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Abstract

We consider almost η-Ricci solitons in (LCS)n-manifolds satisfying
certain curvature conditions. We provide a lower and an upper bound for
the norm of the Ricci curvature in the gradient case, derive a Bochner-type
formula for an almost η-Ricci soliton and state some consequences of it on an
(LCS)n-manifold.

1 Introduction

Ricci solitons and η-Ricci solitons (which include quasi-Einstein metrics) are
natural generalizations of Einstein metrics. In 1982, R. S. Hamilton introduced
on a Riemannian manifold (M, g0) an evolution equation for metrics, called the
Ricci flow [14]:

∂

∂t
g(t) = −2S(g(t)), g(0) = g0,

(for S the Ricci curvature tensor), which is used to deform a metric by smoothing
out its singularities. Ricci solitons may be regarded as generalized fixed points
of the Ricci flow (i.e. fixed points in the quotient space of Riemannian metrics
modulo diffeomorphisms and rescalings), modeling the formation of singulari-
ties. Precisely, a Ricci soliton on a Riemannian manifold (M, g) is defined [14] as
a triple (g, ξ, λ), for ξ a vector field on M and λ a real constant, satisfying the
equation:

1

2
Lξ g + S + λg = 0,
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where Lξ is the Lie derivative operator along the vector field ξ. Obviously, if ξ is
a Killing vector field, then the Ricci soliton reduces to an Einstein metric (g, λ).
A further generalization is the notion of η-Ricci soliton defined by J. T. Cho and
M. Kimura [13] as a quadruple (g, ξ, λ, µ), for ξ a vector field on the Riemannian
manifold (M, g) and λ and µ real constants, satisfying the equation:

1

2
Lξ g + S + λg + µη ⊗ η = 0,

where η is the g-dual 1-form of ξ. Moreover, if λ and µ are let to be smooth
functions, we talk about almost Ricci solitons [21] and almost η-Ricci solitons, re-
spectively, which we shall consider in our paper.

In the last years, the interest in studying Ricci solitons and their generaliza-
tions in different geometrical contexts has considerably increased, due to their
connection to general relativity. They control the Ricci and the scalar curvature
of the manifold, thus their study towards a special view to different curvature
conditions is appropriate.

In the present paper we consider almost η-Ricci solitons on (LCS)n-manifolds
which satisfy certain curvature properties, in particular, (ξ, ·)R · S = 0 and (ξ, ·)S ·
R = 0, respectively. The (LCS)n-manifolds were introduced by A. A. Shaikh [23]
and they are important in the general theory of relativity and cosmology. Dif-
ferent aspects of η-Ricci solitons in (LCS)n-manifolds have lately been studied
by many authors (see [1], [3], [15], [16]). Also, remark that results on Ricci soli-
tons satisfying similar types of curvature conditions have been obtained: in [19]
by H. G. Nagaraja and C. R. Premalatha dealed with the cases (ξ, ·)R · C̃ = 0,
(ξ, ·)P · C̃ = 0, (ξ, ·)H · S = 0, (ξ, ·)C̃ · S = 0 and in [2], C. S. Bagewadi, G.
Ingalahalli and S. R. Ashoka treated the cases: (ξ, ·)R · B = 0, (ξ, ·)B · S = 0,
(ξ, ·)S · R = 0, (ξ, ·)R · P̄ = 0 and (ξ, ·)P̄ · S = 0.

Gradient solitons, a particular case of solitons having the potential vector field
ξ of gradient type, are of special interest, the gradient vector fields playing a cen-
tral rôle in different mathematical-physics theories, for example, in Morse-Smale
theory [24]. Our interest is also to characterize the geometry of an almost η-Ricci
soliton in the case when the potential vector field is of gradient type, underly-
ing these results for (LCS)n-manifolds. We provide a lower and an upper bound
for the Ricci curvature tensor’s norm and derive a Bochner-type formula in the
gradient case.

2 (LCS)n-manifolds

Let (M, g) be an n-dimensional Lorentzian manifold and ξ a unit timelike concir-
cular vector field, that is a vector field satisfying g(ξ, ξ) = −1 and
∇ξ = α(I + η ⊗ ξ), with α a nowhere zero smooth function on M verifying
dα = ρη, for ρ ∈ C∞(M), where ∇ is the Levi-Civita connection of g and η := iξ g.

Denote by ϕ the (1, 1)-tensor field ϕ := 1
α∇ξ.

In [18], K. Matsumoto introduced the notion of Lorentzian para-Sasakian struc-
ture (briefly, LP-Sasakian structure). A more general notion is that of Lorentzian
concircular structure (briefly, (LCS)n-structure) introduced by A. A. Shaikh [22] as
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being the data (g, ξ, η, ϕ, α), where g is a Lorentzian metric on M, ξ is a unit time-
like concircular vector field, η := iξ g is the g-dual of ξ and ϕ := I + η ⊗ ξ is the
associated (1, 1)-tensor field.

From the definition it follows that:

1. ϕξ = 0, η ◦ ϕ = 0,

2. η(ξ) = −1, ϕ2 = I + η ⊗ ξ,

3. g(ϕX, Y) = g(X, ϕY), for any X, Y ∈ X(M) and g(ϕ·, ϕ·) = g + η ⊗ η,

4. (∇X ϕ)Y = α[g(X, Y)ξ + 2η(X)η(Y)ξ + η(Y)X], for any X, Y ∈ X(M).

Properties of this structure which follow from straightforward computations
are given in the next proposition.

PROPOSITION 2.1. On an (LCS)n-manifold (M, g, ξ, η, ϕ, α), for any X, Y, Z ∈
X(M), the following relations hold:

η(∇Xξ) = 0, ∇ξξ = 0, (1)

R(X, Y)ξ = (α2 − ρ)[η(Y)X − η(X)Y], (2)

η(R(X, Y)Z) = (α2 − ρ)[η(X)g(Y, Z) − η(Y)g(X, Z)], η(R(X, Y)ξ) = 0, (3)

∇η = α(g + η ⊗ η), ∇ξη = 0, (4)

Lξ ϕ = 0, Lξη = 0, Lξ g = 2∇η, (5)

where R is the Riemann curvature tensor field, ∇ is the Levi-Civita connection associated
to g and Lξ denotes the Lie derivative operator along the vector field ξ.

REMARK 2.2. On an (LCS)n-manifold (M, g, ξ, η, ϕ, α) we deduce that:
(i) the 1-form η is closed;
(ii) the Nijenhuis tensor field of ϕ vanishes identically, therefore, the structure

is normal;
(iii) if α is a constant function and (M, g) is of constant curvature k, then M is

elliptic manifold and k = α2.

EXAMPLE 2.3. [17] Let M = {(x, y, z) ∈ R
3, z 6= 0}, where (x, y, z) are the

standard coordinates in R
3. Consider the linearly independent system of vector

fields

E1 := z2 ∂

∂x
, E2 := z2 ∂

∂y
, E3 :=

∂

∂z
.

Define the Lorentzian metric g by:

g(E1, E1) = g(E2, E2) = −g(E3, E3) = 1,

g(E1, E2) = g(E2, E3) = g(E3, E1) = 0
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the vector field ξ and the 1-form η by:

ξ := E3, η(X) := g(X, E3),

for any X ∈ X(M), and the (1, 1)-tensor field ϕ by:

ϕE1 = E1, ϕE2 = E2, ϕE3 = 0.

Using Koszul’s formula for the Lorentzian metric g we obtain:

∇E1
E1 = −

2

z
E3, ∇E1

E2 = 0, ∇E1
E3 = −

2

z
E1, ∇E2

E1 = 0, ∇E2
E2 = −

2

z
E3,

∇E2
E3 = −

2

z
E2, ∇E3

E1 = 0, ∇E3
E2 = 0, ∇E3

E3 = 0.

In this case, (g, ξ, η, ϕ, α) is an (LCS)3-structure on M, where α = − 2
z .

3 Almost η-Ricci solitons in (M, g, ξ, η, ϕ, α)

A more general notion than almost Ricci soliton [21] and η-Ricci soliton [13],
including also the generalized quasi-Einstein manifolds [10], will be further con-
sidered.

Let (M, g) be an n-dimensional pseudo-Riemannian manifold (n > 2), ξ a
vector field and η a 1-form on M.

DEFINITION 3.1. An almost η-Ricci soliton on M is a data (g, ξ, λ, µ) which sat-
isfy the equation:

Lξ g + 2S + 2λg + 2µη ⊗ η = 0, (6)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci
curvature tensor field of the metric g, and λ and µ are smooth functions on M.

An almost η-Ricci soliton (g, ξ, λ, µ) is said to be steady if λ = 0, shrinking if
λ < 0 or expanding if λ > 0.

In the same way we define the almost η-Einstein soliton as a data (g, ξ, λ, µ)
which satisfy the equation:

Lξ g + 2S + (2λ − scal)g + 2µη ⊗ η = 0, (7)

where scal is the scalar curvature of (M, g).

Replacing Lξ g in terms of the Levi-Civita connection ∇ in (6), we obtain:

2S(X, Y) = −g(∇Xξ, Y)− g(X,∇Yξ)− 2λg(X, Y) − 2µη(X)η(Y), (8)

for any X, Y ∈ X(M).

If (M, g, ξ, η, ϕ, α) is an (LCS)n-manifold, then (8) becomes:

S(X, Y) = −(α + λ)g(X, Y) − (α + µ)η(X)η(Y), (9)
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for any X, Y ∈ X(M), therefore M is quasi-Einstein manifold.

Also remark that on an (LCS)n-manifold (M, g, ξ, η, ϕ, α), the Ricci curvature
tensor field satisfies:

S(X, ξ) = (n − 1)(α2 − ρ)η(X), (10)

S(ϕX, ϕY) = S(X, Y) + (n − 1)(α2 − ρ)η(X)η(Y), (11)

for any X, Y ∈ X(M). From (9) and (10) we obtain:

µ − λ = (n − 1)(α2 − ρ) (12)

and we can state:

PROPOSITION 3.2. The scalar curvature of an (LCS)n-manifold (M, g, ξ, η, ϕ, α)
admitting an almost η-Ricci soliton (g, ξ, λ, µ) is:

scal = (1 − n)[α − n(α2 + ξ(α)) + µ]. (13)

In particular, M is of constant scalar curvature if and only if dµ =
(1 − 2nα)ξ(α)η + nd(ξ(α)).

EXAMPLE 3.3. On the (LCS)3-manifold (M, g, ξ, η, ϕ, α) considered in Exam-

ple 2.3, the data (g, ξ, λ, µ) for λ = 2(z−5)
z2 and µ = 2(z+1)

z2 defines an almost η-Ricci
soliton. Indeed, the Riemann and the Ricci curvature tensor fields are given by:

R(E1, E2)E2 =
4

z2
E1, R(E1, E3)E3 = −

6

z2
E1, R(E2, E1)E1 =

4

z2
E2,

R(E2, E3)E3 = −
6

z2
E2, R(E3, E1)E1 =

6

z2
E3, R(E3, E2)E2 =

6

z2
E3,

S(E1, E1) = S(E2, E2) =
10

z2
, S(E3, E3) = −

12

z2
.

Also, α = − 2
z , ρ = − 2

z2 and from (9) we obtain S(E1, E1) = −(α + λ) and

S(E3, E3) = λ − µ, therefore λ = 2(z−5)
z2 and µ = 2(z+1)

z2 .

Like for the case of η-Ricci solitons on Lorentzian para-Sasakian manifolds [4],
the next theorems formulate results in the more general case of (LCS)n-manifold
when it is Ricci symmetric, has Codazzi or cyclic η-recurrent Ricci curvature ten-
sor.

PROPOSITION 3.4. Let (g, ξ, η, ϕ, α) be an (LCS)n-structure on the manifold M
and let (g, ξ, λ, µ) be an almost η-Ricci soliton on M.

1. If the manifold (M, g) is Ricci symmetric (i.e. ∇S = 0), then α2 + ξ(α) is locally
constant.

2. If the Ricci tensor is η-recurrent (i.e. ∇S = η ⊗ S), then the scalar function α
verifies α2 + (1 + 2α)ξ(α) + ξ(ξ(α)) = 0.
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3. If the Ricci tensor is Codazzi (i.e. (∇XS)(Y, Z) = (∇YS)(X, Z), for any X, Y,
Z ∈ X(M)), then d(α2 + ξ(α)) ⊗ η = η ⊗ d(α2 + ξ(α)).

Proof. Replacing the expression of S from (9) in (∇XS)(Y, Z) := X(S(Y, Z)) −
S(∇XY, Z)− S(Y,∇X Z) we obtain:

(∇XS)(Y, Z) = −(dα + dλ)(X)g(Y, Z) − (dα + dµ)(X)η(Y)η(Z)− (14)

−α(α + µ)[g(X, Y)η(Z) + g(X, Z)η(Y) + 2η(X)η(Y)η(Z)].

1. If ∇S = 0, taking Y := ξ and Z := ξ in the expression of ∇S from (14) we
obtain d(λ − µ) = 0, therefore λ − µ is locally constant. Also, from (12) we
deduce that α2 − ρ = α2 + ξ(α) is locally constant.

2. If ∇S = η ⊗ S, taking Y := ξ and Z := ξ in (14) we obtain d(λ − µ) =
(λ − µ)η, therefore, d(α2 + ξ(α)) = (α2 + ξ(α))η. Replacing dα = −ξ(α)η
and applying ξ we get the required relation.

3. If (∇XS)(Y, Z) = (∇YS)(X, Z), for any X, Y, Z ∈ X(M), taking Z := ξ in
(14) we obtain d(λ − µ)(X)η(Y) = d(λ − µ)(Y)η(X), for any X, Y ∈ X(M)
and from (12) we get the conclusion.

In what follows we shall consider almost η-Ricci solitons in (LCS)n-manifolds
requiring for the curvature to satisfy (ξ, ·)R · S = 0 and (ξ, ·)S · R = 0, respectively,
where by · we denote the derivation of the tensor algebra at each point of the
tangent space:

• ((ξ, X)R · S)(Y, Z) := ((ξ ∧R X) · S)(Y, Z) := S((ξ ∧R X)Y, Z) +
S(Y, (ξ ∧R X)Z), for (X ∧R Y)Z := R(X, Y)Z;

• ((ξ, X)S · R)(Y, Z)W := (ξ ∧S X)R(Y, Z)W + R((ξ ∧S X)Y, Z)W +
R(Y, (ξ ∧S X)Z)W + R(Y, Z)(ξ ∧S X)W, for (X ∧S Y)Z := S(Y, Z)X −
S(X, Z)Y.

Remark that properties of η-Ricci solitons when asking for some curvature
conditions were discussed in other papers of the author, in different geometries
(see [4], [5], [6], [8], [9]).

THEOREM 3.5. Let (g, ξ, η, ϕ, α) be an (LCS)n-structure on the manifold M and
(g, ξ, λ, µ) an almost η-Ricci soliton on M. If (ξ, ·)R · S = 0, then µ = −α and
λ = −α − (n − 1)(α2 + ξ(α)) or λ = µ and α2 + ξ(α) = 0.

Proof. The condition that must be satisfied by S is:

S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) = 0, (15)

for any X, Y, Z ∈ X(M).
Replacing the expression of S from (9) and using the symmetries of R we get:

(α2 − ρ)(α + µ)[η(Y)g(X, Z) + η(Z)g(X, Y) + 2η(X)η(Y)η(Z)] = 0, (16)
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for any X, Y, Z ∈ X(M).
For Z := ξ we have:

(α2 − ρ)(α + µ)[g(X, Y) + η(X)η(Y)] = 0, (17)

for any X, Y ∈ X(M). It follows α + µ = 0 or α2 − ρ = 0. In the first case, from
(12) we get λ = −α − (n − 1)(α2 + ξ(α)) and in the second case, also from (12)
we obtain λ = µ and α2 + ξ(α) = 0.

For µ = 0, from Theorem 3.5 we deduce:

COROLLARY 3.6. On an (LCS)n-manifold (M, g, ξ, η, ϕ, α) satisfying
(ξ, ·)R · S = 0, the Ricci soliton is steady.

From the relations (9), (12) and (17), if α2 + ξ(α) 6= 0, assuming that
(ξ, ·)R · S = 0, we obtain:

S = −(α + λ)g = (n − 1)(α2 + ξ(α))g. (18)

Therefore:

PROPOSITION 3.7. If (g, ξ, η, ϕ, α) is an (LCS)n-structure on the manifold M,
(g, ξ, λ, µ) is an almost η-Ricci soliton on M and (ξ, ·)R · S = 0, then the scalar curva-
ture of M equals to n(n − 1)(α2 + ξ(α)).

REMARK 3.8. If (g, ξ, η, ϕ, α) is an (LCS)n-structure on the manifold M with
α a nonzero constant function, (g, ξ, λ, µ) is an almost η-Ricci soliton on M and
(ξ, ·)R · S = 0, then the η-Ricci soliton is steady if α = − 1

n−1 , shrinking if

α ∈ (−∞,− 1
n−1) ∪ (0, ∞) or expanding if α ∈ (− 1

n−1 , 0), and in this case, the
scalar curvature of M is positive.

THEOREM 3.9. Let (g, ξ, η, ϕ, α) be an (LCS)n-structure on the manifold M and
(g, ξ, λ, µ) an almost η-Ricci soliton on M. If (ξ, ·)S · R = 0, then µ = −α +
2(n − 1)(α2 + ξ(α)) and λ = −α + (n − 1)(α2 + ξ(α)) or α2 + ξ(α) = 0.

Proof. The condition that must be satisfied by S is:

S(X, R(Y, Z)W)ξ − S(ξ, R(Y, Z)W)X + S(X, Y)R(ξ, Z)W−

S(ξ, Y)R(X, Z)W ++S(X, Z)R(Y, ξ)W − S(ξ, Z)R(Y, X)W

+ S(X, W)R(Y, Z)ξ − S(ξ, W)R(Y, Z)X = 0, (19)

for any X, Y, Z, W ∈ X(M).
Taking the inner product with ξ, the relation (19) becomes:

−S(X, R(Y, Z)W) − S(ξ, R(Y, Z)W)η(X) + S(X, Y)η(R(ξ, Z)W)−

−S(ξ, Y)η(R(X, Z)W) + S(X, Z)η(R(Y, ξ)W) − S(ξ, Z)η(R(Y, X)W)+

+S(X, W)η(R(Y, Z)ξ) − S(ξ, W)η(R(Y, Z)X) = 0, (20)

for any X, Y, Z, W ∈ X(M).
Replacing the expression of S from (9) and computing it in Z := ξ and W := ξ,

we get:
(α2 − ρ)(α + 2λ − µ)[g(X, Y) + η(X)η(Y)] = 0, (21)

for any X, Y ∈ X(M) and we obtain µ = −α + 2(n − 1)(α2 − ρ) and
λ = −α + (n − 1)(α2 − ρ) or α2 − ρ = 0.
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For µ = 0, from Theorem 3.9 we deduce:

COROLLARY 3.10. On an (LCS)n-manifold (M, g, ξ, η, ϕ, α) satisfying
(ξ, ·)S · R = 0, the almost Ricci soliton is given by λ = −(n − 1)(α2 + ξ(α)).

From the relations (9), (12) and (21), if α2 + ξ(α) 6= 0, assuming that
(ξ, ·)S · R = 0, we obtain:

S = −(α + λ)(g + 2η ⊗ η) = −(n − 1)(α2 + ξ(α))(g + 2η ⊗ η). (22)

Therefore:

PROPOSITION 3.11. If (g, ξ, η, ϕ, α) is an (LCS)n-structure on the manifold M,
(g, ξ, λ, µ) is an almost η-Ricci soliton on M and (ξ, ·)S · R = 0, then the scalar curva-
ture of M equals to −(n − 1)(n − 2)(α2 + ξ(α)).

REMARK 3.12. If (g, ξ, η, ϕ, α) is an (LCS)n-structure on the manifold M with
α a nonzero constant function, (g, ξ, λ, µ) is an almost η-Ricci soliton on M and
(ξ, ·)S · R = 0, then the η-Ricci soliton is steady if α = 1

n−1 , shrinking if

α ∈ (0, 1
n−1) or expanding if α ∈ (−∞, 0) ∪ ( 1

n−1 , ∞), and in this case, the scalar
curvature of M is non positive.

REMARK 3.13. From Proposition 3.7 and Proposition 3.11 we notice that for
n > 2, the curvature conditions (ξ, ·)R · S = 0 and (ξ, ·)S · R = 0 respectively,
on an (LCS)n-manifold admitting an almost η-Ricci soliton, determine the scalar
curvature to be (in each point) of opposite signs, respectively.

4 Gradient almost η-Ricci solitons

When the potential vector field of (6) is of gradient type, i.e. ξ = grad( f ), then
(g, ξ, λ, µ) is said to be a gradient almost η-Ricci soliton and the equation satisfied
by it becomes:

Hess( f ) + S + λg + µη ⊗ η = 0, (23)

where Hess( f ) is the Hessian of f defined by Hess( f )(X, Y) := g(∇Xξ, Y).

PROPOSITION 4.1. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold. If (23) defines a
gradient almost η-Ricci soliton on M with the potential vector field ξ := grad( f ) and
η = d f the g-dual of ξ, then:

(∇XQ)Y − (∇YQ)X = (α2(d f ⊗ I − I ⊗ d f )− (dα ⊗ I − I ⊗ dα)− (24)

−[(dλ− αµd f )⊗ I − I ⊗ (dλ− αµd f )]− [d(α+µ)⊗ d f − d f ⊗ d(α+µ)]⊗ ξ)(X, Y),

for any X, Y ∈ X(M), where Q stands for the Ricci operator defined by g(QX, Y) :=
S(X, Y).

Proof. Notice that (23) can be written:

∇ξ + Q + λI + µd f ⊗ ξ = 0. (25)
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Then:

(∇XQ)Y = −(∇X∇Yξ −∇∇XYξ)− X(λ)Y − X(µ)d f (Y)ξ−

µ[g(Y,∇Xξ)ξ + d f (Y)∇X ξ]. (26)

Replacing now ∇ξ = α(I + d f ⊗ ξ) in the previous relation, after a long but
straightforward computation, we get the required relation.

REMARK 4.2. i) Remark that since ξ is concircular, hence geodesic vector field,
from (25) follows that ξ is an eigenvector of Q corresponding to the eigenvalue
(n − 1)(α2 + ξ(α)). In particular, if λ = µ, then ξ ∈ ker Q.

ii) The Ricci operator is ϕ-invariant (i.e. Q ◦ ϕ = ϕ ◦ Q).

From the above considerations, we can state:

PROPOSITION 4.3. Let (M, g, ξ, η, ϕ, α) be an (LCS)n-manifold. If (23) defines a
gradient almost η-Ricci soliton on M with the potential vector field ξ := grad( f ) and
η = d f the g-dual of ξ and M is ϕ-Ricci symmetric (i.e. ϕ2 ◦ ∇Q = 0), then the soliton
is given by λ = −α − (n − 1)(α2 + ξ(α)) and µ = −α.

A lower and an upper bound of the Ricci curvature tensor’s norm for a
gradient almost η-Ricci soliton will be further obtained inspired by the inequality
in the gradient Ricci soliton case discussed by M. Crasmareanu in [12], but using
a slightly different argument.

THEOREM 4.4. If (23) defines a gradient almost η-Ricci soliton on the n-dimensional
pseudo-Riemannian manifold (M, g) and η = d f is the g-dual of the gradient vector
field ξ := grad( f ), then:

|∇ξ|2 + µ2|ξ|4 + µ∇ξ(|ξ|
2)−

(∆( f ) + µ|ξ|2)2

n
≤ |S|2 ≤

|∇ξ|2 + µ2|ξ|4 + µ∇ξ(|ξ|
2) +

(scal)2

n
. (27)

Proof. From (23) we obtain:

|Hess( f )|2 = |S|2 + λ2n + 2λscal − µ2|ξ|4 − µξ(|ξ|2) (28)

and
|S|2 = |Hess( f )|2 + λ2n + 2λ(∆( f ) + µ|ξ|2) + µ2|ξ|4 + µξ(|ξ|2). (29)

Remark that the conditions to exist a solution (in λ) are:

(scal)2 − n[|S|2 − |Hess( f )|2 − µ2|ξ|4 − µξ(|ξ|2)] ≥ 0 (30)

and
(∆( f ) + µ|ξ|2)2 − n[|Hess( f )|2 − |S|2 + µ2|ξ|4 + µξ(|ξ|2)] ≥ 0 (31)

which just imply the double inequality from the conclusion.
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REMARK 4.5. i) A similar estimation holds for gradient almost η-Einstein
solitons: the lefthand side of (27) is exactly the same, but in the righthand side
term of (27), µ · scal · |ξ|2 will be supplementary added.

ii) The corresponding inequalities are just the same for the particular cases of
gradient η-Ricci and gradient η-Einstein solitons, and in the case of gradient Ricci
soliton, we get the result formulated by M. Crasmareanu in [12].

iii) If ξ is of constant length, |ξ|2 =: k, then (27) simplifies to:

|∇ξ|2 + µ2k2 −
(∆( f ) + µk)2

n
≤ |S|2 ≤ |∇ξ|2 + µ2k2 +

(scal)2

n
.

iv) The simultaneous equalities hold for (scal)2 = −(∆( f ) + µ|ξ|2)2 (= 0)
i.e. for steady gradient almost η-Ricci soliton (λ = 0) with scal = 0 and ∆( f ) =
−µ|ξ|2 . In this case, if |ξ|2 =: k is constant, then |S|2 = |∇ξ|2 + µ2k2. Also, for an
(LCS)n-manifold (M, g, ξ, η, ϕ, α), the gradient almost η-Ricci soliton is given by
λ = 0 and µ = (n − 1)α and the scalar function α must verify α2 − α + ξ(α) = 0.

A Bochner-type formula will be obtained for the gradient almost η-Ricci
soliton case.

THEOREM 4.6. If (23) defines a gradient almost η-Ricci soliton on the n-dimensional
pseudo-Riemannian manifold (M, g) and η = d f is the g-dual of the gradient vector
field ξ := grad( f ), then:

1

2
(∆ −∇ξ)(|ξ|

2) = |∇ξ|2 + λ|ξ|2 + µ|ξ|2(|ξ|2 − 2∆( f )) + (n − 2)ξ(λ) − |ξ|2ξ(µ).

(32)

Proof. First remark that:

trace(µη ⊗ η) = µ|ξ|2

and
div(µη ⊗ η) =

µ

2
d(|ξ|2) + µ∆( f )d f + dµ(ξ)d f .

Taking the trace of the equation (23), we obtain:

∆( f ) + scal + nλ + µ|ξ|2 = 0 (33)

and differentiating it:

d(∆( f )) + d(scal) + ndλ + µd(|ξ|2) + |ξ|2dµ = 0. (34)

Now taking the divergence of the same equation, we get:

div(Hess( f )) + div(S) + dλ +
µ

2
d(|ξ|2) + µ∆( f )d f + dµ(ξ)d f = 0. (35)

Substracting the relations (35) and (34) computed in ξ and using [7]:

S(ξ, ξ) = −
1

2
ξ(|ξ|2)− λ|ξ|2 − µ|ξ|4,
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div(Hess( f )) = d(∆( f )) + iQξ g,

(div(Hess( f )))(ξ) =
1

2
∆(|ξ|2)− |∇ξ|2

and

div(S) =
1

2
d(scal),

we obtain (32).

REMARK 4.7. Denoting by ∆ f := ∆ −∇ξ the diffusion operator, for µ = 0 in
Theorem 4.6, we get the relation for the case of gradient almost Ricci soliton:

1

2
∆ f (|ξ|

2) = |∇ξ|2 + λ|ξ|2 + (n − 2)ξ(λ) (36)

and in particular, for λ constant, we obtain the corresponding relation for gradi-
ent Ricci soliton [20]:

1

2
∆ f (|ξ|

2) = |∇ξ|2 + λ|ξ|2 . (37)

REMARK 4.8. For the case µ = 0, under the assumptions λ|ξ|2 ≥ (2 − n)ξ(λ)
we get ∆ f (|ξ|

2) ≥ 0 and from the maximum principle follows that |ξ|2 is con-
stant in a neighborhood of any local maximum. If |ξ| achieve its maximum, then
λ = 2−n

|ξ|2
ξ(λ) (for ξ 6= 0), which yields a steady gradient Ricci soliton if λ is

constant.

REMARK 4.9. From Theorem 4.6, using (12) and taking into account that on an
(LCS)n-manifold we have |∇ξ|2 = α2(n − 1), we deduce that:

i) if (g, ξ, λ, µ) is a gradient almost η-Ricci soliton, then:

2αµ + ξ(µ) = −2α2 + [2(n − 2)α − 1]ξ(α) + (n − 2)ξ(ξ(α));

ii) if (g, ξ, λ, µ) is a gradient η-Ricci soliton, then α is constant, λ = −α −
(n − 1)α2 and µ = −α.

iii) if (g, ξ, λ) is a gradient almost Ricci soliton, then the scalar function α must
satisfy:

2α2 − [2(n − 2)α − 1]ξ(α)− (n − 2)ξ(ξ(α)) = 0;

iv) there is no gradient Ricci soliton on M.
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