
Chapter 7

Applications of

 Gaussian Curvature

In this chapter we will use the hard-won result from Chapter 6 to express Gaussian (intrinsic) curva-
ture in local coordinates and to find several intrinsic descriptions of Gaussian curvature. Along the way,
we will investigate the exponential map and finally come to some resolution concerning the tension
between shortest and straight.

PROBLEM 7.1. Gaussian Curvature in Local Coordinates

In local coordinates x, the second fundamental form  

II(X,Y) = II( X1x1+X2x2, Y1x1+Y2x2 ) 

can be written as:
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Now express the unit principal directions in these coordinates:
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Since (from Problem 6.2), 

T1n = −κ1T1 and T2n = −κ2T2,

we have 

II(T1 ,T1) = κ1, II(T2 ,T2) = κ2 , and II(T1 ,T2) = II(T2 ,T1) = 0.

Thus, we can see that:
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Thus (using the result from matrix algebra that the determinant of a product is the product of the
determinants):
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But, also, 
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and thus:
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Therefore, we conclude:

THEOREM. For any local coordinates x the Gaussian curvature is given by

.K = �1�2 = (det(g ij ))−1 det
…x11, n  …x12, n 

…x21, n  …x22, n 

*a. If the surface has a Monge patch, show that it is the graph of a function (x,y,f (x,y))
such that the surface is tangent to the (x,y)-plane at (0,0,f (0,0)) 

[thus, f (0,0) = 0 = fx(0,0) = fy(0,0)] ,

then show that 

K  =  fxx  fyy − ( fxy)2,  at  p = (0,0,f (0,0)).

Warning:  This formula does not hold, away from the point p, and this formula is also still extrinsic.

b. If x(u1,u2) is any local coordinates with Riemannian metric matrix

,(g ij ) =
h2 0
0 1

where 

h(u1,u2) = |x1(u1,u2)| and h2 = ,…x1, x1  

and such that the second coordinate curves g(s) ≡ x(u1,s) are geodesics (parametrized

by arclength, then show that the Gaussian curvature at the point x(a,b) is given by

K = −
h22(a,b)

h(a,b) = − 1
h(a,b)

Ø
Øu2

Ø
Øu2 h(a, u2)

u2=b

Note that h and its derivatives are intrinsic and thus K is intrinsic. (Note that geodesic
rectangular coordinates and geodesic polar coordinates both satisfy the hypotheses of 7.1.b, and

so do the standard local coordinates on the strake.) 
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Outline of a proof of 7.1.b:

1. Since 

,h = x1 = …x1, x1  

we can calculate that

h2 =
…x21, x1  

…x1, x1  

and that

.−
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2

2. Show that

…x221, x1   = …x122, x1   =
 ,=x1…x22, x1   − …x22, x11   = 0 − …x22, x11  

where the “0” results because x22(a,b) is the curvature of the curve γ(s) = x(a,s) at  s=b (Why?) and
thus is perpendicular to x1. 

3. We can then calculate that:

 −
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where θ is the angle from x1 to x21.

4. At the same time (explain the steps)
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where, since x22 is in the same direction as the normal n,

,…x11, n …x22, n  = …x11, x22  

and where φ is the angle from x21 to n.

5. But x21 lies in the plane of x1 and n. (Why?) Therefore, 

θ + φ = (the angle from x1 to n) = π/2 and cos φ = sin θ,

and the above expressions imply that the Gaussian curvature is given by

.K = −
h22

h
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  c. For geodesic rectangular coordinates x(u1,u2) with base a geodesic (parametrized by

arclength), show that the function 

f (t) = h(u1,t) = |x1(u1,t)|

satisfies for each u1:

f (0) = 1  and  f '(0) = 〈x12,x1〉 = −〈x2,x11〉 = 0.

Thus, show that, for each u1, f (t) has a local maximum at t = 0 when K > 0 and a local

minimum at t = 0 when K < 0.  

[Hint: Use first semester calculus.] 

        ¶
a
b

x1(u1, c) du1 < �
                                                       x(a,c)                                        x(b,c)

                                                    x(a,0)                 δ = b−a                x(b,0)

                                                                 ¶a
b

x1(u1, c) du1 > �
                                                 x(a,c)                                                   x(b,c)

                                                    x(a,0)                  δ = b−a              x(b,0)

Figure 7.1. Rectangular geodesic coordinates with nonzero Gaussian curvature.

Thus, in a region in which the tangent plane is indistinguishable from the surface, h will appear to be
constantly 1, and we will not be able to intrinsically determine K within such a region. However, at a
distance c from the base geodesic, we have the pictures in Figure 7.1.

The results in Problem 7.1 were basically known to Gauss in 1827 and were used as the basis for his
published proof [DG: Gauss] of the Theorema Egregium (Problem 6.4.d).

*PROBLEM 7.2. Curvature on Sphere, Strake, Catenoid

a. Check that the formula 

K = −
h22

h

from Problem 7.1.b on a sphere of radius R gives K = 1/R2. Does the formula give zero

curvature on cylinders and cones? 
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[Hint: Use geodesic rectangular coordinates on the sphere, that is, the equator and the longitude must be
parametrized by arclength, u1 = Rθ and u2 = Rφ.]

b. Calculate the Gaussian curvature for points on a strake.

c. Calculate the Gaussian curvature for points on a catenoid and helicoid. (See Problem
6.6.e.)

d. On a sphere of radius R, show that the circumference of a circle that has intrinsic

radius r can be expressed by

Circumference = 2π R sin( r/R )

or, as a power series in r2/R2 = r2K,

Circumference = 2πr (1 − r2K(1/6) + r4K2( ... )).

e. On a sphere of radius R, show that the area of a circular disk that has intrinsic radius r

is given by

Area = 2π R2 (1 − cos( r/R )) =
= π r2 (1 − r2K(1/12) + r4K 2( ... )).

In the next problem we will use geodesic polar coordinates to show that the power series in 7.2.d-e

hold also on any C2 surface and thus can be used to find more intrinsic descriptions of Gaussian
curvature. 

PROBLEM 7.3. Circles, Polar Coordinates, and Curvature

Let M be a C2 surface. An intrinsic circle (or geodesic circle) in M with radius a and center at p is
the collection of all points in M that lie at a distance a along a geodesic from p. If y(θ,r) (y(0,0)=p) is
geodesic polar coordinates around p, then the intrinsic circle with radius a is just the points of the form
y(θ,a).

If a is too large, then the circle may be distorted in various ways. For example, the intrinsic circles
of radius πR on a sphere of radius R are just a point. However, for a small enough, the intrinsic circle will
have a well defined area and circumference. Our goal is to find expressions for the area and circumfer-
ence that are analogous to those in 7.2.d-e.

To calculate arclength and area we first need an expression for the Riemannian metric in geodesic
polar coordinates. In Problem 4.9 we showed that 

.g ij =
h2 0
0 1

, where h(�, r) = y1(�, r)

Now we (you) can 

a. Show that, for fixed θ, the third Taylor approximation for h is

.h(�, r) = r −
K(p)r3

6 + R(�, r), where lim
rd0

R(�,r)

r3 = 0 uniformly in �

[Hint: If you have forgotten about Taylor polynomials (remember, “polynomials,” not “series”), then read
about it in your favorite calculus text. If f (r) ≡ h(θ,r), then you can find f(0) by looking directly at its
definition, and f ′(0) you can calculate by zooming in on p sufficiently and expanding the two derivative
in f ′(0) to their definitions. Problem 7.1.b gives information about f ′′(r), then take the limit. Find f ′′′(0)
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by differentiating the result from 7.1.b and then (carefully) taking the limit. That the remainder term over
r3 goes to zero, follows from the theory of Taylor polynomials, or can be checked directly and will
submit to several applications of L’Hôpital’s Rule.]

b. If C(r) is the circumference of a geodesic circle of (intrinsic) radius r with center at the

point p, then show that

C(r) = 2πr (1 − r2Kp(1/6)) + RC (r),

where  and Kp  is the Gaussian curvature of the surface at p. Thus,limrd0(1/r3 )RC(r) = 0
we conclude

.Kp = lim
rd0

3
2�r−C(r)

�r3

[Hint: Integrate (see Problem 4.5) and use 7.1.a.]

c. If A(r) is the area of a geodesic circle of (intrinsic) radius r with center at the point p,

then show that

A(r) = π r2 (1 − r2Kp(1/12)) + RA (r),

where . Thus, we concludelimrd0(1/r4 )RA(r) = 0

.Kp = lim
rd0

12
�r2−A(r)

�r4

[Hint: Integrate (see Problem 4.5) and use 7.1.a.]

Notice that the expressions in 7.3.b and 7.3.c are additional intrinsic descriptions of Gaussian curva-
ture. In [DG: Spivak] these results are attributed to Diquet, Bertrand, and Puiseux in 1848.

PROBLEM 7.4. Exponential Map and Shortest Is Straight

We now return to the issue of the connections between shortest and straight that we first encoun-
tered in Problem 1.3. Recall that we saw then that straight paths were not always the shortest distance
between their endpoints and that on the cone with cone angle 450°, even locally (near the cone point) the
shortest paths were not straight. First, we investigate all the geodesics which emanate from a single point
p.

Let M be a C2 surface and Tp M be the tangent space (plane) at the point p in M. If V ∈ Tp M is a
tangent vector, then there is a geodesic  

γγγγ: [0,1] → M, with γγγγ(0) = p,  γγγγ    ′(0) = V,  and  |γγγγ    ′(t)| = |V| = constant.

We define the exponential of V to be

exp(V) = expp(V) = γγγγ(1).

The name “exponential” comes from the form it takes on Lie groups or spaces of matrices, see [DG:
Spivak], Volume 1, Chapter 10. That the exponential is a C2 map in some neighborhood of p follows
from standard theorems about the solutions of differential equations varying smoothly with respect to
their initial conditions (see [DG: Spivak], Volume 1, Chapter 5, for a detailed discussion). 

a. Show that, if U(θ) is the unit vector in the direction θ, then the function defined by 

y(θ,r) = exp(rU(θ)) 
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is geodesic polar coordinates in some open neighborhood Up of p. Thus, conclude that

all the geodesics in Up that pass through p are perpendicular to the level curves

{ expp(V) | |V| = constant }.

[Hint: Use Problem 4.9.]

b. Show that any geodesic γγγγ in Up that joins p to p* is the shortest path joining p to p*.
(This was apparently first proved by J.H.C. Whitehead in 1932.)

Outline of a proof of 7.4.b:

1. Assume that there is a piecewise smooth path αααα: [0,b] → Up from p to p* that is shorter than γ. Then,
using geodesic polar coordinates y(θ,r) we can write αααα(t) = y(θ(t),r(t)). Differentiate and show that,
for 0 < a ≤ t ≤ b,

|αααα′(t)| ≥ |r′(t)|,

with equality if and only if θ′(t) = 0. 

2. Then integrate and show that

 ≥ | r(a) − r(b) |,¶
a

b
���� ∏(t) dt

with equality if and only if r(t) is monotone and θ(t) is constant.

3. Take the limit as a → 0 and conclude the desired result.

c. Let C(a) be a circle of radius a and center p. Let λλλλ be a path that joins two points, p*,
p**, on C(a) and which is the union of two geodesic pieces, which form an angle at p of

angle φ<π as in Figure 7.2. Show that, if a is sufficiently small, there is a path αααα in the

interior of C(a) that has length less than 2a (= the length of λλλλ).

φ

θ

a

a

r

λ α

p*

p**

Figure 7.2. A geodesic angle is not shortest.

Outline of a proof of 7.4.c:

1. Look at the path α marked in the figure with parametrization

αααα(θ) = y(θ,r(θ)), −φ/2 ≤ θ ≤ φ/2

where 

r(θ) = .a
cos�/2

cos �

Calculate .���� ∏(�)
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2. Look at the integral that expresses the length of α:

,¶−�/2
�/2

|���� ∏(�)|d�

and use the estimate in 7.3.a when expanding the integrand.

3. Show that

¶−�/2
�/2
���� ∏(�) = ¶−�/2

�/2 a cos�/2

cos2� 1 + a(A(a,�)) +
R(�,r(�))

a2 (B(a,�)) d�

where A(a,θ) and B(a,θ) are bounded for −φ/2 ≤ θ ≤ φ/2 and 0 < a ≤ 1. Thus, for sufficiently small a

,1 + a(A(a,�)) +
R(�,r(�))

a2 (B(a,�)) [ C < 1
sin�/2

and

.¶−�/2
�/2
���� ∏(�) [ ¶−�/2

�/2 a cos�/2

cos2� Cd� = 2aC sin�/2 < 2a

For the main result of this problem we need a notion of completeness:

     M is geodesically complete if every geodesic in M can be extended indefinitely. This is a
direct interpretation of Euclid's first postulate which says: “Every straight line can be extended
indefinitely.”

Now we can prove the main result of this problem, which (together with 7.4.e) is usually called the
Hopf-Rinow-de Rham Theorem (proved in 1931):

d. If M is geodesically complete then any two points can be joined by a geodesic that is

the shortest path between them.

Outline of a proof of 7.4.d:

1. Let p, q be any two points in M with their distance d(p,q) = b. Let C be a circle of radius δ and center
p so that C ⊂ Up. There is a point p* on C such that

d(p*,q) ≤ d(x,q), for all x ∈ C.

Now p* = expp(δV), for some unit tangent vector V ∈ Tp M.

CLAIM:  expp(bV) = q;

this will show that the geodesic γγγγ(t) = expp(tV) is a geodesic of length b joining p to q.

2. The claim will be true (Why?) if 

b ∈ A ≡ { t | d(γγγγ(t),q) = b − t }.

3. Since every curve from p to q must cross C, we have

.d(p, q) = min
xcC

[d(p, x) + d(x, q)] = � + d(p&, q)

So d(p*,q) = b−δ  and δ ∈ A.

4. Let t* be the least upper bound of all t in A. Then t* ∈ A. Suppose that t* < b. Let C* be the circle of
radius δ* around γ(t*), and let q* be the point on C* that is closest to q. (See Figure 7.3.)
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p

p*

q* q

C*

C

γ(   )t*

φq**

Figure 7.3. Finding shortest path from p to q.

5. Use 7.4.c to argue that the angle φ in Figure 7.3 must be equal to π and thus t* is not the least upper
bound of elements in A.

There is another notion of completeness that is familiar from analysis:

     M is Cauchy complete (or, simply, complete) if every Cauchy sequence in M converges. A
sequence {xi} is a Cauchy sequence if, for every integer m, there is an integer n such that

| xi − xj | < 1/m, whenever i > n and j > n.

Notice that Cauchy completeness is a local concept while geodesic completeness is a more global
notion. Nevertheless, you can prove that:

*e. A surface M is Cauchy complete if and only if it is geodesically complete.

[Hint: Work locally and use the results above, including that the exponential map is continuous.]

PROBLEM 7.5. Surfaces with Constant Curvature

a. Let M be a surface with constant Gaussian curvature K. Let x(u1,u2) be a geodesic

rectangular coordinate chart with base curve a geodesic. Let y(θ,r) be geodesic polar
coordinates. Show that the Riemannian metric matrix is

,(g ij ) =
h2 0
0 1

where, for x(u1,u2),  , h = h(u1, u2) =
 

 
 

cos K u2, if K m 0

cosh K u2, if K [ 0

and, for y(θ,r),  , h = h(�, r) =
 

 
 
 

 

K− 1
2 sin K r, if K m 0

K
− 1

2 sinh K r, if K [ 0

[Hint:  Use Problems 4.9, 7.1.b, 7.1.c, and 7.3.a and the theory of second-order linear differential
equations.]

b. Prove that any two surfaces with the same constant Gaussian curvature are locally

isometric.

[Hint:  Use geodesic rectangular coordinates (with the base curve a geodesic) on both surfaces and define
a map that takes a point on the first surface to the point on the other surface with the same coordinates.
With respect to these coordinates, show that the Riemannian metrics of the two surfaces are equal. The
arclength of any curve γ on a surface is given by the integral

.¶ � ∏(t) dt = ¶ …� ∏(t), � ∏(t)  dt

Thus, if the Riemannian metrics are the same, then all lengths are the same on the two surfaces.]
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c. Show that on a surface of constant curvature there exist locally: rotations about any

point through any angle, translations along any geodesic, and reflections across any

geodesic.

[Hint:  Apply your argument in Part b to different local geodesic coordinates on the surface.]

Since the annular hyperbolic plane is constructed the same everywhere (as δ → 0), it is homogene-
ous (that is, intrinsically and geometrically every point has a neighborhood that is isometric to a neigh-
borhood of any other point). Thus the Gaussian curvature is constant. In addition (if the construction is
continued indefinitely), every geodesic can be continued indefinitely in both directions. Thus:

     The annular hyperbolic plane has global translations, rotations, and reflections,

which are isometries of the whole surface onto itself.

PROBLEM 7.6. Ruled Surfaces and Ribbons

Now we are in a position to finish some details about ruled surfaces and the converse of the Ribbon
Test, as was promised at the end of Chapter 3.

As explained at the end of Chapter 3, a regular ruled surface is a surface with a single coordinate
patch of the form

x(t,s) = αααα(t) + sr(t),

where αααα(t) is a smooth curve parametrized by arclength and, at each point of the curve, r(t) is a unit
vector such that

1. r(t) is a differentiable function of t, and

2. each point αααα(t) is in the interior of an (extrinsically) straight segment in M that is parallel to
r(t), and

3. the vectors, x1(t,s) = αααα′(t) + sr′(t), x2(t,s) = r(t) form a basis for the tangent space.

a. Show that a regular ruled surface is developable (that is, isometric to a region in the

plane) if and only if 

[r(t),r′(t),αααα′(t)] = 0, for all t,

where [r(t),r′(t),α′(t)] denotes the triple product, which by A.5.2 in the Appendix A, is

equal to 〈r(t) × r′(t), αααα′(t)〉.
[Hint: Show that in this setting

,K = 0g det
…x11, n  …x12, n 

…x21, n  …x22, n 
= 0

and note that (see A.5.2) 〈V,n〉 = [V,x1,x2].]

b. Let αααα(t) be a smooth curve parametrized by arclength on the surface M. If αααα has

nonzero normal curvature κκκκn at every point, then, for |s| sufficiently small, show that 

x(t, s) = ����(t) + s
n(����(t))%n∏(����(t))

n∏(����(t))

is a developable regular ruled surface, which is tangent to M along αααα.

[Hint: Check that it is regular and then developable, and then calculate the normal vector to the ruled
surface along αααα. You may need some of the formulas in the Appendix A.5.]
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c. Show that  on a smooth surface M, if αααα is a geodesic with nonzero normal curvature κκκκn

at each point, then a ribbon can be laid tangent along αααα. (Remember that “laid tangent”
means that the ribbon is tangent to the surface along its center line.)

The properties of ruled surfaces discussed in this problem were mostly worked out in the nineteenth
century, but the applications to the Ribbon Test (and the Ribbon Test, itself) are, as far as I can tell, first
published in this book and were apparently not known (or, at least, not widely known) before.

PROBLEM 7.7. Curvature of the Hyperbolic Plane

     What is the Gaussian curvature of the hyperbolic plane constructed out of annular

strips? Calculate the Gaussian curvature in three different ways:

a. using the extrinsic definition from Problem 6.1 and using the formulas from Problem

6.2.f. 

[Hint: To use the extrinsic description you must first find a particular extrinsic embedding of a portion of
the surface such as in Problem 3.1.f.]

b. using the intrinsic description in terms of local coordinates in Problem 7.1. 

[Hint: 

K = −h22/h, where |x1| = h, |x2| = 1, 〈x1,x2〉 = 0.

Pick the local coordinates so that the coordinate curves x(u1,b) follow the annular strips, and the coordi-
nate curves x(a,u2) are perpendicular to the annular strips.]

c. using the intrinsic calculation from Problem 5.7.d.

d. Discuss the differences between these three methods and how each affects your

understanding.
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