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Abstract

Let X, Y be compact Hausdorff spaces and A, B be either closed subspaces
of C(X) and C(Y), respectively, containing constants or positive cones of
such subspaces. In this paper we study surjections T : A −→ B satisfy-
ing the norm condition ‖T( f )T(g)− 1‖Y = ‖ f g − 1‖X for all f , g ∈ A, where
‖ · ‖X and ‖ · ‖Y denote the supremum norms. We show that under a mild
condition on the strong boundary points of A and B (and the assumption
T(i) = iT(1) in the subspace case), the map T is a weighted composition
operator on the set of strong boundary points of B. This result is an improve-
ment of the known results for uniform algebra case to closed linear subspaces
and their positive cones.

1 Introduction

The problem of characterization of certain preserving maps (linear or not)
between some algebras or spaces of functions has been studied extensively.
In most cases the preserving condition is related to a norm, the spectrum, the
spectral radius or the range of algebra elements. The study of surjections
T : C(X) −→ C(X), not assumed to be linear, which are multiplicatively
spectrum-preserving, i.e. σ(T( f )T(g)) = σ( f g), f , g ∈ C(X), has been initi-
ated by Molnár in [14] and continued by many authors in many different set-
tings. For instance, multiplicatively spectrum-preserving (or range-preserving)
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maps between uniform algebras and Banach function algebras have been charac-
terized in [6, 8, 9, 15, 16]. Let ‖ · ‖X denote the supremum norm on C(X). Since
in uniform algebras, the Gelfand transformation is an isometry, it follows that
any multiplicatively spectrum-preserving map T : A −→ B between uniform
algebras A and B on compact Hausdorff spaces X and Y, satisfies the weaker
norm-multiplicative condition ‖T( f )T(g)‖Y = ‖ f g‖X , for all f , g ∈ A. However,
mappings between uniform algebras satisfying this weaker condition (with re-
spect to the supremum norm) have been studied, for instance in [11]. In this case
such a map T is a weighted composition operator in modulus on the Choquet
boundaries, that is |T( f )(y)| = | f (ϕ(y))| for each f in the domain, where ϕ is a
homeomorphism between the Choquet boundaries.

In [11] Lambert, Luttman, and Tonev also studied surjective maps T : A −→ B
between uniform algebras A and B on compact Hausdorff spaces X and Y,
respectively, satisfying ‖T( f )T(g) + 1‖Y = ‖ f g + 1‖X, f , g ∈ A, called nonsym-
metric multiplicatively norm-preserving maps. They showed that if T is homoge-
neous, then it is an isometric algebra isomorphism. Hatori, Miura, and Takagi
have characterized maps T : A −→ B between semisimple commutative Banach
algebras that satisfy r( f g − 1) = r(T( f )T(g) − 1) for all f , g ∈ A, where r(·)
denotes the spectral radius of f , see [7]. Since in uniform algebra case, this condi-
tion is the same as the previous one, the results in [7] provide the description of
nonsymmetric norm-preserving surjections between uniform algebras. Indeed,
according their results such maps can be described as weighted composition
operators on some points of the Choquet boundary and conjugate weighted com-
position operators on the other points. On the other hand, an alternative descrip-
tion of such a map T : A −→ B between uniform algebras has been given in [13].
We should note that this description is independent of the points, and character-
izes T as an operator. For some related results, see also [2, 10]

In this paper we study nonsymmetric norm-preserving surjections between
either closed subspaces of continuous functions containing constants or their pos-
itive cones (rather than uniform algebras) and show that under a mild condi-
tion they are weighted composition operators on the Choquet boundaries (Theo-
rem 3.1).

2 Preliminaries

Let X be a compact Hausdorff space. By C(X) we mean the Banach algebra of
continuous complex-valued functions on X with the supremum norm ‖ · ‖X. For
a function f ∈ C(X), M( f ) = {x ∈ X : | f (x)| = ‖ f‖X}.

A uniform algebra on X is a closed subalgebra of C(X) which contains con-
stants and separates the points of X. For a subspace A of C(X), Ch(A) denotes
the Choquet boundary of A which consists of all points x ∈ X such that the eval-
uation functional ex : A −→ C defined by ex( f ) = f (x), f ∈ A, is an extreme
point of the unit ball of A∗. It is well known that Ch(A) is a boundary for A, that
is for any f ∈ A, there exists x ∈ Ch(A) such that ‖ f‖X = | f (x)|, see [17, Page
184]. For a subset A of C(X), a point x ∈ X is a strong boundary point (weak peak
point) for A if for each ǫ > 0 and neighborhood V of x there exists u ∈ A such that
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u(x) = 1 = ‖u‖X and |u| < ǫ on X\V. We denote the set of all strong boundary
points of A by Θ(A). For a subspace A of C(X) we have Θ(A) ⊆ Ch(A) and the
equality holds whenever A is a uniform algebra on X, see [12, Theorem 4.7.22].

For each f ∈ C(X), the peripheral range of f is defined by Rπ( f ) =
{λ ∈ f (X) : |λ| = ‖ f‖X}. Given a subset A of C(X) we say that f ∈ A is a
peaking function for A if Rπ( f ) = {1} and we call a closed subset F of X a peak
set of A if there exists a peaking function f ∈ A with F = {x ∈ X : f (x) = 1}. We
note that when A is a subspace containing constants or the positive cone of such
subspace, replacing u by ǫ + (1 − ǫ)u, we can assume that for ǫ > 0 the above
function u associated to a point x ∈ Θ(A) and a neighborhood of x, can be chosen
to be a peaking function.

It is well known that in a uniform algebra A on X, for any nonempty intersec-
tion ∩αEα of peak sets of A we have ∩αEα ∩Ch(A) 6= ∅. However, this also holds
true for the case that A is a subspace of C(X), see [4].

For x ∈ X and A ⊆ C(X), we set

Vx(A) = { f ∈ A : f (x) = 1 = ‖ f‖X}

and

Fx(A) = { f ∈ A : | f (x)| = 1 = ‖ f‖X}.

Clearly these sets are nonempty for all x ∈ Θ(A), and they are equal whenever
A consists of positive functions.

The following important lemma is well known for uniform algebra case, see
for example [18, Lemma 1.1]. However a minor modification of the proof can be
applied for closed subspaces containing constants or their positive cones, rather
than uniform algebras.

Lemma 2.1. Let X be a compact Hausdorff space and A be either a closed subspace of
C(X) containing the constants or the positive cone of such subspace. Let x0 ∈ Θ(A) and
f ∈ A with f (x0) 6= 0. Then for each ǫ > 0 and any neighborhood U of x0 there exists
a peaking function u ∈ Vx0(A) such that Rπ( f u) = { f (x0)}, | f u(x)| < | f (x0)| for
each x ∈ X with f (x) 6= f (x0) and, furthermore, |u| < ǫ on X\U.

Proof. We give the sketch of proof, since it is basically the same as [18, Lemma
1.1]. Put

F0 = {x ∈ X : | f (x)− f (x0)| ≥
| f (x0)|

2
}

and for each n ∈ N, put

Fn = {x ∈ X :
| f (x0)|

2n+1
≤ | f (x)− f (x0)| ≤

| f (x0)|

2n
}.

Clearly for each n ∈ N, the set Vn = U ∩ (X\(F0 ∪ Fn)) is an open neighborhood
of x0. Since x0 is a strong boundary point of A and A contains the constants,

there exists a peaking function un ∈ Vx0(A) such that |un| < min(
| f (x0)|
‖ f ‖X

, 1
2n+1 , ǫ)

on X\Vn. Then it is easy to see that the function u = Σ∞
n=1

un
2n in A has the desired

properties.
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3 Main Results

In this section we generalize the known results concerning surjective maps
T : A −→ B between uniform algebras A and B on compact Hausdorff spaces
X and Y, respectively, satisfying the norm condition

‖T( f )T(g) − 1‖X = ‖ f g − 1‖X ( f , g ∈ A)

to the case that A and B are closed subspaces of continuous functions or their
positive cones.

Our main result is as follows.

Theorem 3.1. Let A and B be uniform algebras on compact Hausdorff spaces X and Y,
respectively. Suppose that A ⊆ A and B ⊆ B are either

(i) closed subspaces containing constants, or
(ii) positive cones of such subspaces.

Assume, further, that Θ(A) = Ch(A) and Θ(B) = Ch(B). If T : A −→ B is
a surjective map satisfying ‖T( f )T(g) − 1‖Y = ‖ f g − 1‖X, for all f , g ∈ A, (and
T(i) = iT(1) in case (i)), then there exists a homeomorphism ϕ : Ch(B) −→ Ch(A)
such that T( f )(y) = T(1)(y) f (ϕ(y)) for all f ∈ A and y ∈ Ch(B).

The proof of this theorem is given through a series of lemmas. Before stating
the required lemmas, we prove a theorem concerning surjective multiplicatively
norm-preserving maps between subspaces of continuous functions or their posi-
tive cones. We should note that the proof of Theorem 3.2 (which is a generaliza-
tion of similar results for uniform algebra case) is a modification of [4, Theorem
3.5].

Theorem 3.2. Let A and B be uniform algebras on compact Hausdorff spaces X and Y,
respectively. Assume that A ⊆ A and B ⊆ B are either

(i) subspaces of C(X) and C(Y), respectively, or
(ii) positive cones of such subspaces.

Assume, further, that Θ(A) = Ch(A) and Θ(B) = Ch(B). If T : A −→ B is a
surjective multiplicatively norm-preserving map, that is ‖T( f )T(g)‖Y = ‖ f g‖X for
all f , g ∈ A, then there exists a homeomorphism ϕ : Ch(B) −→ Ch(A) such that
|T( f )(y)| = | f (ϕ(y))| for all f ∈ A and y ∈ Ch(B).

Proof. We divide the proof into the following steps.
Step I. For each y0 ∈ Ch(B) and r > 0, the intersection ∩T( f )∈rVy0

(B)M( f ) ∩

Ch(A) is a singleton independent of r.

Let y0 ∈ Ch(B) and r > 0 be given. For each f1, ..., fn ∈ A with T( fi) ∈
rVy0(B) for i = 1, ..., n, since T is surjective and in either of cases 1

n Σn
i=1T( fi) ∈ B,

there exists h ∈ A such that T(h) = 1
n Σn

i=1T( fi). Clearly ‖T( f )‖Y = ‖ f‖X holds
for all f ∈ A. Therefore, ‖h‖X = ‖T(h)‖Y = r = T(h)(y0). Since Θ(A) = Ch(A)
and Ch(A) is a boundary for A, there exists x0 ∈ Θ(A) such that |h(x0)| = r =
‖h‖X . We now show that x0 ∈ M( fi) for i = 1, ..., n. Assume on the contrary that
| fi(x0)| < r for some 1 ≤ i ≤ n. Then choosing a neighborhood U of x0 with
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| fi| < r on U, since x0 ∈ Θ(A) we can find h′ ∈ Vx0(A) such that |h′| < 1 on X\U.
Hence ‖ fih

′‖X < r and consequently ‖T( fi) T(h′)‖Y < r. Thus for each y ∈ Y

|T(h′)(y)T(h)(y)| ≤ |T(h′)(y) ·
( 1

n
T( fi)(y) +

1

n
Σj 6=iT( f j)(y)

)∣

∣

≤
1

n
|T( fi)(y) · T(h′)(y)| +

(n − 1)r

n

≤
1

n
‖T( fi)T(h

′)‖Y +
(n − 1)r

n
<

r

n
+

(n − 1)r

n
= r.

Hence r = |h′(x0)h(x0)| ≤ ‖h′h‖X = ‖T(h′)T(h)‖Y < r, a contradiction. This
argument shows that x0 ∈ ∩n

i=1M( fi), that is the family {M( f ) : T( f ) ∈ rVy0(B)}
of compact subsets of X has finite intersection property and consequently
∩T( f )∈rVy0

(B)M( f ) 6= ∅. Now since A is a uniform algebra and for each f ∈ A

and λ ∈ Rπ( f ), the function f ∗ =
‖ f ‖2

X+λ f

2‖ f ‖2
X

is a peaking function for A with

M( f ∗) ⊆ M( f ) we conclude that ∩T( f )∈rVy0
(B)M( f ) ∩ Ch(A) 6= ∅.

Clearly for each y0 ∈ Ch(B) and r > 0 and each point xr
0 ∈ ∩T( f )∈rVy0

(B)M( f )∩

Ch(A) we have T−1(rVy0(B)) ⊆ rFxr
0
(A). We now show that the inclusion

T(rVxr
0
(A)) ⊆ rFy0(B) also holds. We note that, by the same argument as above,

∩ f∈rVxr
0
(A)M(T( f )) ∩ Ch(B) 6= ∅ and consequently there exists a point

zr
0 ∈ Ch(B) such that T(rVxr

0
(A)) ⊆ rFzr

0
(B). Hence it suffices to show that

y0 = zr
0. Assume on the contrary that y0 6= zr

0. Then considering disjoint neigh-
borhoods U and W of y0 and zr

0, respectively, we can find elements g ∈ Vy0(B)
and h ∈ Vzr

0
(B) such that |g| < 1 on Y\U and |h| < 1 on Y\W. Then clearly

‖rg h‖Y < r. Choosing f , f ′ ∈ A with T( f ) = rg and T( f ′) = h we have
f ∈ T−1(rVy0(B)) ⊆ rFxr

0
(A) and consequently | f (xr

0)| = r = ‖ f‖X . In partic-

ular, α f ∈ rVxr
0
(A) for some α ∈ T (with α = 1 for positive case). Therefore,

T(α f ) ∈ T(rVxr
0
(A)) ⊆ rFzr

0
(B), that is ‖T(α f )‖Y = |(T(α f ))(zr

0)| = r. This

implies that ‖T(α f )h‖Y = r = |T(α f )(zr
0)h(z

r
0)|. Therefore,

‖rgh‖Y = ‖T( f ) T( f ′)‖X = ‖ f f ′‖X = ‖α f f ′‖X = ‖T(α f )h‖Y = r

which is a contradiction. Hence we have T−1(rVy0(B)) ⊆ rFxr
0
(A) and

T(rVxr
0
(A)) ⊆ rFy0(B).

Now to complete the proof of this step, it suffices to show that for each y0 ∈
Ch(B) and r > 0, if x0 ∈ ∩T f∈Vy0

(B)M( f ) ∩ Ch(A) and xr
0 ∈ ∩T( f )∈rVy0

(B)M( f ) ∩

Ch(A), then xr
0 = x0. Assume on the contrary that xr

0 6= x0 for some r > 0. As

it was noted before, we have T−1(rVy0(B)) ⊆ rFxr
0
(A) and T(rVxr

0
(A)) ⊆ rFy0(B)

and similarly T−1(Vy0(B)) ⊆ Fx0(A) and T(Vx0(A)) ⊆ Fy0(B). Choosing disjoint
neighborhoods of xr

0 and x0 in X we can find easily functions f ∈ Vx0(A) and
g ∈ Vxr

0
(A) such that ‖rg f‖X < r. Since T(rg) ∈ rFy0(B) and T( f ) ∈ Fy0(B), we

have r = ‖T(rg)T( f )‖Y = ‖(rg) f‖X < r, a contradiction.

The above step allows us to define a function ϕ : Ch(B) −→ Ch(A) which
associates to each y0 ∈ Ch(B), the unique point x0 ∈ ∩T( f )∈Vy0

(B)M( f ) ∩ Ch(A).
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As we noted before, for each r > 0, we have ∩T( f )∈rVy0
(B)M( f ) ∩ Ch(A) = {x0}

and consequently T(rVϕ(y0)(A)) ⊆ rFy0(B).

Step II. The equality |T( f )(y0)| = | f (ϕ(y0))| holds for all f ∈ A and
y0 ∈ Ch(B).

First assume that f ∈ A and y0 ∈ Ch(B) such that | f (ϕ(y0))| < |T f (y0)|.
Since V = {x ∈ X : | f (x)| < |T f (y0)|} is an open neighborhood of ϕ(y0), we
can find a function h ∈ Vϕ(y0)(A) such that ‖T( f )T(h)‖Y = ‖ f h‖X < |T( f )(y0)|.

Hence T(h) ∈ T(Vϕ(y0)(A)) ⊆ Fy0(B) and

|T( f )(y0)| > ‖T( f )T(h)‖X ≥ |T( f )(y0)||T(h)(y0)| = |T( f )(y0)|,

which is a contradiction. This argument shows that |T f (y0)| ≤ | f (ϕ(y0))| for all
f ∈ A and y0 ∈ Ch(B). The other inequality is proven in a similar manner, that
is |T( f )(y0)| = | f (ϕ(y0))|.

Step III. The function ϕ : Ch(B) −→ Ch(A) is a homeomorphism.

We first note that ϕ is a surjective map. Indeed, for each x0 ∈ Ch(A),
using the same argument as in Step I, there exists a point y0 ∈ Ch(B) such that

∩ f∈Vx0
(A)M(T( f )) ∩ Ch(B) = {y0}.

Since, by the definition of ϕ, ∩T( f )∈Vy0
(B)M( f ) ∩Ch(A) = {ϕ(y0)}, the argument

given in Step I implies that ϕ(y0) = x0, i.e. ϕ is surjective. A similar argument
can be applied to show that ϕ is injective.

To prove the continuity of ϕ, let y0 ∈ Ch(B) and let U be an open neighbor-
hood of ϕ(y0) in X. Then there exists h ∈ Vϕ(y0)(A) such that |h| < 1

2 on X\U.

Using the equality |T(h)| = |h ◦ ϕ| on Ch(B) we conclude that for the open sub-
set W = {y ∈ Ch(B) : |T(h)(y)| > 1

2} of Ch(B) we have ϕ(W) ⊆ U ∩ Ch(A).

This shows that ϕ is continuous. Similarly ϕ−1 is also continuous.

Now we state the required lemmas for the proof of Theorem 3.1.
In the sequel we assume that X, Y and A, B are as in Theorem 3.1. We also

assume that T : A −→ B is a surjective map satisfying ‖T( f )T(g) − 1‖Y =
‖ f g − 1‖X, for all f , g ∈ A. Then clearly T(1)2 = 1, that is T(1) = 1 whenever B
consists of positive functions, and T(−1), T(1) take their values in {−1, 1} in the
other case. Moreover, in this case T( 1

α )T(α) = 1 for all α ∈ C\{0}, in particular,
T(α)(y) 6= 0 for all y ∈ Y.

The following identification lemma is well known in uniform algebra case and
we state it for our cases.

Lemma 3.3. (i) Let f , g ∈ A such that ‖ f h − 1‖X = ‖gh − 1‖X holds for all h ∈ A.
Then f = g.

(ii) T is injective and T(0) = 0.

Proof. (i) For each n ∈ N it follows from the hypothesis that ‖n f h − 1‖X =
‖ngh − 1‖X, that is ‖ f h − 1

n‖X = ‖gh − 1
n‖X for all h ∈ A. Letting n → ∞,

we conclude that ‖ f h‖X = ‖gh‖X for all h ∈ A. This easily implies that | f | = |g|
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on Θ(A). Indeed, if | f (x0)| < |g(x0)| for some x0 ∈ Θ(A), then considering an
appropriate neighborhood of x0, since x0 is a strong boundary point we can find
h ∈ Vx0(A) such that ‖ f h‖X < ‖gh‖X which is impossible.

In the case where A and B consist of positive functions, we have f = g on
Θ(A) and consequently f = g, since Θ(A) = Ch(A) and Ch(A) is a boundary for
A. For the other case, let x0 ∈ Θ(A). If f (x0) = 0, then clearly f (x0) = g(x0) = 0.
So we assume that f (x0) 6= 0. Then for each neighborhood V of x0, by Lemma
2.1, there exists a peaking function u ∈ Vx0(A) such that Rπ( f u) = { f (x0)} and
|u| < 1 on X\V and, furthermore, | f u(x)| < | f (x0)| whenever f (x) 6= f (x0).

Clearly ‖ − f u
f (x0)

− 1‖X = 2 which implies that ‖ −gu
f (x0)

− 1‖X = 2. Since | f | = |g|

on Θ(A) = Ch(A) and Ch(A) is a boundary for the uniform algebra A we have

‖ g
f (x0)

u‖X = ‖ f
f (x0)

u‖X = 1. This, together with the fact that ‖ −gu
f (x0)

− 1‖X = 2

implies that
g(x1)u(x1)

f (x0)
= 1 for some x1 ∈ Θ(A) and since | f (x1)| = |g(x1)| we

conclude that | f (x1)u(x1)| = | f (x0)|. Therefore, f (x1) = f (x0) which yields
|u(x1)| = 1. Hence x1 ∈ V and since u is a peaking function we have u(x1) = 1.
Thus g(x1) = f (x0) and since V is an arbitrary neighborhood of x0, the continuity
of f and g imply that g(x0) = f (x0), as desired.

(ii) It is a straightforward consequence of (i).

Lemma 3.4. Let r ≥ 0 and f ∈ A. Then |T(r f )(y)| = r|T( f )(y)| holds for all
y ∈ Θ(B).

Proof. Let y ∈ Θ(B) and assume first that T( f )(y) = 0. Then since y is a strong
boundary point we can easily find a function u ∈ Vy(B) such that ‖T( f )u‖Y <

ǫ
r .

For each n ∈ N, we put hn = nu. Then clearly hn(y) = n. Choose, by surjectivity
of T, gn ∈ A such that T(gn) = hn. Then for each n ∈ N,

n|T(r f )(y)| − 1 = |hn(y)T(r f )(y)| − 1 ≤ |hn(y)T(r f )(y) − 1|

≤ ‖hnT(r f )− 1‖Y = ‖gnr f − 1‖X

≤ r‖gn f − 1‖X + r + 1 = r‖hnT( f )− 1‖Y + r + 1

≤ r‖hnT( f )‖Y + 2r + 1 = rn‖uT( f )‖Y + 2r + 1

< rn
ǫ

r
+ 2r + 1 = nǫ + 2r + 1.

Hence |T(r f )(y)| < ǫ + 2r+2
n for all n ∈ N. Being ǫ > 0 arbitrary, we get

T(r f )(y) = 0 = rT( f )(y). Assume now that T( f )(y) 6= 0. Then, using Lemma
2.1, there exists u ∈ Vy(B) such that Rπ(T( f )u) = {T( f )(y)}. For each n ∈ N, as
before, we put hn = nu and choose gn ∈ A such that T(gn) = hn. Then the same
argument shows that

n|T(r f )(y)| − 1 ≤ rn ‖uT( f )‖Y + 2r + 1 = rn |T( f )(y)| + 2r + 1.

Hence |T(r f )(y)| ≤ r|T( f )(y)| + 2r+2
n for all n ∈ N. This implies |T(r f )(y)| ≤

r|T( f )(y)| for all r > 0. Hence

|T( f )(y)| = |T(
1

r
r f )(y)| ≤

1

r
|T(r f )(y)| ≤ |T( f )(y)|,

which proves that |T(r f )(y)| = r|T( f )(y)|.
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Lemma 3.5. T is multiplicatively norm-preserving, that is ‖T( f )T(g)‖Y = ‖ f g‖X for
each f , g ∈ A.

Proof. Let n ∈ N. Then

n‖ f g‖X − 1 ≤ ‖n f g − 1‖X = ‖T(n f )T(g) − 1‖Y ≤ ‖T(n f )T(g)‖Y + 1.

Since Θ(B) = Ch(B) and Ch(B) is a boundary for B, there exists y0 ∈ Θ(B) such
that ‖T(n f )T(g)‖Y = |T(n f )T(g)(y0)|. Hence, by Lemma 3.4, ‖T(n f )T(g)‖Y =
n|T( f ) T(g)(y0)| and consequently

n‖ f g‖X − 1 ≤ n|T( f )T(g)(y0)|+ 1 ≤ n‖T( f )T(g)‖Y + 1.

Thus ‖ f g‖X ≤ ‖T( f )T(g)‖Y + 2
n for all n ∈ N, that is ‖ f g‖X ≤ ‖T( f )T(g)‖Y .

The other inequality also holds, since T−1 has the same properties as T.

By the above lemma and Theorem 3.2, there exists a homeomorphism ϕ :
Ch(B) −→ Ch(A) such that |T( f )(y)| = | f (ϕ(y))| for all f ∈ A and y ∈ Ch(B).
Clearly, in the case that A and B consist of positive functions, we have T( f )(y) =
f (ϕ(y)) = T(1)(y) f (ϕ(y)) for all f ∈ A and y ∈ Ch(B). So in the next lem-
mas we consider the other case that A and B are closed subspaces of continuous
functions.

Lemma 3.6. (i) For f , g ∈ A we have −1 ∈ Rπ( f g) if and only if −1 ∈ Rπ(T( f ) T(g)).
(ii) For each α ∈ C, |T(α)(y)| = |α| holds for all y ∈ Y.
(iii) For each α, β ∈ C, Re(αβ) ≤ Re(T(α)(y)T(β)(y)).

Proof. (i) Assume first that −1 ∈ Rπ( f g). Then

2 = ‖ f g − 1‖X = ‖T( f ) T(g) − 1‖Y ≤ ‖T( f ) T(g)‖Y + 1 = ‖ f g‖X + 1 = 2,

and consequently

‖T( f ) T(g) − 1‖Y = ‖T( f ) T(g)‖Y + 1, that is − 1 ∈ Rß(T(f)T(g))

(ii) Clearly the equality holds for α = 0. So assume that α ∈ C\{0}. Then

∣

∣

1

T(α)(y)

∣

∣ ≤
∥

∥

1

T(α)

∥

∥

Y
=

∥

∥T(
1

α
)
∥

∥

Y
=

1

|α|

Thus
|α| ≤ |T(α)(y)| ≤ ‖T(α)‖Y = |α|,

and the desired equality holds.
(iii) For each y ∈ Y, since

0 ≤ |T(α)(y)T(β)(y) − 1| ≤ ‖T(α)T(β) − 1‖Y = |αβ − 1|

it follows from (ii) that Re(αβ) ≤ Re(T(α)(y)T(β)(y)).
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Lemma 3.7. If T(1) = 1, then T(−1) = −1.

Proof. Put E1 = {y ∈ Y : T(−1)(y) = 1}. Then since T(−1)(Y) ⊆ {1,−1} we

have Y\E1 = {y ∈ Y : T(−1)(y) = −1}. Consider the element h = 1+T(−1)
2 of

B and assume on the contrary that h 6= 0. We note that h = 1 on E1 and h = 0
on Y\E1 and so T(−1)h = h. Choosing g ∈ A with T(g) = h we have ‖g‖X =
‖h‖X = 1. For each λ ∈ Rπ(g), since −1 ∈ Rπ(−λg) it follows from the above
lemma that −1 ∈ Rπ(T(−λ)h). Hence T(−λ)(y0) = T(−λ)(y0)h(y0) = −1 for
some y0 ∈ E1. Therefore, T1(y0)T(−λ)(y0) = T(−λ)(y0) = −1 and, using the
above lemma, we have

−1 = Re(T(1)(y0)T(−λ)(y0)) ≥ Re(−λ),

which conclude that Re(λ) ≥ 1. Since |λ| = 1 we get λ = 1, that is Rπ(g) = {1}.
Therefore, Rπ(−g) = {−1} and so −1 ∈ Rπ(T(−1)T(g)) = Rπ(T(−1)h). Since
T(−1)h = h we conclude that −1 ∈ Rπ(h), which is impossible. This proves that
T(−1) = −1.

Lemma 3.8. If T(1) = 1 and T(i) = i then
(i) T(α) = α for all α ∈ C.
(ii) Rπ(T( f )) = Rπ( f ) for all f ∈ A.

Proof. (i) We note that, by the above lemma, T(−1) = −1. Since T(i)T(−i) =
T(i)T(1

i ) = 1 we get T(−i) = −i. Hence, using Lemma 3.6(iii) for α, β ∈ {±1,±i}
we get the desired equality.

(ii) This is immediate from (i) and Lemma 3.6(i).

Lemma 3.9. If T(1) = 1 and T(i) = i, then T( f )(y) = f (ϕ(y)) for each f ∈ A and
y ∈ Θ(B).

Proof. Let y0 ∈ Ch(B) and x0 = ϕ(y0). Clearly the equality T( f )(y0) = f (ϕ(y0))
holds if f (x0) = 0. So assume that f (x0) 6= 0. Choose an arbitrary neighbor-
hood W of y0 in Y and let V be a neighborhood of x0 in X with V ∩ Ch(A) =
ϕ(W ∩ Ch(B). Then, by Lemma 2.1, there exists a peaking function h ∈ A with
h(x0) = 1 = ‖h‖X , |h| < 1 on X\V, Rπ( f h) = { f (x0)} and | f h(x)| < | f (x0)| for
all x ∈ X with f (x) 6= f (x0). Setting α = f (x0), since −1 ∈ Rπ(− f α−1h) we have

‖T( f )T(−α−1h)− 1‖Y = ‖ − f α−1h − 1‖X = 2,

and so there exists y1 ∈ Ch(B) with |T( f )(y1)T(−α−1h)(y1)− 1| = 2. This clearly
implies that

T( f )(y1)T(−α−1h)(y1) = −1,

since ‖T( f )T(−α−1h)‖ = ‖ − f α−1h‖ = 1. Therefore,

| f (ϕ(y1))α
−1h(ϕ(y1))| = |T( f )(y1)T(α

−1h)(y1)| = 1,

that is | f (ϕ(y1))h(ϕ(y1))| = |α| = | f (x0)|. Thus f (ϕ(y1)) = f (x0) and con-
sequently h(ϕ(y1)) = 1 and ϕ(y1) ∈ V, i.e. y1 ∈ W. Since Rπ(T(−α−1h)) =
Rπ(−α−1h) = {−α−1} and

|T(−α−1h)(y1)| = |α−1h(ϕ(y1))| = |α−1| = ‖T(−α−1h)‖Y ,
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we get T(−α−1h)(y1) = −α−1. This implies that T( f )(y1) = α = f (x0) =
f (ϕ(y0)). Being W arbitrary, it follows from the continuity of T( f ) that T( f )(y0) =
f (ϕ(y0)), as desired.

Proof of Theorem 3.1. The proof has been completed for the case that A and B are
positive cones. For the other case, since T(1)(Y) ⊆ {1,−1} and, by
assumption, T(i) = iT(1) it follows that T(i)(Y) ⊆ {i,−i}. Consider the closed
subspace B1 = T(1)B of B which contains the constants, since T(1)2 = 1. It
is easy to see that Θ(B1) = Θ(B) = Ch(B). Let S : A −→ B1 be defined by
S( f ) = T(1) T( f ), f ∈ A. Using the facts that T(i) = iT(1) and T(1)2 = 1, it
can be easily shown that S is a surjective map satisfying S(1) = 1, S(i) = i and
‖S( f )S(g) − 1‖Y = ‖ f g − 1‖X, for all f , g ∈ A. Hence by the above lemma, there
exists a homeomorphism ϕ : Ch(B) −→ Ch(A) such that S( f )(y) = f (ϕ(y)) for
all f ∈ A and y ∈ Ch(B). This gives the desired description of T.

For a compact Hausdorff space X by a regular subspace of C(X) we mean a
subspace A of C(X) such that for each x ∈ X and neighborhood U of x there
exists a function f ∈ A with f (x) = 1 = ‖ f‖X and f = 0 on X\U. In particular,
Θ(A) = X = Ch(C(X)). Hence the next corollary is immediate.

Corollary 3.10. Let A and B be closed regular subspaces of C(X) and C(Y) which con-
tain constant functions for compact Hausdorff spaces X and Y, respectively.
If T : A −→ B is a surjective map with T(i) = iT(1) satisfying ‖T( f )T(g) − 1‖Y =
‖ f g − 1‖X for all f , g ∈ A, then there exists a homeomorphism ϕ : Y −→ X such that
T( f )(y) = T(1)(y) f (ϕ(y)) for all f ∈ A and y ∈ Y.

For a compact Hausdorff space X, by [3], the kernel of each continuous mea-
sure µ ∈ M(X) (that is its atomic part is zero), is a (maximal) regular subspace of
C(X).

For another example of closed subspaces satisfying the hypotheses of The-
orem 3.1, assume that A1, ..., An are uniform algebras on a compact Hausdorff

space X with ∪n
i=1Ch(Ai) = X and put A = A1 f1 + · · ·+ An fn + C where

f1, ..., fn ∈ C(X) are strictly positive. Then since Ch(Ai) ⊆ Θ(Ai fi) ⊆ Θ(A) it
follows that A is a closed subspace of C(X) with Θ(A) = X = Ch(C(X)). Hence
we get the next corollary

Corollary 3.11. Let X be a compact Hausdorff space, f1, ..., fn ∈ C(X) be strictly
positive and A1, ..., An be uniform algebras on X with ∪n

i=1Ch(Ai) = X. Let A =

A1 f1 + · · ·+ An fn + C and T : A −→ A be a surjective map with T(i) = iT(1)
satisfying ‖T( f )T(g) − 1‖Y = ‖ f g − 1‖X for all f , g ∈ A. Then there exists a home-
omorphism ϕ : X −→ X such that T( f )(y) = T(1)(y) f (ϕ(y)) for all f ∈ A and
y ∈ X.
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[2] M. Burgos, A. Jiménez-Vargas and M. Villegas-Vallecillos, Nonlinear condi-
tions for weighted composition operators between Lipschitz algebras, J. Math. Anal.
Appl. 359 (2009) 1–14.

[3] B. Cengiz, Extremely regular function spaces, Pacific J. Math. 49 (1973), 335–338.

[4] R.S. Ghodrat and F. Sady, Norm conditions on maps between certain subspaces of
continuous functions, Tokyo J. Math. 40 (2017), 421–437.

[5] O. Hatori, G. Hirasawa and T. Miura, Additively spectral-radius preserving sur-
jections between unital semisimple commutative Banach algebras, Cent. Eur. J.
Math. 8(3) (2010), 597–601.

[6] O. Hatori, T. Miura and H. Takagi, Characterization of isometric isomorphisms
between uniform algebras via non-linear range preserving properties, Proc. Amer.
Math. Soc. 134 (2006), 2923–2930.

[7] O. Hatori, T. Miura, and H. Takagi, Multiplicatively spectrum-preserving and
norm-preserving maps between invertible groups of commutative Banach algebras,
(2006), preprint.

[8] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-
preserving surjections between semisimple commutative Banach algebras are linear
and multiplicative, J. Math. Anal. Appl. 326 (2007), 281–296.

[9] M. Hosseini and F. Sady, Multiplicatively range-preserving maps between Banach
function algebras, J. Math. Anal. Appl. 357 (2009), 314–322.

[10] M. Hosseini and F. Sady, Multiplicatively and non-symmetric multiplicatively
norm-preserving maps, Cent. Eur. J. Math. 8 (2010), 878–889.

[11] S. Lambert, A. Luttman and T. Tonev, Weakly peripherally multiplicative opera-
tors between uniform algebras, Contemp. Math., 435 (2007), 265–281.

[12] G.M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman and
Co., Glenview, Ill., 1970.

[13] A. Luttman and S. Lambert, norm conditions for uniform algebra isomorphisms,
Cent. Eur. J. Math. 6 (2008) 272–280.

[14] L. Molnár: Some characterizations of the automorphisms of B(H) and C(X), Proc.
Amer. Math. Soc., 130 (2001), 111–120.

[15] N.V. Rao and A.K. Roy, Multiplicatively spectrum preserving maps of function
algebras, Proc. Amer. Math. Soc., 133 (2005), 1135–1142.

[16] N.V. Rao and A.K. Roy, Multiplicatively spectrum-preserving maps of function
algebras II, Proc. Edinburgh Math. Soc., 48 (2005), 219–229.



740 H. Pazandeh – F. Sady

[17] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, 2nd Ed., Wiley,
New York, 1980.

[18] T. Tonev, Weak multiplicative operators on function algebras without units, Ba-
nach Center Publications 91 (2010), 411–421.

Department of Mathematics, Faculty of Science,
Arak University, Arak, 38156-8-8349, Iran
email: h-pazandeh@phd.araku.ac.ir

Department of Pure Mathematics, Faculty of Mathematical Sciences,
Tarbiat Modares University, Tehran, 14115-134, Iran
email: sady@modares.ac.ir


