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Abstract

In this work we consider the non local evolution problem





∂tu(x, t) = −u(x, t) + g(βK( f ◦ u)(x, t) + βh), x ∈ Ω, t ∈ [0, ∞[;

u(x, t) = 0, x ∈ R
N \ Ω, t ∈ [0, ∞[;

u(x, 0) = u0(x), x ∈ R
N,

where Ω is a smooth bounded domain in R
N ; g, f : R → R satisfying

certain growing condition and K is an integral operator with symmetric ker-
nel, Kv(x) =

∫
RN J(x, y)v(y)dy. We prove that Cauchy problem above is well

posed, the solutions are smooth with respect to initial conditions, and we
show the existence of a global attractor. Furthermore, we exhibit a
Lyapunov’s functional, concluding that the flow generated by this equation
has the gradient property.
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1 Introduction

We consider the non local evolution problem




∂tu(x, t) = −u(x, t) + g(βK( f ◦ u)(x, t) + βh), x ∈ Ω, t ∈ [0, ∞[,
u(x, t) = 0, x ∈ R

N \ Ω, t ∈ [0, ∞[,
u(x, 0) = u0(x), x ∈ R

N,

(1.1)

where u(x, t) is a real function on R
N × [0, ∞[, Ω is a bounded smooth domain in

R
N (N ≥ 1); h and β are non negative constants; f , g : R → R are locally Lips-

chitz continuous satisfying some growth conditions and K is an integral operator
with symmetric nonnegative kernel, given by

Kv(x) :=
∫

RN

J(x, y)v(y)dy, (1.2)

where J is a symmetric non negative function of class C 1, with
∫

RN

J(x, y)dy =
∫

RN

J(x, y)dx = 1.

The dynamics of non local evolution Equations like in (1.1) has attracted the
attention of many researchers in the last years; see for instance [1, 2, 3, 5, 6, 8, 9,
10, 14, 15, 16, 20, 21, 23, 25, 28, 30] and [31]. However, the model considered here
presents innovation, because it includes the model considered in [3, 23, 24] and
[25], which can be obtained as a particular case of (1.1) with f being the identity,
as well as it includes the model considered in [8, 9, 10, 20, 23, 28, 30] and [31],
which can be obtained as a particular case of (1.1) where g is the identity, β = 1
and the integral operator K is the convolution product. When g and f are identity,
β = 1 and the integral operator K is the convolution product, we also obtain as
particular case of (1.1) the model considered in [4].

The approach considered here was motivated by similar approaches in [3, 12]
and [27], whose basic idea is to find an abstract way to impose Dirichlet boundary
conditions in non local evolution equations.

The paper is organized as follows. In Section 2, assuming a growth condition
on the functions g and f , we prove that (1.1) is well posed with globally defined
solution, (see Proposition 2.2, Proposition 2.3 and Corollary 2.5) that generalize
Proposition 2.4 and Corollary 2.6 in [13]. Furthermore, according to our assump-
tions, the results presented in this section are also extensions of Proposition 2.2
and Corollary 2.3 proved in [25]; Proposition 2.1 and Corollary 2.2 proved in [3];
and Proposition 2 and Corollary 3 obtained in [10]. In Section 3 we prove that
(1.1) generates a C 1 flow in a space X which is isometric to Lp(Ω) (see Propo-
sition 3.2), which extends Proposition 2.4 in [3] and Proposition 3.1 in [11]. In
Section 4, we prove existence of a global attractor, (see Theorem 4.3) that extends
the following results: Theorem 3.3 in [3]; Theorem 8 in [10]; Theorem 3.3 in [25]
and Theorem 3.2 in [13]. In Section 5, we prove comparison and boundedness
results for the solutions of (1.1), (see Theorem 5.2), which extends Theorem 2.7 in
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[24] and Theorem 4.2 in [25]. Finally, in Section 6, we exhibit a continuous Lya-
punov’s functional for the flow generated by (1.1), and we use it to prove that
this flow has the gradient property in the sense of [18], extending Theorem 5.2
and Proposition 5.5 obtained in [25], as well as Theorem 4.4 and Proposition 4.6
in [11], and Theorem 4.3 and Proposition 4.5 obtained in [13].

2 Well posedness

In this section, we prove that the Cauchy problem (1.1) is well posed in the suit-
able phase space

X =
{

u ∈ Lp
(

R
N
)

: u(x) = 0, if x ∈ R
N \ Ω

}

with the induced norm of Lp
(
R

N
)
. In order to this, in addition to the hypotheses

from introduction, we assume that the functions g and f satisfy the “suitable”
following growth conditions: there exist non negative constants k1, k2, c1 and c2 such
that

|g(x)| ≤ k1|x|+ k2, ∀ x ∈ R (2.3)

and
| f (x)| ≤ c1|x|+ c2, ∀ x ∈ R. (2.4)

The space X is canonically isometric to Lp(Ω) and we usually identify the two
spaces, without further comment. We also use the same notation for a function
in R

N and its restriction to Ω for simplicity, wherever we believe the intention is
clear from the context.

In order to obtain well posedness of (1.1), we consider the Cauchy problem
{

∂tu = −u + F(u),
u(t0) = u0,

(2.5)

where the map F : X → X is defined by

F(u)(x) =

{
g(βK( f ◦ u)(x) + βh), x ∈ Ω,
0, x ∈ R

N \ Ω.
(2.6)

Depending on the properties assumed for J, the map given by (1.2) is well de-
fined as a bounded linear operator in various functions spaces and, in particular,
it will be well defined in X.

To prove that F given in (2.6) is well defined, under the conditions given in
(2.3) and (2.4), we need the estimates below for the map K, which have been
proven in [25].

Lemma 2.1. Let K be the map defined by (1.2) and ‖J‖r:= supx∈Ω
‖J(x, ·)‖Lr(Ω), 1 ≤

r ≤ ∞. If u ∈ Lp(Ω), 1 ≤ p ≤ ∞, then Ku ∈ L∞(Ω),

|Ku(x)| ≤ ‖J‖q‖u‖Lp(Ω), ∀ x ∈ Ω, (2.7)
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where 1 ≤ q ≤ ∞ is the conjugate exponent of p, and

‖Ku‖Lp(Ω) ≤ ‖J‖1‖u‖Lp(Ω) ≤ ‖u‖Lp(Ω). (2.8)

Moreover, if u ∈ L1(Ω), then Ku ∈ Lp(Ω), 1 ≤ p ≤ ∞, and

‖Ku‖Lp(Ω) ≤ ‖J‖p‖u‖L1(Ω). (2.9)

Proposition 2.2. In addition to the hypotheses from Lemma 2.1, suppose that the func-
tions g and f satisfy the two growth conditions (2.3) and (2.4). Then the function F given
by (2.6) is well defined in Lp(Ω).

Proof. Consider 1 ≤ p < ∞ and let u ∈ Lp(Ω). Then, using Hölder inequality
(see [17]) and (2.4), we obtain

‖ f (u)‖L1(Ω) ≤
∫

Ω

[c1|u(x)| + c2]dx ≤ c1|Ω|
1
q ‖u‖Lp(Ω) + c2|Ω|, (2.10)

where q denotes the conjugate exponent of p.
From estimates (2.9) and (2.10), it follows that

‖K f (u)‖Lp (Ω) ≤ ‖J‖p‖ f (u)‖L1(Ω)

≤ ‖J‖p(c1|Ω|
1
q ‖u‖Lp(Ω) + c2|Ω|)

= c1‖J‖p|Ω|
1
q ‖u‖Lp(Ω) + ‖J‖pc2|Ω|. (2.11)

Thus, using (2.11), it follows that
‖F(u)‖Lp (Ω) = ‖g(β|K f (u)| + βh)‖Lp(Ω)

≤




∫

Ω

[βk1|K(( f (u))(x)| + k1βh + k2]
pdx




1
p

≤ ‖βk1|K f (u)| + (k1βh + k2)‖Lp(Ω)

≤ βk1‖K f (u)‖Lp(Ω) + ‖k1βh + k2‖Lp(Ω)

≤ βk1(c1‖J‖p|Ω|
1
q ‖u‖Lp(Ω) + ‖J‖pc2|Ω|) + (k1βh + k2)|Ω|

1
p

= βk1c1‖J‖p|Ω|
1
q ‖u‖Lp(Ω) + βk1‖J‖pc2|Ω|+ (k1βh + k2)|Ω|

1
p , (2.12)

showing that, in this case, F is well defined.
The proof for p = ∞ is straightforward, because if u ∈ L∞(Ω), from (2.4) it

follows that f (u) ∈ L∞(Ω) and, consequently

|K( f (u)(x))| ≤ ‖J‖1‖ f (u)‖∞ = ‖ f (u)‖∞ .

Thus, using (2.4), we obtain

‖K f (u)‖L∞ (Ω) ≤ c1‖u‖∞ + c2.

Hence, from (2.3), we have

‖F(u)‖L∞ (Ω) ≤ k1β‖K f (u)‖L∞ (Ω) + k1βh + k2

≤ βk1(c1‖u‖∞ + c2) + k1βh + k2.

Thus, we conclude the result.
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Proposition 2.3. Suppose, in addition to the hypotheses from Proposition 2.2, that the
function f satisfies

| f (x)− f (y)| ≤ c0(1 + |x|p−1 + |y|p−1)|x − y|, for any (x, y) ∈ R × R. (2.13)

Then the function F given by (2.6) is Lipschitz continuous on bounded sets of Lp(Ω),
1 ≤ p ≤ ∞.

Proof. Initially, suppose 1 < p < ∞. Then, for any u ∈ Lp(Ω), using (2.7) and
(2.4), we have

|K f (u)(x)| ≤ ‖J‖q‖ f (u)‖Lp(Ω)

= ‖J‖q




∫

Ω

| f (u(x))|p dx




1
p

≤ ‖J‖q




∫

Ω

[c1|u(x)| + c2]
pdx




1
p

≤ ‖J‖q(c1‖u‖Lp(Ω) + ‖c2‖Lp(Ω))

= c1‖J‖q‖u‖Lp(Ω) + c2‖J‖q|Ω|
1
p .

In particular, if u is in a ball centered at origin of Lp(Ω) with radius r, it follows
that

|K f (u)(x)| ≤ c1‖J‖qr + c2‖J‖q|Ω|
1
p .

Then, if l = β(c1‖J‖qr + c2‖J‖q|Ω|
1
p + h) and N denotes the Lipschitz constant of

g in the interval [−l, l] ⊂ R, for u, v ∈ Lp(Ω) with ‖u‖Lp(Ω) ≤ r and ‖v‖Lp(Ω) ≤ r,
we have

‖F(u) − F(v)‖Lp(Ω) = ‖g(βK f (u) + βh)− g(βK f (v) + βh)‖Lp(Ω)

=




∫

Ω

|g(βK f (u) + βh)(x) − g(βK f (v) + βh)(x)|pdx





1
p

≤




∫

Ω

|Nβ|p|K f (u)(x) − K f (v)(x)|pdx





1
p

= Nβ‖K( f (u) − f (v))‖Lp(Ω). (2.14)
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Now, using (2.13) and Hölder Inequality, it follows that
‖ f (u)− f (v)‖L1(Ω)

≤
∫

Ω

c0(1 + |u(x)|p−1 + |v(x)|p−1)|u(x)− v(x)|dx

≤ c0



∫

Ω

(
1 + |u(x)|p−1 + |v(x)|p−1

)q
dx




1
q


∫

Ω

|u(x)− v(x)|pdx




1
p

≤ c0

[
‖1‖Lq(Ω) + ‖up−1‖Lq(Ω) + ‖vp−1‖Lq(Ω)

]
‖u − v‖Lp(Ω)

≤ c0[|Ω|
1
q + ‖u‖

p
q

Lp(Ω)
+ ‖v‖

p
q

Lp(Ω)
]‖u − v‖Lp(Ω), (2.15)

where q is the conjugate exponent of p. Thus, using (2.9) and (2.15), it follows that

‖K f (u) − K f (v)‖Lp(Ω) ≤ ‖J‖p‖ f (u) − f (v)‖L1(Ω)

≤ c0‖J‖p[|Ω|
1
q + ‖u‖

p
q

Lp(Ω)
+ ‖v‖

p
q

Lp(Ω)
]‖u − v‖Lp(Ω). (2.16)

From (2.14) and (2.16), it follows that, for u, v ∈ Lp(Ω) with ‖u‖Lp(Ω) < r and
‖v‖Lp(Ω) < r, we have

‖F(u) − F(v)‖Lp(Ω) ≤ Nβc0[‖J‖p[|Ω|
1
q + ‖u‖

p
q

Lp(Ω)
+ ‖v‖

p
q

Lp(Ω)
]‖u − v‖Lp(Ω)]

≤ Nβc0‖J‖p[|Ω|
1
q + 2‖r‖

p
q

Lp(Ω)
]‖u − v‖Lp(Ω),

showing that F is Lipschitz on bounded sets of Lp(Ω).
If p = 1 the proof is more simpler. In fact, for u, v ∈ L1(Ω), with ‖u‖L1(Ω) ≤ r

and ‖v‖L1(Ω) ≤ r, from (2.4), it follows that

|K f (u)(x)| ≤ ‖J‖∞‖ f (u)‖L1 ≤ ‖J‖∞(c1‖u‖L1 + c2|Ω|),

and from (2.13), it follows that

| f (x)− f (y)| ≤ c0|x − y|, for any (x, y) ∈ R
N × R

N.

Thus
|K( f (u) − f (v))(x)| ≤ c0‖J‖∞‖u − v‖L1 .

Hence, if N denotes the Lipschitz constant of g in the interval [−l, l] ⊂ R, where
now l = β‖J‖∞(c1r + c2|Ω|) + βh, we have

|F(u)(x) − F(v)(x)| ≤ Nβc0‖J‖∞‖u − v‖L1(Ω).

Then

‖F(u) − F(v)‖L1(Ω) ≤ Nβc0‖J‖∞|Ω|‖u − v‖L1(Ω).
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Suppose, finally, that ‖u‖L∞(Ω) ≤ r, ‖v‖L∞(Ω) ≤ r. Then

|K f (u)(x)| ≤ ‖J‖1‖ f (u)‖∞

≤ ‖J‖1[c1‖u‖∞ + c2]

≤ ‖J‖1[c1r + c2].

Now, if M denotes the Lipschitz constant of f in the interval [−r, r] ⊂ R, we have

|K f (u)(x) − K f (v)(x)| ≤ ‖J‖1‖ f (u) − f (v)‖∞ ≤ ‖J‖1M‖u − v‖∞.

Thus, if N denotes the Lipschitz constant of g in the interval [−l, l] ⊂ R, where
now l = β‖J‖1(c1r + c2) + βh, it follows that

‖F(u) − F(v)‖L∞ (Ω) ≤ βNM‖J‖1‖u − v‖∞.

From Proposition 2.3, it follows from well known results, on ordinary differ-
ential equation in Banach space, that the problem (2.5) has a local solution for
arbitrary initial condition in X. For the global existence, we need the following
result ([22] - Theorem 5.6.1).

Theorem 2.4. Let X be a Banach space, and suppose that g : [t0, ∞[×X → X is
continuous and ‖g(t, u)‖ ≤ h(t, ‖u‖); ∀ (t, u) ∈ [t0, ∞[×X, where h : [t0, ∞[×R

+ →
R

+ is continuous and h(t, r) is non decreasing in r ≥ 0, for each t ∈ [t0, ∞[. Then, if
the maximal solution r(t, t0, r0) of the scalar initial value problem

r′ = h(t, r), r(t0) = r0,

exists throughout [t0, ∞[, the maximal interval of existence of any solution u(t, t0, u0) of
the initial value problem

du

dt
= g(t, u), t ≥ t0, u(t0) = u0,

with ‖u0‖ ≤ r0, also contains [t0, ∞[.

Corollary 2.5. Suppose the same hypotheses from Proposition 2.3. Then the problem
(2.5) has a unique globally defined solution for arbitrary initial condition in X, which is
given, for t ≥ t0, by the “variation of constants formula”

u(t, x) =






e−(t−t0)u0(x) +

t∫

t0

e−(t−s)g(βK f (u(s, ·))(x) + βh)ds, x ∈ Ω,

0, x ∈ R
N \ Ω.

(2.17)

Proof. From Proposition 2.3, it follows that the right-hand-side of (2.5) is Lipschitz
continuous in bounded sets of X and, therefore, the Cauchy problem (2.5) is well
posed in X, with a unique local solution u(t, x), given by (2.17) (see [7]).

If 1 ≤ p < ∞, from (2.12), we obtain that the right-hand-side of (2.5) satisfies

‖ − u + F(u)‖Lp (Ω) ≤

(1 + βk1c1‖J‖p|Ω|
1
q )‖u‖Lp(Ω) + βk1‖J‖pc2|Ω|+ (k1βh + k2)|Ω|

1
p .
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If p = ∞, we have that the right-hand-side of (2.5) satisfies

‖ − u + F(u)‖∞ ≤ (1 + k1βc1)‖u‖∞ + k1(βc2 + βh) + k2.

Hence, defining h : [t0, ∞[×R
+ → R

+, by

h(t, r) = (1 + βk1c1‖J‖p|Ω|
1
q )r + βk1‖J‖pc2|Ω|+ (k1βh + k2)|Ω|

1
p ,

if 1 ≤ p < ∞ or by

h(t, r) = (1 + k1βc1)r + k1(βc2 + βh) + k2,

in the case p = ∞, it follows that (2.5) satisfies the hypotheses from Theorem 2.4
and the global existence follows immediately. The variation of constants formula
can be easily verified by direct derivation.

3 Smoothness of the solutions

In this section, in addition the hypotheses from previous section, we assume that
the functions g, f ∈ C 1(R), and g′ and f ′ are locally Lipschitz and there exist non
negative constants k3, k4, c3 and c4, such that

|g′(x)| ≤ k3|x|+ k4, ∀, x ∈ R, (3.18)

| f ′(x)| ≤ c3|x|+ c4, ∀, x ∈ R. (3.19)

The following result has been proven in [26].

Proposition 3.1. Let X and Y be normed linear spaces, F : X → Y a map and suppose
that the Gateaux’s derivative of F, DF : X → L(X, Y) exists and is continuous at x ∈ X.
Then the Fréchet’s derivative F′ of F exists and it is continuous at x.

Using Proposition 3.1, we have the following result:

Proposition 3.2. Suppose, in addition to the hypotheses of Corollary 2.5 that the func-
tions g and f have derivatives satisfying (3.18) and (3.19), respectively. Then F is con-
tinuously Fréchet differentiable on X with derivative given by

DF(u)v(x) :=

{
−v(x) + g′(βK f (u)(x) + βh)βK f ′(u(x))v(x), x ∈ Ω,
0, x ∈ R

N \ Ω.

Proof. From a simple computation, using the fact that f is continuously differen-
tiable on R, it follows that the Gateaux’s derivative of F is given by

DF(u)v(x) :=

{
−v(x) + g′(βK f (u)(x) + βh)βK f ′(u(x))v(x), x ∈ Ω,
0, x ∈ R

N \ Ω.

The operator DF(u) is clearly a linear operator in X.
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Suppose 1 ≤ p < ∞ and q the conjugate exponent of p. Then, if u ∈ Lp(Ω),
using (3.18) and (2.7), it follows that

‖g′(βK f (u) + βh)βK f ′(u)v‖Lp(Ω)

≤





∫

Ω

|g′(βK( f (u)(x)) + βh)βK( f ′(u(x)))v(x)|p dx





1
p

≤

{ ∫

Ω

[
k3β|K( f (u)(x))| + k3βh + k4

]p

βp|K( f ′(u(x)))v(x)|p dx

} 1
p

≤

{ ∫

Ω

[k3β‖J‖q‖ f (u)‖Lp (Ω) + k3βh + k4]
pβp[‖J‖q‖ f ′(u)‖Lp(Ω)|v(x)|

pdx

} 1
p

.

Thus, from (2.4) and (3.19), we have

‖g′(βK f (u) + βh)βK f ′(u)v‖Lp(Ω) ≤

≤

{ ∫

Ω

[k3β‖J‖q(c1‖u‖Lp(Ω) + c2|Ω|
1
p )

+k3βh + k4]
pβp[‖J‖q(c3‖u‖Lp(Ω) + c4|Ω|

1
p )|v(x)|pdx

} 1
p

= (k3β‖J‖q(c1‖u‖Lp(Ω) + c2|Ω|
1
p )

+k3βh + k4)β‖J‖q(c3‖u‖Lp(Ω) + c4|Ω|
1
p )‖v‖Lp(Ω). (3.20)

From (3.20), we have

‖DF(u)v‖Lp (Ω) =
(

k3β‖J‖q

(
c1‖u‖Lp(Ω) + c2|Ω|

1
p

)

+k3βh + k4) β‖J‖q

(
c3‖u‖Lp(Ω) + c4|Ω|

1
p

)
‖v‖Lp(Ω),

showing that DF(u) is a bounded operator. In the case p = ∞, we have that

‖DF(u)v‖L∞ (Ω) = ‖g′(βK f (u) + βh)βK f ′(u)v‖∞

≤ (k3β‖K f (u)‖∞ + k3βh + k4)β‖K ◦ ( f ′(u))‖∞‖v‖∞

≤ (k3β‖J‖1(c1‖u‖L∞(Ω) + c2)

+k3βh + k4)β‖J‖1(c3‖u‖L∞(Ω) + c4)‖v‖∞

≤ (k3β(c1‖u‖L∞(Ω) + c2) + k3βh + k4)β(c3‖u‖L∞(Ω) + c4)‖v‖∞

showing the boundedness of DF(u) also in this case.
Suppose now that u1, u2 and v belong to Lp(Ω), 1 ≤ p < ∞. Then

‖(DF(u1)− DF(u2))v‖Lp(Ω) =

= ‖g′(βK f (u1) + βh)βK f ′(u1)v − g′(βK f (u2) + βh)βK f ′(u2)v‖Lp(Ω)

≤ I + I I,



100 S. H. da Silva – A. R. G. Garcia – B. E. P. Lucena

where

I = ‖[g′(βK f (u1) + βh)− g′(βK f (u2) + βh)]βK f ′(u1)v‖Lp(Ω)

and
I I = ‖g′(βK f (u2) + βh)βK([ f ′ (u1)− f ′(u2)])v‖Lp(Ω).

Fixed u1 ∈ Lp(Ω) and letting u2 → u1 in Lp(Ω) it follows that βK f (u2)+ βh is
in a ball of L∞ centered at βK f (u1) + βh. Then, since g′ is locally Lipschitz, there
exists C > 0, such that

|g′(βK f (u1) + βh)(x) − g′(βK f (u2) + βh)(x)| ≤ Cβ|K[ f (u1)− f (u2)](x)|

≤ Cβ‖J‖q‖u1 − u2‖Lp(Ω).

Thus, using (2.7), we have that

I ≤




∫

Ω

|(Cβ‖J‖q‖u1 − u2‖Lp(Ω))
pβp|K f ′(u1)(x)|

p |v(x)|p




1
p

≤ Cβ‖J‖q‖u1 − u2‖Lp(Ω)β




∫

Ω

|K f ′(u1)(x)|
p |v(x)|p




1
p

≤ Cβ2‖J‖q‖u1 − u2‖Lp(Ω)




∫

Ω

[‖J‖q‖ f ′(u1)‖Lp(Ω)]
p|v(x)|p




1
p

.

But, from (3.19) it follows that

‖ f ′(u1)‖Lp(Ω) ≤ c3‖u1‖Lp(Ω) + c4|Ω|
1
p .

Hence,

I ≤ Cβ2‖J‖q‖u1 − u2‖Lp(Ω)‖J‖q(c3‖u1‖Lp(Ω) + c4|Ω|
1
p )‖v‖Lp(Ω). (3.21)

Now, using (3.18) and (2.7), we obtain

|g′(βK f (u2)(x)) + βh)| ≤ k3β|K f (u2(x))| + k3βh + k4

≤ k3β‖J‖q‖ f (u2)‖Lp(Ω) + k3βh + k4

≤ k3β‖J‖q

(
c1‖u2‖Lp(Ω) + c2|Ω|

1
p

)
+ k3βh + k4.

Whence we obtain

I I ≤ [k3β‖J‖q(c1‖u2‖Lp(Ω) + c2|Ω|
1
p ) + k3βh + k4]β‖K[ f ′(u1)− f ′(u2)]‖Lp(Ω).

Using (2.9) and Hölder inequality, we have

I I ≤
[
k3β‖J‖q

(
c1‖u2‖Lp(Ω) + c2|Ω|

1
p

)
+ k3βh + k4

]

β‖J‖p‖[ f
′(u1)− f ′(u2)]v‖L1(Ω) (3.22)

≤
[
k3β‖J‖q

(
c1‖u2‖Lp(Ω) + c2|Ω|

1
p

)
+ k3βh + k4

]

β‖J‖p‖[ f
′(u1)− f ′(u2)]v‖Lq(Ω)‖v‖Lp(Ω).
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From (3.21) and (3.22), it follows that

‖[DF(u1)− DF(u2)]v‖Lp(Ω) ≤

≤ cβ2‖J‖q‖u1 − u2‖Lp(Ω)‖J‖q

(
c3‖u1‖Lp(Ω) + c4|Ω|

1
p

)
‖v‖Lp(Ω)

+
[
k3β‖J‖q(c1‖u2‖Lp(Ω) + c2|Ω|

1
p ) + k3βh + k4

]

β‖J‖p‖ f ′(u1)− f ′(u2)v‖Lq(Ω)‖v‖Lp(Ω).

Thus, to prove continuity of the derivative, it is enough to show that

‖ f ′(u1)− f ′(u2)‖Lq(Ω) → 0

when
‖u1 − u2‖Lp(Ω) → 0.

But, from the growth condition on f ′ it follows that

| f ′(u1)(x)− f ′(u2)(x)|
q ≤ [c3(|u1(x)|+ |u2(x)|) + 2c4]

q

and a simple computation show that the right-hand is in L1(Ω). Then the result
follows from Lebesgue’s Convergence Theorem.

In the case p = ∞, from (2.8), we obtain

‖[DF(u1)− DF(u2)]v‖L∞(Ω) ≤

≤ cβ‖K[ f ′(u1)− f ′(u2)]‖L∞(Ω)β‖K f ′(u1)v‖∞

+(k3β‖K f (u2)‖∞ + k3βh + k4)β‖K[ f ′(u1)− f ′(u2)]‖L∞(Ω)‖v‖L∞(Ω)

≤ cβ‖J‖1‖ f ′(u1)− f ′(u2)‖L∞(Ω)β‖J‖1‖ f ′(u1)‖∞‖v‖∞

+(k3β‖J‖1‖ f (u2)‖∞ + k3βh + k4)β‖J‖1‖ f ′(u1)− f ′(u2)‖L∞(Ω)‖v‖L∞(Ω)

≤ cβ‖ f ′(u1)− f ′(u2)‖L∞(Ω)β(c3‖u‖L∞(Ω) + c4)‖v‖∞

+(k3β(c1‖u‖L∞(Ω) + c2) + k3βh + k4)β‖ f ′(u1)− f ′(u2)‖L∞(Ω)‖v‖L∞(Ω).

And the continuity of DF follows from the continuity of f ′. Therefore, it follows
from Proposition 3.1 that F is Fréchet differentiable with continuous derivative in
Lp(Ω).

Remark 3.3. From Proposition 3.2, it follows that the flow generated by (2.5), given by
(T(t)u0)(x) = u(x, t), where u(x, t) is given in (2.17), is C 1 with respect to initial
condition (see [19]).

4 Existence of a global attractor

We prove, in this section, the existence of a global maximal invariant compact set
A ⊂ X ≡ Lp(Ω) for the flow of (2.5), which attracts each bounded set of X (the
global attractor, see [18] and [29]).

We recall that a set B ⊂ X is an absorbing set for the flow T(t) if, for any
bounded set C ⊂ X, there is a t1 > 0 such that T(t)C ⊂ B for any t ≥ t1.

The following result was proven in [29].
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Theorem 4.1. Let X be a Banach space and T(t) a semigroup on X. Assume that, for
every t, T(t) = T1(t) + T2(t), where the operators T1(·) are uniformly compact for t
sufficiently large, that is, for every bounded set B there exists t0, which may depend on B,
such that

⋃

t≥t0

T1(t)B

is relatively compact in X and T2(t) is a continuous mapping from X into itself such that
the following holds: For every bounded set C ⊂ X,

rc(t) = sup
ϕ∈C

‖T2(t)ϕ‖X → 0 as t → ∞.

Assume also that there exists an open set U and bounded subset B of U such that B is
absorbing in U . Then the ω-limit set of B, A = ω(B), is a compact attractor which
attracts the bounded sets of U . It is the maximal bounded attractor in U (for the inclusion
relation). Furthermore, if U is convex and connected, then A is connected.

Lemma 4.2. Assume that (2.3) and (2.4) hold with k1βc1 < 1. Then, for any positive
number σ, the ball of radius

R = (1 + σ)

(
k1βc2 + k1βh + k2

1 − k1βc1

)

is an absorbing set for the flow T(t) generated by (2.5).

Proof. If u(·, t) is a solution of (2.5) with initial condition u(·, 0) then, for
1 ≤ p < ∞,

d

dt

∫

Ω

|u(x, t)|pdx =
∫

Ω

p|u(x, t)|p−1sgn[u(x, t)]ut(x, t)dx

= −p
∫

Ω

|u(x, t)|pdx

+p
∫

Ω

|u(x, t)|p−1sgn[u(x, t)]g(βK f (u(x, t)) + βh)dx.
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But, using Hölder inequality, (2.3) and (2.4), it follows that
∫

Ω

|u(x, t)|p−1sgn[u(x, t)]g(βK f (u(x, t)) + βh)dx ≤

≤



∫

Ω

(|u(x, t)|p−1)qdx




1
q


∫

Ω

|g(βK f (u(x, t)) + βh)|pdx




1
p

≤



∫

Ω

|u(x, t)|pdx




1
q



∫

Ω

(k1|βK f (u(x, t)) + βh| + k2)
pdx




1
p

≤ ‖u(·, t)‖
p−1
Lp(Ω)

(
k1β‖K( f (u(·, t)))‖Lp (Ω) + ‖k1βh + k2‖Lp(Ω)

)

≤ ‖u(·, t)‖
p−1
Lp(Ω)

(
k1β‖J‖1‖ f (u(·, t))‖Lp (Ω) + (k1βh + k2)|Ω|

1
p

)

≤ ‖u(·, t)‖
p−1
Lp(Ω)

(
k1β

(
c1‖u(·, t)‖Lp (Ω) + c2|Ω|

1
p

)
+ (k1βh + k2)|Ω|

1
p

)

= k1βc1‖u(·, t)‖
p

Lp(Ω)
+

(
k1βc2|Ω|

1
p + (k1βh + k2)|Ω|

1
p

)
‖u(·, t)‖

p−1
Lp(Ω)

.

Thus, we have that

d

dt
‖u(·, t)‖

p

Lp(Ω)
≤ −p‖u(·, t)‖

p

Lp (Ω)
+ pk1βc1‖u(·, t)‖

p

Lp(Ω)

+p
[

k1βc2|Ω|
1
p + (k1βh + k2)|Ω|

1
p

]
‖u(·, t)‖

p−1
Lp(Ω)

= p‖u(·, t)‖
p

Lp (Ω)

[
−1 + k1βc1 +

[k1βc2 + k1βh + k2] |Ω|
1
p

‖u(·, t)‖Lp(Ω)

]
.

Letting ε = 1 − k1βc1, when

‖u(·, t)‖Lp (Ω) ≥ (1 + σ)
(k1βc2 + k1βh + k2) |Ω|

1
p

ε
,

we have that

d

dt
‖u(·, t)‖

p

Lp(Ω)
≤ p‖u(·, t)‖

p

Lp (Ω)

(
−ε +

ε

1 + σ

)
= −p

σ

1 + σ
ε‖u(·, t)‖

p

Lp (Ω)
.

Therefore when ‖u(·, t)‖Lp(Ω) ≥ (1 + σ) (
k1βc2+k1βh+k2)|Ω|

1
p

ε ,

‖u(·, t)‖
p

Lp (Ω)
≤ e−

εσp
1+σ t‖u(·, 0)‖Lp(Ω) ≤ e−

σp(1−k1βc1)
1+σ t‖u(·, 0)‖Lp(Ω),

what concludes the proof.

The next result is an extension for Theorem 3.3 of [25], Theorem 3.3 of [3] and
Theorem 8 of [10].
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Theorem 4.3. In addition of the hypotheses assumed in Lemma 4.2, suppose that (3.18)

holds and lets ‖Jx‖r = supx∈Ω

∂
∂x‖J(x, ·)‖Lr(Ω). Then there exists a global attractor A

for the flow T(t) generated by (2.5) in Lp(Ω), which is contained in the ball of radius R.

Proof. If u(·, t) is the solution of (2.5) with initial condition u(·, 0). For x ∈ Ω we
have, by the variation of constants formula,

u(x, t) = e−tu(x, 0) +
t∫

0

es−tg(βK f (u)(x, s) + βh)ds. (4.23)

Consider

T1(t)u(x) = e−tu(x, 0)

and

T2(t)u(x) =

t∫

0

es−tg(βK f (u)(x, s) + βh)ds.

Then, assuming that u(·, 0) ∈ C, where C is a bounded set in Lp(Ω), (for example
B(0, ρ)), it follows that

‖T1(t)u‖L2 −→
t→∞

0 uniformly in u.

Also, using (4.23), we have that ‖u(·, t)‖Lp(Ω) ≤ L, for t ≥ 0, where

L = max

{
ρ,

2 (k1βc2 + k1βh + k2) |Ω|
1
p

1 − k1βc1

}
.

Therefore, for t ≥ 0, we have that

∂T2(t)u(x)

∂x
=

t∫

0

es−t ∂

∂x
g(βK f (u)(x, s) + βh)ds

= β

t∫

0

es−tg′(βK f (u)(x, s) + βh)
∂K f (u)

∂x
(x, s)ds.
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Thus, using (3.18) and (2.9), we obtain

∥∥∥∥
∂T2(t)u

∂x

∥∥∥∥
Lp(Ω)

≤

t∫

0

es−t‖g′(βK f (u)(·, s) + βh)β
∂K f (u)

∂x
(·, s)‖Lp(Ω)ds

≤

t∫

0

es−t[k3β‖J‖1‖ f (u(·, s))‖Lp (Ω)

+ k3βh + k4]β‖Jx‖1‖ f (u(·, s))‖Lp (Ω)ds

≤

t∫

0

es−t[k3β(c1‖u(·, s)‖Lp(Ω) + c2|Ω|
1
p )

+ k3βh + k4]β‖Jx‖1(c1‖u(·, s)‖Lp(Ω) + c2|Ω|
1
p )ds

≤ [k3β(c1‖u(·, s)‖Lp(Ω) + c2|Ω|
1
p )

+ k3βh + k4]β‖Jx‖1(c1‖u(·, s)‖Lp(Ω) + c2|Ω|
1
p )

≤ [k3β(c1L + c2|Ω|
1
p ) + k3βh + k4]β‖Jx‖1(c1L + c2|Ω|

1
p ).

It follows that, for t > 0 and for any u ∈ C, the value of
∥∥∥ ∂T2(t)u

∂x

∥∥∥
Lp(Ω)

is

bounded by a constant (independent of t and u). Thus, for all u ∈ C, we have
that T2(t)u belongs to a ball of W1,2(Ω). From Sobolev’s Imbedding Theorem, it
follows that ⋃

t≥0

T2(t)C

is relatively compact. Therefore, the result follows from Theorem 4.1, with the
attractor A being the set ω-limit of the ball B(0, R).

5 Comparison and boundedness results

In this section we prove a comparison result that extends the Theorem 2.7 of [24]
(where g ≡ tanh, f (x) = x, ∀ x ∈ R and h = 0) and it extends Theorem 4.2 of
[25] (where f (x) = x, ∀ x ∈ R).

Definition 5.1. A function v(x, t) is a subsolution of the Cauchy problem for (2.5) with
initial condition u(·, 0) if v(x, 0) ≤ u(x, 0) for almost all x ∈ Ω, v is continuously
differentiable with respect to t and satisfies

∂v(x, t)

∂t
≤ −v(x, t) + g(βK f (v)(x, t) + βh), (5.24)

almost everywhere (a.e.).

Analogously, a function V(x, t) is a super solution if it has the same regularity
properties as above, satisfies (5.24) with reversed inequality and V(x, 0) ≥ u(x, 0)
for almost all x ∈ Ω.
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Theorem 5.2. In addition to the hypotheses of Theorem 4.3, assume that the functions
g and f are monotonic and Lipschitz continuous on bounded with Lipschitz’s constants
N and M, respectively. Let v(w, t), [V(w, t)] be a subsolution [super solution] of the
Cauchy problem of (2.5) with initial condition u(·, 0). Then

v(x, t) ≤ u(x, t) ≤ V(x, t), a.e..

Proof. Define the operator G on L∞(Ω × [0, T]) by

G(w)(x, t) = e−tw(x, 0) +
t∫

0

e−(t−s)g(β(K f (w)(x, s) + h))ds.

Then (G(w))(x, 0) = w(x, 0). Also, since f and g are monotonic, it follows that
G is monotonic, that is, for any w1, w2 ∈ L∞(Ω × [0, T]) with w1 ≥ w2 (a.e. in
Ω × [0, T]), we have G(w1) ≥ G(w2) (a.e. in Ω × [0, T]).

From (2.7), we obtain

|G(w)(x, t)| ≤ e−t|w(x, 0)|+
t∫

0

e−(t−s)|g(βK f (w)(x, s) + βh)|ds

≤ e−t|w(x, 0)|+
t∫

0

e−(t−s)[k1|βK f (w)(x, s) + βh|+ k2]ds

≤ e−t|w(x, 0)|+
t∫

0

e−(t−s)k1β|K f (w)(x, s)|ds

+

t∫

0

e−(t−s)(k1βh + k2)ds.

Since |K f (w)(x, s)| ≤ ‖J‖1‖ f (w)‖∞ ≤ k1‖w‖∞ + k2 a.e. in Ω × [0, T], we obtain

‖G(w)‖∞ ≤ e−t‖w(·, 0)‖∞ +

t∫

0

e−(t−s)k1β(k1‖w‖∞ + k2)ds

+

t∫

0

e−(t−s)(k1βh + k2)ds

≤ ‖w‖∞ + k1β(k1‖w‖∞ + k2) + (k1βh + k2).

Therefore G : L∞(Ω × [0, T]) → L∞(Ω × [0, T]).
Furthermore, if βNMT < 1, G is a contraction in any subset of functions of

L∞(Ω × [0, T]) with the same values at t = 0. In fact
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|G(w1)(x, t)− G(w2)(x, t)|

=

∣∣∣∣∣∣

t∫

0

e−(t−s)[g(β(K f (w1)(x, s) + βh)− g(β(K f (w2)(x, s) + βh)]ds

∣∣∣∣∣∣

≤

t∫

0

e−(t−s)Nβ|K f (w1)(x, s)− K f (w2)(x, s)|ds

≤

t∫

0

e−(t−s)Nβ(K| f (w1)− K f (w2)|(x, s))ds

≤

t∫

0

e−(t−s)NβK‖ f (w1)− f (w2)‖∞ds

= NβT‖ f (w1)− f (w2)‖∞

t∫

0

e−(t−s)ds

≤ NβMT‖w1 − w2‖∞,

a.e. in Ω × [0, T]. Hence ‖G(w1)− G(w2)‖∞ ≤ βNMT‖w1 − w2‖∞. Therefore,
if βNMT < 1, G is a contraction. Thus, if u(x, t) is a solution of (2.5) with
u0 = u(x, 0), we have

u = lim
n→∞

Gn(u0)

on L∞(Ω × [0, T]). The same holds for a solution ũ with ũ0 = ũ(x, 0). If ũ0 ≤ u0

a.e., with g and f monotonic, it follows that

Gn(ũ0) ≤ Gn(u0), a.e.

Now, if v is a subsolution of (2.5), it’s easy to see that

v(x, t) ≤ e−tv(x, 0) +
t∫

0

e−(t−s)g(β(K f (v)(x, s) + h))ds, a.e.

Therefore v(x, t) ≤ G(v)(x, t), a.e., and since g and f are monotonic, it follows
that v(w, t) ≤ Gn(v)(x, t) a.e. Thus, v(x, t) ≤ z(x, t), a.e., where

z = lim
n→∞

Gn+1(v).

Now, from the continuity of G, it follows that

G(z) = G
(

lim
n→∞

Gn(v)
)
= lim

n→∞
Gn+1(v) = z.

Therefore z is a fixed point of G, that is, z is a solution of (2.5) in Ω × [0, T] with
initial condition z(·, 0) = v(·, 0). Thus, if z(·, 0) ≤ u(·, 0), a.e., then

v ≤ z ≤ u, a.e. in Ω × [0, T],
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where u is the solution of (2.5) with initial condition u(·, 0). If V(x, t) is a super
solution, we obtain, by the same arguments

u ≤ z̃ ≤ V, a.e. in Ω × [0, T].

Therefore
v(x, t) ≤ u(x, t) ≤ V(x, t), a.e.

in Ω × [0, T].
Since the estimates above do not depend on the initial condition, we may

extend the result to [T, 2T] and, by iteration, we can complete the proof of the
theorem.

Remark 5.3. If we add the hypothesis g(x) < ρ, the comparison result holds in the ball
B = {L∞(Ω × [0, T]), ‖ · ‖∞ ≤ ρ}.

In fact, it is enough to prove that G|B : B → B. But

|(G|B(w))(x, t)| ≤ e−t|w(x, 0)| + ρ

t∫

0

e−(t−s)ds.

Hence

‖(G|B(w))‖∞ ≤ e−t‖w‖∞ + ρ

t∫

0

e−(t−s)ds ≤ ρe−t + ρ

t∫

0

e−(t−s)ds = ρ.

Therefore, G|B(w) ∈ B.

Theorem 5.4. In the same conditions from Theorem 4.3, we have that the attractor A

belongs to the ball ‖ · ‖∞ ≤ ρ in L∞(Ω), where ρ = k1β‖J‖qc1R + k1β‖J‖qc2|Ω|
1
p +

k1βh + k2.

Proof. From Theorem 4.3 the attractor is contained in the ball B[0, ρ] in Lp(Ω).
Let u(x, t) be a solution of (2.5) in A. Then, for x ∈ Ω, by the variation of

constants formula

u(x, t) = e−(t−t0)u(x, t0) +

t∫

t0

e−(t−s)g(βK f (u)(x, s) + βh)ds.

Since ‖u(·, t)‖Lp(Ω) ≤ R for all u ∈ A, we obtain for all (x, t) ∈ Ω × R
+ letting

t0 → −∞

u(x, t) =

t∫

−∞

e−(t−s)g(βK f (u)(x, s) + βh)ds,
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where the equality above is in the sense of Lp(Ω). Thus, using (2.3), we have

|u(x, t)| ≤

t∫

−∞

e−(t−s)|g(βK f (u)(x, s) + βh)|ds

≤

t∫

−∞

e−(t−s)[k1β|K f (u(x, t)) + βh| + k2]ds

≤

t∫

−∞

e−(t−s)[k1β‖J‖q‖ f (u(·, t))‖Lp (Ω) + k1βh + k2]ds

≤

t∫

−∞

e−(t−s)[k1β‖J‖q(c1‖u(·, t)‖Lp(Ω) + c2|Ω|
1
p ) + k1βh + k2]ds

≤

t∫

−∞

e−(t−s)[k1β‖J‖q(c1R + c2|Ω|
1
p ) + k1βh + k2]ds

≤

t∫

−∞

ρe−(t−s)ds.

Therefore ‖u(·, t)‖∞ ≤ ρ, as claimed

6 Existence of a Lyapunov’s functional

In this section we exhibit a continuous “Lyapunov’s functional” for the flow of
(2.5), restricted to the ball of radius ρ in L∞(Ω), concluding that this flow is gra-
dient, in the sense of [18].

Initially, we claim that {Lp(Ω), ‖ · ‖∞ ≤ ρ} is an invariant set for the flow
generated by (2.5).

In fact, let

u(x, t) = e−tu(x, 0) +
t∫

0

e−(t−s)g(βK f (u(x, s)) + βh)ds

be the solution of (2.5) with initial condition u(·, 0) ∈ {Lp(Ω), ‖ · ‖∞ ≤ ρ}. Then
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|u(x, t)| ≤ e−t|u(x, 0)| +
t∫

0

e−(t−s)|g(βK f (u(x, s)) + βh)|ds

≤ e−t|u(x, 0)| +
t∫

0

e−(t−s)[k1β|K f (u(x, t)) + βh|+ k2]ds

≤ e−t|u(x, 0)| +
t∫

0

e−(t−s)[k1β‖J‖q‖ f (u(·, t))‖Lp (Ω) + k1βh + k2]ds

≤ e−t|u(x, 0)| +
t∫

0

e−(t−s)[k1β‖J‖q(c1‖u(·, t)‖Lp(Ω) + c2|Ω|
1
p )

+k1βh + k2]ds

≤ e−t|u(x, 0)| +
t∫

0

e−(t−s)ρds.

Whence,

‖u(·, t)‖∞ ≤ e−t‖u(·, 0)‖∞ + ρ

t∫

0

e−(t−s)ds

≤ e−tρ + ρ

t∫

0

e−(t−s)ds

= ρ.

In order to exhibit a continuous “Lyapunov’s functional” for the flow of (2.5),
we assume that the functions f and g satisfy the following conditions:

0 < |g(x)| < ρ, ∀ x ∈ R, (6.25)

the function g−1 is continuous in ]− ρ, ρ[ and the function

θ(m) = −
1
2

f (m)2 − h f (m) − β−1i(m), m ∈ [−ρ, ρ], (6.26)

where i is defined by

i(m) = −

f (m)∫

0

g−1( f−1(s))ds, m ∈ [−ρ, ρ],

has a global minimum m in ]− ρ, ρ[.
Note that if (6.25) holds, it follows that (2.3) holds with k1 = 0 and k2 = ρ.
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Motivated by functionals that appear in [25, 11, 13, 21] and [24], we define the
functional F : {Lp(Ω), ‖u‖∞ ≤ ρ} → R by

F (u) =
∫

Ω

[θ(u(x)) − θ(m)]dx +
1
4

∫

Ω

∫

Ω

J(x, y)[ f (u(x)) − f (u(y))]2dxdy, (6.27)

where θ is given in (6.26), which has been adapted from functions considered in
[24] and [25].

Note that the functional in (6.27) is defined in the whole space {Lp(Ω),
‖u‖∞ ≤ ρ}. Furthermore, using the hypotheses on f and g and Lebesgue’s Dom-
inated Convergence Theorem, we obtain the following result:

Theorem 6.1. In addition to the hypotheses of Theorem 4.3, assume that the hypotheses
established in (6.25) and (6.26) hold. Then the functional given in (6.27) is continuous
in the topology of Lp(Ω).

Now, we are ready to prove the main result of this section.

Theorem 6.2. In addition of the hypotheses from Theorem 4.3, assume that the hypothe-
ses established in (6.25) and (6.26) hold and that f has positive derivative. Let u(·, t) be
a solution of (2.5) with ‖u(·, t)‖∞ ≤ ρ. Then F (u(·, t)) is differentiable with respect to
t for t > 0 and

d

dt
F (u(·, t)) = −I(u(·, t)) ≤ 0,

where, for any u ∈ Lp(Ω) with ‖u‖∞ ≤ ρ,

I(u(·)) =
∫

Ω

[K( f (u)(x))

+ h − β−1g−1(u(x))][g(βK( f (u)(x)) + βh)− u(x)] f ′(u(x))dx.

Furthermore, the integrand in I(u(·)) is a non negative function and, u is a critical point
of F if only if u is an equilibrium of (2.5).

Proof. From hypotheses on g and f , it follows that F (u(·, t)) is well defined for all
t ≥ 0. We assume first that, given t > 0, there exists ε > 0 such that ‖u(·, s)‖∞ ≤
ρ − ε, for s ∈ ∆ where ∆ is a closed finite interval containing t. For s ∈ ∆ we write

F (u(·, s)) =
∫

Ω

φ(x, s)dx and I(u(·, s)) =
∫

Ω

ι(x, s)dx.

As

∂φ

∂s
(x, s) = [− f (u(x, s)) − h + β−1g−1(u(x, s))] f ′(u(x, s))

∂

∂s
u(x, s)

+
1
2

∫

Ω

J(x, y)[ f (u(x, s)) − f (u(y, s))]

⋆

[
f ′(u(x, s))

∂u(x, s)

∂s
− f ′(u(y, s))

∂u(y, s)

∂s

]
dy,
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the hypotheses on g, f and f ′ imply that ∂φ(x,s)
∂s is almost everywhere continuous

and bounded in x for s ∈ ∆. Thus

sup
s∈∆

∥∥∥∥
∂φ(·, s)

∂s

∥∥∥∥
L1

< ∞.

Therefore, we can derive under the integration sign getting

d

ds
F (u(·, s)) =

∫

Ω

[− f (u(x, s)) − h + β−1g−1(u(x, s))] f ′(u(x, s))
∂u(x, s)

∂s
dx

+
1
2

∫

Ω

∫

Ω

J(x, y)[ f (u(x, s)) − f (u(y, s))]

⋆

[
f ′(u(x, s))

∂u(x, s)

∂s
− f ′(u(y, s))

∂u(y, s)

∂s

]
dxdy.

But ∫

Ω

∫

Ω

J(x, y)[ f (u(x, s)) − f (u(y, s))]

⋆

[
f ′(u(x, s))

∂u(x, s)

∂s
− f ′(u(y, s))

∂u(y, s)

∂s

]
dxdy

=
∫

Ω

∫

Ω

J(x, y) f (u(x, s)) f ′ (u(x, s))
∂u(x, s)

∂s
dxdy

−
∫

Ω

∫

Ω

J(x, y) f (u(x, s)) f ′ (u(y, s))
∂u(y, s)

∂s
dxdy

−
∫

Ω

∫

Ω

J(x, y) f (u(y, s)) f ′(u(x, s))
∂u(x, s)

∂s
dxdy

+
∫

Ω

∫

Ω

J(x, y) f (u(y, s)) f ′(u(y, s))
∂u(y, s)

∂s
dxdy

= 2
∫

Ω

∫

Ω

J(x, y) f (u(x, s)) f ′(u(x, s))
∂u(x, s)

∂s
dxdy

−2
∫

Ω

∫

Ω

J(x, y) f (u(y, s)) f ′ (u(x, s))
∂u(x, s)

∂s
dxdy

= 2
∫

Ω



∫

Ω

J(x, y)dy


 f (u(x, s)) f ′(u(x, s))

∂u(x, s)

∂s
dx

−2
∫

Ω




∫

Ω

J(x, y) f (u(y, s))dy



 f ′(u(x, s))
∂u(x, s)

∂s
dx.

Using the fact that ∫

Ω

J(x, y)dy =
∫

Ω

J(x, y)dx = 1,
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it follows that

d

ds
F (u(·, s)) =

∫

Ω

[
− f (u(x, s)) − h + β−1g−1(u(x, s))

]
f ′(u(x, s))

∂u(x, s)

∂s
dx

+
∫

Ω

[ f (u(x, s)) − K f (u(x, s))] f ′(u(x, s))
∂u(x, s)

∂s
dx

=
∫

Ω

[
− f (u(x, s)) − h + β−1g−1(u(x, s)) + f (u(x, s))

− K f (u(x, s))

]
f ′(u(x, s))

∂u(x, s)

∂s
dx

= −
∫

Ω

[
K f (u(x, s)) + h − β−1g−1(u(x, s))

]
f ′(u(x, s))

∂u(x, s)

∂s
dx

= −
∫

Ω

[
K f (u(x, s)) + h − β−1g−1(u(x, s))

][
− u(x, s)

+ g(βK f (u(x, s)) + βh)
]

f ′(u(x, s))dx

= −I(u(·, s)).

This proves the first part of theorem with the additional hypothesis that
‖u(·, s)‖∞ ≤ ρ − ε, for s ∈ ∆ and some ε > 0, where ∆ is a closed finite inter-
val containing t.

Proceeding as [25] it is easy to see that this hypothesis actually holds for all
t > 0. In fact, let λ(x, t) be the solution of (2.5) such that λ(x, 0) = ρ for any
x ∈ Ω. Then λ(x, t) = λ(t), where

dλ

dt
= −λ(t) + g(β(λ(t) + h)).

Since |g(x)| < ρ, ∀ x ∈ R, it follows easily that λ(t) < ρ for any t > 0. As
u(x, 0) ≤ ρ, we obtain by the Comparison Theorem

u(x, t) ≤ λ(t) < ρ,

for almost every x ∈ Ω and t > 0. Repeating the same argument, starting from
inequality u(x, 0) ≥ −ρ, for almost every x ∈ Ω, we obtain u(x, t) ≥ −λ(t) > −ρ,
and thus

‖u(·, t)‖∞ ≤ λ(t) < ρ, ∀ t > 0

and the claim follows by continuity.
To conclude the proof, it is enough to show that u is a critical point of F if

and only if u is an equilibrium of (2.5). For this, let u(x) be a critical point of
the functional F , then I(u(·)) = 0. Since the integrand is non negative almost
everywhere, it follows that
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[(K f (u)(x)) + h − β−1g−1(u(x))] f ′(u(x))[g(β(K f (u)(x) + h))− u(x)] = 0

almost everywhere. Since f ′(u(x)) > 0, for all x ∈ R
N, we have that

[(K f (u)(x)) + h − β−1g−1(u(x))][g(β(K f (u)(x) + h))− u(x)] = 0

almost everywhere. But the annihilation of any of these factors implies that

g(βK f (u)(x) + βh) = u(x).

Reciprocally, if u is a equilibrium of (2.5), it is easy to see that I(u(·)) = 0.

As a immediate consequence of the existence of the functional F , we obtain
the following result.

Corollary 6.3. Under the same hypotheses of Theorem 6.2, there are no non trivial
recurrent points under the flow of (2.5).

Remark 6.4. The integrand in the functional F above is always non negative since J is
positive and m is a global minim of θ. Thus, F is lower bounded.

We recall that a Cr-semigroup, T(t), is gradient if each bounded positive orbit
is precompact and there exists a Lyapunov’s Functional for T(t) (see [18]).

Proposition 6.5. Assume the same hypotheses of Theorem 6.2. Then the flow generated
by equation (2.5) is gradient.

Proof. The precompacity of the orbits follows from the existence of the global
attractor (see Theorem 4.3). From Theorems 6.1 and 6.2, and Remark 6.4, we have
the existence of a continuous Lyapunov’s functional.

From Proposition 6.5, we have the following characterization of the attractor
(see [18] - Theorem 3.8.5).

Theorem 6.6. Assume the same assumptions of Proposition 6.5. Then the attractor A
is the unstable set of the equilibrium point set of T(t), that is, A = Wu(E).
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