
PROBLEM 6.1. Gaussian Curvature, Extrinsic Definition

a.
Cylinder:  The normal curvature is zero in the direction of the vertical generators because these

generators are extrinsically straight. In the direction of the generating circles the normal curvature is 1/r
where r is the radius of the cylinder (and therefore of the generating circles). These are the principal
directions and curvatures. In other directions, the normal curvature (equal the extrinsic curvature) of the
helix in that direction is (by Problem 2.5.b)  .0 <

4�2r

h2+(2�r)2 = 1
h2

4�2r
+r

< 1
r

Cone:  The minimum principal curvature is in the direction of the generators and is zero because the
generators are extrinsically straight. The principal direction of maximum normal curvature is orthogonal
to this and the principal curvature depends on the cone angle and the distance from the cone point.
Consider p to be a point at a distance d from the cone point of a cone with cone angle α. (See Figure
6.A.)
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Figure 6.A. Principal curvature on a cone.

The normal curvature of the circle with intrinsic radius d and center at the cone point is    andr = d tan�
,  and, thus,2�d sin� = d�

normal curvature .= 1/r = (1/d) cot(arcsin( �2� )) = (1/d)(( 2�
� )2

− 1)
1
2

Sphere:  The normal curvature is all directions is 1/R and, thus, every direction is a principal direc-
tion and the principal curvature are 1/R.

b.

From Problem 4.7.a, we know that  κκκκn(γ) = 〈 γ ′(0), −γ ′(0)n 〉 n;  but, since γ ′(0) is also a unit
tangent vector for γ*, 4.7.a also tells us that  κκκκn(γ*) = κκκκn(γ) = 〈 γ ′(0), −γ ′(0)n 〉 n.  Now, clearly γ* is a
planar curve and, thus, κκκκ(γ*) is in the plane that also contains κκκκn(γ∗). Since κκκκn(γ∗) is the projection of
κκκκ(γ*) onto the normal to the surface n(γ(0)) which is in the same plane, then

κκκκ(γ*) = κκκκn(γ*) = κκκκn(γ) = 〈 γ ′(0), −γ ′(0)n 〉 n.

Examining the Figure 6.1 in the text we see that, if the curves curve away from the normal, then γ
′(0)n is in the direction of γ ′(0) and, thus, 〈 γ ′(0), −γ ′(0)n 〉 is negative.
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*c.
Each direction at (0,0,0) is designated by a constant value of θ, thus the normal curvature in the

direction of θo is the normal curvature of the curve (at r = 0), which is the graph of the function  z = g(r)
= f(θo) r2. From the Theorem before Problem 2.4, the curvature of this curve is

.����(a) =
g ∏∏(a)

[1 + (g ∏(a))2 ]3/2 =
2f (�)

1 + (2f (�) 0)2 3/2 = 2f (�)

Thus, for f(θ) = (1 − cos 4θ), the minimum principal directions are when f(θ) = 0 (and θ = 0, π/2, π, 3π/2)
and the maximum principal directions when f(θ) = 2 (and θ = π/4, 3π/4, 5π/4, 7π/4). Thus, there is an
angle of a multiple of π/4 between the minimum and maximum directions. Computer Exercise 6.1 will
allow the reader to display and view these surfaces. When there is a C2 local coordinate patch it is true
that the principal directions are orthogonal, as you shall see in the next problem. Thus, it must be that this
surface must not have any C2 coordinate patch.

*d.
Start with a sphere that contains the surface in its interior and then gradually shrink the sphere until

it first touches the surface. At this point of first touching the sphere and the surface share a tangent plane
and thus share an inward pointing normal. Since none of the surface is on the exterior of the sphere,
every curve on the surface through the common point of tangency must curve in the direction of the
normal and thus all normal curvatures are positive.

PROBLEM 6.2. Second Fundamental Form
a.

We just expand using the bilinear properties of the Riemannian metric:

κn(aVp+bWp) = 〈(aVp+bWp),(−aVp+bWp)n〉 = 〈(aVp+bWp),(−aVpn +bWpn)〉 =

= 〈aVp,−aVpn〉 + 〈bWp,−bWpn〉 + 〈aVp,−bWpn〉 + 〈bWp,−aVpn〉 =

= a2 〈Vp,−Vpn〉 + b2 〈Wp,−Wpn〉 + ab 〈Vp,−Wpn〉 + ba 〈Wp,−Vpn〉 =

= a2 κn(Vp) + b2 κn(Wp) + ab 〈Vp,−Wpn〉 + ab 〈Wp,−Vpn〉.

Thus, it is important to look at the quantities such as  〈Vp,−Wpn〉 with Vp ≠ Wp.  

b.
This follows directly from the fact that the Riemannian metric is bilinear and that directional deriva-

tive operator is a linear operator.

c.
Since x1 and x2 are tangent vectors, 〈x1,n〉 = 0 = 〈x2,n〉. Thus,  0 = x2〈x1,n〉 = 〈x2x1,n〉 + 〈x1,x2n〉  and  

0 = x1〈x2,n〉 = 〈x1x2,n〉 + 〈x2,x1n〉.  Therefore,  II(x1,x2) = 〈x1,−−−−x2n〉 = −〈x1,x2n〉 = 〈x21,n〉 = 〈x12,n〉 =
−〈x2,x1n〉 = 〈x2,−−−−x1n〉 = II(x2,x1). Now, using the local coordinates x(u1,u2), we can write Xp = Σ X 

ixi(a,b)
and Yp = Σ Y jxj(a,b).
Thus,            II(Xp,Yp) = 〈Σi X 

ixi(a,b),−−−−(Σj Y jxj(a,b))n〉 = 〈Σi X 
ixi(a,b),−−−−Σj (Y jxj(a,b)n)〉 =

= Σi Σj 〈X 
ixi(a,b),−−−−(Y jxj(a,b)n)〉 = Σi Σj X 

iY j〈xi(a,b),−−−−(xj(a,b)n)〉 =

= Σi Σj X 
iY jII(xi,xj) = Σj Σi Y 

jX iII(xj,xi) = II(Yp,Xp).

This is the only place that the assumption C2 is used in a crucial way in all its power (that is, C2 requires
that all first and second partial derivatives exists and are continuous and that the mixed partials are
equal).

d.
Part d may be solved in at least three ways:  
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1. Analysis. Using the theory of Lagrange multipliers, we wish to maximize/minimize II(X,X)
subject to the constraint that 〈X,X〉 = 1. Write the variable vector X = X1x1+X2x2, then the
maximum/minimum exists when, for i = 1,2, (using Part c)

0 =
Ø
ØXi

[…(X1x1 + X2x2 ), −(X1x1 + X2x2 )n  + 	(…X1x1 + X2x2, X1x1 + X2x2   − 1)] =

.

The only way that a tangent vector can be perpendicular to both x1 and x2 is for the tangent vector to be
equal to 0. Thus, the minimum/maximum T are when  .−Tn+	T= 0 or −Tn= 	T

2. Linear algebra. Find local coordinates, x(U 1,U 2), such that at p = x(0,0) we have that the coordi-
nate vectors x1 and x2 are orthonormal. (This can be done, for example, by constructing geodesic rectan-
gular coordinates starting at p.) With these coordinates the Riemannian metric at p is just the dot product
and thus, expressing II(X,X) in terms of these coordinates,

.II(X,X) = …X1x1 + X2x2, −(X1x1 + X2x2 )n  =
(X 1, X 2 ) II(x1, x1) II(x1, x2)

II(x2, x1) II(x2, x2)

X 1

X 2

The matrix is symmetric (by Part c) and is just the matrix of the linear transformation f (X) = −Xn. From
the theory of eigenvalues and eigenvectors of symmetric matrices, the maximum and minimum values of
II(X,X) are in the directions of the eigenvectors of the linear transformation f. But an eigenvector T of f
satisfies f (T) = −Tn = λT.

3. Geometry. We are minimizing/maximizing the function II(T,T) on the unit circle and thus,
II(T,T) is an extremum if the directional derivative in a direction tangent to the circle is zero. The direc-
tion tangent to the circle at the unit vector T can be represented by T⊥, a unit vector which is perpendicu-
lar to T. Thus,  0 =

d

dh II(T+hTz, T+hTz)|h=0 =
d

dh
…T + hTz, −(T + hTz )n |h=0 =

.
But this can be zero only if −Tn is parallel to T, that is −Tn = λT.

e.
Consider II(T1, T2) = 〈T1,−T2n〉 = 〈T1,λ2T2〉 = λ2〈T1,T2〉, and II(T1, T2) = II(T2, T1) = 〈T2,−T1n〉

= 〈T2,λ1T1〉 = λ1〈T2,T1〉 = λ1〈T1,T2〉. Thus, we have shown that λ1〈T1,T2〉 = λ2〈T1,T2〉.  This implies that
either λ1 = λ2 (in which case II(T,T) is constant) or 〈T1,T2〉 = 0 (in which case T1 is perpendicular to T2).
In the later case, there can be no other directions with −Tn = λT except for −T1 and −T2 and these do not
give additional values since II(−T,−T) = II(T,T); thus, T1 and T2 must be the principal directions.

 f.
It is clear that in the z-direction, −Tn = λT, because the curves of constant θ are planar curves with

the normal n contained in the plane. Thus, from 6.2.d, at each point, the principal directions are the
z-direction and the θ-direction. 
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Figure 6.B. Principal curvatures on a surface of revolution.
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Now use the section Curvature of the Graph of a Function, just before Problem 2.4 to calculate the

(extrinsic) curvatures of the generating curves. In the z-direction we get  .  But this� =
−r∏∏(z)

[1 + (r ∏(z))2 ]
3
2

extrinsic curvature is in the direction normal to the surface and so it is also the normal curvature. Then in
the θ-direction, the curve is a circle of radius r(z) and thus, the extrinsic curvature is 1/r(z). Examining
Figure 6.B we see that the normal curvature (which is the projection onto the normal direction) is

.�2 = 1
r(z) cos� = 1

r(z) 1 + (r∏(z))2

To summarize the above discussion: The directions, T1, T2, in which the maximum and minimum of
II(T,T) occur are called the principal directions at p and the values of II(T,T) in these directions, κ1, κ2,
are called the principal curvatures at p. Note that, κ1, κ2, are (by Problem 5.1) the normal curvatures of
unit speed curves in the principal directions. The product κ1κ2 is called the Gaussian curvature at p. 

PROBLEM 6.3. The Gauss Map
a.  

The spherical image of a cylinder is always a great circle. The spherical image of any sphere is the
whole sphere.

The spherical image of a cone with cone angle α will be the latitude circle which is tangent to the
cone if you place the cone over the sphere of radius 1. The circumference of this latitude circle is 2πsin φ
and looking at the cone is also α tan φ. Thus, the angle of this latitude measured from the North Pole is
cos-1(α/2π), see Figure 6.C.
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φ

φ

Figure 6.C. Spherical image of a cone.

On a strake, a helix makes an angle with the vertical equal to arctan(2πr/h). The normal has a direc-
tion perpendicular to the direction of the helix and thus, has angle to the vertical of arctan(h/(2πr)). Thus,
one turn of the strake with height h and inner radius r and outer radius r+δ is the annular region between
the latitudes of angles (measured from the pole)  .arctan h

2�r and arctan h

2�(r+�)

On the torus, each of the regions congruent to either A or B are mapped by the Gauss map onto a
quarter of the sphere. The union of all A’s is mapped onto the whole sphere and the union of all four B’s
is also mapped onto the whole sphere but in the opposite sense.

b.  
If V is a vector tangent to the surface at γ(s) then V is also tangent to the sphere at n(γ(s)), because it

is perpendicular in each case to the normal. Thus, P(s) is a (tangent) vector field along n(γ(s)). Now,
since P(s) is a parallel vector field along γ we know that the rate of change of P(s) is in the direction of
the normal to the surface at γ(s). Along n(γ), s is not arclength. If we let t represent the arclength along
n(γ), then    and    and thus  ,  t(s) = ¶0

s
(n ) �) ∏(s) ds

dt

ds = (n ) �)∏(s) d

dt P(t) =
d

ds P(s)
ds

dt =
d

ds P(s)/ (n ) �) ∏(s)

which has the same direction as , which is in the direction of the normal to the sphere at n(γ(s));d

ds P(s)

and thus P(s) is also parallel along n(γ). If , then the normal curvature ( ) at γ(s) is(n ) �) ∏(s) = 0 …� ∏, � ∏n 
zero.
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c.
If γ is simple and small enough that its interior region on the surface is mapped by the Gauss map

into an open hemisphere, then, when we parallel transport a vector around γ, the angle between  the
vector and its parallel transport will be the same on the surface as on the sphere, which means that the
measure of the angle (which is the holonomy) is the same up to 2πk (k an integer) on the sphere and the
surface. Now, the same will be true as we shrink (homotopy) the surface curve in its interior. Eventually
we can shrink the curve into a very small region on the surface that is very close to being planar and in
this region the holonomy must be near zero and thus, for this very small curve k = 0. But, we shrunk the
curve continuously so k must vary continuously and since k is an integer this means that k must be
constant (in this case the constant 0).

d.
Using Problem 6.2.d we see that  .d

ds n(�(s)) ==== 	 ∏(s) Tn(s) = 	 ∏(s) (−�1T) = −�1	 ∏(s)

PROBLEM 6.4. Gauss-Bonnet and Intrinsic Curvature
 a.

We use the same notion of “small” as in Problem 6.3.c. We have  .  We nowArea(n(R)) = ¶¶n(R) dA

will make a change of variables using the Gauss map n. In a neighborhood of the point p in a small
region R in M choose an infinitesimal rectangle at p with sides dx and dy chosen so they are in the princi-
pal directions at p. Then the image of this rectangle on the sphere will have sides in the same directions
with lengths κ1dx and κ2dy, according to Problem 6.3.d. Then  .Area(n(R)) = ¶¶n(R) dA = ¶¶R �1�2 dA

n dx

dy

dx

dy
κ

1

2

κ

Figure 6.D. The Gauss map transforms an element of area.

b.
Use the same notion of “small” region as before. We know from Problems 5.3 and 5.4.d that,

looking at n(γ),  HHHH(n(R)) = 2π − ∫n(γ) κg ds − Σαi = Area(n(R)) = ∫∫R κ1κ2 dA.  Now, Problem 6.3.c gives
us HHHH(R) = HHHH(n(R)) and Problem 5.4.d gives us  HHHH(R) = 2π − ∫γ κg ds − Σαi.  Note also that the angular
measures (∫γ κg ds and αi) along γ on the surface are the same as the measures (∫n(γ) κg ds and αi) along n(γ)
on the sphere. It is possible that n(γ) is not a simple curve (for example, if γ is around a point with zero
curvature on the torus -- Try it!) but this is OK because part of the area enclosed by n(γ) will be negative
and part will be positive.

c.

We calculate  K(p) = limn→∞ HHHH(Rn) / A(Rn) =  .limnd∞

¶¶
Rn
�1�2 dA

¶¶
Rn

dA
= �1�2

d.
Since the Gaussian curvature is equal to the intrinsic curvature it is intrinsic and thus, does not

depend on the embedding.

PROBLEM 6.5. 2nd Fundamental Form in Coordinates
a.

This follows directly from the bilinearity of the second fundamental form and Problem 6.2.c.

Solutions: Chapter 6 – Gaussian Curvature Extrinsically Defined 223



b.
The off-diagonal entries are II(T1,T2) = II(T2,T1), which are equal to 0 by the proof of 6.2.e.

We see that T(θ) = cosθ T1 + sinθ T2 and thus, we can use Parts a and b to calculate  κn(T(θ)) =
κ1 cos2θ + κ2 sin2θ.  Note on a sphere the normal curvature is the same in all directions and thus, any
orthogonal local coordinates on the sphere will have its Second Fundamental Form matrix be a diagonal
matrix. This is also true for the standard local coordinates on the cylinder and cone. However, it is not
true for the standard local coordinates on the strake.

*c.
Note that the tangent vectors x1 and x2 are not partial derivatives of f. See Problem 4.4 and its

solution for the expressions of xi and n. We now calculate

x11(a,b) = (0,0,fxx(a,b)),  x22(a,b) = (0,0,fyy(a,b)), x21(a,b) = (0,0,fyx(a,b)) = (0,0,fxy(a,b)) = x12(a,b).

Thus, the matrix of the second fundamental form is

.
…x11(a, b), n(a, b)  …x12(a, b), n(a, b) 

…x21(a, b), n(a, b)  …x22(a, b), n(a, b) 
= 1

1+(fx )2
+ fy

2

fxx fxy

fyx fyy

*PROBLEM 6.6. Mean Curvature and Minimal Surfaces

a.  
The (extrinsic) curvature of the helix is towards the central axis and is tangent to the surface, and

thus the normal curvature is zero. The horizontal lines on the strake are extrinsically straight, and thus
have no normal curvature. Since we know that the strake is not locally isometric to the plane, it is not
possible that all the maximum or minimum normal curvatures are zero. If κ1 and κ2 are the principal
curvatures and the principal directions are at angles θ and θ−π/2 from the horizontal lines, then (since 0
can not be the minimum nor maximum) we can suppose that κ1 < 0 < κ2. By Problem 6.5.b we have 

κ1 cos2θ + κ2 sin2θ = 0 = κ1 cos2(θ−π/2) + κ2 sin2(θ−π/2) = κ1 sin2θ + κ2 cos2θ

and thus,  .  This can only happen if θ = π/4 and κ1 = −κ2. Thus, the strake has mean
�1
�2

= tan2� = cot2�

curvature zero.

b.  
Use local orthonormal coordinates (x, y) in the principal directions. In each of the principal direc-

tions draw a picture of the osculating circle with radius of 1/(normal curvature); then we have the picture
in Figure 6.3 in the text, an we can calculate the derivative

.d

dh lh = limhd0
lh − l0

h
= limhd0

(1/�) − h

1/�
dx − dx

h
= limhd0

(1 − �h)dx − dx

h
= −�dx

Then set dA = dx dy and let A(h) be the area after dA is pushed a distance h in the direction of n.
Calculate

d

dh A = limhd0
A(h) − dA

h
= limhd0

(1 − �1h)dx (1 − �2h)dy − dxdy

h
=

.= limhd0
(−�1h − �2h + �1�2h2)dxdy

h
= (−�1 − �2 )dxdy = −2H dA

c.

We calculate using Problem 6.2.f with r(z) = (1/a) cosh(az + b),
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,�1 =
−r∏∏(z)

[1 + (r ∏(z))2 ]
3
2

=
−a cosh(az + b)

[1 + sinh2(az + b)]
3
2

=
−a cosh(az + b)

[cosh2(az + b)]
3
2

=
−a

cosh2(az + b)

.�2 = 1
r(z) 1 + (r∏(z))2

=
a

cosh(az + b) 1 + sinh2(az + b)
=

a

cosh2(az + b)

Thus, H = 0 and the catenoid is a minimal surface.

d.
In order for this surface of revolution to be a minimal surface the principal curvatures must be equal

in magnitude and opposite in sign. Thus, we must have  , or, simpli-
r∏∏(z)

[1 + (r ∏(z))2 ]
3
2

= 1
r(z) 1 + (r∏(z))2

fying,  .  This second order, non-linear differential equation has a unique solutionr∏∏(z) r(z) = [1 + (r∏(z))2 ]
for given initial conditions,  .  In order for it to be a surface of revolution of ther(0) = c and r∏(0) = d

above form it must be that c > 0. It is easy to check that r(z) = (1/a) cosh(az + b) is a solution for all b
and all a > 0, and for this r(z),  .  Thus, , which isc = r(0) = 1

a cosh(b) and d = r∏(0) = sinh(b) b = sinh−1(d)
defined for all d; and , which is also defined for all d and all c > 0.a = (1/c) cosh(sinh−1(d))

e.
First we express both the catenoid and the helicoid in geodesic rectangular coordinates. For the

catenoid, set b = 0 and let the base curve be z = 0. The base curve, parametrized by arclength is
.  The second coordinate curve is  ,  which we must noww d ( 1

a cos aw, 1
a sin az, 0) z d ( 1

a cosh az, z)
parametrize by arclength. First we find the element of arclength

.ds = dz2 + d( 1
a cosh az)2

= dz2 + (sinh2az)dz2 = 1 + sinh2az dz = cosh az dz

Thus, the arclength parameter is . Note thats = ¶0
z

cosh az dz = 1
a sinh az or z = 1

a sinh−1as

  .  cosh� = 1 + sinh2� and, thus, cosh(sinh−1as) = 1 + (as)2

Thus the geodesic rectangular coordinates for the catenoid are

  .x(w, s) = 1
a 1 + (as)2 cos aw, 1

a 1 + (as)2 sin aw, 1
a sinh−1as

Now calculating the Riemannian metric for the catenoid:

x1(w, s) = − 1 + (as)2 sin aw, 1 + (as)2 cos aw, 0

x2(w, s) =
as

1+(as)2
cos aw, as

1+(as)2
sin aw, 1

1+(as)2

.g11(w, s) = 1 + (as)2
, g12(w, s) = g21(w, s) = 0, g22(w, s) = 1

Now we give the geodesic rectangular coordinates for the helicoid with the center line as the base
curve:  .  Then calculating the Riemannian metric we gety(s, r) = (r cos s

h , r sin s

h , s)

y1(s, r) = (− r

h sin s

h , r

h cos s

h , 1), y2(s, r) = (cos s

h , sin s

h , 0)
.g11(s, r) = 1 + ( r

h
)2

, g12(s, r) = g21(s, r) = 0, g22(s, r) = 1

Thus, the catenoid and the helicoid are locally isometric if a = 1/h and we map x(w,s) to y(w,s).
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