Super-biderivations and super-commuting maps on the topological $N=2$ superconformal algebra

Lili Chi Jiancai Sun* Hengyun Yang

Abstract

Let \mathcal{T} be the well-known topological $N=2$ superconformal algebra. In this paper, we prove that every super-skewsymmetric super-biderivation of \mathcal{T} is inner. Based on the result of super-biderivations, we show that all the linear super-commuting maps on \mathcal{T} which have the form $\psi(x)=\lambda x+f(x) c$ are not standard.

1 Introduction

Lie superalgebras as a generalization of Lie algebras came from supersymmetry in mathematical physics. The theory of Lie superalgebras plays an important role in modern mathematics. Derivations, biderivations and super-biderivations are very important topics in the theory of both algebras and their generalizations. They also have attracted many scholars' great interests ([1], [2], [5]-[7]). Let \mathcal{S} be a Lie superalgebra with \mathbb{Z}_{2}-grading $\mathcal{S}=\mathcal{S}_{\overline{0}} \oplus \mathcal{S}_{\overline{1}}$ and $\mathcal{S}_{\overline{0}}$ and $\mathcal{S}_{\overline{1}}$ are even and odd parts of \mathcal{S}, respectively. Recall that [13] (Section 1.1.4) a super-derivation of degree $|d|, d \in \mathbb{Z}_{2}$, of a Lie superalgebra \mathcal{S} is an endomorphism $D \in E n d_{|d|} \mathcal{S}$ such that

$$
D([x, y])=[D(x), y]+(-1)^{|d||x|}[x, D(y)] .
$$

[^0]It is clear that the super-derivation is odd if $|d|=\overline{1}$, otherwise $|d|=\overline{0}$ and the super-derivation is even. Here, and in what follows, we use the notation $|x|$ to denote the \mathbb{Z}_{2}-degree of a homogeneous element $x \in L$, and we always assume that x is homogeneous if x appears in an expression. In addition, for a superderivation d of \mathcal{S}, we can get $D\left(\mathcal{S}_{\alpha}\right) \subseteq \mathcal{S}_{\alpha+|d|}$ for $\alpha \in \mathbb{Z}_{2}$ from [13] (Example 1). Derivation algebra and automorphism group of generalized topological $N=2$ superconformal algebra has been determined by Yang, Yu and Yao in [20]. Bres̆ar showed that all biderivations on commutative prime rings are inner biderivations and determined the biderivations of semiprime rings in [6]. The notion of biderivations of Lie algebras was introduced in [18]. Super-biderivations are the extension of biderivations. The definition of super-biderivations was introduced in [10] and [19], respectively.

For super-biderivations, recall a bilinear map $\varphi: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ which satisfies every $x_{\overline{0}} \in \mathcal{S}_{\overline{0}}$ the maps $x \mapsto \varphi\left(x_{\overline{0}}, x\right)$ and $x \mapsto \varphi\left(x, x_{\overline{0}}\right)$ are even superderivations, and for every $x_{\overline{1}} \in \mathcal{S}_{\overline{1}}$ the maps $x \mapsto \varphi\left(x_{\overline{1}}, x\right)$ and $x \mapsto \varphi\left(x, x_{\overline{1}}\right)^{\sigma}$ are odd super-derivations, where σ is defined by $\left(x_{\overline{0}}+x_{\overline{1}}\right)^{\sigma}=x_{\overline{0}}-x_{\overline{1}}$ for $x_{\overline{0}} \in \mathcal{S}_{\overline{0}}$ and $x_{\overline{1}} \in \mathcal{S}_{\overline{1}}$. Then φ is called a super-skewsymmetric super-biderivation of \mathcal{S} and it is equivalent to

$$
\begin{align*}
\varphi([x, y], z) & =[x, \varphi(y, z)]+(-1)^{|y||z|}[\varphi(x, z), y] \tag{1.1}\\
\varphi(x,[y, z]) & =[\varphi(x, y), z]+(-1)^{|x||y|}[y, \varphi(x, z)] \tag{1.2}\\
\varphi(x, y) & =-(-1)^{|x||y|} \varphi(y, x) \tag{1.3}
\end{align*}
$$

for all $x, y, z \in \mathcal{S}$. Considering the \mathbb{Z}_{2}-degree of a homogeneous element $x \in \mathcal{S}$, it is easy to obtain that the map φ_{λ} with $\lambda \in \mathbb{C}$ given by

$$
\varphi_{\lambda}(x, y)=\lambda[x, y] \quad \text { for all } \quad(x, y) \in \mathcal{S} \times \mathcal{S}
$$

is a super-biderivation of \mathcal{S}. The above form map is called an inner super-biderivation of \mathcal{S}. Any super-biderivations of other forms are said to be non-inner. Finally, we comment that the definition of super-biderivations here is actually the superbiderivations of degree $\overline{0} \in \mathbb{Z}_{2}$ in [10].

Commuting maps which are involved in the various aspects have a long and rich history [3], [4] and [5] on associative algebras. Recently, the commuting maps on some Lie algebras have been studied. For instance, Wang and Yu proved that all the linear commuting maps on the Schrödinger-Virasoro Lie algebra were standard in [17] and all linear super-commuting maps on the super-Virasoro algebras were also proved standard by Xia, Wang and Han in [19]. The concept of commuting maps has been introduced in [12]. A commuting map ψ on \mathcal{L} is called standard if it has the following form

$$
\psi(x)=\lambda x+f(x) \quad \text { for all } \quad x \in \mathfrak{L}
$$

where λ is a complex number, and f is a map from \mathfrak{L} to its center. All commuting maps of other forms are said to be non-standard.

From the above definition, the concept of super-commuting maps on Lie superalgebras was given in [10] and [19], respectively. Let \mathcal{S} be a Lie superalgebra with \mathbb{Z}_{2}-grading $\mathcal{S}=\mathcal{S}_{\overline{0}} \oplus \mathcal{S}_{\overline{1}}$ and $\mathcal{S}_{\overline{0}}$ and $\mathcal{S}_{\overline{1}}$ are even and odd parts of
\mathcal{S}, respectively. A map $\psi: \mathcal{S} \rightarrow \mathcal{S}$ is called super-commuting if it satisfies the \mathbb{Z}_{2}-grading of \mathcal{S} and

$$
[\psi(x), x]=0 \quad \text { for all } \quad x \in \mathcal{S}
$$

A super-commuting map ψ on \mathcal{S} is called standard if it maps the even part $\mathcal{S}_{\overline{0}}$ of \mathcal{S} to the center of \mathcal{S}, and maps the odd part $\mathcal{S}_{\overline{1}}$ of \mathcal{S} to zero. All super-commuting maps of other forms are said to be non-standard. Furthermore, compared with that in [10], the definition of super-commuting maps here has an additional condition of preserving gradation.

In this paper, we mainly study the topological $N=2$ superconformal algebra which is one of the $N=2$ superconformal algebras. There are four classes of $N=2$ superconformal algebras in [11]. In [16], the author studied topological field theories. The topological $N=2$ superconformal algebra was presented in [8], which is the symmetry algebra of topological conformal field theory in two dimensions. This algebra can be obtained from the Neveu-Schwarz $N=2$ superconformal algebra by "twisting" the stress-energy tensor by adding the derivative of the $U(1)$ current, procedure known as "topological twist" [9], [14] and [15]. And it is obvious to find that this Lie superalgebra $\mathcal{T}=\mathcal{T}_{\overline{0}} \oplus \mathcal{T}_{\overline{1}}$ is given by

$$
\begin{aligned}
& \mathcal{T}_{\overline{0}}=\left\{L_{m}, H_{n}, c \mid m, n \in \mathbb{Z}\right\}, \\
& \mathcal{T}_{\overline{1}}=\left\{G_{m}, Q_{n} \mid m, n \in \mathbb{Z}\right\} .
\end{aligned}
$$

The topological $N=2$ superconformal algebra reads

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right] } & =(m-n) L_{m+n}, \\
{\left[L_{m}, G_{n}\right] } & =(m-n) G_{m+n}, \\
{\left[L_{m}, Q_{n}\right] } & =-n Q_{m+n} \\
{\left[L_{m}, H_{n}\right] } & =-n H_{m+n}+\frac{c}{6}\left(m^{2}+m\right) \delta_{m+n, 0}, \\
{\left[G_{m}, Q_{n}\right] } & =2 L_{m+n}-2 n H_{m+n}+\frac{c}{3}\left(m^{2}+m\right) \delta_{m+n, 0} \\
{\left[H_{m}, H_{n}\right] } & =\frac{c}{3} \delta_{m+n, 0} \\
{\left[H_{m}, G_{n}\right] } & =G_{m+n} \\
{\left[H_{m}, Q_{n}\right] } & =-Q_{m+n},
\end{aligned}
$$

where $m, n \in \mathbb{Z}$. It is easy to see that the center of this algebra is $Z(\mathcal{T})=\mathbb{C} c$.
The structure of the paper is as follows. In Section 2, we recall some basic results on super-biderivations of Lie superalgebras in [19]. In Section 3, we study the super-skewsymmetric super-biderivations of the topological $N=2$ superconformal algebra \mathcal{T}. Finally, in Section 4, we show that all the linear supercommuting maps on \mathcal{T} are not standard which is based on the result of superskewsymmetric super-biderivations. In addition, comparing our main results with both Virasoro Lie algebra Vir in [17] and super-Virasoro algebra SVir in [10] and [19], we find some differences (see Table 1 and Table 2).

Table 1: Are all the (super-)skewsymmetric (super-)biderivations of \mathcal{T} inner?

	Answer for the question	Reference
Vir	Yes	$[17$, Theorem 3.1]
SVir	Yes	$[19$, Theorem 3.1]
\mathcal{T}	Yes	Theorem 3.1

Table 2: Are all the linear (super-)commuting maps on \mathcal{T} standard?

	Answer for the question	Reference
Vir	Yes	$[17$, Theorem 4.1]
SVir	Yes	$[19$, Theorem 4.1]
\mathcal{T}	No	Theorem 4.1

2 Basic results on super-biderivations of Lie superalgebras

In this section, we mainly give two useful results that are quoted from [19]. Firstly, Let \mathcal{S} be a Lie superalgebra with the center $Z(\mathcal{S})$ and $\varphi: \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ be a bilinear map. In addition,

$$
F(x, y, u, v)=(-1)^{|u||y|}([\varphi(x, y),[u, v]]-[[x, y], \varphi(u, v)]) \quad \text { for } \quad x, y, u, v \in \mathcal{S} .
$$

Lemma 2.1. Let φ be a super-biderivation on \mathcal{S}. Then

$$
F(x, y, u, v)=(-1)^{|y||v|} F(x, v, u, y) \quad \text { for } \quad x, y, u, v \in \mathcal{S} .
$$

Lemma 2.2. Let φ be a super-skewsymmetric super-biderivation on \mathcal{S}.
(1) $F(x, y, u, v)=0$ for $x, y, u, v \in \mathcal{S}$.
(2) For $x, y \in \mathcal{S}$, if $|x|+|y|=0$, then $[\varphi(x, y),[x, y]]=0$.
(3) Suppose \mathcal{S} is perfect. For $x, y \in \mathcal{S}$, if $[x, y]=0$, then $\varphi(x, y) \in Z(\mathcal{S})$.

3 Super-skewsymmetric super-biderivations of the topological $N=2$ superconformal algebra

In this section, we shall give a description of the super-skewsymmetric superbiderivations of the topological $N=2$ superconformal algebra \mathcal{T}. We know that all the super-skewsymmetric super-biderivations of the super-Virasoro algebra are inner in [10] and [19]. Clearly, the inner super-biderivation $(x, y) \mapsto \lambda[x, y]$ with $\lambda \in \mathbb{C}$ of any Lie superalgebra is super-skewsymmetric.

Theorem 3.1. Let φ be a super-skewsymmetric super-biderivation of the topological $N=2$ superconformal algebra \mathcal{T}. We have

$$
\varphi(x, y)=\lambda[x, y] \quad \text { for } \quad x, y \in \mathcal{T}
$$

where $\lambda \in \mathbb{C}$.

Proof. Obviously, we notice that $|\varphi(x, y)|=|x|+|y|$ for any homogeneous elements $x, y \in \mathcal{T}$ from the definition of super-skewsymmetric super-biderivations.

We will give the proof of the theorem by the following several claims.
Claim 1. There exists $\lambda \in \mathbb{C}$ such that

$$
\varphi\left(L_{m}, L_{n}\right) \equiv \lambda\left[L_{m}, L_{n}\right](\bmod \mathbb{C} c) \quad \text { for } \quad m, n \in \mathbb{Z}
$$

Notice that $\left|\varphi\left(L_{m}, L_{n}\right)\right|=\left|L_{m}\right|+\left|L_{n}\right|=\overline{0}$. So we can suppose that

$$
\varphi\left(L_{m}, L_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(1)} L_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(1)} H_{j}+\theta^{(1)} c
$$

$a_{i}^{(1)}, b_{j}^{(1)}, \theta^{(1)} \in \mathbb{C}$, for any fixed $m, n \in \mathbb{Z}$.
If $m=n$, then $\left[L_{m}, L_{n}\right]=0$. By Lemma 2.2 (3), we have $\varphi\left(L_{m}, L_{n}\right) \in Z(\mathcal{T})$. Since the center of \mathcal{T} is $Z(\mathcal{T})=\mathbb{C} c$, this claim holds.

Next, we assume that $m \neq n$. By Lemma 2.2 (2), we have

$$
\frac{1}{m-n}\left[\varphi\left(L_{m}, L_{n}\right),\left[L_{m}, L_{n}\right]\right]=0
$$

that is,

$$
\sum_{i \in \mathbb{Z}} a_{i}^{(1)}(i-m-n) L_{m+n+i}+\sum_{j \in \mathbb{Z}} b_{j}^{(1)} j M_{m+n+j}=0
$$

from which it follows that

$$
\begin{equation*}
a_{i}^{(1)}(i-m-n)=0 ; \quad b_{j}^{(1)} j=0 . \tag{3.1}
\end{equation*}
$$

So we have $a_{i}^{(1)}=0$ if $i \neq m+n$ and $b_{j}^{(1)} j=0$ if $j \neq 0$. Then we get

$$
\varphi\left(L_{m}, L_{n}\right) \equiv a_{m+n}^{(1)} L_{m+n}+b_{0}^{(1)} H_{0}(\bmod \mathbb{C} c)
$$

Furthermore, we use Lemma 2.2 (1) to get

$$
\left[\varphi\left(L_{m}, L_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[L_{m}, L_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right]
$$

and then we have

$$
a_{m+n}^{(1)}(m+n-k) L_{m+n+k}=(m-n) a_{1}^{(1)}(m+n-k) L_{m+n+k} .
$$

By the arbitrariness of k, m and n, we must have

$$
a_{m+n}^{(1)}=(m-n) a_{1}^{(1)} .
$$

Taking $\lambda=a_{1}^{(1)}$, we have

$$
\varphi\left(L_{m}, L_{n}\right) \equiv \lambda\left[L_{m}, L_{n}\right]+b_{0}^{(1)} H_{0}(\bmod \mathbb{C} c) .
$$

We will prove $b_{0}^{(1)}=0$ in the proof of the Claim 2.

Claim 2. $\varphi\left(L_{m}, G_{n}\right) \equiv \lambda\left[L_{m}, G_{n}\right](\bmod \mathbb{C} c) \quad$ for $\quad m, n \in \mathbb{Z}$.
Note that $\left|\varphi\left(L_{m}, G_{n}\right)\right|=\left|L_{m}\right|+\left|G_{n}\right|=\overline{1}$. For any fixed $m, n \in \mathbb{Z}$, we may suppose that

$$
\varphi\left(L_{m}, G_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(2)} G_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(2)} Q_{j},
$$

where $a_{i}^{(2)}, b_{j}^{(2)} \in \mathbb{C}$.
If $m=n$, then $\left[L_{m}, G_{n}\right]=0$. By Lemma 2.2 (3), we have $\varphi\left(L_{m}, G_{n}\right) \in Z(\mathcal{T})$. This claim holds.

Next, we assume that $m \neq n$. By Lemma 2.2 (1), we have

$$
\left[\varphi\left(L_{m}, G_{n}\right),\left[L_{1}, L_{0}\right]\right]=\left[\left[L_{m}, G_{n}\right], \varphi\left(L_{1}, L_{0}\right)\right],
$$

from which it follows that

$$
\begin{aligned}
& \sum_{i \in \mathbb{Z}} a_{i}^{(2)}(i-1) G_{i+1}+\sum_{j \in \mathbb{Z}} b_{j}^{(2)} j Q_{j+1}= \\
& \lambda(m-n)(m+n-1) G_{m+n+1}-(m-n) b_{0}^{(1)} G_{m+n}
\end{aligned}
$$

So we have $a_{i}^{(2)}(m+n-2)=-(m-n) b_{0}^{(1)}$ if $i=m+n-1 ;(m-n) b_{0}^{(1)}=0$ if $i \neq m+n-1$ and $b_{j}^{(2)}=0$ if $j \neq 0$. By the arbitrariness of m and n, we must have $b_{0}^{(1)}=0$.

Then we get

$$
\varphi\left(L_{m}, L_{n}\right) \equiv \lambda\left[L_{m}, L_{n}\right](\bmod \mathbb{C} c) \quad \text { for } \quad m, n \in \mathbb{Z}
$$

The Claim 1 holds.
Since $b_{j}^{(2)}=0$ if $j \neq 0$ we can get

$$
\varphi\left(L_{m}, G_{n}\right) \equiv \sum_{i \in \mathbb{Z}} a_{i}^{(2)} G_{i}+b_{0}^{(2)} Q_{0}(\bmod \mathbb{C} c) .
$$

Furthermore, by Lemma 2.2 (1), we have

$$
\left[\varphi\left(L_{m}, G_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[L_{m}, G_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right],
$$

that is,

$$
\sum_{i \in \mathbb{Z}} k a_{i}^{(2)}(i-k) G_{i+k}=k \lambda(m-n)(m+n-k) G_{m+n+k} .
$$

We must have $a_{m+n}^{(2)}=\lambda(m-n)$ if $i=m+n \neq k ; a_{i}^{(2)}=0$ if $i \neq m+n$. By the arbitrariness of k, we know $a_{m+n}^{(2)}=\lambda(m-n)$. Then we obtain

$$
\varphi\left(L_{m}, G_{n}\right) \equiv \lambda\left[L_{m}, G_{n}\right]+b_{0}^{(2)} Q_{0}(\bmod \mathbb{C} c) .
$$

We will prove $b_{0}^{(2)}=0$ in the proof of the Claim 4.

Claim 3. $\varphi\left(L_{m}, Q_{n}\right) \equiv \lambda\left[L_{m}, Q_{n}\right](\bmod \mathbb{C} c) \quad$ for $\quad m, n \in \mathbb{Z}$.
Note that $\left|\varphi\left(L_{m}, Q_{n}\right)\right|=\left|L_{m}\right|+\left|Q_{n}\right|=\overline{1}$. For any fixed $m, n \in \mathbb{Z}$, we may suppose that

$$
\varphi\left(L_{m}, Q_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(3)} G_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(3)} Q_{j}
$$

where $a_{i}^{(3)}, b_{j}^{(3)} \in \mathbb{C}$.
By Lemma 2.2 (1), we have

$$
\left[\varphi\left(L_{m}, Q_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[L_{m}, Q_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right]
$$

that is,

$$
\sum_{i \in \mathbb{Z}} k a_{i}^{(3)}(i-k) G_{i+k}+\sum_{j \in \mathbb{Z}} k b_{j}^{(3)} j Q_{j+k}=-\lambda k n(m+n) Q_{m+n+k}
$$

Thus we have $a_{i}^{(3)}=0$ if $i \neq k ; b_{j}^{(3)}=-\lambda n$ if $j=m+n \neq 0$ and $b_{j}^{(3)} j=0$ if $j \neq m+n$. By the arbitrariness of k, m and n, we must have $a_{i}^{(3)}=0$. Then

$$
\begin{equation*}
\varphi\left(L_{m}, Q_{n}\right) \equiv \lambda\left[L_{m}, Q_{n}\right]+b_{0}^{(3)} Q_{0}(\bmod \mathbb{C}) \tag{3.2}
\end{equation*}
$$

Furthermore, using Lemma 2.2 (1), we have

$$
\left[\varphi\left(L_{m}, Q_{n}\right),\left[L_{1}, G_{0}\right]\right]=\left[\left[L_{m}, Q_{n}\right], \varphi\left(L_{1}, G_{0}\right)\right]
$$

then we get

$$
\begin{aligned}
-\lambda n\left(2(m+n) H_{m+n+1}-2 L_{m+n+1}\right)+2 b_{0}^{(3)} & L_{1}= \\
& -\lambda n\left(2(m+n) H_{m+n+1}-2 L_{m+n+1}\right)
\end{aligned}
$$

So we must have $b_{0}^{(3)}=0$. Hence, we know this claim holds from (3.2).
Claim 4. $\varphi\left(L_{m}, H_{n}\right) \equiv \lambda\left[L_{m}, H_{n}\right](\bmod \mathbb{C}) \quad$ for $\quad m, n \in \mathbb{Z}$.
Note that $\left|\varphi\left(L_{m}, H_{n}\right)\right|=\left|L_{m}\right|+\left|H_{n}\right|=\overline{0}$. For any fixed $m, n \in \mathbb{Z}$, we may suppose that

$$
\varphi\left(L_{m}, H_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(4)} L_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(4)} H_{j}+\theta^{(4)} c
$$

where $a_{i}^{(4)}, b_{j}^{(4)}, \theta^{(4)} \in \mathbb{C}$.
If $n=0$, then $\left[L_{m}, H_{n}\right]=0$. By Lemma 2.2 (3), we have $\varphi\left(L_{m}, H_{n}\right) \in Z(\mathcal{T})$. This claim holds.

Next, we assume that $n \neq 0$, by Lemma 2.2 (2), we have

$$
\frac{1}{n}\left[\varphi\left(L_{m}, H_{n}\right),\left[L_{m}, H_{n}\right]\right]=0
$$

that is,

$$
\sum_{i \in \mathbb{Z}} a_{i}^{(4)}(m+n) H_{m+n+i}=0
$$

By the arbitrariness of m and n, we must have $a_{i}^{(4)}=0$. Then

$$
\varphi\left(L_{m}, H_{n}\right) \equiv \sum_{j \in \mathbb{Z}} b_{j}^{(4)} H_{j}(\bmod \mathbb{C} c)
$$

Furthermore, by Lemma 2.2 (1), we have

$$
\left[\varphi\left(L_{m}, H_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[L_{m}, H_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right]
$$

and that means

$$
\sum_{j \in \mathbb{Z}} k b_{j}^{(4)} j H_{j+k}=-k \lambda n(m+n) H_{m+n+k}
$$

Thus we obtain $b_{j}^{(4)}=-\lambda n$ if $j=m+n \neq 0 ; b_{j}^{(4)} j=0$ if $j \neq m+n$. By the arbitrariness of m and n, we know

$$
\varphi\left(L_{m}, H_{n}\right) \equiv \lambda\left[L_{m}, H_{n}\right]+b_{0}^{(4)} H_{0}(\bmod \mathbb{C} c)
$$

Due to

$$
\left[\varphi\left(L_{m}, H_{n}\right),\left[L_{1}, G_{0}\right]\right]=\left[\left[L_{m}, H_{n}\right], \varphi\left(L_{1}, G_{0}\right)\right]
$$

we get

$$
-\lambda n G_{m+n+1}+b_{0}^{(4)} G_{1}=-\lambda n G_{m+n+1}+n b_{0}^{(3)} Q_{m+n}
$$

that implies $b_{0}^{(3)}=0$ and $b_{0}^{(4)}=0$. Hence we have

$$
\varphi\left(L_{m}, G_{n}\right) \equiv \lambda\left[L_{m}, G_{n}\right](\bmod \mathbb{C} c) \quad \text { for } \quad m, n \in \mathbb{Z}
$$

The Claim 2 holds. And

$$
\varphi\left(L_{m}, H_{n}\right) \equiv \lambda\left[L_{m}, H_{n}\right](\bmod \mathbb{C} c) \quad \text { for } \quad m, n \in \mathbb{Z}
$$

This Claim holds.
Claim 5. $\varphi\left(G_{m}, Q_{n}\right) \equiv \lambda\left[G_{m}, Q_{n}\right](\bmod \mathbb{C} c) \quad$ for $\quad m, n \in \mathbb{Z}$.
Note that $\left|\varphi\left(G_{m}, Q_{n}\right)\right|=\left|G_{m}\right|+\left|Q_{n}\right|=\overline{0}$. For any fixed $m, n \in \mathbb{Z}$, we may suppose that

$$
\varphi\left(G_{m}, Q_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(5)} L_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(5)} H_{j}+\theta^{(5)} c
$$

where $a_{i}^{(5)}, b_{j}^{(5)}, \theta^{(5)} \in \mathbb{C}$.
From Lemma 2.2 (2), we have

$$
\left[\varphi\left(G_{m}, Q_{n}\right),\left[G_{m}, Q_{n}\right]\right]=0
$$

from which it follows that

$$
\sum_{i \in \mathbb{Z}} 2 a_{i}^{(5)}(i-m-n) L_{m+n+i}+\sum_{j \in \mathbb{Z}} 2 b_{j}^{(5)} j H_{m+n+j}+\sum_{i \in \mathbb{Z}} 2 n a_{i}^{(5)}(m+n) H_{m+n+i}=0
$$

Then we have that $a_{i}^{(5)}=0$ if $i \neq m+n ; b_{j}^{(5)}=-n a_{m+n}^{(5)}$ if $j=m+n \neq 0$ and $b_{j}^{(5)} j=0$ if $j \neq m+n$. Thus we obtain

$$
\varphi\left(G_{m}, Q_{n}\right) \equiv a_{m+n}^{(5)} L_{m+n}-n a_{m+n}^{(5)} H_{m+n}+b_{0}^{(5)} H_{0}(\bmod \mathbb{C} c)
$$

Furthermore , using Lemma 2.2 (1), we have

$$
\left[\varphi\left(G_{m}, Q_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[G_{m}, Q_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right]
$$

and then we have

$$
\begin{aligned}
& k a_{m+n}^{(5)}(m+n-k) L_{m+n+k}-n k a_{m+n}^{(5)}(m+n) H_{m+n+k}= \\
& \quad 2 k \lambda\left((m+n-k) L_{m+n+k}-2 k \lambda n(m+n) H_{m+n+k} .\right.
\end{aligned}
$$

By comparing both sides of the equation, by the arbitrariness of k, m and n, we get $a_{m+n}^{(5)}=2 \lambda$. Furthermore, we have

$$
\varphi\left(G_{m}, Q_{n}\right)=\lambda\left[G_{m}, Q_{n}\right]+b_{0}^{(5)} H_{0}(\bmod \mathbb{C} c)
$$

And by

$$
\left[\varphi\left(G_{m}, Q_{n}\right),\left[L_{1}, G_{0}\right]\right]=\left[\left[G_{m}, Q_{n}\right], \varphi\left(L_{1}, G_{0}\right)\right],
$$

we have

$$
\begin{aligned}
2 \lambda(m+n-1) G_{m+n+1}-2 \lambda n G_{m+n+1}+ & b_{0}^{(5)} G_{1} \\
& 2 \lambda(m+n-1) G_{m+n+1}-2 \lambda n G_{m+n+1}
\end{aligned}
$$

that means $b_{0}^{(5)}=0$. Hence, we get

$$
\varphi\left(G_{m}, Q_{n}\right) \equiv \lambda\left[G_{m}, Q_{n}\right](\bmod \mathbb{C} c) \quad \text { for } \quad m, n \in \mathbb{Z}
$$

Claim 6. $\varphi\left(H_{m}, G_{n}\right) \equiv \lambda\left[H_{m}, G_{n}\right](\bmod \mathbb{C} c) \quad$ for $\quad m, n \in \mathbb{Z}$.
Note that $\left|\varphi\left(H_{m}, G_{n}\right)\right|=\left|H_{m}\right|+\left|G_{n}\right|=\overline{1}$. For any fixed $m, n \in \mathbb{Z}$, we can suppose that

$$
\varphi\left(H_{m}, G_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(6)} G_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(6)} Q_{j}
$$

where $a_{i}^{(6)}, b_{j}^{(6)} \in \mathbb{C}$.
By Lemma 2.2 (1), we have

$$
\left[\varphi\left(H_{m}, G_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[H_{m}, G_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right]
$$

we have

$$
\sum_{i \in \mathbb{Z}} k a_{i}^{(6)}(i-k) G_{i+k}+\sum_{j \in \mathbb{Z}} k b_{j}^{(6)} j Q_{j+k}=k \lambda(m+n-k) G_{m+n+k}
$$

Then we have that $a_{i}^{(6)}=\lambda$ if $i=m+n \neq k ; a_{i}^{(6)}=0$ if $i \neq m+n$, and $b_{j}^{(6)}=0$ if $j \neq 0$, and by the arbitrariness of $k, a_{i}^{(6)}=\lambda$. Therefore,

$$
\begin{equation*}
\varphi\left(H_{m}, G_{n}\right) \equiv \lambda\left[H_{m}, G_{n}\right]+b_{0}^{(6)} Q_{0}(\bmod \mathbb{C} c) . \tag{3.3}
\end{equation*}
$$

Since Lemma 2.2 (1), we have

$$
\left[\varphi\left(H_{m}, G_{n}\right),\left[L_{1}, G_{0}\right]\right]=\left[\left[H_{m}, G_{n}\right], \varphi\left(L_{1}, G_{0}\right)\right],
$$

that is

$$
2 b_{0}^{(6)} L_{1}=0 .
$$

So we get $b_{0}^{(6)}=0$. Hence, considering (3.3), this claim holds.
Claim 7. $\varphi\left(H_{m}, Q_{n}\right) \equiv \lambda\left[H_{m}, Q_{n}\right](\bmod \mathbb{C} c)$ for $m, n \in \mathbb{Z}$.
Notice that $\left|\varphi\left(H_{m}, Q_{n}\right)\right|=\left|H_{m}\right|+\left|Q_{n}\right|=\overline{1}$. For any fixed $m, n \in \mathbb{Z}$, we can suppose that

$$
\varphi\left(H_{m}, Q_{n}\right)=\sum_{i \in \mathbb{Z}} a_{i}^{(7)} G_{i}+\sum_{j \in \mathbb{Z}} b_{j}^{(7)} Q_{j},
$$

where $a_{i}^{(7)}, b_{j}^{(7)} \in \mathbb{C}$.
By Lemma 2.2 (1), we have

$$
\left[\varphi\left(H_{m}, Q_{n}\right),\left[L_{k}, L_{0}\right]\right]=\left[\left[H_{m}, Q_{n}\right], \varphi\left(L_{k}, L_{0}\right)\right],
$$

we have

$$
\sum_{i \in \mathbb{Z}} k a_{i}^{(7)}(i-k) G_{i+k}+\sum_{j \in \mathbb{Z}} k b_{j}^{(7)} j Q_{j+k}=-k \lambda(m+n) Q_{m+n+k} .
$$

Thus we obtain that $a_{i}^{(7)}=0$ if $i \neq k ; b_{j}^{(7)} j=0$ if $j \neq m+n$ and $b_{j}^{(7)} j=-\lambda$ if $j=m+n \neq 0$ and by the arbitrariness of m, n and k, we get

$$
\begin{equation*}
\varphi\left(H_{m}, Q_{n}\right) \equiv-\lambda\left[H_{m}, Q_{n}\right]+b_{0}^{(7)} Q_{0}(\bmod \mathbb{C} c) . \tag{3.4}
\end{equation*}
$$

Using Lemma 2.2 (1), we have

$$
\left[\varphi\left(H_{m}, Q_{n}\right),\left[L_{1}, G_{0}\right]\right]=\left[\left[H_{m}, Q_{n}\right], \varphi\left(L_{1}, G_{0}\right)\right] .
$$

That is,

$$
-\lambda\left(2(m+n) H_{m+n+1}-2 L_{m+n+1}\right)-2 b_{0}^{(7)} L_{1}=-\lambda\left(2(m+n) H_{m+n+1}-2 L_{m+n+1}\right) .
$$

So we have $b_{0}^{(7)}=0$. Hence, combining (3.4), this claim holds.
Claim 8. $\varphi\left(H_{m}, H_{n}\right) \equiv \lambda\left[H_{m}, H_{n}\right](\bmod \mathbb{C} c)$ for $m, n \in \mathbb{Z}$.
Since $\left[H_{m}, H_{n}\right] \equiv 0(\bmod \mathbb{C} c)$. By Lemma $2.2(3)$, we must have $\varphi\left(H_{m}, H_{n}\right) \in$ $Z(\mathcal{T})$. And the center of \mathcal{T} is $Z(\mathcal{T})=C c$, so

$$
\varphi\left(H_{m}, H_{n}\right) \equiv 0(\bmod \mathbb{C})
$$

This claim holds.
Claim 9. $\varphi(x, y) \equiv \lambda[x, y](\bmod \mathbb{C} c) \quad$ for $\quad x, y \in \mathcal{T}$.
If $[x, y]=0$, then this claim clearly holds.
If $[x, y] \neq 0$, then this claim follows from Claim 1-Claim 8.
Now, by Claim 9, we may assume that

$$
\varphi(x, y)=\lambda[x, y]+f(x, y) c \quad \text { for } \quad x, y \in \mathcal{T}
$$

where f is a bilinear function from $\mathcal{T} \times \mathcal{T}$ to \mathbb{C}. Then, for $x, y, z \in \mathcal{T}$, due to

$$
\varphi([x, y], z)=[x, \varphi(y, z)]+(-1)^{|y||z|}[\varphi(x, z), y]
$$

we have

$$
f([x, y], z) c=0
$$

Since $[\mathcal{T}, \mathcal{T}]=\mathcal{T}$, that is, \mathcal{T} is perfect, one sees that f must be the zero functions. Hence, $\varphi(x, y)=\lambda[x, y]$. It is desired.

4 Super-commuting maps on the the topological $N=2$ superconformal algebra

In this section, we shall give the form of the linear super-commuting maps on the the topological $N=2$ superconformal algebra \mathcal{T} based on Theorem 3.1. We have the following result, which generalizes the result for the super-Virasoro algebra SVir given in [10] and [19], respectively.

Theorem 4.1. Each linear super-commuting map ψ on \mathfrak{L} has the following form

$$
\psi(x)=\lambda x+f(x) c \quad \text { for all } \quad x \in \mathcal{T}
$$

where f is a linear function from \mathcal{T} to \mathbb{C} mapping the odd part $\mathcal{T}_{\overline{1}}$ of \mathcal{T} to zero. That implies all linear super-commuting maps on the topological $N=2$ superconformal algebra \mathcal{T} are not standard.

Proof. Let ψ be a linear super-commuting map on the topological $N=2$ superconformal algebra \mathcal{T}. Define

$$
\begin{aligned}
\varphi: \quad \mathcal{T} \times \mathcal{T} & \rightarrow \mathcal{T} \\
(x, y) & \mapsto[\psi(x), y]
\end{aligned}
$$

for $x, y \in \mathcal{T}$. Notice that ψ maintains the \mathbb{Z}_{2}-grading of \mathcal{T}. By the definition of φ, one can easily versify that

$$
\varphi(x,[y, z])=[\varphi(x, y), z]+(-1)^{|x||y|}[y, \varphi(x, z)] \quad \text { for } \quad x, y, z \in \mathcal{T} .
$$

Namely, φ satisfies the equation (1.2). Recalling $[\psi(x), y]=(-1)^{|x||y|}[x, \psi(y)]$ (ψ is a linear super-commuting map), one can easily check the other equation (1.1). In addition, φ is super-skewsymmetric by its definition. Thus, φ is a superskewsymmetric super-biderivation of \mathcal{T}. By Theorem 3.1, there exists $\lambda \in \mathbb{C}$ such that

$$
\varphi(x, y)=\lambda[x, y] \quad \text { for } \quad x, y \in \mathcal{T} .
$$

Considering the definition of φ, we have

$$
\begin{equation*}
[\psi(x)-\lambda x, y]=0 . \tag{4.1}
\end{equation*}
$$

From the above Theorem 3.1, we also have

$$
\varphi(x, y) \equiv[\psi(x), y](\bmod \mathbb{C} c) \quad \text { for } \quad x, y \in \mathcal{T}
$$

Then, by (4.1), we see that

$$
[\psi(x)-\lambda x, y] \equiv 0(\bmod \mathbb{C} c) .
$$

This means that

$$
\psi(x)-\lambda x \in \mathbb{C} c \quad \text { for } \quad x \in \mathcal{T} .
$$

Thus, we may assume that

$$
\psi(x)-\lambda x=f(x) c,
$$

where f is a linear functions from \mathcal{T} to \mathbb{C}. Hence, $\psi(x)=\lambda x+f(x) c$. This completes the proof.

Acknowledgment

J.-C. Sun would like to thank the support of NNSFC grant 11671247 and H.-Y. Yang would like to thank the support of Natural Science Foundation of Shanghai (Grant No. 16ZR1415000).

References

[1] D. Benkovič, Biderivations of triangular algebras, Lin. Alg. Appl. 431 (2009), 1587-1602.
[2] D. Benkovič, Generalized Lie derivations on triangular algebras, Lin. Alg. Appl. 431 (2011), 1532-1544.
[3] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 111 (1991), 501-510.
[4] M. Brešar, On generalized biderivations and related maps, J. Algebra 172 (1995), 764-786.
[5] M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), 361-397.
[6] M. Brešar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120 (1994), 709-719.
[7] Z. Chen, Biderivations and linear commuting maps on simple generalized Witt algebras over a field, Elec J. Linear algebra 31 (2016), 1-12.
[8] R. Dijkgraaf, E. Verlinde and H. Verlinde, Topological strings in $d<1$, Nucl Phys. 352 (1991), 59-86.
[9] T. Eguchi and S. K. Yang, $N=2$ superconformal models as topological field theories, Mod. Phys. Lett. 5 (1990), 1653-1701.
[10] G. Fan and X. Dai, Super-biderivations of Lie superalgebras, Linear and Multilinear Algebra 65 (2017), 58-66.
[11] B. Gato-Rivera, Recent results on $N=2$ superconformal algebras, arXiv:hep-th/0002081v1, (2000).
[12] X. Han, D. Wang and C. Xia, Linear commuting maps and biderivations on the Lie algebra $\mathcal{W}(a, b)$, J. Lie Theory (2016), 777-786.
[13] V. Kac, Lie superalgebras, Adv. Phys. 26 (1977), 8-96.
[14] E. Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. 340 (1990), 281-322.
[15] E. Witten, Topological sigma models, Commun. Math. Phys. 118 (1988), 411449.
[16] N. P. Warner, $N=2$ Supersymmetry, Integrable Models and Topological Field Theories, Trieste lectures, airXiv: hep-th/9301088v1 (1993).
[17] D. Wang and X. Yu, Biderivation and linear commuting maps on the Schrödinger-Virasoro Lie algebra, Commun. Algebra 41 (2013), 2166-2173.
[18] D. Wang, X. Yu and Z. Chen, Biderivations of the parabolic subalgebras of simple Lie algebras, Commun. Algebra 39 (2011), 4097-4104.
[19] C. Xia, D. Wang and X. Han, Linear super-commuting maps and superbiderivations on the super-Virasoro algebras, Commun. Algebra 44 (2016), 5342-5350.
[20] H. Yang, Y. Yu and T. Yao, Derivation algebra and automorphism group of generalized topological $N=2$ superconformal algebra, Front. Math. China. 8 (2013), 973-986.

Department of Mathematics, Shanghai University, Shanghai 200444, China emails : 1058610001@qq.com, jcsun@shu.edu.cn

Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China email: hyyang@shmtu.edu.cn

[^0]: *Corresponding Author
 Received by the editors in April 2017 - In revised form in October 2017.
 Communicated by S. Caenepeel.
 2010 Mathematics Subject Classification : 17B05, 17B40, 17B68.
 Key words and phrases : super-commuting maps, super-biderivations, topological $\mathrm{N}=2$ superconformal algebra.

