
Chapter 6

Gaussian Curvature Extrinsically Defined

Pep Talk to the Reader

I think that the material in this chapter is very difficult. Don’t give up and don’t lose hope. What is
happening here is that we are standing at the interface between things that we can see and argue about
geometrically, and things that are given formally. It is difficult to hold these two aspects together—one is
alive and one is dead, but both are important. It sometimes feels easier to jump headlong into the formal
stuff—forgetting about what it means geometrically and just following everything through mechanically.
Don’t do that! Unfortunately that is often the tendency—it is also my tendency! Resist it and persevere in
trying to see what the meanings of these formal things are geometrically as you go along. This is hard to
do, but the effort will be well worth it. On the other hand, there exists a tendency to ignore the formal
stuff and rely only on our geometric intuition. But, if we ignore the formal stuff, we would miss out on
the incredibly powerful tools contained in the formalism. We need to use both the formal analytic tools
and our geometric intuition; and we need to look for their interrelations. Relate everything in this chapter
to the example of surfaces you already know, such as the sphere, cylinder, cone, ribbon, and strake.

In Chapter 5 we developed an intrinsic description of the intrinsic curvature of a surface. In this
chapter we start with the more common extrinsic description of the Gaussian curvature of a surface,
which is based on the normal curvature introduced in Problem 4.7.a. The Gaussian and intrinsic curva-
tures are easily seen to be the same on a sphere. Then we use a mapping (called the Gauss map) from the
surface to the sphere, which then allows us to show that the Gaussian curvature and intrinsic curvature
coincide on all C2 surfaces.

In Chapter 7 we will use these results to express the Gaussian (intrinsic) curvature in local coordi-
nates and to derive several more intrinsic descriptions of Gaussian curvature. 

At the end of this chapter we will explore mean curvature and minimal surfaces.

PROBLEM 6.1. Gaussian Curvature, Extrinsic Definition

Let p be a point on the smooth C2 surface M in R3, and let n(p) be one of the two choices of unit
normal to the surface at p, so that n is differentiable in a neighborhood of p. Let Tp be a unit tangent
vector at p. If γ is a curve on M, which passes through p and has Tp as unit tangent vector, then, according
to Problem 4.7.a, the normal curvature of γ at p satisfies

κκκκn(p) = 〈Tp,−−−−Tpn〉 n(p).

Since n(p) is a unit vector, 〈Tp,-Tpn〉 is the magnitude of the normal curvature vector, and thus we define
the (scalar) normal curvature of M at p in the direction Tp as

κn(Tp) ≡ 〈Tp,−−−−Tpn〉 

≡ the length of the projection of −−−−Tpn onto the direction of Tp. 



Note that κn(T) is positive when κκκκn is in the direction of n and negative otherwise. In Problem 4.7.a we
learned that κn(Tp) is the normal curvature of any unit speed curve through p, which has Tp as velocity
vector at p. Some books use the name Weingarten map to indicate the map L(Xp) = −Xpn. 

Recall from Chapter 3 that the normal curvature of a curve on the surface M is the curvature of the
curve that is due to its being on the surface. So, the normal curvature κn(Tp) tells us how the surface is
curving in the direction of Tp. Then κn is a real-valued function defined on the unit vectors (unit circle) in
the tangent space TpM; as such, if κn is continuous, then it has a maximum value and a minimum value,
which we shall denote κ1 and κ2.

These are called the principal curvatures, and the directions in which they occur are called the
principal directions. We then define the Gaussian curvature of the surface at the point p to be the
product of κ1 and κ2. Note that this is an extrinsic definition of the Gaussian curvature. In Problem 6.4 we
will show that this (extrinsically defined) Gaussian curvature coincides with the intrinsic curvature on C2

surfaces.

a. What are the principal directions, and principal curvatures of the cylinder, cone, and

sphere? Give geometric or analytic reasons.

If A, B are linearly independent vectors based at the point p, then the span of A, B, denoted by
“span[A,B]”, is the plane (through p) determined by the two vectors.

b. Show that if γ is a unit speed curve in the smooth surface M, and 

γ* = {span[γ ′(0),n(γ(0))] ∩ M },

(see Figure 6.1) then, at γ(0) = p, the curvature vectors on M satisfy: 

κκκκ(γ*) = κκκκn(γ*) = κκκκn(γ) = 〈 γ ′(0),−γ ′(0)n 〉 n, 

and the scalar curvatures satisfy:

±κ(γ*) = κn(γ*) = κn(γ) = 〈 γ ′(0),−γ ′(0)n 〉,

where κn(γ*) = κn(γ) is negative if the curves curve away from the normal n, as in

Figure 6.1. 

Note also that κκκκ(γ*) = κκκκn(γ*) is only asserted to hold at the one point γ(0)=p. This does not imply
that γ* is a geodesic, even though κκκκg = 0, because it is only zero at that one point. Look at an example of
this by looking at the tangent vector to a helix along a cylinder. The corresponding γ* on the cylinder will
be an ellipse tangent to the (intrinsically straight) helix but will not coincide with it.

                              γ*

                                                                                                       TpM

                             γ

                                                                               γ ′(0)

       {span[γ ′(0),n(γ(0))] ∩ M }                 n(γ(0))
                       Figure 6.1. Finding the normal curvature.

84 Chapter 6.   Gaussian Curvature Extrinsically Defined

M

p



*c. Look at the surface which is the graph of

 z = (1 − cos 4θ) r2.

Find the principal directions and principal curvatures at (0,0,0), and note that the

principal directions are not perpendicular. Note that similar examples are possible in

the general form 

z = f (θ) r2,

 where f is any twice differentiable function that satisfies:

 f (−x) = f (x).

Computer Exercise 6.1 will allow you to display and view these surfaces. When there is a C2 local
coordinate patch, the principal directions are orthogonal, as you shall see in the next problem. Thus it
must be that the surfaces in part c must not have any C2 coordinate patch.

*d. Show that every closed smooth surface (see Problem 4.2.c) has at least one point at which

all the normal curvatures are positive with respect to the inward pointing normal.

[Hint: Start with a sphere that contains the surface in its interior and then gradually shrink the sphere
until it first touches the surface. What can you say about the surface at this point of first touching?]

PROBLEM 6.2. Second Fundamental Form

If M is a smooth surface in R3, and Vp and Wp are orthogonal unit tangent vectors at a point p on M,
then any other unit tangent vector Tp at p can be written as a linear combination: Tp = aVp+bWp. If we are
to use local coordinates then we would like to be able to calculate κn(Tp), knowing only κn(Vp), κn(Wp)
and a and b. However, κn is not a linear function. In fact:

a.  Show that:

κn(aVp+bWp) =

= a2 κn(Vp) + b2 κn(Wp) + ab 〈Vp,−Wpn〉 + ab 〈Wp,−Vpn〉.

Thus, it is important to look at the quantities such as

〈Vp,−Wpn〉 with Vp ≠ Wp.

So, if  Xp, Yp ∈ TpM for a smooth surface M in R3, then we define the second fundamental form to be:

II(Xp,Yp)  =  〈Xp,−Ypn〉,

where n(q) is a differentiable choice of unit normal to M at all points q near p. We are interested, in the
end, only in the normal curvature in any direction 

Tp: κn(Tp) = II(Tp,Tp).

The general Second Fundamental Form and its mixed terms 〈Xp,−Ypn〉 will be needed only when we
want to express the normal curvature in terms of local coordinates. Now,

b. Show that the second fundamental form is bilinear (linear in each variable).

[Hint:  Use Problem 4.8.]

Let M be a smooth surface in R3 with C2 local coordinates x(u1,u2) with x(a,b) = p. 
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c. Show that 

II(x1,x2) = 〈x21,n〉 = 〈x12,n〉 = II(x2,x1)

and that 

II(Xp,Yp) = II(Yp,Xp).

[Hint:  Look at x1〈x2,n〉 = 0, using the local coordinates x(u1,u2), and then write 

Xp = Σ X ixi(a,b) and Yp = Σ Y ixi(a,b),

and use Problem 4.8.]
Part c is the only place that the assumption C2 is used in a crucial way in all its power (that is, C2

requires that all first and second partial derivatives exist and are continuous and that the mixed partials
are equal).

d. Show that the maximum and minimum of 

{II(T,T) | T a unit  tangent vector at  p}

occur when −Tn = λT. Thus, in this case, the rate of change of the normal n with

respect to T is in a direction parallel to T.

[Hint: Note that II(−T,−T) = II(T,T). Part d may be solved in at least three ways:  

1. using from analysis the theory of Lagrange multipliers to maximize/minimize II(X,X), subject
to the constraint that 〈X,X〉 = 1. 

2.  expressing II(T,T) in terms of local coordinates and then using (from linear algebra) the
theory of eigenvalues and eigenvectors of symmetric matrices or quadratic forms. 

3. arguing geometrically that, if T is a maximum or minimum of II(T,T), then
 (where T

⊥ is a unit vector in TpM perpendicular to T) and thend

dh II(T+hTz, T+hTz)h=0 = 0
differentiate.]

e. Show that, if T1 and T2 are unit tangent vectors such that

−T1n = λ1T1 and −T2n = λ2T2,

then either 

λ1 = λ2 or T1 is perpendicular to T2.

[Hint: Consider II(T1 , T2) and remember that II(T,T) is the normal curvature of the surface in the direc-
tion T.]

It follows that, if λ1 ≠ λ2 , then T1 and T2 must be the principal directions at p. If λ1 = λ2 then the
normal curvature is the same in all directions and any two perpendicular unit vectors can be chosen as the
principal directions. Note also that 

κi = II(Ti,Ti) = 〈Ti,−Tin〉 = 〈Ti,λiTi〉 = λi〈Ti,Ti〉 = λi.

f. What are the principal directions on a C2 surface of revolution expressed in rectangular

coordinates as

(r(z) cosθ, r(z) sinθ, z)?
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Show that in these directions the principal curvatures (with respect to the inward point-

ing normal) are:

.�1 =
−r∏∏(z)

[1+(r ∏(z))2 ]
3
2

and �2 = 1

r(z) 1+(r ∏(z))2

[Hint: Argue geometrically (using 6.2.d) which are the principal directions. Then calculate the normal
curvatures of curves in those directions. Do NOT use the second fundamental form. Note that a surface
of revolution is C2 whenever r(z) is positive and C2. You may find helpful the discussion in the section
Curvature of the Graph of a Function, preceding Problem 2.4.]

To summarize the above discussion: The directions, T1 , T2 , in which the maximum and minimum of
II(T,T) occur, are called the principal directions at p and the values of II(T,T) in these directions, κ1 , κ2 ,
are called the principal curvatures at p. Note that, κ1 , κ2 , are (by Problem 6.1) the normal curvatures of
unit speed curves in the principal directions. The product κ1κ2 is called the Gaussian curvature at p. The
above (because it involves the unit normal to the surface) is an extrinsic description of the Gaussian
curvature; but below we will show that, in fact, the Gaussian curvature is intrinsic and that it coincides
with the intrinsic curvature defined in Chapter 5. In Chapter 7 we can provide an intrinsic description of
Gaussian curvature in terms of local coordinates.

Thus in the principal directions, T1 , T2 , at a point p, we can write −Tin = κiTi. In these principal
directions the rate of change of the normal to the surface is equal in magnitude to normal curvature. By
6.1, for the curve γ*, κκκκ(γ*) = κκκκn(γ*) (see Figure 6.1), and thus, by Problem 2.3 the normal to γ* is parallel
to the normal to the surface (at p), and their rates of change along γ* are equal in both magnitude and
direction at p. It is worthwhile spending as much time as needed to understand this situation because it
will keep coming up and will be crucial later on.

PROBLEM 6.3. The Gauss Map
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Figure 6.2. Gauss map.

We now want to connect what we know from Chapter 5 about the connections between curvature
and holonomy on a sphere to similar connections on an arbitrary smooth surface M in R3. The connection
will be via the Gauss map (or normal spherical image), which is a function from the surface to the unit
sphere S2. The Gauss map is defined as follows: Start with a point p on M and choose a unit normal n(p)
to the surface at that point. Then, if n(p) is considered as a vector bound at the origin, its head is on a
point of the unit sphere. We define this point to be the image of p under the Gauss map. (See Figure 6.2.)

We usually write the Gauss map as n: M → S2. There are at every point two possible unit normals, and
we assume that we can pick one of them at each point so that n is continuously defined. The surfaces for
which choice is possible are called orientable. There are non-orientable surfaces (such as a Moebius
Strip) but any sufficiently small region on a surface is always orientable.
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You may find helpful Computer Exercise 6.3, which will allow you to display of images of the
Gauss map. But it is more important for you to argue through specific examples, such as in Part a, below.
You probably will find it helpful to use physical models of the surface and a sphere.

 *a. What is the spherical image of cylinders and spheres of different radii? What is the

spherical image of a normal circular cone and how does it depend on the cone angle?

Describe the spherical image of a strake. Describe the spherical image of a torus and

divide the torus into 8 regions each congruent to either A or B in Problem 5.5.c and

Figure 5.9. What do you notice as you shift from the inside saddle-shaped A-regions on

the torus to the outside B-regions?  As you move around the boundary curves in a

counterclockwise direction how do the images on the unit sphere move?

b. If P(s) is a parallel vector field along the curve γ(s) on the orientable surface M, then

P(s) is also a parallel vector field along the curve n(γ(s)) on the sphere. 

[Hint:  First show that if a vector V is tangent to the surface at γ(s), then V is also tangent to the sphere at
n(γ(s)). Thus P(s) is a vector field along n(γ(s)). Now look at the rate of change of P(s) with respect to
arclength at γ(s) and then at  n(γ(s)). Remember that, if s is arclength on γ then it will, in general, not be
arclength on n(γ); however, arclength on n(γ) is a function of s, specifically .]¶0

s
| d

ds n(�(s))|ds

c. If γ is a “small” piecewise smooth simple closed curve on the orientable M, then

H(γ) = H(n(γ)). You must decide what “small” means.

[Hint:  Use the definition of holonomy as an angle between a vector and its parallel transport. (See
Chapter 5.) You need to specify “small” in order to avoid the n2π ambiguity in the measure of the angle.]

d. If λ is a piecewise smooth curve on an orientable C2 surface M such that the velocity

vector λ′ is in a principal direction T1 with principal curvature κ1, then the velocity

vector of the curve s → n(λ(s)) is equal to  −κ1 λ′(s).

[Hint: Use Problem 6.2.d-e.]

PROBLEM 6.4. Gauss-Bonnet and Intrinsic Curvature

a. If V is a “small” region on a C2 surface M with Gauss map n: M → S2, then

∫∫V κ1κ2 dA  =  Area ( n(V) ),

where the area is a signed area with the same sign as the curvature κ1κ2.

[Hint: At the point p in M, choose any local C2 coordinates x such that x1 and x2 are in the principal direc-
tions and use Problem 6.3.d. You must decide what you need “small” to mean.]

b. If V is a “small” region bounded by a piecewise smooth simple closed curve γ on a C2

surface M, then show that

H(V) = 2π − ∫γ κg ds − Σαi = ∫∫V κ1κ2 dA,

where the double integral is the (surface) integral over V.

[Hint:  Use Problem 5.4.d.] 

c. Now, show that Gaussian curvature κ1(p)κ2(p) at a point p on any C2 surface is equal to
the intrinsic curvature defined as:

K(p) = limn→∞ H(Vn) / A(Vn),

where {Vn} is a sequence of small (geodesic) polygons that converge to p.

[Hint:  Use Problem 6.4.b.]
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This leads to the famous result of Gauss, which is contained in translation in [DG: Gauss].
“Theorema Egregium” means “Remarkable Theorem” in Latin, the original language of Gauss’ paper. 

d. (Gauss’ Theorema Egregium) If M and are two C2 surfaces in R3, and  f : M → N  is an
isometry (that is,     for every point p in M and for every…� ∏, � ∏  TpM = …(h $ �) ∏, (h $ �) ∏  Tfp)N

γ′, β′ in TpM ),  then the Gaussian curvature of  M at  p  equals the Gaussian curvature
of  N  at  f(p).

PROBLEM 6.5. Second Fundamental Form in Coordinates

Let M be a smooth surface in R3 with C2 local coordinates x(u1,u2).

a. Show that if 

Xp = Σ X ixi(a,b) and Yp = Σ Y ixi(a,b),

then

II(Xp, Yp) =

=
(X1X2 ) II(x1(a, b), x1(a, b)) II(x1(a, b), x2(a, b))

II(x2(a, b), x1(a, b)) II(x2(a, b), x2(a, b))

Y1

Y2 =

.=
(X1X2 ) …x11(a, b), n(a, b)  …x12(a, b), n(a, b) 

…x21(a, b), n(a, b)  …x22(a, b), n(a, b) 

Y1

Y2

The above matrix is called the matrix of the second fundamental form (in local coordinates x(u1,u2)).
Some books call the matrix simply the second fundamental form.

b. If we choose local coordinates such that at p = x(a,b) we have

x1(a,b) = T1  and  x2(a,b) = T2 ,

then show that the matrix of the second fundamental form is

,
�1 0
0 �2

and if T(θ) denotes the unit vector that is in a direction at an angle of θ away from the

first principal direction T1, then show that the normal curvature is given by

 κn(T(θ)) = κ1 cos2θ + κ2 sin2θ.

Note on a sphere that the normal curvature is the same in all directions, and thus, any orthogonal
local coordinates on the sphere will have their Second Fundamental Form matrix be a diagonal matrix.
This is also true for the standard local coordinates on the cylinder and cone. However, it is not true for
the standard local coordinates on the strake.

*c. Suppose that x expresses M as the graph of a function:

x(x,y) = (x,y,f(x,y).

    Show that, at p = x(a,b),

x1(a,b) = (1,0,fx(a,b)),  x2(a,b) = (0,1,fy(a,b))

and
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 ,n(a, b) =
x1(a, b) % x2(a, b)

x1(a, b) % x2(a, b)
=

−fx,−fy,1

1+(fx )2+ fy
2

where

.fx = Ø
Øx f(x, b)x=a and fy = Ø

Øy f(a, y)y=b

Find the matrix of the second fundamental form in these local coordinates at x(0,0).

[Note that the tangent vectors x1 and x2 are not partial derivatives of f.]

*PROBLEM 6.6. Mean Curvature and Minimal Surfaces

Using Problem 6.5.b, we can calculate (using first year calculus) the mean curvature of M at p:

.H = 1
2� ¶0

2�
(T(�))d� = 1

2� ¶0
2�

[�1 cos2� + �2 sin2�] d� = 1
2 (�1 + �2)

[Note: Some texts define the “mean” curvature as κ1 + κ2, but this goes against the meaning of “mean” as
“average”.]

If the mean curvature is zero, then, either 

κ1 = 0 = κ2 and K = 0,

as in the case of the plane, or 

κ1 = −κ2 and K = −(κ1)2.

a. Show geometrically (or by directly calculating) that the helixes that spiral up the strake

and the horizontal lines on the strake all have zero normal curvature in the strake. Use

this to show that the strake has zero mean curvature H. 

[Hint:  The curves with zero normal curvature on the strake are not in the principal directions. Use
Problem 6.5.b.]

b. Show that an element of area dA on the surface that is pushed in the direction of the

normal will have its area change at the rate of −2H dA. 

[Hint:  To get a feel for this, first show it directly for the sphere and cylinder by expressing their areas in
terms of the radius r, and then (since the normal is in the direction of r) finding the rate of change of the
areas by differentiating with respect to r. Use local orthonormal coordinates (x, y) in the principal direc-
tions. In each of the principal directions, draw a picture of the osculating circle with radius of 1/(normal
curvature). Then we have the picture in Figure 6.3. In this picture we see that the derivative .d

dh lh = −�dx

Then set dA=dxdy and let A(h) be the area after dA is pushed a distance h in the direction of n. 

Find  .]  d

dh A
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Figure 6.3. Change of arclength in the direction of the curvature.

Thus, a perturbation of a surface with zero mean curvature does not change its area. Traditionally, a
surface M with zero mean curvature is called a minimal surface. A soap film with equal pressures on
both sides is an example of a minimal surface.

c. Show that the surface of revolution

x(θ,z) = ((1/a) cosh(az + b) cosθ, (1/a) cosh(az + b) sinθ, z)

is a minimal surface. This surface is called a catenoid.

[Hint: Use Problem 6.2.f. As a reminder: cosh(x) = ½ (ex + e−x).]

d. Show that the catenoids are the only surfaces of revolution, 

(r(z) cosθ, r(z) sinθ, z),

which are minimal surfaces.

[Hint: Find a (second order, nonlinear) differential equation that r(z) must satisfy in order for a surface of
revolution 

(r(z) cosθ, r(z) sinθ, z)

to be a minimal surface. Then use the fact that this differential equation has a unique solution for given
initial conditions.]

Note that the plane is a minimal surface and can also be considered as a surface of revolution, but it
is not of the form 

(r(z) cosθ, r(z) sinθ, z).

e. Show that the catenoid, M, and the helicoid, N, are locally isometric. That is there is a

map  f : M → N  such that,     for every point p in M and…� ∏, � ∏  TpM = …(h $ �) ∏, (h $ �) ∏  Tfp)N

for every  γ′, β′  in TpM .

[Hint: Express both the catenoid and the helicoid in geodesic rectangular coordinates. For the catenoid,
set b = 0 and use the circle z = 0 (minus a point) as the base curve. For the helicoid, use the center line
(the z-axis) as the base curve. Then use the result of Problem 4.9 to express the respective Riemannian
metrics.] 

Computer Exercise 6.6 will allow you to display and observe a transition from the helicoid to the
catenoid.

For more discussion and further bibliography about minimal surfaces see [Mi: Osserman(1986)],
[Mi: Osserman(1989)], and [Mi: Morgan].
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Celebration of Our Hard Work

You have just traversed some difficult territory that mathematical pioneers struggled with for about
80 years. The results in Problems 6.1, 6.2 and 6.5 were mostly proved by Euler in 1760. Note that these
define curvature (which of course was not yet called Gaussian curvature) extrinsically. There seemed to
be no suspicion that the curvature could be intrinsic. Thus, when Gauss first discovered this fact, he
called the result “egregium Theorema”, “remarkable Theorem” in Latin, the original language of Gauss’
paper.

 The results in Problems 6.3 and 6.4 were developed by Gauss before 1827. In [DG: Gauss] Gauss
derived his Theorema Egregium as a corollary of results similar to those in Problem 7.1, using local
coordinates. However, there is evidence in unpublished papers (which are also included in translation in
[DG: Gauss]) that he originally arrived at this result in much the same way we do in Problem 6.4.

The theory of minimal surfaces dates back at least to Euler in 1744, and the results in Problem 6.6

were mostly known through the work of Lagrange and Meusnier before 1785. However, research on
minimal surfaces in R3 is still active, (see [Mi: Hoffman] for a description of the discovery of a new
minimal surface in 1987).

We now have under our control powerful ideas that combine the intuitive geometric ideas with
formal analytic ideas. In Chapter 7 we will use our new knowledge and power to derive a number of
applications of Gaussian curvature and in the process find other intrinsic descriptions.
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