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Abstract

The following nonlinear quadratic integral equation of Hammerstein type
is studied.

x(t) = p(t) + x(t)
∫ q(t)

0
H(t, τ, x(τ))dτ.

The methodology relies on the measure of noncompactness in the space of
functions with tempered increments, namely the space of α-Hölder continu-
ous functions. The results follow from the Darbo fixed point theorem. Some
examples are included to show the applicability of the main results.

1 Introduction

Several applications of nonlinear integral equations in various fields of science
and technology have attracted the attention of mathematicians to study various
nonlinear integral equations, see for example [11] and the references therein. The
analysis techniques, specially the fixed point techniques, which guarantee the
existence of solutions of the nonlinear integral equation, in particular when the
numerical methods failed, are more valuable (for example, see [9, 14, 15] and the
references therein).

The concept of measure of noncompactness was introduced by Kuratowski
in [16]. It is a powerful tool in fixed point theory, leading to a series of fixed
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point theorems, including the Schauder Fixed Point Theorem, which has been
generalized to the Darbo Fixed Point Theorem.

For every bounded subset B of a given Banach space X, Kuratowski intro-
duced α(B) as the infimum of the set of positive numbers ε such that B is covered
by a finite number of sets of diameter less than ε. The function α, defined on the
family of all bounded subsets of X, satisfies a series of properties, that served
as the defining axioms of a measure of noncompactness (MNC). The axiomatic
definition of MNC’s is originally due to Sadovskii [18].

There are several known types of MNC’s. Banaś [4] introduced µ0 as a MNC
on BC(R+). We need some notation in order to give a precise definition of µ0.
Let B be a bounded subset of BC(R+). For x ∈ B, T > 0 and ε > 0, set

ωT(x, ε) := sup{|x(t)− x(s)|; t, s ∈ [0, T], |t − s| ≤ ε};

ωT(B, ε) := sup{ωT(x, ε); x ∈ B};

ωT
0 (B) := lim

ε→0
ωT(B, ε);

ω0(B) := lim
T→∞

ωT
0 (B);

µ0(B) := ω0(B) + lim sup
t→∞

diam B(t)

with diam B(t) = sup{|x(t) − y(t)| ; x, y ∈ B}. One can readily check that the
kernel of this MNC consists of nonempty and bounded subsets B of BC(R+),
such that the functions from B are locally equicontinuous on R

+.
Several authors have studied the existence of solutions of integral equations

using the Darbo Fixed Point Theorem. In [10] the kernel of the integral term
has separable form (k(t, τ)g(τ, x(τ))); in [5, 13] the kernel of the integral term

has separable and singular form (
x(τ)

(t − τ)1−α
); in [8] the kernel of the integral

term is bounded by a separable type function (H(t, τ, x(τ)) ≤ a(t)b(τ) where

lim
t→∞

a(t)
∫ t

0
b(τ)dτ = 0.

In this article, we examine an application of the measure of noncompactness
as developed first by Banaś and Nalepa [6], in order to obtain the existence results
of the following nonlinear quadratic integral equation of Hammerstein type, in
the space Hα([0, T]) where α ∈ (0, 1]:

x(t) = p(t) + x(t)
∫ q(t)

0
H(t, τ, x(τ))dτ, (1)

where t ∈ [0, T], p and q are given functions which are γ-Hölder continuous
(for some specified γ ∈ (0, 1]) and H : [0, T] × [0, T] × R → R satisfies certain
conditions, which will be introduced later. The main feature that distinguishes
the subsequent results is the application of a measure of noncompactness on the
Hölder spaces and the fact that the kernel of the integral term in (1) is not sepa-
rable with respect to the components t and x, i.e., it is in general not of the form
k(t, τ)g(τ, x(τ)). Moreover, we present some explicit examples.
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2 Preliminary Results

For a Banach space X, let MX be the set of all nonempty and bounded subsets of
X and let NX be subset of MX consisting of relatively compact sets.

Definition 2.1. [4] A function µ : MX → [0,+∞] is called a measure of noncom-
pactness (MNC) in the space X if the following conditions are satisfied;

(i) The family ker µ := {B ∈ MX ; µ(B) = 0} is nonempty and ker µ ⊆ NX.

(ii) B1 ⊆ B2 =⇒ µ(B1) ≤ µ(B2).

(iii) µ(B) = µ(B).

(iv) µ(convB) = µ(B).

(v) µ(λB1 + (1 − λ)B2) ≤ λµ(B1) + (1 − λ)µ(B2), for every λ ∈ [0, 1].

(vi) If (Bn)n is a sequence of closed sets in MX such that Bn+1 ⊆ Bn and

lim
n→∞

µ(Bn) = 0 then the intersection
∞⋂

n=1

Bn is nonempty.

For T > 0 and α ∈ (0, 1), the space Hα([0, T]) of α-Hölder continuous func-
tions is the family of all continuous functions x = x(t) on [0, T] such that

sup{Vα(x; t, s) ; t, s ∈ [0, T], t 6= s} < ∞;

where Vα(x; t, s) :=
|x(t)− x(s)|

|t − s|α . It is known that Hα([0, T]) is a Banach space

under the norm ‖x‖α = |x(0)| + sup{Vα(x; t, s) ; t, s ∈ [0, T], t 6= s}, for every
x ∈ Hα([0, T]). It is obvious that ‖x‖∞ ≤ ‖x‖α, where ‖x‖∞ = sup{|x(t)| ;
t ∈ [0, T]}. For further detail on Hα([0, T]), we refer to [7].
For a bounded subset B of Hα([0, T]), a given ε > 0 and x ∈ B we consider the
following quantities:

βα(x, ε) := sup{Vα(x; t, s); t, s ∈ [0, T], t 6= s, |t − s| ≤ ε};

βα(B, ε) := sup{βα(x, ε); x ∈ M};

β0
α(B) := lim

ε→0
βα(B, ε).

Theorem 2.2. [6] The function β0
α : MHα([0,T]) → [0,+∞) is a measure of noncompact-

ness on Hα([0, T]).

We remark that the construction of a MNC on a Banach space X relies on
the characterization of relative compactness of bounded subsets of X. For exam-
ple, the Arzela-Ascoli Theorem is crucial in the construction of the MNC µ0, and
Theorem 2.3 plays a similar role for the construction of β0

α.

Theorem 2.3. [6]. Assume that B is a bounded subset of the space Hα([0, T]). This
means that for every ε > 0, there exists δ > 0 such that, for every x ∈ B and t, s ∈ [0, T],
we have that

0 < |t − s| ≤ δ =⇒ |x(t)− x(s)|
|t − s|α ≤ ε,
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or, equivalently, the functions belonging to B are equicontinuous with respect to the
modulus of continuity w(r) = rα. Then the set B is relatively compact in the space
Hα([0, T]).

Darbo’s Fixed Point Theorem 2.4 is a generalization of the Schauder Fixed
Point Theorem. Along with its generalizations, it plays an important role in the
development of the theory of measures of noncompactness and their applications
in operator theory, see for example [1, 2, 3].

Theorem 2.4. [12]. Let B be a nonempty, bounded, closed and convex subset of a Banach
space X and let F : B −→ B be a continuous map. Assume that there exists a constant
κ ∈ [0, 1) such that µ(FY) ≤ κµ(Y) for any nonempty subset of X, where µ is a MNC
on X. Then T has a fixed point in the set X and all of its fixed points belong to Ker µ.

3 Main results

From now, let X := Hα([0, T]). For every x ∈ X, we denote by Fx the function
defined on the interval [0, T], in the following way,

(Fx)(t) := p(t) + x(t)
∫ q(t)

0
H(t, τ, x(τ))dτ.

Definition 3.1. We call a function ψ of Γ type if ψ : [0,+∞) → [0,+∞) is a
nondecreasing, continuous function at zero and lim

t→0+
ψ(t) = 0.

Let us to consider the following assumptions, which are needed in the sequel.

(I) α ∈ (0, 1) and p, q ∈ Hγ([0, T]) with γ ∈ (α, 1].

Moreover H : [0, T]× [0, T]×R −→ R is a function satisfying conditions (II)-(IV).

(II) |H(t, τ, x)− H(t, τ, y)| ≤ ρ(t)ψ(|x − y|) where ψ is a function of Γ type and
ρ ∈ L∞([0, T]).

(III) There exists K1 ∈ L∞([0, T]) such that for every t, τ ∈ [0, T] we have
|H(t, τ, 0)| ≤ K1(t).

(IV) |H(t, τ, x)− H(s, τ, x)| ≤ |t − s|m ϕ(|x|), where ϕ : [0,+∞) → [0,+∞) is a
nondecreasing continuous function and m ∈ (α, 1].

(V) There exists r0 > 0 such that ‖q‖γ

(
(1 + (2T)γ−α)

(
ρ+ψ(r0) + k+1

)
+

(2T)m−α ϕ(r0)) < 1; in which ρ+ = ‖ρ‖∞ and k+1 = ‖k1‖∞.

Proposition 3.2. Assume that the conditions (I) − (IV) are satisfied, then F is a self
mapping function on X. Moreover, by supposing (V), F maps Br0 := {x ∈ X, ‖x‖α < r0}
into Br0 .
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Proof. Let x ∈ X, we will show that sup{Vα(Fx; t, s); t, s ∈ [0, T], t 6= s} < ∞.
Indeed,

Vα(Fx; t, s) = Vα(p; t, s) +
1

|t − s|α [x(t)
∫ q(t)

0
H(t, τ, x(τ)dτ

−x(s)
∫ q(s)

0
H(s, τ, x(τ)dτ]

= Vα(p; t, s) + Vα(x; t, s)|
∫ q(t)

0
H(t, τ, x(τ))dτ|

+
|x(s)|
|t − s|α

[∣∣∣∣
∫ q(t)

q(s)
H(s, τ, x(τ))

∣∣∣∣

+

∣∣∣∣
∫ q(s)

0
(H(t, τ, x(τ)) − H(s, τ, x(τ)))dτ

∣∣∣∣
]

.

Applying (II) and (III), we find that

|
∫ q(t)

0
H(t, τ, x(τ))dτ| ≤ |

∫ q(t)

0
H(t, τ, x(τ))− H((t, τ, 0)dτ (2)

+
∫ q(t)

0
H(t, τ, 0)dτ|

≤ q(t)ρ(t)ψ(‖x‖α) + q(t)k1(t). (3)

Moreover,

|
∫ q(t)

q(s)
H(s, τ, x(τ))dτ| ≤ |

∫ q(t)

q(s)
(H(s, τ, x(τ)) − H(0, τ, x(τ)))dτ| (4)

+|
∫ q(t)

q(s)
H(0, τ, x(τ))dτ|

≤ |q(t)− q(s)|(ρ(s)ψ(‖x‖α) + k1(s)). (5)

Furthermore, in view of (IV) we deduce that

∫ q(s)

0
|H(t, τ, x(τ)) − H(s, τ, x(τ))dτ ≤ q(s)|t − s|m|ϕ(‖x‖α). (6)

Hence

Vα(Fx; t, s) ≤ (2T)γ−α‖p‖γ + ‖x‖αq(t)(ρ(t)ψ(‖x‖α) + k1(t))

+ ‖x‖α
|q(t) − q(s)

|t − s|γ |t − s|γ−α(ρ(s)ψ(‖x‖α) + k1(s))

+ ‖x‖αq(s)|t − s|m−αϕ(‖x‖α)

≤ (2T)γ−α‖p‖γ + ‖x‖αq+(ρ+ψ(‖x‖α) + k+1 )

+ ‖x‖α‖q‖γ(2T)γ−α(ρ+ψ(‖x‖α) + k+1 )

+ ‖x‖αq+(2T)m−α ϕ(‖x‖α).
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Since ψ and ϕ are continuous functions, for x ∈ X which sup{Vα(x; t, s);
t, s ∈ [0, T], t 6= s} < ∞ and so ‖x‖α < ∞, we have sup{Vα(Fx; t, s);
t, s ∈ [0, T], t 6= s} < ∞ that is Fx ∈ X.

Furthermore,

‖Fx‖α ≤ (2T)γ−α‖p‖γ + ‖x‖α‖q‖γ

((
1 + (2T)γ−α

) (
ρ+ψ(‖x‖α) + k+1

)

+ (2T)m−α ϕ(‖x‖α)
)

.

Thus by considering the assumption (V), for ‖x‖ = r0 we obtain ‖Fx‖α ≤ r0

which shows that F maps Br0 in Br0 .

Proposition 3.3. Assume that the conditions (I)-(IV) are satisfied. For every x, y ∈ X
and τ ∈ [0, T] denote the function Lx,y;τ : [0, T] −→ R by Lx,y;τ(t) := H(t, τ, x) −
H(t, τ, y). Suppose that there exists functions η of Γ type and a nonnegative function

w : [0, T]× [0, T]× [0, T] → [0, ∞),

for which the estimate

(VI) |Lx,y;τ(t)− Lx,y;τ(s)| ≤ w(t, s, τ)η(|x − y|),

is satisfied and C0 := sup{
∫ ‖q‖α

0
|w(t,s,τ)|
|t−s|α dτ; t 6= s, t, s ∈ [0, T]} < ∞. Then, for every

r > 0, F is a continuous map on Br.

Proof. For an arbitrary r > 0, let x ∈ Br and fix an arbitrary ε > 0. Take y ∈ Br

such that ‖x − y‖α ≤ ε; we will show that, ‖Fx − Fy‖α ≤ ζ(ε), which ζ(ε) −→ 0
as ε → 0. Indeed,

Vα(Fx − Fy; t, s) =
|(Fx − Fy)(t) − (Fx − Fy)(s)|

|t − s|α

=
1

|t − s|α |x(t)
∫ q(t)

0
H(t, τ, x(τ))dτ − y(t)

∫ q(t)

0
H(t, τ, y(τ))dτ

−x(s)
∫ q(s)

0
H(s, τ, x(τ))dτ + y(s)

∫ q(s)

0
H(s, τ, y(τ))dτ)|

=
1

|t − s|α |[(x(t) − y(t)]
∫ q(t)

0
H(t, τ, x(τ))dτ

+y(t)
∫ q(t)

0
(H(t, τ, x(τ)− H(t, τ, y(τ))dτ

−[x(s)− y(s)]
∫ q(s)

0
H(s, τ, x(τ))dτ

+y(s)
∫ q(s)

0
(H(s, τ, x(τ)− H(s, τ, y(τ))dτ|

≤ Vα(x − y; t, s)|
∫ q(t)

0
H(t, τ, x(τ)dτ|

+
|x(s)− y(s)|

|t − s|α |
∫ q(t)

0
H(t, τ, x(τ)dτ −

∫ q(s)

0
H(s, τ, x(τ)dτ|
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+
|y(t)− y(s)|

|t − s|α |
∫ q(t)

0
(H(t, τ, x(τ)− H(t, τ, y(τ))dτ|

+
|y(s)|
|t − s|α |

∫ q(t)

q(s)
(H(t, τ, x(τ)− H(t, τ, y(τ))dτ)|

+
|y(s)|
|t − s|α |

∫ q(s)

0
(Lx,y;τ(t)− Lx,y;τ(s))dτ|.

Applying the estimates (3), (5), (6) and (VI) to this expression we obtain that

Vα(Fx − Fy; t, s) ≤ ‖x − y‖αq+(ρ+ψ(‖x‖α) + k+1 )

+ ‖x − y‖α

(
(2T)m−αq+ϕ(‖x‖α) + ‖q‖γ(2T)γ−α(ρ+ψ(‖x‖α) + k+1 )

)

+ ‖y‖αq+ρ+ψ(‖x − y‖α) + ‖y‖α‖q‖γ(2T)γ−αρ+ψ(‖x − y‖α)

+ C0q+‖y‖αη(‖x − y‖α).

Moreover, by the estimate (3) we have,

|(Fx − Fy)(0)| = |x(0)− y(0)||
∫ q(0)

0
H(0, τ, x(τ))dτ|

≤ ‖x − y‖α(q(0)ρ(0)ψ(‖x‖α) + q(0)k1(0)) := ‖x − y‖αq(0)(C1ψ(‖x‖α) + C2).

Since ‖x − y‖α ≤ ε and ‖x‖α = ‖y‖α = r we have that ‖Fx − Fy‖α ≤ ζ(ε) with

ζ(ε) = ε‖q‖γ[C1ψ(r) + C2 + ρ+ψ(r) + k+1 + (2T)m−α ϕ(r) + (2T)γ−αρ+ψ(r)

+ (2T)γ−αk+1 ] + rρ+ψ(ε)‖q‖γ(1 + (2T)γ−α) + C0q+rη(ǫ).

It is obvious that lim
ε→0

ζ(ε) = 0 and this completes the proof.

Proposition 3.4. If conditions (I)-(V) are satisfied, then there exists κ < 1 such that
for every nonempty subset Y of Br0 , β0

α(FY) ≤ κβ0
α(Y). This means that F satisfies the

contraction principle of Theorem 2.4, with β0
α as a MNC on Br0

Proof. From the estimates (3), (5) and (6), for every x ∈ Br0 , we insert

Vα(Fx; t, s) ≤ Vγ(p; t, s)|t − s|γ−α + Vα(x; t, s)
(
q+ρ+ψ(r0) + q+k+1

)

+ r0

(
Vγ(q; t, s)|t − s|γ−α(ρ+ψ(r0) + k+1 ) + q+|t − s|m−αϕ(r0)

)
.

Taking the supremum over all t, s ∈ [0, T] with |t − s| ≤ ε we deduce

βα(Fx, ε) ≤ βγ(p, ε)εγ−α + βα(x, ε)
(
q+ρ+ψ(r0) + q+k+1

)

+ r0

(
βγ(q, ε)εγ−α(ρ+ψ(r0) + k+1 ) + q+εm−α ϕ(r0)

)
.

Now by taking supremum over all x, which belongs to a bounded subset Y of
Br0 and tending ε to zero we obtain,

β0
α(Fy) ≤ ‖q‖γ(ρ

+ψ(r0) + k+1 )β
0
α(Y).

By regarding the condition (V), we know that ‖q‖γ(ρ+ψ(r0) + k+1 ) < 1, so by
letting κ := ‖q‖γ(ρ+ψ(r0) + k+1 ) the proof is completed.
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Theorem 3.5. Assume that the conditions (I) − (V) and the inequality (VI) of the
Proposition 3.3 are satisfied. Then the nonlinear quadratic integral equation

x(t) = p(t) + x(t)
∫ q(t)

0
H(t, τ, x(τ))dτ (7)

has at least one solution in Hα([0, T]).

Proof. This is a straightforward application of Theorem 2.4, in view of Proposi-
tions 3.2, 3.3 and 3.4.

In Theorem 3.6, we consider (7) in the case where its integral term has a
separable kernel of the form k(t, τ)g(τ, x(τ)). Then we can remove the restric-
tive condition (VI). Indeed, (VI) comes from (2) and (4) in the following and the
assumptions (2) and (4) of Theorem 3.6 are in agreement with the assumptions
(II) and (IV) of Theorem 3.5.

Theorem 3.6. Consider the nonlinear quadratic integral equation

x(t) = p(t) + x(t)
∫ q(t)

0
k(t, τ)g(τ, x(τ))dτ (8)

under the following assumptions,

(1) p, q ∈ Hγ([0, T]); γ ∈ (α, 1].

(2) k : [0, T]× [0, T] −→ R is a continuous function and there exist constants k0 > 0
and n ≥ α such that for every t, s, τ ∈ [0, T]; |k(t, τ) − k(s, τ)| ≤ k0|t − s|n.

(3) g : [0, T]× R −→ R is a continuous function and there exists a function G of Γ

type such that for every t ∈ [0, T] and x, y ∈ R; |g(t, x)− g(t, y)| ≤ G(|x − y|).

(4) There exists r0 > 0 such that

‖q‖γ

(
k
(
1 + (2T)γ−α

)
+ k0(2T)n−α

)
(G(r0) + g) < 1;

in which k := supt,τ∈[0,T] k(t, τ) and g := supτ∈[0,T] g(τ, 0).

Then (8) has at least one solution in Hα([0, T]).

Proof. Let ρ(t) := supτ∈[0,T] |k(t, τ)|, ψ(t) = G(t), k1(t) := ρ(t)g and

ψ(t) = k0(G(t) + g). We can check that (I I) − (IV) are satisfied. Condition
(V) follows from assumption (4). Moreover, the inequality (VI) is satisfied by
letting w(t, s, τ) := |t − s|n and η(t) := G(t). Then the result is an application of
Theorem 3.5.

Remark 3.7. Theorem 5.1 in [6] is a particular case of Theorem 3.6: take q(t) = 1
and n = γ ∈ (α, 1].
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Example 3.8. Consider the following nonlinear integral equation

x(t) =
t√

1 + t2
+

1

50
x(t)

∫ sin t

0

(
x(τ)et+τ + e−t cos x(τ)

)
dτ; (9)

where t ∈ [0, 1].
It is easy to see that this equation is a special case of (7): take p(t) := t√

1+t2
,

q(t) := sin t and H(t, τ, x) := 1
50

(
x(τ)et+τ + e−t cos x(τ)

)
. Let us verify assump-

tions (I)-(V) and the inequality (VI). Since |p′(t)| = | 1
(1+t2)

√
1+t2

| ≤ 1
2 , so p is a

Lipschitz function and thus it belongs to H1([0, 1]). Similarly q ∈ H1([0, 1]).
Denote f (t, x) := e−t cos x then | fx(t, x)| = |t sin xe−t cos x| ≤ e, so f is Lipschitz

with respect to x and thus |e−t cos x(τ) − e−t cos y(τ)| ≤ e|x(τ)− y(τ)|. Hence

|H(t, τ, x(τ))− H(t, τ, y(τ))| ≤ 1

50

(
et+τ|x(τ)− x(τ)| + |e−t cos x(τ) − e−t cos x(τ)|

)

≤ 1

50

(
e2|x(τ)− x(τ)|+ e|x(τ)− x(τ)|

)
=

1

50
(e2 + e)|x(τ) − x(τ)|.

et and e−t cos x are Lipschitz functions with respect to t and | ft(t, x)| ≤ e, hence

|H(t, τ, x(τ))− H(s, τ, x(τ))| ≤ 1

50
(e2|x(τ)|+ e)|t − s|.

On the other hand, |H(t, τ, 0)| = | 1

50
e−t| ≤ 1

50
. Thus, for this example in the

correspondence with Theorem 3.5, let T = 1, ρ+ =
1

50
(e2 + e), k+1 =

1

50
, ‖q‖γ ≤ 1,

ψ(r) = r and ϕ(r) = e2r + e. Therefore, the inequality assumption (V) takes the
form

1

50

(
(1 + 21−α)((e2 + e)r + 1) + 21−α(e2r + e)

)
< 1.

We have a solution r0 for every α ∈ (0, 1). For example, if α = 1/2, then every
r ∈ (0, 1.25) is admissible.
We now investigate assumption (VI) in Proposition 3.3. To this end, we apply the
mean value theorem to f : for every x, y ∈ C([0, 1]) and ν, τ ∈ [0, 1] there exists
ς(ν) = ςx,y,τ(ν) ∈ (x(τ), y(τ)) (or (y(τ), x(τ))) such that

f (ν, x(τ)) − f (ν, y(τ))

x(τ)− y(τ)
= fx(ν, ς(ν)), (10)

or, explicitly,

e−t cos x(τ) − e−t cos y(τ) = t sin(ς(t))e−t cos(ς(t))(x(τ)− y(τ)).

Hence

|H(t, τ, x(τ))) − H(t, τ, y(τ))− H(s, τ, x(τ)) + H(s, τ, y(τ))|

=
1

50

(∣∣∣t sin ς(t)e−t cos ς(t) − s sin ς(s)e−s cos ς(s)
∣∣∣+ |et+τ − es+τ|

)
|x(τ)− y(τ)|
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=
1

50

(∣∣∣∣
∫ t

s

dh(ν)

dν
dν

∣∣∣∣+ |et+τ − es+τ|
)
|x(τ)− y(τ)|, (11)

with h(ν) := ν sin ς(ν)e−ν cos ς(ν). Indeed,

h′(ν) =
(

sin ς(ν)− ν

2
sin(2ς(ν)) + ς′(ν)(ν cos ς(ν) + ν2 sin2 ς(ν))

)
e−ν cos ς(ν)

(12)
It follows from (10) that

fν(ν, x(τ)) − fν(ν, y(τ))

x(τ)− y(τ)
= fxν(ν, ς(ν)) + ς′(ν) fxx(ν, ς(ν)). (13)

Now f (t, x) = e−t cos x entails that

fν(ν, x(τ)) = − cos x(τ)e−ν cos x(τ)

fν(ν, y(τ)) = − cos y(τ)e−ν cos y(τ)

fxν(ν, ς(ν)) =
(

sin ς(ν)− ν

2
sin(2ς(ν))

)
e−ν cos ς(ν)

fxx(ν, ς(ν)) =
(

t cos ς(ν) + t2 sin2 ς(ν)
)

e−ν cos ς(ν).

Using (13), we obtain that

ς′(ν)
(

ν cos ς(ν) + ν2 sin2 ς(ν)
)

=

([
− cos x(τ)e−ν cos x(τ) + cos y(τ)e−ν cos y(τ)

x(τ)− y(τ)

]
eν cos ς(ν)−

sin ς(ν) +
ν

2
sin(2ς(ν))

)
.

Now

|(cos xe−ν cos x)x| = |(− sin x +
1

2
sin 2x)e−ν cos x| ≤ 3

2
e,

hence

| − cos x(τ)e−ν cos x(τ) + cos y(τ)e−ν cos y(τ)| ≤ 3

2
e|x(τ)− y(τ)|

and therefore

|ς′(ν)
(

ν cos ς(ν) + ν2 sin2 ς(ν)
)
| ≤ 3

2
(e2 + 1). (14)

It follows from (14) and (12) that

|h′(ν)| ≤ (3 +
3

2
e2)e. (15)

Substituting (15) in (11) we find

Lx,y;τ(t)− Lx,y;τ(s) ≤
1

50

[
(3 +

3

2
e2)e + e2

]
|t − s||x(τ)− y(τ)|;

finally C0 < ∞ since α < 1.
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Remark 3.9. Consider the integral equation (9) in the situation where t ∈ [0, T].
Then the inequality (V) takes the form,

1

50

(
(1 + (2T)1−α)((e2T + TeT)r + 1) + (2T)1−α(e2Tr + eT)

)
< 1.

It has a positive solution r0 if (2T)1−α(1 + eT) < 49. Thus, if T ∈ (1
2 , log 48]

we can only choose α ∈ (1 −
log 49

1+eT

log 2T
, 1) and if T > log 48, there is no admissible

α ∈ (0, 1) and finally, if T ≤ 1
2 every α ∈ (0, 1) is admissible, i.e.,

(2T)1−α(1 + eT) < 49.

Example 3.10. Consider the nonlinear integral equation

x(t) =
√

t + 1 +
1

10
x(t)

∫ (t2+1)
1
3

0
(τ + t3)

1
7 arctan x(τ)dτ; (16)

where t ∈ [0, 1]. Obviously (16) is a special case of (8): take p(t) =
√

t + 1,

q(t) = (t2 + 1)
1
3 , k(t, τ) = 1

10(τ + t3)
1
7 and g(τ, x(τ)) = arctan(x(τ)). Elementary

computations show that |t
1
p − s

1
p | ≤ |t − s|

1
p if p > 1 and t ≥ s > 0. Hence,√

t + 1 −
√

s + 1 ≤ |t − s| 1
2 and also |(t2 + 1)

3
2 − |(s2 + 1)

3
2 | ≤ |t2 − s2| ≤ 2

1
3 |t −

s| 1
3 , for t, s ∈ [0, 1]. Hence p ∈ H

1
2 ([0, 1]) and q ∈ H

1
3 ([0, 1]). Since H

1
2 ([0, 1]) ⊂

H
1
3 ([0, 1]) let γ = 1

3 . On the other hand,

|k(t, τ) − k(s, τ)| = 1

10
|(τ + t3)

1
7 − (τ + s3)

1
7 | ≤ 1

10
|t3 − s3| 1

7 ≤ 3
1
7

10
|t − s| 1

7 .

Thus in line with the assumption (2) in Theorem 3.6 we have k0 = 1
103

1
7 and n = 1

7 .

Further, since | arctan x − arctan y| ≤ |x − y|, set G(r) = r and so ĝ = 0, k = 1
102

1
7 ,

‖g‖ 1
3
= 2

1
3 . With these choices, the inequality of the assumption (4) in Theorem

3.6 takes the form,

1

10
2

1
3

(
(1 + 2

1
3−α)2

1
7 + 2

1
7−α3

1
7

)
r0 < 1. (17)

For every value of α, for example α = 1/21, we can calculate which r0 satis-
fies (17). Hence by applying the Theorem 3.6, Eq.(16) has at least a solution on

H
1

21 (0, 1).

Definition 3.11. Let Ω be a nonempty subset of Hα([0, 1]) and let F be an operator
defined on Ω with values in Hα([0, 1]). Consider the equation

x(t) = (Fx)(t), (18)

The function x is called an asymptotically stable solution of (18) if for every ε > 0
there exists T0 = T0(ε) > 0 such that for every t ≥ T0 and for every other solution
y of (18) we have that |x(t)− y(t)| < ε.
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Corollary 3.12. Observe that the solutions of the integral equations considered in
Theorems 3.5 and 3.6 are the fixed points of their corresponding operator F and belong to
kerβ0

α. Moreover in view of the definition of the MNC β0
α, we conclude that all solutions

of the equations which are considered in this article are asymptotically stable in the sense
of Definition 3.11.
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[2] A. Aghajani, J. Banaś, and N. Sabzali, Some generalizations of Darbo fixed
point theorem and applications, Bull. Belgian Math. Soc. - Simon Stevin 20
(2013), 345–358.
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