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Abstract

A subgroup H of a group G is said to be weakly s-supplementedly em-
bedded in G if there exists a subgroup T of G such that G = HT and H ∩ T ≤
Hse ≤ H, where Hse is an S-permutably embedded subgroup of G. In this
paper, we investigate the structure of G under the assumption that some
subgroups of prime-power order are weakly S-supplementedly embedded
in G, and some new criteria for p-nilpotency are obtained.

1 Introduction

Let G be a finite group. |G| is the order of G, and π(G) = {p1 > p2 > · · · > ps}
is the set of prime divisors of |G|. For p ∈ π(G), Sylp(G) is the set of all Sylow

p-subgroups of G, Op(G) is the maximal normal p-subgroup of G, and Op(G) =
〈Q ∈ Sylq(G) | q ∈ π(G), q 6= p〉. Let [A]B denote the semidirect product of the
groups A and B, where B is an operator group of A.
G is a Sylow-tower group if there exists a series: 1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤
Gs−1 ≤ Gs = G such that Gi E G and |Gi+1/Gi| = p

αi+1

i+1 , i = 0, 1, . . . , s − 1.
A subgroup H of G is subnormal in G if there exists a series: H = H1 ≤ H2 ≤
· · · ≤ Hs−1 ≤ Hs = G such that Hi E Hi+1, i = 1, 2, . . . , t − 1.
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A class of finite groups F is called a f ormation if the following conditions are
satisfied:

(0) if G ∈ F , then all groups isomorphic to G also belong to F ;

(1) if G ∈ F and N is a normal subgroup of G, then G/N ∈ F ;

(2) if Ni are normal subgroups of a group G (not necessarily belonging to F
such that G/Ni ∈ F , i = 1, 2, then G/N1 ∩ N2 ∈ F .

Recall that the Frattini subgroup Φ(G) = ∩M⋖GM of a group G is the intersection
of all maximal subgroups of G. A formation F is saturated if G ∈ F whenever
G/Φ(G) ∈ F . For example, the class of all p-nilpotent groups(pN ) and the class
of all supersolvable groups(U ) are saturated formations.
All other notation and terminology is standard, following [7, 8].

Assume F is a class of groups and A/B is a chief factor of G. A/B is called Frattini
provided A/B ≤ Φ(G/B). Moreover, A/B is called F -central if
[A/B](G/CG(A/B)) ∈ F . Otherwise, A/B is called F -eccentric. In 2009,
Shemetkov and Skiba [15] introduced the concept of FΦ-hypercentre of G. The
symbol ZFΦ(G) denotes the FΦ-hypercentre of G which is the product of all
normal subgroups of G whose non-Frattini G-chief factors are F -central in G.
A (normal) subgroup E of G is called FΦ-hypercentral in G if E ≤ ZFΦ(G).
An important fact is that if G has a normal subgroup E such that G/E ∈ F
and E ≤ ZFΦ(G), then G ∈ F , for any saturated formation F . Especially,
G ≤ ZFΦ(G) is equal to the case that G ∈ F .
Let p ∈ π(G). Recall that a subgroup H of G is p-local, if H = NG(S) for some
nontrivial p-subgroup S of G. p-local subgroups play an important role in inves-
tigating the structure of finite groups. For example, Burnside’s Theorem asserts
that G is p-nilpotent if NG(P) = CG(P) for some Sylow p-subgroup P of G and
p ∈ π(G). The following generalization of Burnside’s Theorem is due to Hall [6]:
if the p′-elements of NG(P) commute with the elements of P and the class size of
P is smaller than p, then G is p-nilpotent. Huppert [7] showed that a group G is p-
nilpotent if it has a regular Sylow p-subgroup whose G-normalizer is p-nilpotent.
The Frobenius Theorem asserts that G is p-nilpotent if and only if NG(S) is p-
nilpotent, for every nontrivial p-subgroup S of G.
The idea behind these results (and other available in the literature) is to consider
local properties of subgroups having prime-power order. The aim of this paper
is to investigate whether it is possible to reduce the number of subgroups that is
needed to characterize p-nilpotency.
Recall that a subgroup H of G is called S-permutable (or S-quasinormal or
π-quasinormal) in G if HP = PH for all Sylow subgroups P of G. H is called
S-permutably embedded in G if each Sylow subgroup of H is a Sylow subgroup of
some S-permutable subgroup of G.

Definition 1.1. A subgroup H of G is called weakly S-supplementedly embedded
in G if there exists a subgroup T of G such that G = HT and H ∩ T ≤ Hse ≤ H,
where Hse is an S-permutably embedded subgroup of G.



New criteria for p-nilpotency of finite groups 483

Take p ∈ π(G) and P ∈ Sylp(G), and let P′ be the derived subgroup of P. Let

H(P) = {H ≤ P | P′ ≤ H ≤ Φ(P)}, and let K(P) be the set of subgroups K ≤ G
such that K is p-closed and H(P) contains the Sylow p-subgroup of K. Obviously
H(P) ⊆ K(P) and each element in H(P) is normal in P.

Our main result consists of the following characterizations of hypercentre of a
group G with normal subgroup E and Sylow p-subgroup P of E(see Theorems
3.1, 3.5 and 3.8): E ≤ ZpNΦ(G) if there exists H ∈ H(P) such that H is weakly
S-supplementedly embedded in G and NG(P) is p-nilpotent or if there exists
H ∈ H(P) such that H is weakly S-supplementedly embedded in G and NG(H) is
p-nilpotent or assume that (|G|, p − 1) = 1 and if one of the following conditions
is satisfied

(1) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in
G and every maximal subgroup of P is weakly s-supplementedly embedded
in NG(P);

(2) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded
in G and every cyclic subgroup of P of order p (and of order 4 if P is non-
abelian and p = 2) is weakly S-supplementedly embedded in NG(P).

Further, we obtain the following characterizations of p-nilpotency of a group G
with Sylow p-subgroup P: G is p-nilpotent if and only if there exists H ∈ H(P)
such that H is weakly S-supplementedly embedded in G and NG(P) is p-nilpotent
if and only if there exists H ∈ H(P) such that H is weakly S-supplementedly
embedded in G and NG(H) is p-nilpotent, see corollaries 3.2 and 3.9. These can
be viewed as alternative versions of the Theorems of Burnside and Frobenius. In
corollary 3.7, we give sufficient conditions for a group G to belong to a saturated
formation that contains the class of all supersolvable groups.

2 Preliminaries

Lemma 2.1. [9]

(a) An S-permutable subgroup of G is subnormal in G.

(b) If H ≤ K ≤ G and H is S-permutable in G, then H is S-permutable in K.

(c) Let K E G. If H is S-permutable in G, then HK/K is S-permutable in G/K.

(d) If P is an S-permutable p-subgroup of G for some prime p, then NG(P) ≥ Op(G).

Lemma 2.2. [1, Lemma 2.1] Suppose that U is S-permutably embedded in G, and that
H ≤ G and N E G.

(a) If U ≤ H, then U is S-permutably embedded in H.

(b) UN is S-permutably embedded in G and UN/N is S-permutably embedded in
G/N.
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Lemma 2.3. [16, Lemma 2.5] Suppose that H is S-permutable in G, and that P is a Sylow
p-subgroup of H, with p ∈ π(G). If HG = 1 or P ≤ Op(G), then P is S-permutable in
G.

Lemma 2.4. [11, Lemma 2.3] Let U be a weakly S-supplementedly embedded subgroup
of G and N be a normal subgroup of G.

(a) If U ≤ H ≤ G, then U is weakly S-supplementedly embedded in H.

(b) If N ≤ U, then U/N is weakly S-supplementedly embedded in G/N.

(c) Let π be a set of primes, U a π-subgroup and N a π
′-subgroup of G. Then UN/N

is weakly S-supplementedly embedded in G/N.

Lemma 2.5. Let P be a Sylow p-subgroup of G, with p ∈ π(G). Assume that K ≤ G,
and let H be a Sylow p-subgroup of K such that H E K and H ≤ Φ(P). If K is weakly
S-supplementedly embedded in G, then H is S-permutably embedded in G.

Proof. By hypothesis, there is a subgroup A of G and an S-permutably embedded
subgroup Kse of G such that G = KA and K ∩ A ≤ Kse ≤ K. Since H E K,
there exists a Sylow p-subgroup P1 of A such that P = HP1 ≤ Φ(P)P1 ≤ P1.
Furthermore, H ≤ P ≤ A and H is a Sylow p-subgroup of Kse. It follows from the
definition of the S-permutably embedded subgroup that H is an S-permutably
embedded subgroup of G.

Lemma 2.6. [12] Assume that P is a Sylow p-subgroup of G, with p ∈ π(G), and that
N E G. If P ∩ N ≤ Φ(P), then N is p-nilpotent.

Lemma 2.7. Assume that P is a normal Sylow p-subgroup of G, with p ∈ π(G), and
that P/Φ(P) is a minimal normal subgroup of G/Φ(P). If every maximal subgroup of
P or every cyclic subgroup of P with order p or order 4 (if P is non-abelian and p = 2) is
weakly S-supplementedly embedded in G, then P is cyclic.

Proof. Let P1 be a maximal subgroup of P. If P1 is weakly S-supplementedly em-
bedded in G, then we claim that P1 ≤ Φ(P). Let T be a supplement of P1 in G
such that G = P1T and P1 ∩ T ≤ (P1)se ≤ P1. Then G = P1T and P = P ∩ G =
P∩ P1T = P1(P∩T). Since P/Φ(P) is abelian, (P∩T)Φ(P)/Φ(P)EG/Φ(P) and
(P ∩ T)Φ(P) E G. Since P/Φ(P) is a minimal normal Sylow
p-subgroup of G/Φ(P), P ∩ T ≤ Φ(P) or P ∩ T = P. If P ∩ T ≤ Φ(P), then
P = P1(P ∩ T) = P1, which is a contradiction. Now we assume that P ∩ T = P.
Then P1 ≤ P1 ∩ T ≤ (P1)se ≤ Op(G) = P. Hence P1 is S-permutable in G by
Lemma 2.3. Then P1Φ(P)/Φ(P) is S-permutable in G/Φ(P) by Lemma 2.1(c) and
so NG/Φ(P)(P1Φ(P)/Φ(P)) ≥ Op(G/Φ(P)). Furthermore, P1Φ(P)/Φ(P) is nor-

mal in G/Φ(P). By the minimality of P/Φ(P) as a normal subgroup of G/Φ(P)
again, P1 ≤ Φ(P). Hence P has a unique maximal subgroup by the above argu-
ment, which implies that P is cyclic.
If every cyclic subgroup of P with order p (and order 4 if P is non-abelian and p =
2) is weakly S-supplementedly embedded in G, then we also have |P/Φ(P)| = p
and then P is cyclic. Otherwise, let K/Φ(P) be any non-trivial cyclic subgroup of
P/Φ(P). Let x ∈ K \ Φ(P) such that T = 〈x〉Φ(P). Then by the above argument,
〈x〉 ≤ Φ(P) and so T = Φ(P), which is a contradiction.



New criteria for p-nilpotency of finite groups 485

Lemma 2.8. Let P be a normal Sylow p-subgroup of G, with p ∈ π(G), and assume
that (|G|, p − 1) = 1. Then the following assertions are equivalent:

(1) G is p-nilpotent;

(2) every maximal subgroup of P is weakly S-supplementedly embedded in G;

(3) every cyclic subgroup of P of order p is weakly S-supplementedly embedded in G,
and, in the situation where p = 2 and P is non-abelian, every cyclic subgroup of P
of order 2 or 4 is weakly S-supplementedly embedded in G.

Proof. (1) ⇒ (2). If G is p-nilpotent, then G has a normal p-complement T. If P1

is a maximal subgroup of P, then P1T is normal in G since |G : P1T| = p, and it
follows that P1 is weakly S-supplementedly embedded in G.
(1) ⇒ (3). Let P1 be a cyclic subgroup of P of order p. It follows that P1 is a
Sylow p-subgroup of P1T. Let Q be a Sylow q-subgroup of G, where q 6= p is a
prime divisor of |G|. Then Q ≤ T and P1TQ = QP1T = P1T. By hypothesis, P is
normal in G hence P1TP = PT is a subgroup of G, which implies that P1T is an
S-permutable subgroup of G and P1 is S-permutably embedded in G. Hence P1

is weakly S-supplementedly embedded in G. Similar arguments apply to cyclic
subgroups of order 4 in the case where p = 2 and P is non-abelian.
(3) ⇒ (1). Assume that G is not p-nilpotent. This means that the class of non-
p-nilpotent groups G with order relatively prime to p − 1 and containing P as a
normal p-subgroup is not empty, and we can take such a group G with minimal
order.
Let M be a proper subgroup of G. Then P ∩ M is a normal Sylow p-subgroup of
M, and it follows from Lemma 2.4 that every cyclic subgroup of P with order p
or order 4 is weakly S-supplementedly embedded in M and so M is p-nilpotent.
By [14, VI, Theorem 24.2], P/Φ(P) is a G-chief factor of P. Now by Lemma 2.7, P
is cyclic and it follows from Burnside’s Theorem that G is p-nilpotent, which is a
contradiction.
(2) ⇒ (1). Assume that G is not p-nilpotent. This means that the class of non-
p-nilpotent groups G with order relatively prime to p − 1 and containing P as a
normal p-subgroup is not empty, and we can take such a group G with minimal
order.
Let N be a minimal normal subgroup of G contained in P. It is easy to see that
G/N is p-nilpotent. By a routine argument, we have that N = P. It follows from
Lemma 2.7 that G is p-nilpotent, which is a contradiction.

Lemma 2.9. Let q is a prime divisor of |G|, and let Q be a normal Sylow q-subgroup of G
such that G/Q is supersolvable. G is supersolvable if one of the two following conditions
is satisfied:

(1) every maximal subgroup of Q is weakly S-supplementedly embedded in G;

(2) every subgroup of Q of order q, and in the situation where q = 2 and Q is non-
abelian, every subgroup of order 2 or 4 is weakly S-supplementedly embedded in G.

Proof. Assume that G is not supersolvable.
If (2) holds, then it follows from Lemma 2.8 that G is minimal non-supersolv-
able, in the sense that every proper subgroup of G is supersolvable. By [2], G has
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a normal Sylow p-subgroup P such that G = PM, where M is a supersolvable
maximal subgroup of G and P/Φ(P) is a minimal normal subgroup of G/Φ(P).
If P 6= Q , then G . G/P × G/Q is supersolvable, which is a contradiction.
Hence P = Q. Now Q is cyclic by Lemma 2.7 and then G is supersolvable, which
is a contradiction.
Assume that (1) holds, and let N be a minimal normal subgroup of G contained in
Q. Assume that Q1/N is a maximal subgroup of Q/N, then Q1 is maximal in Q.
By the hypothesis and Lemma 2.4, Q1/N is weakly S-supplementedly embedded
in G/N. So G/N satisfies the hypothesis of the Lemma and G/N is supersolvable
by the choice of G. It follows that N is the unique minimal normal subgroup of G
contained in Q and N � Φ(G). Hence N = Q. It follows from Lemma 2.7 that Q
is cyclic and G is supersolvable, which is a contradiction.

Lemma 2.10. Let G be a group and P ∈ Sylp(G) where p ∈ π(G). If P is abelian and
NG(P) is p-nilpotent, then G is p-nilpotent.

Proof. Since NG(P) is p-nilpotent, NG(P) = P × H, where H is a normal
p-complement of P in NG(P), and H ≤ CG(P). On the other hand P is abelian
and P ≤ CG(P), hence NG(P) = CG(P) and G is p-nilpotent by Burnside’s Theo-
rem.

Lemma 2.11. [5, Theorem 1.8.17] Let N be a nontrivial solvable normal subgroup of G.
If N ∩ Φ(G) = 1, then the Fitting subgroup F(N) of N is the direct product of minimal
normal subgroups of G which are contained in N.

Lemma 2.12. [3, Lemma A.9.11] Let K and N be the normal subgroups of G with N ≤ K
and K is nilpotent. If K/N ≤ Φ(G/N), then K ≤ Φ(G)N.

Lemma 2.13. [13, Lemma 2.4] Suppose that P is a p-subgroup of G contained in Op(G).
If P is S-permutably embedded in G, then P is S-permutable in G.

Lemma 2.14. Suppose that R is a minimal normal subgroup of G and R ≤ Op(G),
where p ∈ π(G). |R| = p if one of the following conditions is satisfied

(1) every maximal subgroup of P is S-supplementedly embedded in G;

(2) every cyclic subgroup of P of order p (and of order 4 if P is non-abelian and p = 2)
is S-supplementedly embedded in G.

Proof. Since R is a minimal normal subgroup of G and R ≤ Op(G), we may let R1

be the maximal subgroup or cyclic subgroup of P of order p (and of order 4 if P
is non-abelian and p = 2) of R such that R1 E P, where P is a Sylow p-subgroup
of G. By the hypothesis, R1 is S-permutably embedded in G and Lemma 2.13,
then R1 is S-permutable in G. Further, by Lemma 2.1, NG(R1) ≥ Op(G). Then
NG(R1) = G and R1 E G by the choice of R1. Hence R1 = 1 and |R| = p since R
is a minimal normal subgroup of G.
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3 Main Results

Theorem 3.1. Let E E G, p ∈ π(E), and let P be a Sylow p-subgroup of E. If there
exists H ∈ H(P) such that H is weakly S-supplementedly embedded in G and NG(P) is
p-nilpotent, then E ≤ ZpNΦ(G).

Proof. Suppose that there exists G, E, P satisfying the conditions of the Theorem
such that E � ZpNΦ(G). Fixing P the class of all couples (G, E) satisfying the con-

ditions of the Theorem such that E � ZpNΦ(G) is not empty, and we can choose
a (G, E) in such a way that |G| + |E| is minimal. In several steps, we show that
this leads to a contradiction.
Step 1. Op′(E) = 1.

Now, we consider the couple (G, E) = (G/Op′(E), E/Op′ (E)). Then

P = POp′(E)/Op′ (E) is a Sylow p-subgroup of E. Certainly, NG(P) = NG(P)

and (P)′ ≤ P′ ≤ H ≤ Φ(P) ≤ Φ(P). It follows that (P)′ ≤ H ≤ Φ(P). Hence
H ∈ H(P). By Lemma 2.4, it is easy to see that (G/Op′(E), E/Op′ (E)) satisfies
the conditions of the Theorem, and E/Op′(E) ≤ ZpNΦ(G/Op′(E)) by the choice
of (G, E). Further, E ≤ ZpNΦ(G), which is a contradiction.
Step 2. E = G.
If E < G, then we consider the couple (E, E). By Lemma 2.4, (E, E) satisfies the
conditions of the Theorem, and E ≤ ZpNΦ(E) by the choice of (G, E). Further,
E is p-nilpotent and E = P E G by Step 1. Then NG(P) = G is p-nilpotent and
E ≤ ZpNΦ(G), which is a contradiction.
Step 3. H is a non-trivial S-permutably embedded subgroup of G and G is not a
non-abelian simple group.
It follows from Lemma 2.5 that H is an S-permutably embedded subgroup of G.
If H = 1, then P′ ≤ H = 1 implies that P is abelian. It follows from Lemma 2.10
that G is p-nilpotent, which is a contradiction. Let A be an S-permutable sub-
group of G such that H is a Sylow p-subgroup of A. Then A 6= 1. Since H < P
and A < G, A is a non-trivial subnormal subgroup of G, which implies that G is
not a non-abelian simple group.
Step 4. G has a unique minimal normal subgroup N and G/N is p-nilpotent.
Furthermore, Op′(G) = 1 and N � Φ(G).

Let N be a minimal normal subgroup of G, and consider the quotient group G =

G/N. Then P = PN/N is a Sylow p-subgroup of G. Certainly, NG(P) = NG(P)

and (P)′ ≤ P′ ≤ H ≤ Φ(P) ≤ Φ(P). It follows that (P)′ ≤ H ≤ Φ(P). Hence
H ∈ H(P). By Step 1 and Lemma 2.2, it is easy to see that G/N satisfies the
hypothesis, and G/N is p-nilpotent by the choice of G. Obviously N is the unique
minimal normal subgroup of G. Furthermore, Op′(G) = 1 and N � Φ(G).
Step 5. Op(G) = 1.
Assume that Op(G) 6= 1. Then N ≤ Op(G) and N ∩ Φ(G) = 1 by Step 4.
It follows that Op(G) ∩ Φ(G) = 1, and N = Op(G) by [10, Lemma 2.6].
Now we claim that N ≤ Φ(P). Let A be an S-permutable subgroup of G such
that H is a Sylow p-subgroup of A. If AG 6= 1, then Op(G) = N ≤ H ≤ Φ(P).
If AG = 1, then H is an S-permutable subgroup of G by Lemma 2.3. It follows
from Lemma 2.1(d) that Op(G) ≤ NG(H) and so G = POp(G) ≤ NG(H), which
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implies that H E G. Hence either H = 1 or N ≤ H. If H = 1, then P′ = 1 and G
is p-nilpotent by Lemma 2.10, a contradiction. Hence N ≤ H and it follows that
N ≤ Φ(P). Then N ≤ Φ(G), which contradicts Step 4. So Op(G) = 1.
Step 6. Final contradiction.
If NP < G, then NP satisfies the hypothesis and NP is p-nilpotent by the choice
of G. Therefore N is p-nilpotent, which contradicts Step 5. Hence G = NP.
By Step 3, H is a Sylow p-subgroup of an S-permutable subgroup A of G.
If AG = 1, then by Lemma 2.3 H is S-permutable in G and so H ≤ Op(G),
which contradicts Step 5. So AG 6= 1. It follows from the uniqueness of N that
N ≤ AG ≤ A and so H ∩ N is a Sylow p-subgroup of N. Since P ∩ N is also a
Sylow p-subgroup of N and H ∩ N ≤ P ∩ N, P ∩ N = H ∩ N ≤ H ≤ Φ(P). By
Lemma 2.6, N is p-nilpotent, which contradicts Step 5.

Corollary 3.2. Let p ∈ π(G), and let P be a Sylow p-subgroup of G. Then G is
p-nilpotent if and only if there exists H ∈ H(P) such that H is weakly S-supplementedly
embedded in G and NG(P) is p-nilpotent.

Proof. The sufficency follows easily from Theorem 3.1. Next, we consider the
necessity.
If G is p-nilpotent, then NG(P) is p-nilpotent and G has a normal p-complement T
such that G = PT. It follows that P′T is normal in G and P′ is a Sylow p-subgroup
of P′T, which implies that P′ is a weakly S-supplementedly embedded subgroup
of G. It is obvious that P′ ∈ H(P).

Corollary 3.3. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G|
satisfying (|G|, p − 1) = 1. The following statements are equivalent

(1) G is p-nilpotent;

(2) there exists H ∈ H(P) such that H is weakly S-supplementedly embedded in G
and every maximal subgroup of P is weakly s-supplementedly embedded in NG(P);

(3) there exists H ∈ H(P) such that H is weakly S-supplementedly embedded in G and
every cyclic subgroup of P of order p and of order 2 or 4 is weakly S-supplementedly
embedded in NG(P).

Proof. This result follows from Lemma 2.8 and corollary 3.2.

Corollary 3.4. Let P be a Sylow p-subgroup of G, where p is a prime divisor of |G|
satisfying (|G|, p − 1) = 1. The following statements are equivalent

(1) G is p-nilpotent;

(2) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in G and
every maximal subgroup of P is weakly S-supplemently embedded in NG(P);

(3) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in G and
every cyclic subgroup of P with order p (and every cyclic subgroup of order 4 in the
case where p = 2 and P is non-abelian) is weakly S-supplementedly embedded in
NG(P).
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Proof. This result follows from Lemma 2.5 and corollary 3.3.

Theorem 3.5. Let G be a group and let p be a prime divisor of |G| satisfying
(|G|, p − 1) = 1. Suppose that E is a normal subgroup of G. Let P be a Sylow
p-subgroup of E. E ≤ ZpNΦ(G) if one of the following conditions is satisfied

(1) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in G and
every maximal subgroup of P is weakly s-supplementedly embedded in NG(P);

(2) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in G and
every cyclic subgroup of P of order p (and of order 4 if P is non-abelian and p = 2)
is weakly S-supplementedly embedded in NG(P).

Proof. Suppose that there exists G, E, P satisfying the conditions of the Theorem
such that G is not p-nilpotent. Fixing P the class of all couples (G, E) satisfying the
conditions of the Theorem such that G is not p-nilpotent is not empty, and we can
choose a (G, E) in such a way that |G| + |E| is minimal. It follows from Lemma
2.4 and corollary 3.4 that E is p-nilpotent. Let T be the normal p-complement of
E. Then T E G.

If T 6= 1, then we consider G/T with normal subgroup E/T. It is easy to see that
E = PT and (|P|, |T|) = 1. An argument similar to Step 4 in Theorem 3.1 shows
that the (G/T, E/T) satisfies the conditions of the Theorem, and this implies that
E/T ≤ ZpNΦ(G/T), by the minimality of |G|+ |E|. Then E ≤ ZpNΦ(G), which
is a contradiction.

If T = 1, then E = P is a p-group and NG(P) = G. Assume that (1) holds. For
every minimal normal subgroup N of G contained in P, by Lemma 2.2, Lemma
2.4, the argument similar to Step 4 in Theorem 3.1, then E/N ≤ ZpNΦ(G/N).
Next, we assert that P ∩ Φ(G) = 1. Otherwise, P∩ Φ(G) 6= 1 and we may choose
a minimal normal subgroup N of G such that N ≤ P ∩ Φ(G). By the discussion
above, E/N ≤ ZpNΦ(G/N) and E ≤ ZpNΦ(G), which is a contradiction. Fur-
ther, by Lemma 2.11, P is the direct product of minimal normal subgroups of G
which are contained in P. We assert that P is a minimal normal subgroup of G.
Otherwise, we may choose different minimal normal subgroups N1 and N2 of
G contained in P. By the discussion above, E/Ni ≤ ZpNΦ(G/Ni), i = 1, 2. By

Lemma 2.12, N1N2/N2 � Φ(G/N2) and N1N2/N2 ≤ Z(G/N2). Then N1 ≤ Z(G)
and E ≤ ZpNΦ(G), which is a contradiction. Further, |P| = p by Lemma 2.14 and
E ≤ ZpNΦ(G), which is a contradiction.
Assume that (2) holds. If every cyclic subgroup of P of order p (and of order 4
if P is non-abelian and p = 2) is weakly S-supplementedly embedded in G, then
we assert that every cyclic subgroup of P of order p is S-permutably embedded
in G. Otherwise, assume that there exists a subgroup L of P of order p is comple-
mented in G. Then there exists a maximal subgroup of M of G such that G = LM
and L ∩ M = 1. Further, M E G, P ∩ M E G and P/P ∩ M is a minimal normal
subgroup of G/P ∩ M. Next, we consider (G, P ∩ M). By Lemma 2.4 and the
choice of (G, E), P ∩ M ≤ ZpNΦ(G) and P ≤ ZpNΦ(G) since |P/P ∩ M| = p,
which is a contradiction. By Lemma 2.13, every cyclic subgroup of P of order p is
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S-permutable in G. By the argument similar to the case on the maximal sub-
groups, every minimal normal subgroup N of G contained in P is of order p.
By Lemma 2.2, Lemma 2.4, the argument similar to Step 4 in Theorem 3.1 and
Lemma 2.11, it easy to see that P is a minimal normal subgroup of G. Then |P| = p
by Lemma 2.14. Further, E ≤ ZpNΦ(G), which is a contradiction.

Corollary 3.6. Let G be a group and let p be a prime divisor of |G| satisfying
(|G|, p − 1) = 1. Suppose that E is a normal subgroup of G such that G/E is
p-nilpotent. Let P be a Sylow p-subgroup of E. G is p-nilpotent if one of the follow-
ing conditions is satisfied

(1) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in G and
every maximal subgroup of P is weakly s-supplementedly embedded in NG(P);

(2) there exists K ∈ K(P) such that K is weakly S-supplementedly embedded in G and
every cyclic subgroup of P of order p (and of order 4 if P is non-abelian and p = 2)
is weakly S-supplementedly embedded in NG(P).

Corollary 3.7. Assume that F is a saturated formation containing the class of all super-
solvable groups U , EEG and G/E ∈ F for any prime p dividing |E|. Take P ∈ Sylp(E),
and suppose that there exists K ∈ K(P) such that K is weakly S-supplementedly embed-
ded in G. G ∈ F if one of the following conditions is satisfied:

(1) every maximal subgroup of P is weakly S-supplementedly embedded in NG(P);

(2) every cyclic subgroup of P with order p and order 4 (if P is non-abelian and p = 2)
is weakly S-supplementedly embedded in NG(P).

Proof. Assume that (G, E, K, P) satisfy the conditions of the Theorem and that
G 6∈ F . Fix (E, K, P). The class of groups G such that (G, E, K, P) satisfies the
conditions of the Theorem and G 6∈ F is not empty, so we can find G of minimal
order in this class.
Let q be the largest prime divisor of |G| and Q ∈ Sylq(G). By corollary 3.6, G is
a Sylow-tower group and Q E G. Applying Lemmas 2.4 and 2.5, it is easy to see
that G/Q satisfies the conditions of the corollary, and G/Q is supersolvable by
minimality of G. It follows from Lemma 2.9 that G is supersolvable.

Theorem 3.8. Let E E G, p ∈ π(E), and let P be a Sylow p-subgroup of E. If there
exists H ∈ H(P) such that H is weakly S-supplementedly embedded in G and NG(H)
is p-nilpotent, then E ≤ ZpNΦ(G).

Proof. Suppose that there exists G, E, P satisfying the conditions of the Theorem
such that E � ZpNΦ(G). Fixing P the class of all couples (G, E) satisfying the con-

ditions of the Theorem such that E � ZpNΦ(G) is not empty, and we can choose
a (G, E) in such a way that |G| + |E| is minimal. In several steps, we show that
this leads to a contradiction.
Step 1. Op′(E) = 1.

Now, we consider the couple (G, E) = (G/Op′(E), E/Op′ (E)). Then

P = POp′(E)/Op′ (E) is a Sylow p-subgroup of E. Certainly, NG(P) = NG(P)

and (P)′ ≤ P′ ≤ H ≤ Φ(P) ≤ Φ(P). It follows that (P)′ ≤ H ≤ Φ(P). Hence
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H ∈ H(P). By Lemma 2.4, it is easy to see that (G/Op′(E), E/Op′ (E)) satisfies
the conditions of the Theorem, and E/Op′(E) ≤ ZpNΦ(G/Op′(E)) by the choice
of (G, E). Further, E ≤ ZpNΦ(G), which is a contradiction.
Step 2. E = G.
If E < G, then we consider the couple (E, E). By Lemma 2.4, (E, E) satisfies the
conditions of the Theorem, and E ≤ ZpNΦ(E) by the choice of (G, E). Further,
E is p-nilpotent and E = P E G by Step 1. Then NG(P) = G is p-nilpotent and
E ≤ ZpNΦ(G), which is a contradiction.
Step 3. AG, the largest normal subgroup of G contained in A, is not trivial.
By Lemma 2.5, H is an S-permutably embedded subgroup of G. If AG = 1, then
H is S-permutable in G by Lemma 2.3 and so Op(G) ≤ NG(H). Since H is normal
in P, G = POp(G) ≤ NG(H) is p-nilpotent, which is a contradiction.
Step 4. Final contradiction.
Since H is a Sylow p-subgroup of HAG, it follows from [4, Lemma 3.6.10] that
NG/AG

(HAG/AG) = NG(H)AG/AG and HAG/AG ∈ H(PAG/AG). It is easy to
see that G/AG satisfies the hypothesis of the Theorem and G/AG is p-nilpotent
by Step 3 and the minimality of G.
P ∩ AG = H ∩ AG ≤ Φ(P), AG is p-nilpotent by Lemma 2.6. By Step 1,
AG ≤ H ≤ Φ(P) and so AG ≤ Φ(G), which implies that G is p-nilpotent, which
is a contradiction.

Corollary 3.9. Let G be a group and let P be a Sylow p-subgroup of G, where p is a prime
divisor of |G|. Then G is p-nilpotent if and only if there exists a subgroup H ∈ H(P)
such that H is weakly S-supplementedly embedded in G and NG(H) is p-nilpotent.

Proof. The necessity follows easily from Frobenius Theorem and corollary 3.2.
Conversely, we assume E = G and it follows from Theorem 3.8.

Corollary 3.10 follows as an immediate application of corollary 3.9.

Corollary 3.10. A group G is nilpotent if and only if for every p ∈ π(G), there
exists a Sylow p-subgroup P of G and a subgroup H ∈ H(P) such that H is weakly
S-supplementedly embedded in G and NG(H) is p-nilpotent.

4 Applications

Let P be a Sylow p-subgroup of G. It is easy to see that p-nilpotency of NG(P)
implies that P′ ∈ Sylp((NG(P))

′) and Φ(P) ∈ Sylp(Φ(NG(P))). Therefore Theo-
rem 3.3 has the following corollaries.

Corollary 4.1. Assume that (|G|, p − 1) = 1 and let P be a Sylow p-subgroup of G.
The following assertions are equivalent.

(1) G is p-nilpotent;

(2) P′ is weakly S-supplementedly embedded in G and every maximal subgroup of P is
weakly S-supplementedly embedded in NG(P);
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(3) P′ is weakly S-supplementedly embedded in G and every cyclic subgroup of P of
order p (and of order 4 if p = 2 and P is non-abelian) is weakly S-supplementedly
embedded in NG(P);

(4) Φ(P) is weakly S-supplementedly embedded in G and every maximal subgroup of
P is weakly S-supplementedly embedded in NG(P);

(5) Φ(P) is weakly S-supplementedly embedded in G and every cyclic subgroup of P of
order p (and of order 4 if p = 2 and P is non-abelian) is weakly S-supplementedly
embedded in NG(P);

(6) (NG(P))
′ is weakly S-supplementedly embedded in G and every maximal subgroup

of P is weakly S-supplementedly embedded in NG(P);

(7) (NG(P))
′ is weakly S-supplementedly embedded in G and every cyclic subgroup of

P of order p (and of order 4 if p = 2 and P is non-abelian) is weakly
S-supplementedly embedded in NG(P);

(8) Φ(NG(P)) is weakly S-supplementedly embedded in G and every maximal sub-
group of P is weakly S-supplementedly embedded in NG(P);

(9) Φ(NG(P)) is weakly S-supplementedly embedded in G and every cyclic subgroup
of P of order p (and of order 4 if p = 2 and P is non-abelian) is weakly
S-supplementedly embedded in NG(P).

Finally, [11, Theorem 3.1] follows as a consequence of Theorem 3.3.

Corollary 4.2. [11, Theorem 3.1] Assume that (|G|, p − 1) = 1 and let P be a Sylow
p-subgroup of G. If there exists a Sylow p-subgroup P of G such that every maximal
subgroup of P is weakly S-supplementedly embedded in NG(P) and if P′ is S-permutable
in G, then G is p-nilpotent.
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