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Abstract

We consider a planar vector field X near a saddle type p : −q resonant sin-
gular point. Assuming that it has a normal form with a Gevrey-d expansion
(like d = p + q which is in particular the case when starting from an ana-
lytic vector field) we show that X can be linearized working with a change
of coordinates that is of Gevrey order d in certain log-like variables, called
compensators or also tags, multiplied by the first integral u = xqyp of the
linear part. Next we consider the unfolding of such a resonance, and pro-
vide (weaker) Gevrey-type linearization using compensators.

1 Introduction

Let X be a planar vector field with a saddle type p : −q resonant singularity
at (0, 0), where p and q are positive integers with gcd(p, q) = 1. With this we
mean that the linear part of X at (0, 0) has eigenvalues λ > 0 > µ with a ratio
λ/µ = −p/q. When X is C∞ near (0, 0), there exists a C∞ change of variables
(a conjugacy) putting X in the following normal form:

Y(x, y) = x(λ + F(u))
∂

∂x
+ y(µ + G(u))

∂

∂y
(1)

where u = xqyp is the first integral of the linear part, where (F, G)(u) = O(u);
see for instance [8].
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Let us define the notion of Gevrey asymptotics for a formal power series:

Definition 1. Let n ≥ 1 be an integer. For x = (x1, . . . , xn) ∈ Cn and

k = (k1, . . . , kn) ∈ Nn we use the habitual multi-index notations xk = xk1
1 . . . xkn

n ,
k! = k1! . . . kn! and |k| = k1 + · · · + kn. Let (ak)k∈Nn be a sequence in some normed
space.

Let s ≥ 0. We say that a formal power series ∑k∈Nn akxk is of Gevrey order s if there

exist C, r > 0 such that |ak| ≤ Ck!sr|k| for all k ∈ Nn.

Remark that for s = 0 the series has a strictly positive radius of convergence,
that is: it defines an analytic function near 0.

Throughout this paper we will often need [6, Theorem 2.4]. For the conve-
nience of the reader we state this here once more. With Nn

quad we mean all the

n-tuples k = (k1, . . . , kn) with |k| ≥ 2.

Theorem 1. Given is a formal vector field

X̂δ : ẋ = Aδx + ∑
|k|≥2

fk(δ)x
k

where:
(i) δ ∈ Λ where Λ is some set of parameters,
(ii) Aδ is the diagonal matrix Aδ = diag[µ1(δ), . . . , µn(δ)],
(iii) the coefficient functions fk are in some subalgebra of the algebra of bounded functions
Λ → Cn, equipped with a complete multiplicative norm.

Assume that this series is of Gevrey order s for some s ∈ [0, 1]. Let B ⊂ {1, . . . , n}×
Nn

quad and let G be its complement. We make the following hypothesis:

∃K > 0, ∀δ ∈ Λ, ∀(j, k) ∈ G : |〈(µ1(δ), . . . , µn(δ)), k〉 − µj(δ)| ≥ K|k|1−s. (2)

Then there exists a formal power series transformation

ψ̂δ(x) = x + ∑
|k|≥2

uk(δ)x
k

of Gevrey order s conjugating Xδ to

Ŷδ : ẋ = Aδx + ∑
|k|≥2

gk(δ)x
k

with the property: (j, k) ∈ G ⇒ gk,j = 0, that is: only monomials with index inside B
may appear in the normal form Ŷδ.

Remark 1. Here we recall some classical facts that will be a commonly used
throughout this article.

(i) Several results will be about formal power series. A theorem of Borel states
that every formal power series can be realized as the Taylor series of a (non-
unique) C∞ function, and for Gevrey series additional properties of such a ‘real-
izing’ function can be obtained (Borel-Ritt theorem). For a proof, and for further
basic information about Gevrey series, we refer the reader to [14, 2, 1].
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(ii) Concerning conjugacies: when Ŷ = ψ̂∗X̂ (that is: the vector field X̂ is
conjugated to Ŷ by the transformation ψ̂), where X̂, Ŷ and ψ̂ are formal power
series, we can thus consider C∞ realizations X, Y respectively ψ. Then
Y = ψ∗X + R∞, where R∞ has a vanishing Taylor series. In case that X is
hyperbolic at 0 (which will always be the case in this paper), the ‘flat remain-
der’ R∞ can be removed by a C∞ transformation infinitely tangent to the identity.
For a proof, see for example [8]. In case that X̂, Ŷ and ϕ̂ have a positive radius
of convergence (that is: they are analytic near 0) the flat remainder R∞ is also
analytic near 0 and is hence identically zero. So in that case we have Y = ψ∗X.

Let X be a planar vector field with a saddle type p : −q resonant singularity
as in the beginning of this introduction, and let Y be its normal form (1). As a
corollary of Theorem 1 one has:

Theorem 2. If X has a Taylor series, at (0, 0), that is of Gevrey order 1, then the trans-
formation into the normal form Y is also of Gevrey order 1.

In Theorem 6 and section 5 we will come back to this result, and will explain
why this is indeed a corollary. Observe that if X is in particular analytic, then its
Taylor series is surely of Gevrey order 1, so Theorem 2 can be applied; neverthe-
less, it is ‘exceptional’ that this transformation is convergent [12].

Example 1. The result in Theorem 2 is ‘optimal’: for the (even polynomial) vector
field

X(x, y) = x(1 − 1

2
xy)

∂

∂x
+ y(−1 − 1

2
xy + x2y)

∂

∂y
,

with a 1 : −1 resonance, it appears that the normalizing transformation contains
formal series of the form ∑n≥1 n!zn. (Thanks to Peter De Maesschalck for this
example.)

In this paper we want to remain as much as possible in this Gevrey category.
Generically, one can further reduce X to a polynomial normal form by a C∞ trans-
formation [13, 17, 11], but we ignore if this can be done Gevrey; this is not the
subject of this paper.

In the sequel we shall thus start from a vector field of the form (1) which we
rename again X and where the series of (F, G)(u) is of Gevrey order 1 in (x, y). As
u = xqyp, this means that (F, G)(u) is of Gevrey order d := q+ p in the variable u.
In the next result, stated below in Theorem 3, the value of d ≥ 0 will be arbitrary
(and is not necessarily equal to q + p, although this would be a ‘natural’ choice).

The terms in F and G are usually called resonant terms; in general they
cannot be ‘transformed away’ by a smooth (even C2) change of variables. How-
ever, it is known that there exists a so called Logarithmic Mourtada Type (LMT)
homeomorphism that linearizes X: see [7] for a definition of LMT in a general
context and for a proof. However here we won’t need that general definition and
it will suffice to state that the linearizing transformation (x, y) = ψ(x̂, ŷ) will be
of the form

(x, y) = H(x̂, ŷ, log(|x̂|)x̂, log(|ŷ|)ŷ) (3)
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where H is of class C∞. Let us denote û = x̂qŷp. In Theorem 3 we will obtain that
H is the following form:

{

x = x̂(1 + χ1(log(|x̂|)û, log(|ŷ|)û, û))
y = ŷ(1 + χ2(log(|x̂|)û, log(|ŷ|)û, û))

(4)

and we will prove that (χ1, χ2) has a Gevrey-d series in its variables.
In a family of planar vector fields, the ratio of the eigenvalues can change when

the parameters vary. Generically, we need one parameter, say ε close to zero, to
unfold the resonance. We will study this unfolding, from different viewpoints.

One approach is to consider the parameter as an extra variable. In this case
the linear part is λx∂/∂x + µy∂/∂y + 0.∂/∂ε, and is thought as ‘fixed’. We shall
explain why one can apply directly Theorem 1 and obtain the usual formal nor-
mal form with a formal power series that is Gevrey-1 in the variables (x, y, ε).

Another viewpoint is to consider the normal form obtained by perturbing the
linear part, which is then in essence of the form α(ε).((p + ε)x∂/∂x − qy∂/∂y)
with α(0) 6= 0; see section 2 for explanation. In this case, the condition needed
to apply the result in Theorem 1 becomes fragile when the parameter ε varies,
notably the hypothesis in (2). We provide an adapted version, taking into account
this issue, and where series in (x, y) are used in which the coefficients are (for
instance analytic) functions of the parameter. The domains of these functions
will depend on the degree and will likely shrink inversely proportional to the
degree: see section 2 (especially Theorem 5) for more precision. We comment on
such type of series in Remark 4.

In Theorem 7 we extend the ideas of Theorem 3, about the removal of resonant
terms, to the presence of the unfolding parameter ε. In this case, we shall have
to unfold the logarithm function to Roussarie-Écalle compensators denoted sε, tε:
see (27), (28). In accordance with Theorem 3 for the non-parametric case, we infer
asymptotic properties of the linearizing transformation in sections 6.3 and 6.4.
The estimates are summarized in Theorem 7, and we were only able to obtain a
Gevrey order one worse than in the non-parametric case in Theorem 3.

It is unclear whether we can sharpen this result or not: in section 6.3 we use
the majorant method leading to rather involved upper estimates, see Remark 9 in
section 6.4. So far we were unable to construct examples showing the optimality
of Theorem 7.

In the above, we lose information when starting from an analytic (family of)
vector field(s) with a p : −q resonant singularity. In Theorem 8 we give an explicit
expression of a ‘near’ normal form that can be obtained by analytic conjugacy. In
this expression, apart from the usual development in resonant terms in u = xqyp,
one inevitably also encounters terms with a nonzero resonance condition, but as
‘flat’ as desired. See Theorem 8 for precision.

Finally, in Theorem 9 we try out the method in [5], where linearization is car-
ried out starting from the analytic vector field obtained like in Theorem 8, but this
time with an unfolding parameter ε, and we give an explicit procedure. Com-
pared to Theorem 7, we shall need a more involved (multi-)sequence of polyno-
mial functions (ωKn : n ≥ 1, Kn ∈ Z

n) of the Roussarie-Écalle compensators.
These polynomials are obtained in an algorithmic way and are ‘universal’ in the
sense that they do not depend on the given vector field, only on (p, q).



Gevrey series in compensators linearizing a planar resonant vector field 25

A natural question is again about the asymptotic nature of the linearizing
transformation. Although the procedure to obtain the linearization is also here
a step by step method and is explicitly obtained from a recursion, it is more
intricate than in Theorem 7 or than in [5]. So far we were unable to address this
question in a satisfactory way.

2 Main results

We state the main theorems of this paper, and defer their proofs to later sections.
We start from a vector field X in normal form (1) like in the introduction:

Theorem 3. Let

X(x, y) = x(λ + F(u))
∂

∂x
+ y(µ + G(u))

∂

∂y
(5)

with λ/µ = −p/q, gcd(p, q) = 1 and u = xqyp. Assume that (F, G) is of Gevrey
order d ≥ 0. Then there exists a change of variables (x, y) = ψ(x̂, ŷ) of the form (4) such
that ψ∗X(x̂, ŷ) = λx̂∂/∂x̂ + µŷ∂/∂ŷ. Moreover (χ1, χ2) is of Gevrey order d.

Remark 2. In some specific circumstances [9, 10, 18, 19] it can happen that the normal
form in (5) is analytic. In this case we can take d = 0, and from Theorem 3 it then follows
that, in the expression (4) of the linearizing transformation ψ, the function (χ1, χ2) is
analytic in its variables a neighbourhood of (0, 0, 0).

Next we consider the unfolding of a p : −q resonance. More specifically,
let Xδ be a family of vector fields near (0, 0), depending smoothly (see below
for more precision) on a parameter δ close to zero, and assume that, for δ = 0,
there is a p : −q resonant singularity in (0, 0). By the implicit function theorem
we may, and will, assume that Xδ(0, 0) = 0 for all δ close to zero. Moreover,
the eigenvalues of the linear part of Xδ at (0, 0) are functions λ(δ), µ(δ) of the
parameter δ with

λ(0)

µ(0)
=

p

−q
. (6)

One approach is to consider the parameter δ as an extra variable near δ = 0,
and to examine the vector field

Xδ(x, y) = (λ(0)x + O(|(x, y, δ)|2)) ∂

∂x
+ (µ(0)y + O(|(x, y, δ)|2)) ∂

∂y
+ 0.

∂

∂δ
. (7)

The linear part, in this point of view, is

λ(0)x
∂

∂x
+ µ(0)y

∂

∂y
+ 0.

∂

∂δ
.

In the next theorem we will, among other things, recall the formal Poincaré-Dulac
normal form, and in its proof we will thereby estimate, from below, the ‘small
denominators’ appearing in the normalizing transformation.
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Theorem 4. If Xδ in (7) has a Taylor expansion that is Gevrey-1 in (x, y, δ), then there
is a formal power series transformation in (x, y, δ) of type Gevrey-1 conjugating Xδ to
the formal normal form

x(λ(0) + F(δ, u))
∂

∂x
+ y(µ(0) + G(δ, u))

∂

∂y
+ 0.

∂

∂δ
(8)

where u = xqyp and where (F, G)(δ, u) = O(|(δ, u)|).

In the study of this unfolding, we shall need some elementary facts from num-
ber theory [15], based on Euclid’s algorithm:

Proposition 1. Let p and q be integers with gcd(p, q) = 1. There exists a unique
(r0, s0) ∈ N2 with 0 ≤ r0 ≤ q and 0 ≤ s0 ≤ p such that

〈(r0, s0), (p,−q)〉 = pr0 − qs0 = 1.

Let us denote (r1, s1) = (q, p)− (r0, s0), as well as

L =

(

q r0

p s0

)

and

M =

(

q r1

p s1

)

.

Then:
(i) 〈(r1, s1), (p,−q)〉 = −1,
(ii) L and M define one-to-one maps Z2 → Z2.

Proof. Statement (i) is trivial, and (ii) follows from the fact that the determinants
of L and M are equal to −1 respectively 1.

Statement (ii) above means that for each (k1, k2) ∈ Z2 there exist unique
(m1, m2) ∈ Z2 such that

(k1, k2) = m1(q, p) + m2(r0, s0), (9)

Examples: for a 1 : −1 resonance with (q, p) = (1, 1) we take (r0, s0) = (1, 0),
and for (q, p) = (2, 5) we take (r0, s0) = (1, 2).

Another approach is to consider the normal form obtained by perturbing the
linear part of the vector field:

Aδ(x, y) := λ(δ)x
∂

∂x
+ µ(δ)y

∂

∂y
, (10)

always with the resonance hypothesis (6). Let us denote

α =
λ(0)

p
= −µ(0)

q
. (11)
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Assuming that the eigenvalues vary in a Lipschitz way in δ we have

|(λ(δ), µ(δ)) − (λ(0), µ(0))| ≤ L.|δ|
for some L ≥ 0.

For k = (k1, k2) ∈ N2 we consider ‘typical’ monomials xk1 yk2 x∂/∂x and
xk1yk2 y∂/∂y. Let (m1, m2) = L−1(k1, k2) be as in (9). Monomials with m2 = 0
are of the form um1 x∂/x or um1 y∂/∂y and are called resonant; the other ones are
called nonresonant.

In view of condition (2) we want to estimate the quantity |〈(k, (λ(δ), µ(δ)〉|
from below. We can write

〈k, (λ(δ), µ(δ)〉 = αm2 − 〈k, (λ(0), µ(0)) − (λ(δ), µ(δ))〉,

where α is defined by (11). Hence in case of nonresonance, that is: |m2| ≥ 1, we
can estimate form below:

|〈k, (λ(δ), µ(δ)〉| ≥ |α||m2| − L|k||δ| ≥ |α| − L|k||δ|. (12)

Remark that this last number might become zero or negative for large |k||δ|. It is
clear that we will have to confine |δ|, depending on k. One classical approach is
in [13]: given a ‘wanted’ degree of differentiability M ∈ N, there exists K > 0,
depending on M and on (λ(0), µ(0)), and there exists δ0 > 0 such that Xδ is CM

conjugated to polynomial normal form of degree at most K in u whose coefficients
are smooth functions of δ, |δ| < δ0. We will not consider this here any further.

We now present the topic from another angle, and will reconsider Theorem 1
and its proof in [6, Theorem 2.4]. We modify the hypothesis Hs on page 380 of
this paper and adapt it to the situation encountered above, that is: if |k| increases
then we have to confine the parameter δ to a smaller domain. From the inequality
in (12) we see that the diameter of this domain decreases to zero proportional to
1/|k|. In order to be self contained, we now redefine the concepts used in this
result.

Notation 1. Let l be a positive integer (think of: l = |k| in the above). In view of

the estimate in (12), we consider, for the parameter δ, the ball Λl = B(0, |α|
2Ll ) and

let Al be a subalgebra of the algebra of bounded functions of δ on Λl. We equip
this space with a complete multiplicative norm |.|l . We furthermore assume that
the following property holds:

f ∈ Al and g ∈ Am ⇒ | f .g|l+m ≤ | f |l .|g|m. (13)

Observe that for all δ ∈ Λl and for all |k| = l we have the estimate
|〈k, (λ(δ), µ(δ)〉| ≥ |α|/2. In order to fix the ideas of the reader, we could for
example take Al to be the space of bounded analytic functions on Λl, equipped
with the sup-norm.

We consider a family of vector fields

X̂δ : ẋ = Aδx + ∑
|k|≥2

fk(δ)x
k (14)

in n dimensions such that the coefficient functions satisfy fk ∈ A|k|. We assume

that Aδ is the diagonal matrix Aδ = diag[µ1(δ), . . . , µn(δ)].
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Definition 2. (Compare with the hypothesis in (2).) Let s ≥ 0 and G ⊂ {1, . . . , n}×
Nn

quad. We say that G satisfies the hypothesis of order s if

∃K > 0, ∀(j, k) ∈ G, ∀δ ∈ Λ|k| : |〈(µ1(δ), . . . , µn(δ)), k〉 − µj(δ)| ≥ K|k|1−s. (15)

Definition 3. We say that the series in (14) is of Gevrey order s if there exist C, r > 0

such that | fk||k| ≤ C|k|!sr|k|.

We can almost repeat the proof of [6, Theorem 2.4] and obtain:

Theorem 5. Let X̂δ be a formal vector field as in (14). Assume that the series in (14) is
of Gevrey order s, with 0 ≤ s ≤ 1. If G ⊂ {1, . . . , n} × Nn

quad satisfies the hypothesis of

order s (15), then there exists a formal power series

ψ̂δ(x) = x + ∑
|k|≥2

uk(δ)x
k,

with uk ∈ A|k|, of Gevrey order s, conjugating X̂δ to

Ŷδ : ẋ = Aδx + ∑
|k|≥2

gk(δ)x
k

with the property that (j, k) ∈ G ⇒ gk,j(δ) = 0, that is: only monomials with index in

the complement of G may appear in the normal form Ŷδ.

Remark 3. Note that the property in (13) is used in the proof of [6, Proposition
2]. In fact, we could have made the sequence of spaces Al in Theorem 5 more
abstract, but we will not need this here.

Remark 4. Let us comment on series of the form ∑k fk(δ)x
k like in (14), where

fk ∈ A|k|. Let us consider the case where, for the integers l ≥ 2, the space Al

consists of the bounded analytic functions of |δ| ≤ D/l for some constant D, and
|.|l denotes the sup norm. Now assume that we have, for s ≥ 1, the Gevrey s-type
estimate

| fk||k| ≤ C|k|!sr|k| (16)

for some C, r > 0. Let us write l = |k|. As we assume fk to be analytic on
|δ| ≤ D/l we can write it as a convergent power series fk(δ) = ∑

∞
j=0 fkjδ

j with

a radius of convergence more than D/l. We apply Cauchy’s inequalities in the
usual way:

| fkj| = | f (j)
k (0)/j!|

= | 1

2πi

∮

|z|= D
l

fk(z)

zj+1
dz|

≤ (
l

D
)j| fk||k|

≤ (
l

D
)j.C|k|!sr|k|

= (
l

D
)j.Cl!srl. (17)
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We claim that the series ∑kl fkl x
kδl is ‘somehow better’ than being Gevrey-s in

(x, δ); what we mean by this is indicated below. Stirling’s approximation for
factorials yields √

2πll+ 1
2 e−l ≤ l! ≤ e.ll+ 1

2 e−l.

In particular:

(l + j)!s ≥ (
√

2π)s(l + j)(l+j+ 1
2 )se−ls−js.

We can estimate, by (17), for j ≥ 1:

| fkj| ≤ C
1

D j
l j(e.ll+ 1

2 e−l)srl

≤ Ces(e−s)l 1

D j
l js+(l+ 1

2 )srl (18)

< Ces(e−s)l 1

D j
(l + j)js+(l+ 1

2 )srl (19)

≤ Ces(e−s)l 1

D j
((l + j)!s

√
2π

−s
els+js)rl

= Ces
√

2π
−s
(|k|+ j)!sr|k|(D−1es)j. (20)

Inequality (20) shows that ∑kj fkjx
kδj is of Gevrey-s order in (x, δ), but moreover

in (19) we have a strict inequality that ‘becomes stronger’ since the base l + j of the
involved power increases when j increases. It would be interesting to investigate
the possible significance of this observation, but we have no further clue for the
moment.

Remark 5. It appears to be important that s ≥ 1 in Remark 4, notice the estimate
in (18). Indeed, consider for instance the case s = 0 and the following counterex-
ample in dimension n = 1. Take fk(δ) =

1
1−kδ and D = 1/2, thus fkj = kj. Then

fk is analytic on |δ| ≤ 1/(2k) and | fk|k = sup|δ|≤1/(2k) | fk(δ)| = | fk(1/(2δ)| = 2,

and hence we have inequality (16) for s = 0 with C = 2 and r = 1. On the other
hand, the series ∑kj kjxkδj is not analytic near (x, δ) = (0, 0).

Combining the requirements s ≥ 1 and 0 ≤ s ≤ 1 from Theorem 5 only leaves
us s = 1, which fortunately will be the only case that we shall need and that will
occur ‘naturally’ below.

Let us come back to the family Xδ with linear part Aδ as in (10), that is: it
unfolds a p : −q resonance. Generically, we only need one parameter to describe
this unfolding, and use the parameter ε such that

λ(δ)

µ(δ)
=

p + ε

−q
.

or equivalently ε = ε(δ) = −q λ(δ)
µ(δ)

− p; notice that ε(0) = 0.

We make the assumption that ε(δ) is a submersion, and hence pass to the
parameter ε instead of δ. From here on we may, and do, assume that

λ(ε)

µ(ε)
=

p + ε

−q
.
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Let us summarize here that we shall consider a family Xε with linear part
Aε = dXε(0) of the following form:

Aε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
) (21)

with α(ε) = −µ(ε)/q and α(0) = −µ(0)/q 6= 0. First of all, we confine ε so that
α(ε) stays away from zero, for example we let ε0 > 0 be so that for all |ε| < ε0:

|α(ε)| ≥ 1

2
|α(0)|. (22)

Definition 4. Let, for l ≥ 1 an integer, Al be a subalgebra of the algebra of
bounded functions of ε on the ball Λl = B(0, 1

2l ) ∩ B(0, ε0).

In the next theorem we will assume that the nonlinear part is Gevrey of order
s = 1, which of course includes the analytic case. We shall also assume that the
manifolds x = 0 and y = 0 are invariant. Thanks to the hyperbolicity this is no
restriction: see for example [3, 6].

Theorem 6. Let Xε be a one-parameter family of planar vector fields of the form

Xε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
) + F(ε, x, y)x

∂

∂x
+ G(ε, x, y)y

∂

∂y

where (F, G)(ε, x, y) = O(|(x, y)|) is Gevrey of order s = 1. Then there is a change of
variables ψε of Gevrey order 1 conjugating Xε to

Yε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
) + x ∑

l≥1

al(ε)u
l ∂

∂x
+ y ∑

l≥1

bl(ε)u
l ∂

∂y
(23)

where the functions al , bl belong to A(q+p)l, and moreover, there exist C, r > 0 such that

|al |(q+p)l ≤ Cl!q+prl;

similarly for bl.

In the sequel we take the expression in (23) as a starting point. Let us rename
Yε again Xε, and let us abbreviate

(F1, G1)(ε, u) = ∑
l≥1

(al , bl)(ε)u
l .

Then this series is of Gevrey order q + p in the variable u, and we can thus write

Xε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
) + xF1(ε, u)

∂

∂x
+ yG1(ε, u)

∂

∂y
. (24)

Next we give a procedure, inspired by the one in Theorem 3, in order to lin-
earize Xε. The logarithm-like functions now shall have to be unfolded and will
depend on the parameter ε: we will use Roussarie-Écalle compensators [16], see
below for specific formulas and details.
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Also the asymptotics will be given in terms of a Gevrey majorant. Although
the ideas will be comparable to the ones used for Theorem 3, the computations
and estimates shall turn out to be more involved.

We will need below a new variable sε such that

d

dt
sε = 1 − α(ε)qεsε . (25)

In order to fix the ideas, consider the linearized vector field

Aε(x̃, ỹ) = α(ε).((p + ε)x̃
∂

∂x̃
− qỹ

∂

∂ỹ
); (26)

we look for sε = sε(x̃) satisfying (25). A direct calculation shows that

sε =
1 − |x̃|

−qε
p+ε

α(ε)qε
(27)

is a solution. Similarly, for tε = sε(ỹ) we can take

tε =
1 − |ỹ|ε
α(ε)qε

. (28)

Remark 6. (i) Functions such as in (27) and (28) are sometimes referred to as
Roussarie-Écalle compensators. They are encountered for instance in the calculation
of the Dulac transition map near a saddle type hyperbolic singular point of a
family of planar vector fields [16].
(ii) Often one is only interested in equivalence instead of conjugacy, meaning that
changes of variables preserve orbits but not necessarily time for the vector fields.
In that case, these compensator functions sε and tε can be simplified by taking
α(ε) ≡ 1.
(iii) An easy computation shows that the limit of the compensators when ε → 0
for fixed (x̃, ỹ) are: limε→0 sε =

1
α(0)p

log |x̃| and limε→0 tε =
−1

α(0)q
log |ỹ|.

In the next theorem we use the symbol ‘�’ in the context of formal power
series for: ‘is majorated by’.

Theorem 7. Let Xε be of the form (24). There exists a formal change of variables (x, y) =
ψ̂(x̃, ỹ) determined by

(x̃, ỹ) = (x, y) + (x
∞

∑
k=1

(−1)k

k!
sk

ε Fk(ε, u), y
∞

∑
k=1

(−1)k

k!
tk
ε Gk(ε, u)) (29)

conjugating Xε to Aε in (26), where (Fk, Gk)(ε, u) = O(uk).
Moreover, assume that the series (F1, G1) in (24) is of Gevrey order d ≥ 0 in u. Then

the series in (29) has a majorant

∞

∑
k=1

(−1)k

k!
sk

ε Fk(ε, u) � sε ∑
n≥1

n!dun +
s2

ε

2! ∑
n≥2

n!d(
1

2d+1
(n + 1)n + η(n − 1))un

+ ∑
i≥0

ui ∑
k≥3

(sεu)
k

k−1

∑
j=0

fikjη
j (30)
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where

fik0 ≤ 3i+2k−1

2(k−1)(d+1)

1

i + 1
(i + k)!d

fikj ≤ (i + k)!d2−kd+d+jd+j3i+2k−1 (k − 1)!

i + 1
for 1 ≤ j ≤ k − 2 (31)

fik,k−1 ≤ (i + k)!d2i+k−1 1

k

and where η = |α(ε)qε|. In particular, the series in (30) is of Gevrey order d + 1 in the
variables (u, sεu). Similar estimates hold for the series defining ỹ.

Remark 7. Apparently we have to take this Gevrey order d + 1 because of the
formula in (31), which contains a factor ∼ k!d+1; in the other formulas we have
better estimates ∼ k!d.

Assume that the initial family Xε consists of analytic vector fields (locally near
(0, 0), see below for precision). When invoking Theorem 6 one has to weaken this
information and we only had inferred Gevrey-type results. In this paragraph we
explicate a kind of ‘nearly’ normal form that can be obtained by analytic conju-
gacy, thereby letting the first integral u = xqyp of dX0(0, 0) play a dominant role
.

We reconsider the family Xε with linear part (21), that is: the parameter ε
unfolds the p : −q resonance, and we assume analyticity in the following sense.
Let Xε have a Taylor series near (0, 0) of the form

Xε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
)+

∑
k1+k2≥1

a1k1k2
(ε)xk1 yk2 .x

∂

∂x
+ ∑

k1+k2≥1

a2k1k2
(ε)xk1 yk2 .y

∂

∂y
, (32)

where α is continuous and α(0) 6= 0.

Notation 2. We will furthermore assume that the coefficient functions in ε,
appearing in (32), are all in some algebra A(ε0) of bounded continuous functions
on ] − ε0, ε0[, for some fixed ε0 > 0, equipped with a complete multiplicative
norm.

For example: A(ε0) could be the space of bounded analytic functions equipped
with the sup-norm.

In the next theorem 8 we will consider series like above that are locally analytic
in (x, y). With this we mean by definition: there is a majorant series in (x, y),
independent of ε, with a positive radius of convergence. (Note: the assumption in
expression (32) that the manifolds x = 0 and y = 0 are invariant is no limitation,
since it is well known that the stable and unstable manifolds are analytic; for
instance [6] contains one more proof of this fact.)

The idea now is to rewrite the series in (32), using conjugacy, in a form that
emphasizes the first integral u = xqyp of dX0(0, 0). The integer K ≥ 0 in the next
theorem will reflect, loosely speaking, the ‘order of deviation’ from the normal
form; we will make this more precise below in Remark 8.
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Theorem 8. Let Xε be a family of the form (32) where:
(i) the coefficient functions in this series are in A(ε0) (see Notation 2),
(ii) the series is locally analytic in (x, y).
Let (r0, s0) and (r1, s1) be defined as in Proposition 1. Denote u = xqyp.
Let K ≥ 0 be a given integer. If ε0 is sufficiently small, then there exists a locally analytic
(in (x, y)) change of variables of the form

ψε(x, y) = (x, y) + ∑
k1+k2≥1

(xu1k1k2
(ε)xk1 yk2 , yu2k1k2

(ε)xk1 yk2), (33)

with coefficient functions in A(ε0), conjugating Xε into Yε = ψ∗
ε Xε taking the form

Yε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
)

+(∑
k≥0

Fk(ε, u)(xr0 ys0)kuKk + ∑
k≥1

F̃k(ε, u)(xr1 ys1)kuKk)x
∂

∂x

+(∑
k≥0

Gk(ε, u)(xr0 ys0)kuKk + ∑
k≥1

G̃k(ε, u)(xr1 ys1)kuKk)y
∂

∂y
(34)

where Fk, F̃k, Gk and G̃k are locally analytic in u and Fk(ε, 0) = F̃k(ε, 0) = Gk(ε, 0) =
G̃k(ε, 0) = 0.

Remark 8. Recall the formal normal form like in (8); this is equal to the terms in
(34) with k = 0, that is:

α(0)(px
∂

∂x
− qy

∂

∂y
) + F0(ε, u)x

∂

∂x
+ G0(ε, u)y

∂

∂y
,

and the remainder of the nonlinear expression in (34)

Rε(x, y) := (∑
k≥1

Fk(ε, u)(xr0 ys0)kuKk + ∑
k≥1

F̃k(ε, u)(xr1 ys1)kuKk)x
∂

∂x

+(∑
k≥1

Gk(ε, u)(xr0 ys0)kuKk + ∑
k≥1

G̃k(ε, u)(xr1 ys1)kuKk)y
∂

∂y

is a finitely flat perturbation of this normal form, more specifically:

Rε(x, y) = O(uK) = O(xqKypK).

Notice that this flatness is large, when K is large, simultaneously in both x and y.
So a consequence of the theorem above is that this can be achieved analytically,
see also [3].

Finally in this paper, we want to use the first integral u = xqyp in the lineariza-
tion process of a family Xε as in Theorem 8, since we are close to p : −q resonance.
For that purpose, we start from expression (34) for K = 0, and we may hence start



34 P. Bonckaert

from an analytic vector field (rename Yε again Xε) of the form

Xε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
)

+(∑
k≥0

Fk(ε, u)(xr0 ys0)k + ∑
k≥1

F̃k(ε, u)(xr1 ys1)k)x
∂

∂x

+(∑
k≥0

Gk(ε, u)(xr0 ys0)k + ∑
k≥1

G̃k(ε, u)(xr1 ys1)k)y
∂

∂y
. (35)

We want to rewrite the occurring summations as one sum ∑k∈Z as follows. Let
us use notations

F̃k =: F−k

G̃k =: G−k

vk :=

{

(xr0 ys0)k if k ≥ 0

(xr1 ys1)−k if k < 0,
(36)

where (r0, s0) and (r1, s1) are as in Proposition 1. This way we can rewrite (35) in
the following manner:

Xε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
) + ∑

k∈Z

vkFk(ε, u)x
∂

∂x
+ ∑

k∈Z

vkGk(ε, u)y
∂

∂y
.

(37)
We consider again the variables sε and tε satisfying equation (25); they unfold the
logarithm function, see Remark 6. We have to consider these variables as ‘large’
for x close to 0. On the other hand, when multiplied by x or y, they become small,
essentially like x log |x| or y log |y|.

Notation 3. • We denote

Kn = (k1, . . . , kn−1, kn) = (Kn−1, kn) ∈ Z
n

and define inductively, starting from (36):

vKn = vKn−1
.vkn

. (38)

• With ∑Kn
we mean: a summation over all Kn ∈ Zn.

• For k ∈ Z we use the symbol

δk =

{

= 0 for k ≥ 0
= 1 for k < 0.

(39)

• For Kn ∈ Zn we denote

δKn = (δk1
, . . . , δkn

),

D(Kn) = −〈δKn , Kn〉+ n and |Kn| = |k1|+ · · ·+ |kn|.
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Theorem 9. Let Xε be of the form (37). There exists a formal change of variables
(x, y) = ψ̂(x̃, ỹ) determined by

(x̃, ỹ) = (x, y) +
∞

∑
n=1

(−1)n ∑
Kn

ωKn(s)vKn(xFKn(ε, u), yGKn(ε, u)) (40)

where s = sε or s = tε, linearizing Xε, and with the following properties:
(i) (FKn , GKn)(ε, u) = O(un),
(ii) ωKn is a polynomial of degree at most D(Kn),
(iii) for a term in the summation (40) we can write

ωKn(s)vKn(FKn , GKn)(u, ε) = PKn,ε(sx, sy).EKn ,ε(x, y) (41)

where
(a) PKn,ε is a polynomial of degree at most D(Kn), with coefficients that are analytic
functions of ε, and
(b) EKn,ε is a power series with coefficients that are analytic functions of ε.

Moreover, the polynomials ωKn only depend on p and q, and the multi-sequences
(FKn , GKn) and ωKn can be generated recursively (see the explicit formulas in sections
8.2 and 8.3).

3 Proof of Theorem 3

In order to make the exposition self-contained we recall, following [7], briefly
how to obtain H, see the transformation in (3).

First of all we calculate that

u′ = u(qF(u) + pG(u)). (42)

Let us denote H(u) = qF(u) + pG(u), then u′ = uH(u).
We introduce two additional variables s and t with the property that

s′ = t′ = 1. These variables are sometimes referred to as tags. The meaning
of these tags will become clear below.

3.1 Step one

We consider the new variables

(x1, y1) = (x − xsF(u), y − ytG(u)); (43)

then, for the first component we can calculate that

x′1 = x1λ − xs(F(u).F(u) + F′(u)uH(u)).

Similar computations for the second component of (43). If we denote

(F2, G2)(u) = (F(u).F(u) + F′(u)uH(u), G(u).G(u) + G′(u)uH(u)) = O(u2)

then
(x′1, y′1) = (λx1, µy1)− (xsF2(u), ytG2(u)).
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3.2 Induction step and formal limit

Assume, by induction, that we have for n ≥ 2:

(x′n−1, y′n−1) = (λxn−1, µyn−1) +
(−1)n−1

(n − 1)!
(xsn−1Fn(u), ytn−1Gn(u)) (44)

where (Fn, Gn)(u) = O(un). We consider the new variables

(xn, yn) = (xn−1, yn−1) +
(−1)n

n!
(xsnFn(u), ytnGn(u)). (45)

Let us concentrate on the first component of (45), since the second one is
completely similar. We get, after a short computation:

x′n = λxn +
(−1)n

n!
xsn(F(u)Fn (u) + (Fn)′(u)uH(u)).

Therefore, if we denote

(Fn+1, Gn+1)(u) = (F(u)Fn (u) + (Fn)′(u)uH(u), G(u)Gn(u) + (Gn)′(u)uH(u)),
(46)

the change of variables (45) transforms the equations (44) into

(x′n, y′n) = (λxn, µyn) +
(−1)n

n!
(xsnFn+1(u), ytnGn+1(u)).

Also: (Fn+1, Gn+1)(u) = O(un+1). Observe that

(xn, yn) = (x, y) +
n

∑
k=1

(−1)k

k!
(xskFk(u), ytkGk(u)). (47)

We take the formal limit n → ∞ of (47):

(x∞, y∞) := (x, y) +
∞

∑
k=1

(−1)k

k!
(xskFk(u), ytkGk(u)) =: Ψ(x, y, s, t). (48)

Let us substitute (s, t) = (λ−1 log |x∞|, µ−1 log |y∞|) in (48) and consider the
equation

(x∞, y∞) = Ψ(x, y, λ−1 log |x∞|, µ−1 log |y∞|).
Let us also denote u∞ = x

q
∞y

p
∞. We introduce extra variables

(ξ, ξ1 , η, η1) := (sx, sx∞, ty, ty∞),

(σ, σ1, τ, τ1) := (su, su∞, tu, tu∞);

then we can write Ψ in the form

Ψ(x, y, s, t) = (x + xψ1(ξxq−1yp, u), y + yψ2(ηxqyp−1, u)) =

(x + xψ1(σ, u), y + yψ2(τ, u)) (49)



Gevrey series in compensators linearizing a planar resonant vector field 37

where ψ1, ψ2 are O(1). With these notations we have

(ξ1, η1) = (sx∞, ty∞) = (sx + sxψ1(ξxq−1yp, u), ty + tyψ2(ηxqyp−1, u))

= (ξ + ξψ1(ξxq−1yp, u), η + ηψ2(ηxqyp−1, u)).

Then






u∞ = u(1 + ψ1(σ, u))q(1 + ψ2(τ, u))p

σ1 = σ(1 + ψ1(σ, u))q(1 + ψ2(τ, u))p

τ1 = τ(1 + ψ1(σ, u))q(1 + ψ2(τ, u))p
(50)

and














x∞ = x + xψ1(ξxq−1yp, u)
y∞ = y + yψ2(ηxqyp−1, u)
ξ1 = ξ + ξψ1(ξxq−1yp, u)
η1 = η + ηψ2(ηxqyp−1, u).

(51)

Using (50) and the inverse function theorem, for formal power series, we can
write







u = u∞(1 + ϕ(σ1, τ1, u∞))
σ = σ1(1 + ϕ(σ1, τ1, u∞))
τ = τ1(1 + ϕ(σ1, τ1, u∞))

(52)

for some formal power series ϕ of order O(1). We write (51) as follows:















x = x∞(1 + ψ1(σ, u))−1

y = y∞(1 + ψ2(τ, u))−1

ξ = ξ1(1 + ψ1(σ, u))−1

η = η1(1 + ψ2(τ, u))−1,

and in the right hand side of the above we can subsequently substitute (u, σ, τ)
by their power series from (52): we can write

(1 + ψ1(σ, u))−1 = 1 + χ1(σ1, τ1, u∞) and (1 + ψ2(τ, u))−1 = 1 + χ2(σ1, τ1, u∞)
(53)

for some power series χ1, χ2 of order O(1). We obtain



















































x = x∞(1 + χ1(σ1, τ1, u∞)) = x∞(1 + χ1(su∞, tu∞, u∞))

= x∞(1 + χ1(ξ1x
q−1
∞ y

p
∞, η1x

q
∞y

p−1
∞ , u∞))

y = y∞(1 + χ2(σ1, τ1, u∞)) = y∞(1 + χ2(su∞, tu∞, u∞))

= y∞(1 + χ2(ξ1x
q−1
∞ y

p
∞, η1x

q
∞y

p−1
∞ , u∞))

ξ = ξ1(1 + χ1(σ1, τ1, u∞)) = ξ1(1 + χ1(su∞, tu∞, u∞))

= ξ1(1 + χ1(ξ1x
q−1
∞ y

p
∞, η1x

q
∞y

p−1
∞ , u∞))

η = η1(1 + χ2(σ1, τ1, u∞)) = η1(1 + χ2(su∞, tu∞, u∞))

= η1(1 + χ2(ξ1x
q−1
∞ y

p
∞, η1x

q
∞y

p−1
∞ , u∞)).

Let us abbreviate the first two lines by writing (x, y) = Ĥ(x∞, y∞, ξ1, η1). Let
H be a C∞ map such that its Taylor series is equal to Ĥ (see Remark 1 (i)). Then
the transformation

(x, y) = H(x∞, y∞, λ−1 log |x∞|.x∞, µ−1 log |y∞|.y∞)
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conjugates X to the linear vector field A := λx∞∂/∂x∞ + µy∞∂/∂y∞ up to an
‘infinitely flat remainder’ term R, that is: with a Taylor series j∞R(0, 0, 0, 0) = 0.
We lift A to these four variables, and remark that s′ = λ−1 1

x∞
x′∞ = 1 and hence

ξ′1 = sx′∞ + x∞ = λξ1 + x∞; similarly η′
1 = µη1 + y∞. This linear vector field is

hyperbolic, and R can be removed by a C∞ transformation with at Taylor series
equal to the identity (see Remark 1 (ii)).

3.3 Gevrey order of (χ1, χ2)

Now we prove that (χ1, χ2) is of Gevrey order d. Since we assume that F is of
Gevrey order d, we have a majorant of the following form:

F(u) � ∑
k≥1

Ck!drkuk.

Although this is not essential, we shall pass to new rescaled variables (x̃, ỹ) =
(ρx, ρy) in order to make the estimates and formulas in the sequel more concise,
for some ρ > 0 to be determined presently. We denote

ũ = x̃qỹp = ρq+pxqyp = ρq+pu.

Then

x̃′ = x̃

(

λ + F

(

1

ρq+p ũ

))

.

We consider the majorant

F

(

1

ρq+p ũ

)

� ∑
k≥1

C

(

r

ρq+p

)k

k!dũk. (54)

By taking ρ > 0 large enough, and since q + p > 0, we can take care that

r

ρq+p ≤ min

{

1,
1

C

}

and we can continue (54) by:

F

(

1

ρq+p ũ

)

� ∑
k≥1

C
r

ρq+p k!dũk � ∑
k≥1

k!dũk. (55)

In a completely similar way we can treat G and obtain a majorant of the form (55).
Concerning the function H(u) = qF(u) + pG(u), like in (42), we compute easily
that

ũ′ = ũ

(

qF

(

ũ

ρq+p

)

+ pG

(

ũ

ρq+p

))

.

In an analogous manner as above we can obtain a majorant

qF

(

ũ

ρq+p

)

+ pG

(

ũ

ρq+p

)

� ∑
k≥1

k!dũk.
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We conclude here that, up to a rescaling, we may, and shall, omit the tilde˜symbol
and assume that F(u), G(u) and H(u) have the majorant ∑k≥1 k!duk for some
d ≥ 0.

We now look for a majorant of the Fk(u) in (48), using the relation (46). Let us
write F1(u) = F(u) and assume, by induction on N, that we have a majorant of
the form

FN(u) � ∑
n≥N

n!danNun. (56)

We have the initial conditions an1 = 1 for all n ≥ 1. Recall the recursion

FN+1(u) = FN(u).F(u) + (FN)′(u).u.H(u). (57)

We remind of some useful inequalities concerning factorials:

Lemma 1. Let k = (k1, . . . , kp) ∈ N
p and denote |k| = k1 + · · ·+ kp.

• We have:
|k|! ≤ p|k|k1! . . . kp!. (58)

• If all ki ≥ 1 then

k1! . . . kp! ≤ 1

p!
|k|!. (59)

Let us continue with the proof of Theorem 3. We consider the first term in the
right hand side of (57) and majorate, also using formula (59) with p = 2:

FN(u).F(u) � ∑
n≥N

n!danNun. ∑
k≥1

k!duk

� 1

2d ∑
m≥N+1

m!dum ∑
n≥N,k≥1
n+k=m

anN

=
1

2d ∑
m≥N+1

m!dum
m−1

∑
n=N

anN (60)

and for the second term in (57):

(FN)′(u).u.H(u) � ∑
n≥N

n.n!danNun−1.u. ∑
k≥1

k!duk

� 1

2d ∑
m≥N+1

m!dum
m−1

∑
n=N

nanN .

Therefore

FN+1(u) � 1

2d ∑
m≥N+1

m!dum
m−1

∑
n=N

(1 + n)anN .

Let us hence define inductively, for m ≥ N + 1:

am,N+1 =
1

2d

m−1

∑
n=N

(n + 1)anN (61)

with an,1 = 1, and let us estimate the solution of the recursion equation (61).
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Lemma 2. For all P ≥ K we have

P

∑
n=K

(n − 1)(n − 2) . . . (n − K + 1) =
1

K
P.(P − 1) . . . (P − K + 1). (62)

Proof. Use induction on P.

Lemma 3. The solution of (61) is estimated by

am,N+1 ≤ 1

2N(d+1)

1

N!
(m + N)(m + N − 1) . . . (m + 1)m . . . (m − N + 1) =

1

2N(d+1)

(m + N)!

N!(m − N)!
(63)

for all m ≥ N + 1.

Proof. For N = 1 we observe that

am2 =
1

2d

m−1

∑
n=1

(n + 1)

≤ 1

2d

m+1

∑
n=2

(n − 1)

=
1

2d

1

2
(m + 1)m.

Assume by induction that the estimate is true for N, then for all m ≥ N + 2:

am,N+2 =
1

2d

m−1

∑
n=N+1

(n + 1)an,N+1

≤ 1

2d

m−1

∑
n=N+1

(n + 1)
1

2N(d+1)

1

N!
(n + N)(n + N − 1) . . .

(n + 1)n . . . (n − N + 1)

≤ 1

2N(d+1)+d

1

N!

m−1

∑
n=N+1

(n + N + 1)(n + N) . . .

(n + 1)n . . . (n − N + 1)

≤ 1

2N(d+1)+d

1

N!

m+N+1

∑
n=2N+2

(n − 1)(n − 2) . . . (n + 1)n . . . (n − 2N − 1)

=
1

2(N+1)(d+1)

1

(N + 1)!
(m + N + 1)(m + N) . . . (m − N) (64)

in which we have applied formula (62) with K = 2N + 2 and P = m + N + 1.
Thus we have formula (63) where N is replaced by N + 1.

From (56) and Lemma 3 we conclude that

FN(u) � 1

2(N−1)(d+1)(N − 1)!
∑

n≥N

n!d (n + N − 1)!

(n − N + 1)!
un.
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This is also a majorant for GN(u). Let us hence consider the majorant, for the
series in (48), given by

S(u, s) := ∑
k≥1

sk

k!

1

2(k−1)(d+1)(k − 1)!
∑
n≥k

n!d (n + k − 1)!

(n − k + 1)!
un,

and let us denote

γnk =
n!d(n + k − 1)!

k!2(k−1)(d+1)(k − 1)!(n − k + 1)!
;

then

S(u, s) = ∑
k≥1

∑
n≥k

γnkunsk

= ∑
k≥1

∑
i≥0

γi+k,kui(su)k .

We estimate γi+k,k, also using formula (58) with p = 3:

γi+k,k =
(i + k)!d(i + 2k − 1)!

k!2(k−1)(d+1)(k − 1)!(i + 1)!

≤ (i + k)!d3i+2k−1i!k!(k − 1)!

k!2(k−1)(d+1)(k − 1)!(i + 1)!

=
3i+2k−1

2(k−1)(d+1)

1

i + 1
(i + k)!d . (65)

Hence S(u, s) is of Gevrey order d in the variables (u, su). Therefore the series
ψ1(σ, u) and ψ2(τ, u), in expression (49), are Gevrey-d in their variables. We can
apply the inversion theorem in [4] to (52) to obtain that also the series ϕ is Gevrey-
d in (σ1, τ1, u∞). Hence also χ1 and χ2 in (53) are Gevrey-d. Recall that

(x, y) = (x∞(1 + χ1(su∞, tu∞, u∞)), y∞(1 + χ2(su∞, tu∞, u∞))).

This ends the proof of Theorem 3.

4 Proof of Theorem 4

We recall the linear map

L =

(

q r0

p s0

)

from Proposition 1, as well as the number

α =
λ(0)

p
= −µ(0)

q
.

For k = (k1, k2, k3) ∈ Z3 we have, for (m1, m2) = L−1(k1, k2):

〈k, (λ(0), µ(0), 0)〉 = α〈k, (p,−q, 0)〉 =
α(m1〈(q, p), (p,−q)〉 + m2〈(r0, s0), (p,−q)〉) = αm2. (66)
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From (66) it follows that a monomial

xk1+1yk2 δk3
∂

∂x
(67)

is resonant iff m2 = 0, whence (k1, k2, k3) = m1(q, p, 0) + (0, 0, k3). So this mono-
mial is of the form

x.xqm1ypm1 δk3
∂

∂x
= x.um1 δk3

∂

∂x
.

In a similar way we find that the resonant monomials in the ∂/∂y component are
of the form

y.um1 δk3
∂

∂y
.

From this we obtain the formal normal form in (8).
We want to apply Theorem 1 concerning the Gevrey character of the normal-

izing transformation. For that purpose, we compute for any nonresonant mono-
mial (67), using (66) and the fact that |m2| ≥ 1:

|〈(k1 + 1, k2, k3), (λ(0), µ(0), 0)〉 − λ(0)| = |αm2| ≥ |α| > 0.

Similar computations for the ∂/∂y component. Hence condition (2) of that
theorem is fulfilled for s = 1 and K = |α|.

5 Proof of Theorem 6

We want to apply Theorem 5 for a well chosen set G. Let us define G as
follows. For (1, 1+ k1, k2), (2, k1, 1+ k2) ∈ {1, 2} × N2

quad we consider (m1, m2) =

L−1(k1, k2) as in Proposition 1. We say that (1, 1+ k1, k2) and (2, k1, 1+ k2) belong
to G iff m2 6= 0. Remark that G corresponds to the nonresonant monomials of the
form x1+k1yk2 ∂/∂x and xk1yk2+1∂/∂y.

We claim that this set G satisfies the hypothesis of order s = 1 from Defini-
tion 2. Indeed, for (1, 1 + k1, k2) ∈ G we have

|〈(α(ε)(p + ε), α(ε)(−q)), (1 + k1, k2)〉 − α(ε)(p + ε)|
= |α(ε)|.|〈(p,−q), m1(q, p) + m2(r0, s0)〉+ εk1|
= |α(ε)|.|m2(pr0 − qs0) + εk1|
= |α(ε)|.|m2 + εk1|
≥ |α(ε)|.(|m2 | − |ε|.|k|). (68)

Using (22) we can continue (68), and have for all ε ∈ Λ|k|, since m2 6= 0 is an
integer:

|〈(α(ε)(p + ε), α(ε)(−q)), (1 + k1, k2)〉 − α(ε)(p + ε)| ≥ 1

2
|α(0)|(|m2 | −

1

2
)

≥ 1

4
|α(0)| > 0.

Similar estimates for (2, k1, 1 + k2) ∈ G. Hence the set G satisfies the hypothesis
of order s = 1 with K = |α(0)|/4. Therefore we can finish the proof by applying
Theorem 5.
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6 Proof of Theorem 7

Lemma 4. We have
u′ = α(ε)qεu + u(qF1 + pG1).

Proof. This is a straightforward calculation.

6.1 A first change of variables

We consider the new variable

x1 = x − xω(sε)F
1(u, ε) (69)

where ω is yet to be determined in such a way that terms of order not O(u2) are
eliminated (precision follows below). We calculate:

x′1 = α(ε)(p + ε)x + xF1 − (α(ε)(p + ε)x + xF1).ωF1 − x
d

dt
(ω(sε))F

1

−xω∂uF1.(α(ε)qεu + u(qF1 + pG1)).

We replace the first x using (69) and, for the convenience of the reader, we mark

✿✿✿✿✿✿✿✿✿✿

canceling
✿✿✿✿✿✿✿

terms; we also mark terms not of order O(u2):

x′1 = α(ε)(p + ε)(x1 + xωF1
✿✿✿✿✿

) + xF1 − (α(ε)(p + ε)x
✿✿✿✿✿✿✿✿✿✿✿✿✿

+ xF1).ωF1 − x
d

dt
(ω(sε))F

1

−xω∂uF1.(α(ε)qεu + u(qF1 + pG1))

= α(ε)(p + ε)x1 + xF1 − xF1.ωF1 − x
d

dt
(ω(sε))F

1

−xω∂uF1.(α(ε)qεu + u(qF1 + pG1)). (70)

In those terms we always have a factor x, and the remaining factor is equal to

F1 − d

dt
(ω(sε))F

1 − ω∂uF1.α(ε)qεu. (71)

Since F1(ε, u) = O(u), we have ∂uF1(ε, u).u = F1(ε, u) + O(u2). If we insert this
in the last term of (71) we get

(71) = F1 − d

dt
(ω(sε))F

1 − ω.(F1 + O(u2)).α(ε)qε.

We see that all the terms that are possibly not O(u2) contain the factor F1. We
want them to be zero. Therefore we want to solve

0 = 1 − d

dt
ω(sε)− ω(sε)α(ε)qε

m
d

dt
ω(sε) = 1 − ω(sε).α(ε)qε (72)

m
dω

dsε
.
dsε

dt
= 1 − ω(sε).α(ε)qε.
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We can take ω(sε) = sε, in view of equation (25). We insert (72) into (71):

(71) = ω(sε)α(ε)qε(F1 − ∂uF1.u).

We enter this in (70) and obtain

x′1 = α(ε)(p + ε)x1 − xF1.ωF1

+xωα(ε)qε(F1 − ∂uF1.u)− xω∂uF1.u(qF1 + pG1).

We can rewrite this in the form

x′1 = α(ε)(p + ε)x1 − xωF2(ε, u)

where

F2(ε, u) = F1.F1 − α(ε)qε(F1 − ∂uF1.u) + ∂uF1.u(qF1 + pG1).

Observe that F2(ε, u) = O(u2).
Completely similar calculations for the second component.

6.2 Induction

Assume by induction that we have, for n ≥ 2:

(x′n−1, y′n−1) = α(ε)((p+ ε)xn−1 ,−qyn−1)+
(−1)n−1

(n − 1)!
(xsn−1

ε Fn(ε, u), ytn−1
ε Gn(ε, u))

where (Fn, Gn)(ε, u) = O(un). We consider the new variables

(xn, yn) = (xn−1, yn−1) +
(−1)n

n!
(xsn

ε Fn(ε, u), ytn
ε Gn(ε, u)). (73)

With completely similar computations as in section 6.1 we obtain

x′n = α(ε)(p + ε).xn +
(−1)n

n!
xsn

ε .Fn+1(ε, u)

where

Fn+1(ε, u) = F1.Fn + α(ε)qε(−nFn + ∂uFn.u) + ∂uFn.u(qF1 + pG1), (74)

and

y′n = −α(ε)q.yn +
(−1)n

n!
ytn

ε Gn+1(ε, u).

with

Gn+1(ε, u) = G1Gn + α(ε)qε(−nGn + ∂uGn.u) + ∂uGn.u(qF1 + pG1).

In the same way as in section 3.2 we take the formal limit (x̃, ỹ) = limn→∞(xn, yn)
of (73) and shall estimate its asymptotics. We consider the first component, the
second one being similar.



Gevrey series in compensators linearizing a planar resonant vector field 45

6.3 Asymptotics of the Fn

We recall that F1(ε, u) = ∑l≥1 al(ε)u
l with al defined on |ε| < 1/(2dl) and

|al |dl ≤ Cl!drl . In the sequel, the value of d ≥ 0 is unimportant, but as we have
indicated in Theorem 6, a ‘natural’ choice would be d = q + p.

Again, just like in section 3.3, we can perform a rescaling and work with the
following majorant for F1:

F1(ε, u) � ∑
n≥1

n!dun, (75)

and in a completely similar way we can arrange that also G1 and qF1 + pG1 have
this majorant (75).

We recall that η = |α(ε)qε|. We consider the recursion (74). Assume, by induc-
tion on N, that FN has a majorant of the form

FN(η, u) � ∑
n≥N

n!danN(η)u
n .

with, thus,
an1(η) = 1

for all n ≥ 1. We majorate FN+1:

FN+1 � F1.FN + η.(−NFN + ∂uFN .u) + ∂uFN .u.(qF1 + pG1). (76)

For the first term in the right hand side of (76) we have, just like in (60):

F1.FN � 1

2d ∑
m≥N+1

m!dum
m−1

∑
n=N

anN .

For the second term we get

η.(−NFN + ∂uFN .u) � η.(−N ∑
n≥N

n!danNun + ∑
n≥N

n.n!danNun)

= η. ∑
n≥N+1

(n − N)n!danNun

and for the third term we obtain

∂uFN .u.(qF1 + pG1) � ∑
n≥N

n.n!danNun. ∑
k≥1

k!duk

� 1

2d ∑
m≥N+1

m!dum
m−1

∑
n=N

nanN .

We conclude here that

FN+1 � ∑
m≥N+1

m!d(
1

2d

m−1

∑
n=N

(n + 1)anN + η.(m − N)amN)u
m.
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It follows that

am,N+1(η) =
1

2d

m−1

∑
n=N

(n + 1)anN(η) + η.(m − N)amN(η).

Now we proceed using induction and propose the estimate

am,N+1(η) ≤ 1

2N(d+1)N!
(m + N)(m + N − 1) . . . (m − N + 1)

+
N−1

∑
j=1

η jβ jN(m + N − j) . . . (m − N + 1)

+ηN(m − 1)(m − 2) . . . (m − N) (77)

for β jN to be determined. Induction gives a majorant

am,N+2 ≤ 1

2d

m−1

∑
n=N+1

(n + 1)an,N+1(η) + η.(m − N − 1)am,N+1(η)

≤ 1

2d

m−1

∑
n=N+1

(n + 1)[
1

2N(d+1)N!
(n + N)(n + N − 1) . . . (n − N + 1)(78)

+
N−1

∑
j=1

η jβ jN(n + N − j) . . . (n − N + 1) (79)

+ηN(n − 1)(n − 2) . . . (n − N)] (80)

+η.(m − N − 1)[
1

2N(d+1)N!
(m + N)(m + N − 1) . . . (m − N + 1)(81)

+
N−1

∑
j=1

η jβ jN(m + N − j) . . . (m − N + 1) (82)

+ηN(m − 1)(m − 2) . . . (m − N)] (83)

in which we will treat now the terms (78) to (83) separately. For convenience we
recall the formula

P

∑
n=K

(n − 1)(n − 2) . . . (n − K + 1) =
1

K
P.(P − 1) . . . (P − K + 1). (84)

First, in precisely the same way as in (64):

(78) ≤ 1

2d

m−1

∑
n=N+1

(n + N + 1)
1

2N(d+1)N!
(n + N)(n + N − 1) . . . (n − N + 1)

=
1

2(N+1)(d+1)

1

(N + 1)!
(m + N + 1)(m + N) . . . (m − N).
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Second:

(79) =
1

2d

m−1

∑
n=N+1

(n + 1)
N−1

∑
j=1

η jβ jN(n + N − j) . . . (n − N + 1)

≤ 1

2d

N−1

∑
j=1

η jβ jN

m−1

∑
n=N+1

(n + N − j + 1)(n + N − j) . . . (n − N + 1)

≤ 1

2d

N−1

∑
j=1

η jβ jN

m+N−j+1

∑
n=2N+2−j

(n − 1) . . . (n − (2N + 1 − j))

(apply formula (84) for K = 2N + 2 − j and P = m + N − j + 1)

=
1

2d

N−1

∑
j=1

η jβ jN
1

2N + 2 − j
(m + N − j + 1) . . . (m − N).

Third:

(80) =
1

2d

m−1

∑
n=N+1

(n + 1).ηN(n − 1)(n − 2) . . . (n − N)

≤ 1

2d
ηN

m−1

∑
n=N+1

(n + 1).n(n − 1) . . . (n − N + 1)

≤ 1

2d
ηN

m+1

∑
n=N+2

(n − 1)(n − 2) . . . (n − N − 1)

(apply formula (84) for K = N + 2 and P = m + 1)

=
1

2d
ηN 1

N + 2
(m + 1)m . . . (m − N).

Fourth:

(81) = η.(m − N − 1)
1

2N(d+1)N!
(m + N)(m + N − 1) . . . (m − N + 1)

≤ η.
1

2N(d+1)N!
(m + N)(m + N − 1) . . . (m − N + 1).(m − N).

Fifth:

(82) = η.(m − N − 1).
N−1

∑
j=1

η jβ jN(m + N − j) . . . (m − N + 1)

=
N

∑
j=2

η jβ j−1,N(m + N − j + 1) . . . (m − N + 1).(m − N − 1)

≤
N

∑
j=2

η jβ j−1,N(m + N − j + 1) . . . (m − N + 1).(m − N).

Sixth:

(83) = ηN+1(m − 1) . . . (m − N).(m − N − 1).
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We derive the following recursion for the β jN now. Since, for N = 1, we have for
all m ≥ 2:

am2 ≤ 1

2d+1
(m + 1)m + η(m − 1), (85)

we can calculate for all m ≥ 3

am3 =
1

2d

m−1

∑
n=2

(n + 1)an2(η) + η.(m − 2)am2(η)

≤ 1

2d

m−1

∑
n=2

(n + 1)[
1

2d+1
(n + 1)n + η(n − 1)]

+η.(m − 2)[
1

2d+1
(m + 1)m + η(m − 1)]

≤ 1

2d

m−1

∑
n=2

(n + 2)
1

2d+1
(n + 1)n + η

1

2d

m−1

∑
n=2

(n + 1)n + η.(m − 2)
1

2d+1
(m + 1)m

+η2(m − 2)(m − 1)

≤ 1

2(d+1)+d

m+2

∑
n=4

(n − 1)(n − 2)(n − 3) + η.
1

2d

m+1

∑
n=3

(n − 1)(n − 2) +

η.(m − 2)
1

2d+1
(m + 1)m + η2(m − 2)(m − 1)

=
1

2(d+1)+d
.
1

4
(m + 2)(m + 1)m(m − 1) + η.

1

2d

1

3
(m + 1)m(m − 1) +

η.(m − 2)
1

2d+1
(m + 1)m + η2(m − 2)(m − 1)

≤ 1

22(d+1)
.
1

4
(m + 2)(m + 1)m(m − 1) + η.(

1

2d

1

3
+

1

2d+1
).(m + 1)m(m − 1)

+η2(m − 2)(m − 1).

We see that

β12 =
1

2d

1

3
+

1

2d+1
. (86)

Let N ≥ 2. We want

am,N+2 ≤ 1

2(N+1)(d+1)
(m + N + 1) . . . (m − N)+

N

∑
j=1

η jβ j,N+1(m + N − j + 1) . . . (m − N) + ηN+1(m − 1) . . . (m − N − 1). (87)

The first and third term above correspond to (78) and (83). For the second term
in (87) we infer the following recursion. For j = 1 we have

β1,N+1 =
1

2d
β1N

1

2N + 1
+

1

2N(d+1)N!
; (88)

for 2 ≤ j ≤ N − 1:

β j,N+1 =
1

2d
β jN

1

2N + 2 − j
+ β j−1,N; (89)
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for j = N:

βN,N+1 =
1

2d

1

N + 2
+ βN−1,N. (90)

Lemma 5. For all N ≥ 2 we have the estimates

β1N ≤ 1

2(N−1)(d+1)(N − 1)!

(

N

1

)

, (91)

β jN ≤ 1

2(N−j)(d+1)

(

N

j

)

for 2 ≤ j ≤ N − 2, (92)

βN−1,N ≤ 1

2d+1

(

N

N − 1

)

. (93)

Proof. For N = 2 this follows from (86); note that (91) and (93) are the same in this
case. Assume, by induction, that the lemma is true for N ≥ 2. Below, we shall
apply Pascal’s triangle identity several times. First of all, we use (88):

β1,N+1 =
1

2d
β1N

1

2N + 1
+

1

2N(d+1)N!

=
1

2d2(N−1)(d+1)(N − 1)!

(

N

1

)

1

2N + 1
+

1

2N(d+1)N!

(

N

0

)

≤ 1

2d2(N−1)(d+1)(N − 1)!

1

2N

(

N

1

)

+
1

2N(d+1)N!

(

N

0

)

=
1

2N(d+1)N!
(

(

N

1

)

+

(

N

0

)

)

=
1

2N(d+1)N!

(

N + 1

1

)

.

Second, for 2 ≤ j ≤ N − 1 we apply (89):

β j,N+1 =
1

2d
β jN

1

2N + 2 − j
+ β j−1,N

≤ 1

2d2(N−j)(d+1)(N + 3)

(

N

j

)

+
1

2(N−j+1)(d+1)

(

N

j − 1

)

≤ 1

2d2(N−j)(d+1).2

(

N

j

)

+
1

2(N−j+1)(d+1)

(

N

j − 1

)

=
1

2(N−j+1)(d+1)
(

(

N

j

)

+

(

N

j − 1

)

)

=
1

2(N−j+1)(d+1)

(

N + 1

j

)

.
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Finally, we use (90):

βN,N+1 =
1

2d

1

N + 2
+ βN−1,N

=
1

2d

1

N + 2

(

N

N

)

+
1

2d+1

(

N

N − 1

)

≤ 1

2d+1
(

(

N

N

)

+

(

N

N − 1

)

)

=
1

2d+1

(

N + 1

N

)

.

The induction is finished.

From (77), (85) and Lemma 5 we obtain:

Lemma 6. The following estimates hold:

am2(η) ≤ 1

2d+1
(m + 1)m + η(m − 1)

and for all N ≥ 2:

am,N+1(η) ≤
1

2N(d + 1)N!

(m + N)!

(m − N)!
+

N−1

∑
j=1

η j 1

2(N−j)(d+1)

(

N

j

)

(m + N − j)!

(m − N)!
+ ηN (m − 1)!

(m − N − 1)!
.

Lemma 7. We have the following majorants:

F2(η, u) � ∑
n≥2

n!d(
1

2d+1
(n + 1)n + η(n − 1))un

and for all N ≥ 3:

FN(η, u) � ∑
n≥N

n!d(
1

2(N−1)(d+1)(N − 1)!

(n + N − 1)!

(n − N + 1)!

+
N−2

∑
j=1

η j 1

2(N−1−j)(d+1)

(

N − 1

j

)

(n + N − 1 − j)!

(n − N + 1)!

+ηN−1 (n − 1)!

(n − N)!
)un.

6.4 Asymptotics of the ‘final’ transformation

Using Lemma 7 we have, for the left hand side in (30), a majorant of the form

S(ε, u, s) = sε ∑
n≥1

n!dun +
s2

ε

2! ∑
n≥2

n!d(
1

2d+1
(n + 1)n+

η(n − 1))un + ∑
k≥3

∑
n≥k

k−1

∑
j=0

γnkjη
junsk

ε (94)
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where, as before, η = |α(ε)qε| and where the coefficients γnkj are:

γnk0 =
n!d(n + k − 1)!

k!2(k−1)(d+1)(k − 1)!(n − k + 1)!
,

γnkj =
n!d

k!2(k−1−j)(d+1)

(

k − 1

j

)

(n + k − 1 − j)!

(n − k + 1)!
for 1 ≤ j ≤ k − 2,

γnk,k−1 =
n!d(n − 1)!

k!(n − k)!
.

We rewrite the summation in (94) as follows:

∑
k≥3

∑
n≥k

k−1

∑
j=0

γnkjη
junsk

ε = ∑
i≥0

ui ∑
k≥3

(sεu)
k

k−1

∑
j=0

γi+k,kjη
j.

Let us now examine and estimate the coefficients fikj = γi+k,k,j. For j = 0 we
have, in precisely the same way as before in (65):

fik0 = γi+k,k,0 ≤
3i+2k−1

2(k−1)(d+1)

1

i + 1
(i + k)!d .

For 1 ≤ j ≤ k − 2 we can make the estimates

fikj = γi+k,k,j =
(i + k)!d

k!2(k−1−j)(d+1)

(

k − 1

j

)

(i + 2k − 1 − j)!

(i + 1)!

≤ (i + k)!d

k!2(k−1−j)(d+1)

(

k − 1

j

)

3i+2k−1 i!k!(k − 1)!

(i + 1)!

≤ (i + k)!d2−kd+d+jd+j3i+2k−1 (k − 1)!

i + 1
,

and finally for j = k − 1:

fik,k−1 = γi+k,k,k−1 =
(i + k)!d(i + k − 1)!

k!i!

≤ (i + k)!d2i+k−1i!(k − 1)!

k!i!

= (i + k)!d2i+k−1 1

k
.

From these estimates it follows that the series in (30) is of Gevrey order d + 1 in
the variables (u, sεu). We can proceed in the same way as in section 3.

Remark 9. From the above calculations it is unclear to us whether these Gevrey
type results can be sharpened or not, in particular the estimates leading to the
terms with 1 ≤ j ≤ N − 2 in Lemma 7.
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7 Proof of Theorem 8

We recall the linear maps L and M from Proposition 1 which are one-to-one from
Z2 to Z2. We define the sets

B̃1 = {(m1, m2) ∈ Z
2|m2 ≥ 0 and m1 ≥ Km2 + 1},

G̃1 = {(m1, m2) ∈ Z
2|m2 ≥ 0 and

−s0

p
m2 ≤ m1 ≤ Km2},

B1 = L(B̃1) and G1 = L(G̃1). Similarly:

B̃2 = {(m1, m2) ∈ Z
2|m2 ≥ 1 and m1 ≥ Km2 + 1}, (95)

G̃2 = {(m1, m2) ∈ Z
2|m2 ≥ 0 and

−s1

p
m2 ≤ m1 ≤ Km2},

B2 = M(B̃2) and G2 = M(G̃2).

Remark 10. Notice that the sets B1 and B2 do not overlap, because of the follow-
ing. The matrix

L − M =

(

0 r0 − r1

0 s0 − s1

)

cannot be zero, since (r0 − r1, s0 − s1) = (r0 − q + r0, s0 − p + s0) = 2(r0, s0) −
(q, p) 6= (0, 0) because gcd(q, p) = 1. Hence the kernel of L − M is equal to
{m2 = 0}, and we have removed m2 = 0 from the definition of B̃2 in (95).

We could call, informally, the sets G1 and G2 ‘good’, because we will explain
below why monomials xk1 yk2 in the series (32) of Xε with (k1, k2) in a good set
can be removed by an analytic change of variables. The sets B1 and B2 could be
called ‘bad’.

We have, for all (k1, k2) ∈ Z2, writing (m1, m2) = L−1(k1, k2):

〈(α(ε)(p + ε,−q), (k1 , k2)〉 = 〈(α(ε)(p + ε,−q), m1(q, p) + m2(r0, s0)〉
= α(ε)(m1εq + m2(1 + εr0)).

Let (k1, k2) ∈ G1. Then |m1| ≤ max{ s0
p , K}m2 and hence, on the one hand:

|〈(α(ε)(p + ε,−q), (k1 , k2)〉| ≥ |α(ε)|(|m2(1 + εr0)| − |m1||ε|q)
≥ |α(ε)|m2(|1 + εr0| − max{ s0

p
, K}|ε|q);

on the other hand:

|(k1, k2)| ≤ |m1|(q + p) + m2(r0 + s0)

≤ m2(max{ s0

p
, K}(q + p) + r0 + s0).

We obtain:

|〈(α(ε)(p + ε,−q), (k1 , k2)〉| ≥
|α(ε)|(|1 + εr0| − max{ s0

p , K}|ε|q)
max{ s0

p , K}(q + p) + r0 + s0
|(k1, k2)|. (96)
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Since α(0) 6= 0 and by continuity, there exists ε0 > 0 such that, for the numerator
in (96):

min
|ε|≤ε0

|α(ε)|(|1 + εr0| − max{ s0

p
, K}|ε|q) > 0.

Hence, the hypothesis (2) of Theorem 1 is fulfilled for the set G1, for s = 0. In
a completely analogous way we obtain a similar condition for the set G2. We
infer that there exists an analytic transformation ψε of the form (33) conjugating
Xε into Yε = ψ∗

ε Xε of the following form (let us rename m2 = k in order to get the
expression in (34)):

Yε(x, y) = α(ε).((p + ε)x
∂

∂x
− qy

∂

∂y
)

+(∑
k≥0

uKk ∑
m1≥Kk+1

bm1k(ε)u
m1−Kk(xr0 ys0)k

+ ∑
k≥1

uKk ∑
m1≥Kk+1

b̃m1k(ε)u
m1−Kk(xr1 ys1)k)x

∂

∂x

+(∑
k≥0

uKk ∑
m1≥Kk+1

cm1k(ε)u
m1−Kk(xr0 ys0)k

+ ∑
k≥1

uKk ∑
m1≥Kk+1

c̃m1k(ε)u
m1−Kk(xr1 ys1)k)y

∂

∂y
.

In both ψε and Yε the coefficient functions of the series belong to the algebra A(ε0),
provided thus that ε0 is sufficiently small. Now it suffices to define

Fk(ε, u) = ∑
m1≥Kk+1

bm1k(ε)u
m1−Kk,

F̃k(ε, u) = ∑
m1≥Kk+1

b̃m1k(ε)u
m1−Kk,

Gk(ε, u) = ∑
m1≥Kk+1

cm1k(ε)u
m1−Kk,

G̃k(ε, u) = ∑
m1≥Kk+1

c̃m1k(ε)u
m1−Kk

in order to obtain the expression (34) for Yε in the statement of the theorem.
Observe that Fk(ε, 0) = F̃k(ε, 0) = Gk(ε, 0) = G̃k(ε, 0) = 0.

8 Proof of Theorem 9

We recall that u = xqyp and that vk is defined as in (36).We will need to compute
u′ and v′k below, and define for that purpose

Σε(k) =

{

kα(ε)(1 + r0ε) if k ≥ 0
(−k)α(ε)(−1 + r1ε) if k < 0

(97)

and also

Hk2
k =

{

k(r0Fk2
+ s0Gk2

) if k ≥ 0
−k(r1Fk2

+ s1Gk2
) if k < 0.

From a straightforward computation one obtains:
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Lemma 8. The following formulas hold:

u′ = εα(ε)qu + u ∑
k

vk(qFk(ε, u) + pGk(ε, u))

and
v′k = Σε(k)vk + vk ∑

k2

vk2
Hk2

k (ε, u). (98)

8.1 A first change of variables

We consider the new variable

x1 = x − x ∑
k

ωk(sε)vkFk(ε, u)

where ωk is yet to be determined in such a way that terms of order not O(u2) are
eliminated (precision follows below). We calculate, in a similar way as section 6.1
(but slightly more involved), marking terms not of order O(u2):

x′1 = α(ε)(p + ε)x1 + x ∑
k

vkFk

−x ∑
k2

vk2
Fk2

. ∑
k

ωkvkFk − x ∑
k

d

dt
(ωk(sε)).vkFk

−x ∑
k

ωk.(Σε(k)vk + vk ∑
k2

vk2
Hk2

k )Fk

−x ∑
k

ωk.vk∂uFk.(α(ε)qεu + u ∑
k2

vk2
(qFk2

+ pGk2
)). (99)

In those terms we always have a factor x.vk, and the remaining factor is equal to

Fk −
d

dt
ωk(sε).Fk − ωk(sε)Σε(k).Fk − ωk(sε).∂uFk.α(ε)qεu. (100)

Since Fk(ε, u) = O(u) we have ∂uFk(ε, u).u = Fk(ε, u) + O(u2), and if we insert
this in the last term of (100) we get that this is equal to

Fk −
d

dt
ωk(sε).Fk − ωk(sε)Σε(k).Fk − ωk(sε).(Fk + O(u2))α(ε)qε.

We observe that all the terms that are not O(u2) contain the factor Fk. We want
them to be zero. This comes down to solving the equation

d

dt
ωk(sε) = 1 − ωk(sε)(Σε(k) + α(ε)qε) (101)

m
dωk

dsε
.
dsε

dt
= 1 − ωk(sε)(Σε(k) + α(ε)qε). (102)



Gevrey series in compensators linearizing a planar resonant vector field 55

In the case that k 6= 0, we have Σ0(k) = kα(0) 6= 0 and hence we can take

ωk(sε) =
1

Σε(k) + α(ε)qε
(103)

provided that the denominator is nonzero. In the case that k = 0, we take

ω0(sε) = sε (104)

and check indeed that the left hand side of (102) is equal to, using (25):

dsε

dt
= 1 − α(ε)qεsε

and the right hand side of (102) is equal to

1 − ω0(sε)(Σε(0) + α(ε)qε) = 1 − sεα(ε)qε.

We insert (101) into (100), and this respectively into (99), and obtain

x′1 = α(ε)(p + ε)x1 − x ∑
k2

vk2
Fk2

. ∑
k

ωkvkFk − x ∑
k≥0

ωk.vk ∑
k2

vk2
Hk2

k Fk

+x ∑
k

ωk.vk.α(ε)qε(Fk − ∂uFk.u)− x ∑
k

ωkvk∂uFk.u ∑
k2

vk2
(qFk2

+ pGk2
).

We can rewrite this in the form

x′1 = α(ε)(p + ε)x1 − x ∑
k

ωkvk ∑
k2

vk2
F(k,k2)(ε, u)

where F(k,k2) is defined as follows:
1. for k2 = 0 we take

F(k,0) = F0Fk + H0
k .Fk − α(ε)qε(Fk − ∂uFk.u) + ∂uFk.u(qF0 + pG0);

2. for k2 6= 0 we take

F(k,k2)
= Fk2

Fk + Hk2
k .Fk + ∂uFk.u(qFk2

+ pGk2
).

The second component is treated in the same way.

8.2 Induction

Assume by induction that we have, for n ≥ 2:

{

x′n−1 = α(ε)(p + ε)xn−1 + (−1)n−1x ∑Kn
ωKn−1

(sε)vKn FKn(ε, u)
y′n−1 = −α(ε)qyn−1 + (−1)n−1y ∑Kn

ωKn−1
(sε)vKn GKn(ε, u)

with (FKn , GKn)(ε, u) = O(un). In order to compute v′Kn
we define the quantities,

by induction from (97), as

Σε(Kn) = Σε(Kn−1) + Σε(kn).
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We already had in (98):

v′k = Σε(k)vk + vk ∑
k2

vk2
Hk2

k (ε, u).

By induction one readily shows that

v′Kn
= Σε(Kn)vKn + vKn . ∑

k

vkHk
Kn
(ε, u)

where

Hk
Kn
(ε, u) = Hk

Kn−1
(ε, u) + Hk

kn
(ε, u).

We define the new variables
{

xn = xn−1 + (−1)nx ∑Kn
ωKn(sε)vKn FKn(ε, u)

yn = yn−1 + (−1)ny ∑Kn
ωKn(sε)vKn GKn(ε, u)

where we choose ωKn(sε) to be a solution of the differential equation

−ωKn−1
+

d

dt
ωKn + ωKnΣε(Kn) + ωKn .α(ε)qε.n = 0

or equivalently, using equation (25):

dωKn

dsε
.
dsε

dt
=

dωKn

dsε
.(1 − α(ε)qεsε) = ωKn−1

− ωKn .(Σε(Kn) + nα(ε)qε). (105)

Theoretically this has, of course, a solution, but we will come back to this more
explicitly below. A straightforward computation, comparable to the one in
section 6.1, shows that, by this choice of ωKn , the terms not of order O(un+1) are
eliminated. Moreover, if we denote Kn+1 = (Kn, kn+1), then we find the following
equations for (xn, yn):

{

x′n = α(ε)(p + ε)xn + (−1)nx ∑Kn+1
ωKn(sε)vKn+1

FKn+1
(ε, u)

y′n = −α(ε)qyn + (−1)ny ∑Kn+1
ωKn(sε)vKn+1

GKn+1
(ε, u)

where (FKn+1
, GKn+1

) is defined as follows:
1. for kn+1 = 0 we take

F(Kn ,0) = (F0 + H0
Kn
)GKn + α(ε)qε(∂u FKn .u − nFKn) + ∂uFKn .u(qF0 + pG0), (106)

G(Kn,0) = (G0 + H0
Kn
)GKn + α(ε)qε(∂u GKn .u− nGKn)+ ∂uGKn .u(qF0 + pG0); (107)

2. for kn+1 6= 0 we take

FKn+1
= (Fkn+1

+ H
kn+1
Kn

)FKn + ∂uFKn .u(qFkn+1
+ pGkn+1

), (108)

GKn+1
= (Gkn+1

+ H
kn+1
Kn

)GKn + ∂uGKn .u(qFkn+1
+ pGkn+1

). (109)

Observe that (FKn+1
, GKn+1

) = O(un+1).
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8.3 On the sequence of differential equations defining the ωKn

We had defined the functions ωk, k ∈ Z, in (103) and (104), and by induction we
had the differential equations (105) for the ωKn , that is:

dωKn

dsε
.(1 − α(ε)qεsε) = ωKn−1

− ωKn .(Σε(Kn) + nα(ε)qε) (110)

for Kn ∈ Zn, n ≥ 2. Let us come back to the numbers Σε(Kn). For n = 1 we recall
the formulas in (97) and also the fact that r1 = q − r0. Hence we can write for
k < 0:

Σε(k) = kα(ε)(1 − r1ε) = kα(ε)(1 + r0)ε + |k|.α(ε)qε.

Summarizing, we can write for all k ∈ Z:

Σε(k) = kα(ε)(1 + r0ε) + δk|k|α(ε)qε

where δk is defined by (39) in Notation 3. For n ≥ 1 and Kn = (k1, . . . , kn) ∈ Zn

we denote

S(Kn) =
n

∑
i=1

ki.

By induction one easily shows:

Σε(Kn) = S(Kn)α(ε)(1 + r0ε)− 〈δKn , Kn〉α(ε)qε. (111)

Observe that the factor −〈δKn , Kn〉 is always a nonnegative integer. Let us fix ε for
a moment and denote sε = s. Although this is not essential, we can avoid some
hassle with the minus signs by considering the variable σ = −s and by studying
instead the functions

τKn(σ) = (−1)nωKn(−σ). (112)

We have, for k 6= 0:

τk(σ) = − 1

Σε(k) + α(ε)qε

and
τ0(σ) = σ.

The differential equation for τKn is then:

dτKn

dσ
.(1 + α(ε)qεσ) = τKn−1

+ τKn .(Σε(Kn) + nα(ε)qε),

and using (111) this becomes

dτKn

dσ
.(1+ α(ε)qεσ) = τKn−1

+ τKn .(S(Kn)α(ε)(1 + r0ε) + (−〈δKn , Kn〉+ n).α(ε)qε).

(113)
Below we will study this inductively determined sequence of differential equa-
tions. We shall obtain polynomial solutions for these equations. The way they are
obtained differs according to the fact that S(Kn) is zero or nonzero.

Definition 5. If S(Kn) = 0 we will say that τKn is obtained from τKn−1
by an arrow

τKn−1
→ τKn of type A. If S(Kn) 6= 0 we will say that such an arrow τKn−1

→ τKn is
of type B.
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8.3.1 An arrow of type A

Let D ≥ 1 be a given integer and let

τ =
D−1

∑
j=0

ajσ
j

where aj = aj(ε) is a function of ε. Let us for simplicity pass to the new small
parameter η = α(ε)qε. We look for τ̂ such that

dτ̂

dσ
.(1 + ησ) = τ + τ̂.Dη, (114)

see equation (113) with S(Kn) = 0 and D = −〈δKn , Kn〉+ n. We look for τ̂ of the
form

τ̂ =
D

∑
j=1

âjσ
j.

Inserting this in both sides of equation (114) gives, after some easy calculation:

j!âj =
1

(D − j)!

j−1

∑
i=0

(D − i − 1)!η j−1−ii!ai (115)

for all 1 ≤ j ≤ D. We can consider this as a linear map CD → CD mapping
the i!ai to the j!âj, as defined by (115), that is: (0!a0, . . . , i!ai, . . . , (D − 1)!aD−1) 7→
(1!â1, . . . , j!âj, . . . , D!âD) . It has a D × D matrix Ĉ = (Ĉjk)1≤j,k≤D with

Ĉjk =

{

(D−k)!
(D−j)!

η j−k if j ≥ k

0 if j < k.

8.3.2 An arrow of type B

Let τ = ∑
d
j=0 ajσ

j where aj = aj(ε) is a function of ε. We look for τ̃ such that

dτ̃

dσ
.(1 + α(ε)qεσ) = τ + τ̃.(Sε + Dα(ε)qε) (116)

where we assume that Sε 6= 0. We think of Sε = S(Kn)α(ε)(1 + r0ε) and
D = −〈δKn , Kn〉+ n, see equation (113). We look for τ̃ of the form

τ̃ =
d

∑
j=0

ãjσ
j.
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Inserting this in both sides of equation (116) readily yields the following ‘down-
ward’ inductive scheme:

−ãd =
1

Sε + (D − d)α(ε)qε
.ad

−ãd−1 =
1

Sε + (D − d + 1)α(ε)qε
.(d(−ãd) + ad−1)

...

−ãj =
1

Sε + (D − j)α(ε)qε
.((j + 1)(−ãj+1) + aj)

...

−ã0 =
1

Sε + Dα(ε)qε
.(−ã1 + a0), (117)

that is: we solve this successively from top to bottom, determining all the ãj.

Remark 11. If one looks for a ‘simpler’ majorant for this arrow B, and if one
assumes that for small ε all denominators in (117) are estimated from below, that
is: suppose there exists an S > 0 such that

|Sε + (D − j)α(ε)qε| ≥ S > 0

for all j = 0, . . . , d, then a calculation shows that

−ãj =
d

∑
i=j

1

Si−j+1

i!

j!
ai

provides a majorant. This could perhaps be helpful in answering the pending
question that we pose below in paragraph 8.3.4.

8.3.3 Conclusion of the proof of Theorem 9

We recall Notation 3, especially D(Kn) = −〈δKn , Kn〉+ n; observe that D(Kn) ≤
|Kn|+ n.

Lemma 9. We have:
(i) ωKn is a polynomial of degree at most D(Kn),
(ii) vKn = xαyβ with α + β ≥ |Kn|.
Proof. (i) We have for all n ≥ 1

D(Kn+1) = −〈δKn+1
, Kn+1〉+ n + 1

= D(Kn)− δkn+1
kn+1 + 1

≥ D(Kn) + 1

and hence the sequence (D(Kn))n≥1 is strictly increasing. The statement in (i) is
clearly true for n = 1. Assume, by induction, that (i) holds for n ≥ 1. Recall τKn

from (112). We obtain τKn+1
either by an arrow of type A or B. For an arrow of



60 P. Bonckaert

type A we have to take D = D(Kn+1) and τ = τKn . The degree of τ is indeed at
most D(Kn) ≤ D(Kn+1)− 1 = D − 1, as it should be, and the degree of τKn+1

= τ̃
is then at most D(Kn+1). For an arrow of type B, the degree does not change. This
finishes the induction for (i).

(ii) Recall the definition (36) of vk. First of all, since (r0, s0) 6= (0, 0) 6= (r1, s1),
one has vk = xαyβ with α + β ≥ |k|. Statement (ii) now immediately follows by
induction from (38).

We claim that a term ωKn(s)vKn(FKn , GKn)(u, ε) can be written in the form (41).
Indeed, by Lemma 9, such a term is of order ωKn(s)vKn .O(un) =

ωKn(s)x
αy|Kn|−αunO(1) for some integer α ≥ 0. For each 0 ≤ j ≤ D(Kn) we can

decompose a monomial sjxαy|Kn|−αun, with 0 ≤ j ≤ D(Kn), as sjxαy|Kn|−αun =

(sx)α̃ .(sy)β̃(su)ñxα−α̃y|Kn|−α−β̃un−ñ, where all the occurring exponents are inte-
gers ≥ 0. This is possible since j ≤ D(Kn) ≤ |Kn| + n. (Remark that such
a decomposition is not unique; in order to fix the ideas we give an example:
s8x2y4u3 = (sx)2(sy)4(su)2u = (sx)(sy)4(su)3x.)

8.3.4 Digression and question about Theorem 9

Remark 12. (i) The domain for ε depends on Kn: see (117).
(ii) The form in (41) is not unique.

We end this paper with a question:

Remark 13. From the theorem it follows that (x̃, ỹ) in (40) is a formal power series
in (sx, sy, x, y), and it would be interesting to investigate its asymptotics, in a
similar manner as in sections 3.3 and 6.4.

The polynomials ωKn are obtained from equation (110) in a recursive way us-
ing arrows of type A or B. They are ‘universal’ in the sense that they only depend
on p and q, not on the family of vector fields we start from. Furthermore, the
functions (FKn , GKn) are generated by an explicit recursion, as can be seen in the
formulas (106) - (109).

Despite the explicit nature of this procedure, we did not succeed in computing
a satisfactory majorant (for instance of Gevrey type) in a comparable way as in
Theorem 7, nor as in [5, section 5.4]. Let us indicate what are the difficulties
that we encounter here. In section 6.2 we only had to consider functions of the
compensator for the special case Kn = (0, . . . , 0), that is: ωKn(sε) = sn

ε /n!. For
a general Kn, the expressions obtained from equation (110) are less understood.
Moreover, for ε 6= 0 we cannot invoke the method of [5, page 1153, Lemma 1],
stating that an arrow of type B followed by an arrow of type A is majorated by
reversing the two, which is no longer true here, and which could have made the
estimates manageable. It would be interesting to get more insight in this issue.
One aspect of this is a better understanding of the ‘universal’ (multi-)series of the
ωKn , compare to [5, inequality (71)].
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