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Abstract

In this paper, we prove that if the structure Jacobi operator of a 3-dimen-
sional real hypersurface in a nonflat complex plane is of Killing type, then the
hypersurface is either a tube of radius π

4 over a holomorphic curve in CP2 or
a Hopf hypersurface with vanishing Hopf principal curvature in CH2. This
extends the corresponding results in [6].

1 Introduction

A complex n-dimensional Kählerian manifold of constant holomorphic sectional
curvature c is said to be a complex space form and is denoted by Mn(c). A complete
and simply connected complex space form is complex analytically isometric to a
complex projective space CPn(c), a complex Euclidean space C

n or a complex
hyperbolic space CHn(c) according respectively to c > 0, c = 0 or c < 0.

Let M be a real hypersurface in a complex space form Mn(c), c 6= 0, whose
Kähler metric and complex structure are denoted by g and J respectively. Then,
we can define on M an almost contact metric structure (φ, ξ, η, g) induced from g
and J (see Section 2), where ξ is called a structure vector field. We denote by D
the distribution determined by tangent vectors orthogonal to ξ at each point of
M. Let A be the shape operator of M in Mn(c). If the structure vector field ξ is
principal, that is, Aξ = αξ, where α = η(Aξ), then M is called a Hopf hypersurface
and α is called Hopf principal curvature. According to [10, 12, 15], we know that α
is locally constant for any Hopf hypersurface.
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Applying some results obtained by Cecil and Ryan [3] and Takagi [27], Kimura
in [9] obtained the following classification theorem.

Theorem 1.1 ([9]). Let M be a connected Hopf hypersurface of CPn(c), n ≥ 2. Then
M has constant principal curvatures if and only if M is locally congruent to one of the
following:

(A1) a geodesic hypersphere of radius r, where 0 < r < π
2 ;

(A2) a tube of radius r over a totally geodesic CPk(c) (1 ≤ k ≤ n − 2), where
0 < r < π

2 ;

(B) a tube of radius r over a complex quadric CQn−1, where 0 < r < π
4 ;

(C) a tube of radius r over CP1(c)× CP
n−1

2 (c), where 0 < r < π
4 and n ≥ 5 is odd;

(D) a tube of radius r over a complex Grassman CG2.5, where 0 < r < π
4 and n = 9;

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where
0 < r < π

4 and n = 15.

On the other hand, Hopf real hypersurfaces in complex hyperbolic spaces
were classified by Berndt [1] and Niebergall and Ryan [15] as the following.

Theorem 1.2 ([1]). Let M be a connected Hopf hypersurface of CHn(c), n ≥ 2. Then
M has constant principal curvatures if and only if M is locally congruent to one of the
following:

(A0) a self-tube, that is, a horosphere;

(A1) a geodesic hypersphere of radius r (0 < r < ∞) or a tube of radius r over a complex
hyperbolic hyperplane CHn−1(c), where 0 < r < ∞;

(A2) a tube of radius r over a totally geodesic CHk(c) (1 ≤ k ≤ n − 2), where
0 < r < ∞;

(B) a tube of radius r over a totally real hyperbolic space RHn( c
4), where 0 < r < ∞.

For simplicity, we say that a real hypersurface M in a nonflat complex space
form is of type A if it is of type A1 or A2 in CPn(c) or type A0, A1 or A2 in CHn(c).
A well-known characterization of real hypersurfaces of type A can be expressed
as the following.

Theorem 1.3 ([14, 16]). Let M be a real hypersurface in a complex space form Mn(c),
c 6= 0, n ≥ 2. Then M is locally congruent to one of the model spaces of type A if and
only if Aφ = φA.

Let R be the curvature tensor of a real hypersurface M in Mn(c). Then we call
the Jacobi operator Rξ = R(· , ξ)ξ with respect to the structure vector field ξ a
structure Jacobi operator.

The problem of characterizations of real hypersurfaces under various differ-
ent geometric conditions has been an important field of research for a long time.
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We now recall some results regarding the structure Jacobi operator under some
additional restrictions. Ortega, Pérez and Santos in [17] proved that there exist no
real hypersurfaces in a nonflat complex space form Mn(c), n > 2, whose struc-
ture Jacobi operator is parallel, i.e., ∇Rξ = 0. Later, a weaker condition named
D-parallel structure Jacobi operator, i.e., ∇XRξ = 0 for any vector field X tangent
to D, is considered by Pérez, Santos and Suh [23]. They proved that there exist no
real hypersurfaces in CPn(c), n > 2, with D-parallel structure Jacobi operators.
Generalizing main results in [17] and some non-existence results of real hypersur-
faces in CPn(c), n > 2, in Pérez et al. [25], Theofanidis and Xenos in [29] proved
that there exist no real hypersurfaces in a nonflat complex space form Mn(c),
n > 2, with a recurrent structure Jacobi operator, i.e., (∇X Rξ)Y = ω(X)Rξ (Y) for
any vector fields X, Y tangent to M, where ω is a 1-form. Moreover, Theofanidis
and Xenos in [30] proved that there exist no real hypersurfaces in a nonflat com-
plex plane M2(c) with D-recurrent structure Jacobi operators. Recently, this was
extended to the higher dimension case, i.e., there exist no real hypersurfaces in
Mn(c), n > 2, with a D-recurrent structure Jacobi operator (see Kon et al. [11]).

Except for the Levi-Civita connection, the parallelism of the structure Jacobi
operator with respect to the Lie derivative and some other connections was also
considered by many authors. In 2005, Pérez and Santos in [22] proved the non-
existence of real hypersurfaces in CPn(c), n > 2, whose structure Jacobi operator
is Lie parallel, i.e., LXRξ = 0 for any vector field X tangent to M. Later, a real
hypersurface having a Lie ξ-parallel structure Jacobi operator, i.e., Lξ Rξ = 0,
was studied by Pérez et al. [21] in CPn(c), n > 2 and also by Ivey and Ryan
[6] in CP2 and CH2. A weaker condition named Lie D-parallel structure Jacobi
operator, i.e., LXRξ = 0 for any X ∈ D, was introduced and studied by Pérez
et al. in [26]. Extending the previous result, Panagiotidou and Xenos in [20]
proved the non-existence of 3-dimensional real hypersurfaces in CP2 and CH2

with a Lie D-parallel structure Jacobi operator. Kaimakamis and Panagiotidou
in [7] proved that there exist no real hypersurfaces in Mn(c), n ≥ 2 and c 6= 0,
whose structure Jacobi operator is Lie recurrent, i.e., (LXRξ)Y = ω(X)Rξ (Y)
for any vector fields X, Y tangent to the hypersurface. Recently, Panagiotidou in
[18] proved that there exist no real hypersurfaces in CP2 and CH2 whose struc-
ture Jacobi operator satisfies either LXRξ = ∇XRξ or LX A = ∇X A for any
X ∈ D. A non-existence result of real hypersurfaces in CPn(c), n > 2, with a
Codazzi type structure Jacobi operator, i.e., (∇XRξ)Y = (∇YRξ)X for any vector
fields X, Y, was obtained by Pérez et al. in [24]. Later, this was generalized to
3-dimensional case by Theofanidis and Xenos [28, 31]. Moreover, a non-existence
result of 3-dimensional real hypersurfaces in CP2 and CH2 with a Codazzi type
structure Jacobi operator with respect to the generalized Tanaka-Webster connec-
tion was obtained by Kaimakamis et al. in [8]

In this paper, we investigate 3-dimensional real hypersurfaces M in a nonflat
complex plane M2(c), c 6= 0. We prove that if the structure Jacobi operator of
M is of Killing type, then the hypersurface is either a tube of radius π

4 over a

holomorphic curve in CP2 or a Hopf hypersurface with vanishing Hopf principal
curvature in CH2. Note that any parallel (1, 1)-type tensor field must be of Killing
type, however, the converse is not necessarily true. Obviously, our main result
extends those in [6, Section 3] in which the authors proved that there exist no real
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hypersurfaces in CP2 and CH2 with a parallel structure Jacobi operator.

2 Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N be
a unit normal vector field of M. We denote by ∇ the Levi-Civita connection of
the metric g of Mn(c) and J the complex structure. Let g and ∇ be the induced
metric from the ambient space and the Levi-Civita connection of g respectively.
Then the Gauss and Weingarten formulas are given respectively as the following:

∇XY = ∇XY + g(AX, Y)N, ∇XN = −AX (2.1)

for any vector fields X and Y tangent to M, where A denotes the shape operator
of M in Mn(c). For any vector field X tangent to M, we put

JX = φX + η(X)N, JN = −ξ. (2.2)

We can define on M an almost contact metric structure (φ, ξ, η, g) satisfying

φ2 = −id + η ⊗ ξ, η(ξ) = 1, φξ = 0, (2.3)

g(φX, φY) = g(X, Y) − η(X)η(Y), η(X) = g(X, ξ) (2.4)

for any vector fields X and Y on M. Moreover, applying the parallelism of the
complex structure (i.e., ∇J = 0) of Mn(c) and using (2.1), (2.2) we have

(∇Xφ)Y = η(Y)AX − g(AX, Y)ξ, (2.5)

∇Xξ = φAX (2.6)

for any vector fields X and Y. We denote by R the Riemannian curvature tensor
of M. Since Mn(c) is assumed to be of constant holomorphic sectional curvature
c, then the Gauss and Codazzi equations of M in Mn(c) are given respectively as
the following:

R(X, Y)Z =
c

4
{g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY

− 2g(φX, Y)φZ} + g(AY, Z)AX − g(AX, Z)AY,
(2.7)

(∇X A)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y)φX − 2g(φX, Y)ξ} (2.8)

for any vector fields X, Y on M.
From (2.7) we see that the structure Jacobi operator Rξ is given by

Rξ X =
c

4
(X − η(X)ξ) + αAX − η(AX)Aξ (2.9)

for any vector field X tangent to the hypersurface.
In this paper, all manifolds are assumed to be connected and of class C∞.
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3 Hypersurfaces with Killing type operators in CP2 and CH2

Let M be a real hypersurface in a complex space form Mn(c). We put

Aξ = αξ + βU, (3.1)

where α = η(Aξ), U a unit vector field orthogonal to ξ and β a smooth function.
Applying (2.1) and (2.2) we see that βU = −φ∇ξξ. We put

Ω = {p ∈ M | β(p) 6= 0}.

Then Ω is an open subset of M.

A Killing tensor field of type (1, 1) was first introduced by Blair [2, pp. 287].
A (1, 1)-type tensor field T defined on a Riemannian manifold with the Rieman-
nian connection ∇ is called a Killing tensor field if it satisfies

(∇XT)X = 0 (⇔ (∇XT)Y + (∇YT)X = 0) (3.2)

for any vector fields X, Y. Recently, Cho in [4] proved that there exist no real
hypersurfaces in a complex space form whose structure tensor field φ or shape
operator A is of Killing type. In this paper, we study a three-dimensional real
hypersurface whose structure Jacobi operator Rξ is of Killing type. In what

follows, M2(c), c 6= 0, is used to denote CP2 or CH2.

Lemma 3.1 ([15, pp. 245]). Let M be a Hopf hypersurface in a nonflat complex space
form Mn(c). If AX = λ1X and X ∈ {ξ}⊥ , then we have

2(2λ1 − α)AφX = (2λ1α + c)φX.

If in addition we define λ2 by AφX = λ2φX, then we have

λ1λ2 =
λ1 + λ2

2
α +

c

4
.

The above lemma was, in fact, first proved by Maeda [12] for the case CPn and
by Montiel [13] for the case CHn.

Lemma 3.2 ([20, Lemma 1]). Let M be a three-dimensional real hypersurface in a non-
flat complex plane M2(c). Then the following relations hold:

AU = γU + δφU + βξ, AφU = δU + µφU,

∇Uξ = −δU + γφU, ∇φUξ = −µU + δφU, ∇ξξ = βφU,

∇UU = κ1φU + δξ, ∇φUU = κ2φU + µξ, ∇ξU = κ3φU,

∇UφU = −κ1U − γξ, ∇φUφU = −κ2U − δξ, ∇ξφU = −κ3U − βξ,

(3.3)

where γ, δ, µ, κi, i = {1, 2, 3}, are smooth functions on M and {ξ, U, φU} is an
orthonormal basis of the tangent space of M at a point of M.
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Since the above lemma can be seen in [19, 20, 30], then here we omit its proof.
Applying this lemma, from the Codazzi equation (2.8) for X = U or X = φU and
Y = ξ we have

U(β)− ξ(γ) = αδ − 2δκ3. (3.4)

ξ(δ) = αγ + βκ1 + δ2 + µκ3 +
c

4
− γµ − γκ3 − β2. (3.5)

U(α)− ξ(β) = −3βδ. (3.6)

ξ(µ) = αδ + βκ2 − 2δκ3. (3.7)

φU(α) = αβ + βκ3 − 3βµ. (3.8)

φU(β) = αµ − γµ + δ2 + ξ(δ)− κ3µ + κ3γ + β2 +
c

4
. (3.9)

Similarly, from the Codazzi equation for X = U and Y = φU we have

U(δ)− φU(γ) = µκ1 − γκ1 − βγ − 2δκ2 − 2βµ. (3.10)

U(µ)− φU(δ) = γκ2 + βδ − κ2µ − 2δκ1. (3.11)

Moreover, applying again Lemma 3.2, from the Gauss equation (2.7) and the
definition of the Riemannian curvature tensor R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −
∇[X,Y]Z we have

U(κ2)− φU(κ1) = 2δ2 − 2γµ − κ2
1 − γκ3 − κ2

2 − µκ3 − c. (3.12)

φU(κ3)− ξ(κ2) = 2βµ − µκ1 + δκ2 + κ3κ1 + βκ3. (3.13)

Applying Lemma 3.2 and replacing X by U and φU, respectively, in (2.9), we
get

RξU =
( c

4
+ αγ − β2

)

U + αδφU,

RξφU = αδU +
( c

4
+ αµ

)

φU.
(3.14)

Lemma 3.3. Let M be a three-dimensional real hypersurface in a nonflat complex plane
M2(c), c 6= 0, whose structure Jacobi operator is of Killing type. Then M is a Hopf
hypersurface.

Proof. Suppose that a real hypersurface M in M2(c), c 6= 0, is non-Hopf, then
β 6= 0 and Ω is a non-empty subset. If the structure Jacobi operator is of Killing
type, replacing both X and Y by ξ in (3.2) we have Rξ∇ξξ = 0. Using this and
(3.1) in relation (2.9) we acquire

AφU = −
c

4α
φU, (3.15)

where α 6= 0. Here we remark that if α = 0, from Rξ∇ξξ = 0 we obtain c = 0,
a contradiction. Comparing (3.15) with the first term of (3.3) we obtain

δ = 0, αµ = −
c

4
. (3.16)
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Since Rξ is of Killing type, we also have (∇URξ)U = 0. The last equation is
further analyzed with the aid of (2.9), the first of (3.14) and Lemma 3.2, giving

U(αγ − β2) = 0, κ1

(

αγ − β2 +
c

4

)

= 0, (3.17)

where (3.16) has been used.
Similarly, because Rξ is of Killing type we have (∇φURξ)φU = 0. Hence, by

applying (2.9), the second term of (3.14), (3.16) and Lemma 3.2 in this relation we
have

φU(αµ) = 0, κ2

(

αγ − β2 +
c

4

)

= 0. (3.18)

In view of second term of relation (3.16), we see that the first term of (3.18)
holds trivially. If αγ − β2 + c

4 = 0 holds, then it is combined with (3.16) and
(3.14) in order to yield Rξ = 0, that is Rξ vanishes. However, Ivey and Ryan in
[6, Proposition 7] proved that this cannot occur.

Next, we consider the only possible case αγ − β2 + c
4 6= 0 which holds on

some open subset. Applying this in (3.17) and (3.18) we have

κ1 = 0, κ2 = 0. (3.19)

Applying (3.19) in relations (3.5) and (3.12), respectively, we have

αγ + µκ3 +
c

4
− γµ − γκ3 − β2 = 0,

2γµ + γκ3 + µκ3 + c = 0.
(3.20)

Using (3.16) and (3.19) in (3.7) and (3.11), respectively, we obtain

ξ(µ) = 0, U(µ) = 0. (3.21)

By virtue of Lemma 3.2 and relation (3.16) we obtain [U, ξ] = ∇Uξ −∇ξU =
(γ − κ3)φU. Thus, using (3.21), the action of the above relation on µ gives

(γ − κ3)φU(µ) = 0. (3.22)

Because of (3.22), we separate our discussions into two cases.

Case i. We assume that φU(µ) = 0. The last relation and (3.21) mean that
µ is a constant. Hence, by the second term of (3.16), we see that α is a non-zero
constant. Applying this in (3.8) and in view of β 6= 0 we have

κ3 = 3µ − α. (3.23)

Thus, κ3 is also a constant. Since κ3 is a constant, we make use of (3.16), (3.19) and
(3.13) in order to obtain

2µ + κ3 = 0, (3.24)

where we have used β 6= 0. Combining (3.24) with (3.23) we may write

µ =
1

5
α, κ3 = −

2

5
α. (3.25)
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Moreover, replacing with (3.24) in the second term of (3.20), we acquire
µκ3 + c = 0 which is combined with the second term of (3.25) giving − 2

5αµ + c =
0. The combination of the last equation with the second term of (3.16) gives c = 0,
which is a contradiction.

Case ii. We assume that φU(µ) 6= 0 holds on certain open subset. It follows
from (3.22) that γ = κ3. In this case, using the first term of (3.16) and relation
(3.19) in (3.7) and (3.11), respectively, we obtain

ξ(α) = U(α) = 0, ξ(µ) = U(µ) = 0, (3.26)

where we have used the second term of (3.16), c 6= 0 and α 6= 0. Using U(α) = 0
and δ = 0 in (3.6) we have ξ(β) = 0. We also observe that under the assumption
φU(µ) 6= 0 (⇒ γ = κ3), relation (3.20) becomes

αγ +
c

4
− γ2 − β2 = 0, 3γµ + γ2 + c = 0. (3.27)

Moreover, from relations (3.8) and (3.16) we have

φU(µ) =
4βµ2

c
(α + γ − 3µ).

Also, using the first term of (3.16) and relation (3.19) in (3.10) we have

φU(γ) = β(γ + 2µ).

Finally, applying the above two relations, β 6= 0, the action of φU on the second
term of (3.27) gives

c(γ + 2µ)(2γ + 3µ) + 12γµ2(α + γ − 3µ) = 0. (3.28)

From the second terms of (3.16) and (3.27) we see that both α and γ depend
only on µ and c. Consequently, from (3.28) we conclude that either there exists no
solution for µ or µ is a constant. In view of φU(µ) 6= 0, in both cases we arrive at
a contradiction. This completes the proof.

Theorem 3.1. Let M be a 3-dimensional real hypersurface in a nonflat complex plane
M2(c). If the structure Jacobi operator of M is of Killing type, then M is either a tube of
radius π

4 over a holomorphic curve in CP2 or a Hopf hypersurface with vanishing Hopf

principal curvature in CH2.

Proof. According to Lemma 3.3, a real hypersurface in a nonflat complex plane
M2(c) is Hopf. Then, because of β = 0, (3.14) becomes

RξU =
( c

4
+ αγ

)

U + αδφU,

RξφU = αδU +
( c

4
+ αµ

)

φU.
(3.29)

Since Rξ is assumed to be a Killing tensor field, we obtain (∇URξ)U = 0. Using
(3.29) in this relation and applying Lemma 3.2, we acquire

αU(γ) = 0, κ1α(γ − µ) = 0, δ = 0. (3.30)
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Similarly, by virtue of (3.29) and Lemma 3.2, relation (∇φURξ)φU = 0 is analyzed
to give

αφU(µ) = 0, κ2α(γ − µ) = 0, δ = 0. (3.31)

We continue our discussions by the following three cases.

Case i. If α = 0, we conclude that M is locally congruent to a tube of radius π
4

over a holomorphic curve in CP2 (see [3]) or a Hopf hypersurface with vanishing
Hopf principal curvature in CH2 (see [6]).

Case ii. If α 6= 0 and γ 6= µ hold on certain open subset, then it follows from
(3.30) and (3.31) that κ1 = κ2 = 0. In this case, from (3.5), (3.9) and (3.12) we have

αγ + κ3(µ − γ) +
c

4
− γµ = 0,

αγ +
c

2
− 2γµ + αµ = 0,

2γµ + κ3(γ + µ) + c = 0.

(3.32)

The subtraction of the second term of (3.32) from the first one of (3.32) gives
κ3(µ − γ)− c

4 + γµ − αµ = 0. Combining the last equation with the second term
of (3.32) we obtain κ3 = α

2 , where we have used the assumption γ 6= µ. In view
of β = 0 and δ = 0, applying Lemma 3.2 we have AU = γU and AφU = µφU.
Then, from Lemma 3.1 we have

γµ =
α

2
(γ + µ) +

c

4
. (3.33)

The replacement of κ3 = α
2 in the third term of (3.32) gives 2γµ+ α

2 (γ+µ)+ c = 0.
Comparing this with (3.33) we have

γµ = −
c

4
, α(γ + µ) = −c. (3.34)

From this we see that both γ and µ are constants. Since Rξ is of Killing type, then
we have (∇X Rξ)Y + (∇YRξ)X = 0 for vector fields X and Y tangent to M. In
particular, replacing X and Y by U and φU, respectively, in the above relation,
we obtain ∇URξφU − Rξ∇UφU +∇φURξU − Rξ∇φUU = 0. The application of
Lemma 3.2 in the last relation, gives

γ
( c

4
+ αµ

)

= µ
( c

4
+ αγ

)

,

where we have used (3.29) and κ1 = κ2 = δ = 0. Obviously, in view of c 6= 0,
using the first term of (3.34) in the previous relation, we obtain γ = µ which is a
contradiction.

Case iii. If α 6= 0 and γ = µ, from (3.29) we have

RξU =
( c

4
+ αγ

)

U, RξφU =
( c

4
+ αγ

)

φU. (3.35)

Since Rξ is assumed to be of Killing type, we obtain (∇URξ)ξ + (∇ξ Rξ)U = 0, or
equivalently, −Rξ∇Uξ +∇ξ RξU − Rξ∇ξU = 0. In the last relation, by making
use of β = δ = 0, (3.35), (3.3) and (3.4), we obtain

γ
( c

4
+ αγ

)

= 0. (3.36)
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With regard to (3.36), if γ = 0, from the first two terms of (3.3) together with
β = δ = 0 we have AU = 0 and AφU = 0. The application of this in Lemma
3.1 gives c = 0, a contradiction. Otherwise, if c

4 + αγ = 0, from (3.35) we see that
the structure Jacobi operator Rξ vanishes. As pointed out before, it was proved

in [6, section 3] that there exist no real hypersurfaces in CP2 and CH2 with par-
allel structure Jacobi operator. Thus, we arrive again at a contradiction. This
completes the proof.
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