2 . Can you characterise the partial arrow classifier rja : a >-» a 
in terms of universal arrows? □
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Notice that the Ω -axiom states that

Sub(d) =  g(d, Ω) =  <ξ°ρ(Ω, d)

and similarly we have

Rel(b, a) =  %(b, Ω α) =  %°ρ(Ωα, b)9

and so the co variant %op —> Set versions of Sub and Rel(-, a) are naturally 
isomorphic to “ hom-functors”  of the form <g(d, -) (§9.1, Example (7)). In 
general a Set-valued functor isomorphic to a hom-functor is called 
representable. Representable functors are always characterised by their 
possession of objects free over 1 in Set.

15.3. The fundamental theorem

Let ^ be a category with pullbacks, and / : a  —» b a ^-arrow. Then /
induces a “pulling-back” functor f* 1 b 4 a which generalises the 
f 1:£P(B) —> 3P(A) example of the last section. /*  acts as in the diagram

k is a 1 b arrow from g to h, f*(g) and /*(h) are the pullbacks of g and 
h along /, yielding a unique arrow c ^ m  as shown which we take as 
f*(k) : f* (g )^f*(h) .

The “ composing with / ” functor

Sf : Ή 1 a -> ^  I b 

takes object g : c ^  a to f ° g : c —>b, and arrow
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Now an arrow k

c — d

b
from (g) to t:b^> d in ^  1 b corresponds to a unique I a arrow k'

\  n o  t

a — ί— > b

from g to by the universal property of the pullback and so we 
have the adjunction

showing Xf —)/*.
For set functions, /*  also has a right adjoint

IIf : Set 1 A  —> Set 1 B.

Given g :X  —> A, then J7f(g) has the form k : Z ^ B ,  which we regard as a 
bundle over B. Thinking likewise of g, the stalk in Z  over b e B , i.e. 
k_1{b}, is the set of all local sections of g defined on A.

Formally Z  is the set of all pairs (b, h) such that h is a function with 
domain / _1{f)}, such that

commutes, k is the projection to B.
Notice that if g is an inclusion g : X (—> A  then the only possible section 

h as above is the inclusion / _1{b} X, provided that ^ X. Thus the 
stalk over b in Z  is empty if not / _1{i)}cX , and has one element 
otherwise. Thus k can be identified with the inclusion of the set

g ->/*(*)

/■ ‘W - 1 -  x

A

into B, and so the functor f : is a special case of IIf.
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Now given arrows g : X  —> A  and h : Y  —> B, consider

P Y

f * ( h ) X  h

A
f B

t is an arrow from h to I7f (g) in Set I B. f*(h), the pullback of h along /, 
is the projection to A  of the set

P = {(a,y) :f (a) = h(y)}.

Thus if (a, y)eP , y lies in the stalk over f(a) in B, and so i(y) is in the 
stalk over /(a ) of iTf(g). Thus i(y) is a section s of g over / -1{f(a)}, which 
includes a. Put t'((a,y)) = s(a). Then t’ is an arrow from f*(h) to g in 
Set 1 A.

In this way we establish a correspondence

The full statement of the Fundamental Theorem of Topoi (Freyd [72], 
Theorem 2.31) is this:

For any topos and <g-object b, the comma category <§ l b  is a topos,

both a left adjoint Sf and a right adjoint IIf.
The existence of Xf requires only pullbacks. The construction of IIf is 

special to topoi, in that it uses partial arrow classifiers (N.B. local sections 
are partial functions).

Given f : a b, let k be the unique arrow for which

f * ( h ) ^ g

which gives /* —\TIf.

Exercise. How do you go from t':f*(h) —» g to t : h !Tf(g)? □

and for any arrow f : a - > b  the pulling-back functor f* :<g I b I a has

k

a >--------► a
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is a pullback, where now ηα denotes the partial arrow classifier of §11.8 
(why is (/, Λα) monic?). Let h : b - »  da be the exponential adjoint to fc. (In 
Set h takes b e B  to the arrow corresponding to the partial function 
f  ^ b j ^ A  from A  to A).

Then, for any g : c —> a, define IIf (g) to be the pullback

7Tf(c) -------- ► C a

TTfCg)

where g is the unique arrow making the pullback

c >-

a >------- > a
and ga is the image of g under the functor ( )a

It is left to the reader to show how this reflects the definition of 1lf in 
Set.

The IIf functor is also used to verify that ^ l b  has exponentials. 
Illustrating with Set once more, given objects and h : Y ^ B  in
Set I B, their exponential is of the form hf :E -> B .  According to the 
description in Chapter 4, the stalk in E over b consists of all pairs (b, t) 
where t : > Y  makes

r m Y

B
commute. Now if we form the pullback /*(h)

r \ b }

and define tf as shown by t'(a) = (a, i(a)), then recalling the description of 
P given earlier, t' is seen to be a section of /*(h) over i.e. a germ
at b of the bundle ITf(/*(h)). Moreover t is recoverable as g°i', giving an 
exact correspondence, and an isomorphism, between hf and ITf(/*(h)) in 
Set.



CH. 15, § 15.4 QUANTIFIERS 453

In % | b then, given / :  a —> b and h : c b we find that i7f(/*(h)) serves 
as the exponential hf. We can alternatively express this in the language of 
adjointness, since the product functor

-Xjf :<£ I b I b

is the composite functor of

/* Xf
% l b  >%l a — I b.

This is because the product of h and f, h x /, in I b is their pullback

f°f*(h) = Sf(f*(h)) in
But each of /*  and Xf has a right adjoint, TIf and /*  respectively, and 

their composite provides a right adjoint to -x f .
The details of the Fundamental Theorem may be found in Freyd [72] 

or Kock and Wraith [71].

15.4· Quantifiers

If SI = (A , . . . )  is a first-order model, then a formula φ(ν±, v2) of index 2 
determines the subset

X ~ { ( x  ̂y): δΚ=φ[χ, y ] }

of A 2. The formulae 3ι;2<p and Vn2<p, being of index 1, determine in a 
corresponding fashion subsets of A. These can be defined in terms of X  
as

3P (X) = { x : for some y, <x, y) e X }

Vp (X) = { x : for all y, <x, y) e X}.

The <4p” refers to the first projection from A 2 to A, having p((x, y>) = x. 
3P(X) is in fact precisely the image p(X) of X  under p, and so we know 
that for any X ^  A 2 and Y ^ A,

X ^ p -\ Y )  iff 3p(X )c Y ,



i.e. 3P : 0>(A2) 0>(A) is left adjoint to the functor p_1: 0>(A) -> 0>(A2)
analysed in §15.2.

Since, for any x e A , p_1{*} — {(x, y): y e A } we see that

Vp (X) = {x : p-'ix } <= X } = p+(X)

(cf. §15.2) and so we have

p -\ Y )^ X  iff Y ^ V P(X)

and altogether 3 P —|p-1—] Vp.
In general then, for any f : A  —> B, the left adjoint £P(f) to / -1 : <3>(B) —> 

0>(A) will be renamed 3f, and the right adjoint f + will be denoted Vf. The 
link with the quantifiers is made explicit by the characterisations of 
3f(X) = /(X ) and Vf(X) = / +(X) as

3f (X) = {y :3 x (x e X  and f(x) = y)}

Vf (X) = {y : Vx(f(x) = y implies x e X)}.

Moving now to a general topos if, an arrow f : a —>b induces a functor

/ _1: Sub(b) Sub(a)

that takes a subobject of b to its pullback along f  (pullbacks preserve 
monies).

A  left adjoint 3f : Sub(a) Sub(f>) to f " 1 is obtained by defining 3f(g), 
for g : c>-^ a to be the image arrow im(/°g) of /°g , so we have

c  b
X  A s )

f°g(c)

Using the fact that the image of an arrow is the smallest subobject 
through which it factors (Theorem 5.2.1) the reader may attempt the

E x e r c is e  1. Show that g ^ h  implies 3f(g )<=3f(h), i.e. 3f is a functor.

E x e r c is e  2. Analyse the adjoint situation 

g
3 ,(g )-* h

for g : c >-» a and h : d >—» b, that gives 3 f —( f ' 1. □

The right adjoint Vf : Sub(a) —> Sub(b) to / _1 is obtained from the 
functor IIf I a I b (recall that in Set, / + is a special case of ITf).
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Vf assigns to the subobject g : c>—> a the subobject iTf(g). Strictly
speaking, g, as a subobject, is an equivalence class of arrows. Any
ambiguity however is taken care of by

E x e r c is e  3. If g c  h then Vf(g )cV f(fi), and so

E x e r c is e  4. If g — h then Vf(g )—Vf(h). □

The adjunction

h —» Vf(g)
/ _1(h) g

showing /  V(, derives from the fact that j* : Π,.
By selecting a particular monic to represent each subobject, we obtain 

a functor ia : Sub(a) —> % 4 a. In the opposite direction, σa :<g I a 
Sub(a) takes g : c —> a to <xa(g) = im g : g(c)>—> a, and an 4 a arrow

c — d

a

to the inclusion cra(k),

a
which exists because im g is the smallest subobject through which g 
factors. For the same reason, given g : c —» a and h : d —>a we have that

g(c)

im g factors through II i.e. cra(g)£  H, precisely when g factors through /i. 
i.e. precisely when there is an arrow

c -------- » d'

\  /C ft)
a
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in % 4 a. So we have the situation

g ^ ig jh )
cra(g )-*h

making σα left adjoint to ia.
Putting the work of these last two sections together we have the 

“ doctrinal diagram” of Kock and Wraith [71] for the arrow f : a - ^ b

% I a

Sub(a)

Af

* l b

Sub (b)

with

aH TH V f 
Xf-\r-\nf 
σ  —j i

E x e r c ise  5 . Show that 

3f°aa=ab°2f 
ib°Vf = n f °ia 

i a ° r 1= f ° h  
f~lo(Tb =<ra°f* □

An even more general analysis of quantifiers than this is possible. Given a 
relation R ^ A x B  in Set we define quantifiers

3r  : 0*(A) —> 0>(B)
VR : 3P(A) —> 8P(B)

“ along R ” by

3R(X) = {y: 3 x (x e X  and xRy)}

VR (X) = {y : Vx (xRy implies x e X )}
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Given an arrow r :R >-»a x b  in a topos there are actual arrows 

Vr : i2a ^ O b 

3r :Oa —> O b

which correspond internally to 3R and VR in Set. Constructions for these 
are given by Street [74] and they are further analysed by Brockway [76]. 
In particular, for a given f  :a b, applying these constructions to the 
relation

<1a, f ) : a >-> a x b

(the “ graph” of / )  yields arrows of the form Ωα —» Ob which are internal 
counterparts to the functors Vf and 3f.

Specialising further by taking /  to be the arrow !: a —> 1, we obtain 
arrows Ω α - + Ω 1, which under the isomorphism Ω 1 =  Ω become the 
quantifier arrows

Va : Ω α —> Ω 3a :ί2α —> Ω

used for the semantics in a topos of Chapter 11.
The functors Vf and 3f, in the case that /  is a projection, are used in the 

topos semantics developed by the Montreal school. More information 
about their basic properties is given by Reyes [74].


