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Abstract

We describe the split extension classifiers in the semi-abelian category of
cocommutative Hopf algebras over an algebraically closed field of character-
istic zero. The categorical notions of centralizer and of center in the category
of cocommutative Hopf algebras is then explored. We show that the categor-
ical notion of center coincides with the one that is considered in the theory of
general Hopf algebras.

1 Introduction

It is well-known that groups, Lie algebras and Hopf algebras are closely related
algebraic structures. Recently, we added a new feature to these relationships [14],
by observing that the category HopfK,coc of cocommutative Hopf algebras over
a field of characteristic zero is semi-abelian [16] in the sense of Janelidze, Márki
and Tholen. This fact opens the way to many new applications of a wide range
of results obtained in that general context, results having consequences in non-
abelian homological algebra, radical theory and commutator theory, for instance.
We refer the reader to [23] for some other categorical properties of HopfK,coc, and
to [13] for a conceptual characterization of cocommutative Hopf algebras among
cocommutative bialgebras.

One key feature of semi-abelian categories is the concept of an internal action,
which is available without any additional requirements on the category in ques-
tion. These internal actions behave “as expected”, in the sense that like for groups
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or Lie algebras, the induced concept of semi-direct product gives an equivalence
between actions and split extensions.

In some cases, but not all, these internal actions are moreover representable.
To understand what this means, let us first consider two examples. An inter-
nal action of a group B on a group G corresponds to a group homomorphism
B → Aut(G) from B to the automorphism group Aut(G) of G. Similarly, an inter-
nal action of a Lie algebra L1 on a Lie algebra L is completely determined by a Lie
algebra morphism L1 → Der(L) from L1 to the Lie algebra of derivations of L by
L.

A general pointed protomodular category C [7], is said to have representable
object actions, or to be action representable, in the sense of [6], if given any object X
in C, there is a split extension

0 // X
i1 // X

p2

// [X]
i2oo // 0 (1.1)

with kernel X satisfying the following universal property: for any other split
extension with kernel X in C

0 // X k // A
f

// B
soo // 0 (1.2)

there is a unique (up to isomorphism) χ : B → [X] (and χ : A −→ X) such that
the following diagram of split exact sequences commutes

0 // X k // A
f

//

χ
��

B
soo //

χ
��

0

0 // X
i1 // X

p2

// [X]
i2oo // 0.

The object [X] in (1.1) is called a split extension classifier for X. Besides the cate-
gories of groups and of Lie algebras, there are some other examples of categories
having this property, such as the ones of crossed modules, boolean rings, and
commutative von Neumann regular rings [5, 6]. It is well known that not all
semi-abelian categories are action representable: for instance, this is the case for
the category of not necessarily unitary rings. When a semi-abelian category C is
action representable, commutator theory becomes simpler, since the Huq central-
ity of normal monomorphisms and the Smith centrality of equivalence relations
always coincide in this case [8].

In [14] we showed that the category HopfK,coc of cocommutative Hopf al-
gebras over an algebraically closed field of characteristic zero is action repre-
sentable. In fact, it is widely known that the category of cocommutative Hopf
algebras over any commutative base ring K (even not necessarily a field) is iso-
morphic to the category of internal groups in the category of cocommutative coal-
gebras over K. The category HopfK,coc is then protomodular and it makes sense
to consider split extension classifiers in HopfK,coc. Since the category of cocom-
mutative coalgebras is moreover complete and cartesian closed by Theorem 5.3
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in [2], it follows by Theorem 2.1 in [4] that HopfK,coc is action representable over
any commutative ring K.

However, these arguments do not provide an explicit description of the split
extension classifiers in HopfK,coc which, for a given object X, consists of the object
[X] together with a canonical action on X satisfying the above-mentioned univer-
sal property. In the classical literature on Hopf algebra theory, which, despite its
close relationship with groups and Lie algebras, has been developed indepen-
dently from the evolutions in semi-abelian category theory, similar properties as
the one described above have been observed. Indeed, Sweedler’s measuring coal-
gebras and measuring bialgebras [21] show the existence of universal acting bialge-
bras on arbitrary coalgebras. Similarly, universal coacting bialgebras and Hopf
algebras on certain classes of algebras, which are thought of as describing the
‘hidden symmetries’ of non-commutative spaces, are shown to exist and have
been explicitly described [17], [22]. Again, although it is often not so hard to show
that this kind of universal (co)acting Hopf algebras exist, the difficult part is to
give useful descriptions of these objects. The present paper can also be under-
stood as a contribution to this work, by joining the forces of Hopf algebra theory
with more recent concepts introduced and investigated in categorical algebra.

To be more precise, the aim of the present article is to give an explicit descrip-
tion of the split extension classifiers in the category HopfK,coc of cocommutative
Hopf algebras over an algebraically closed field of characteristic zero. Our main
result is Theorem 3.4.1, that uses an explicit description of split exact sequences
in HopfK,coc in terms of semi-direct products (also called smash products) of co-
commutative Hopf algebras. We then analyse the abstract notions of center and
of centralizer, introduced by D. Bourn and G. Janelidze in [8], in the category
HopfK,coc. This part is also based on some nice results concerning centralizers
due to A. Cigoli and S. Mantovani in [11]. We finally compare our description of
the center in HopfK,coc with the definition given by A. Chirvasitu and P. Kasprzak
in [10] for arbitrary (not necessarily cocommutative) Hopf algebras, and observe
that they coincide in the cocommutative case. Since our results heavily rely on
the Cartier-Gabriel-Konstant-Milnor-Moore decomposition theorem for cocom-
mutative Hopf algebras which is only valid over an algebraically closed field of
characteristic zero, our description only holds in this case. It remains an open
question if this description can be extended to the general case.
Acknowledgement. The authors are grateful to Tim Van der Linden for an im-
portant remark on a preliminary version of this paper, and to the referee for some
useful suggestions.

2 Preliminaries

2.1 Action representability for Groups and Lie algebras

Let us start by recalling how the categories of Groups and Lie algebras satisfy the
definition of action representable category, as recalled in the introduction.

Given a group G and its automorphism group Aut(G), consider the canonical
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split extension

0 // G
i1 // G ⋊ Aut(G)

p2

// Aut(G)
i2oo // 0 (2.1)

where the action of Aut(G) on G defining the semidirect product G ⋊ Aut(G)
is simply given by the evaluation, p2 is the second projection and i1, i2 are the
canonical injections. As explained in [3, 5, 6] this split extension has a remarkable
universal property in the category Grp of groups: any other split extension with
kernel G

0 // G
k // A

f
// B

soo // 0 (2.2)

can be uniquely obtained (up to isomorphism) by pulling back the split extension
(2.1) along a group homomorphism χ : B → Aut(G):

0 // G
k // A

χ
��

f
// B

χ
��

soo // 0

0 // G
i1 // G ⋊ Aut(G)

p2

// Aut(G)
i2oo // 0

The group action χ : B → Aut(G) of B on G corresponds to the semi-direct prod-
uct G ⋊χ B defining a split extension of B by G isomorphic to (2.2).

In the theory of Lie algebras (over a field K) a similar role is played by the split
extension

0 // L
i1 // L ⋊ Der(L)

p2

// Der(L)
i2oo // 0. (2.3)

Here L is a Lie algebra (over K), Der(L) the Lie algebra of derivations of L by L,
and L ⋊ Der(L) the semi-direct product in LieK, with Lie bracket defined by

[

(x, φ), (x′, ψ)
]

:=
(

[x, x′] + φ(x′)− ψ(x), φ ◦ ψ − ψ ◦ φ
)

,

for any x, x′ ∈ L, for any φ, ψ ∈ Der(L). In the category LieK of Lie algebras, the
actions ρ : L1 → Der(L) of L1 on L correspond again to the isomorphism classes
SplExt(L1, L) of split extensions of L1 by L.

2.2 The category of cocommutative Hopf algebras

Throughout this paper, let K be a field (although for most definitions it is enough
to assume that K is a commutative ring). By a K-coalgebra we mean a coassocia-
tive and counital coalgebra over K, that is a vector space C endowed with linear
maps ∆ : C → C ⊗ C and ǫ : C → K satisfying (id ⊗ ∆) ◦ ∆ = (∆ ⊗ id) ◦ ∆ (coas-
sociativity) and (id ⊗ ǫ) ◦ ∆ = id = (ǫ ⊗ id) ◦ ∆) (counitality). We will use the
classical Sweedler notation for calculations with the comultiplication, that is, for
any c ∈ C we write ∆(c) = c1 ⊗ c2 (summation understood). Coassociativity can
then be expressed by the formula

c1 ⊗ c2,1 ⊗ c2,2 = c1,1 ⊗ c1,2 ⊗ c2 = c1 ⊗ c2 ⊗ c3.
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Recall that a K-bialgebra (H, M, u, ∆, ǫ) is an algebra H with multiplication
M : H ⊗ H → H and unit u : K → H that is at the same time a coalgebra
with comultiplication ∆ : H → H ⊗ H and counit ǫ : H → K such that M and u
are coalgebra morphisms. A Hopf K-algebra is a sextuple (H, M, u, ∆, ǫ, S) where
(H, M, u, ∆, ǫ) is a bialgebra and S : H → H is a linear map, called the antipode,
that makes the following two diagrams commute

H ⊗ H
S⊗id

//

id⊗S
// H ⊗ H

M

##❍
❍❍

❍❍
❍❍

❍❍

H ǫ
//

∆

;;✈✈✈✈✈✈✈✈✈
K u

// H

or, in Sweedler notation,

h1S(h2) = ǫ(h)1H = S(h1)h2,

for all h ∈ H.
A Hopf algebra H is said to be cocommutative if its underlying coalgebra is co-

commutative, this means that the comultiplication map ∆ satisfies σ ◦ ∆ = ∆,
where σ : H ⊗ H −→ H ⊗ H is the switch map σ(x ⊗ y) = (y ⊗ x), for any
x ⊗ y ∈ H ⊗ H.

A morphism of Hopf algebras is a linear map that is both an algebra and a
coalgebra morphism (under these conditions the antipode is automatically
preserved).

We denote by HopfK the category whose objects are Hopf K-algebras and
morphisms are morphisms of Hopf K-algebras. The full subcategory of cocom-
mutative Hopf K-algebras is denoted by HopfK,coc.

The categorical concepts of subobject and kernel lead to the following notions
in the category of Hopf algebras. A sub-Hopf algebra H of a Hopf algebra A is a
subalgebra of A (i.e. u(K) ⊂ H and M(H ⊗ H) ⊂ H) which is at the same time
a subcoalgebra of A (i.e. ∆(H) ⊂ H ⊗ H) and which is stable under the antipode
(i.e. S(H) ⊂ H). A sub-Hopf algebra H of A is said to be normal (see [20], for
instance) if a1hS(a2) ∈ H and S(a1)ha2 ∈ H, ∀h ∈ H and ∀a ∈ A.

An element x of a Hopf K-algebra H is called grouplike if ∆(x) = x ⊗ x and
ǫ(x) = 1. A Hopf algebra H is called a group Hopf algebra if it is generated as a
vector space by grouplike elements. The full replete subcategory of HopfK whose
objects are group Hopf algebras is denoted by GrpHopfK. The set of all grouplike
elements of a given Hopf algebra H is denoted by G(H) and the multiplication
of H induces a group structure on G(H); the inverse of an element x ∈ G(H)
is given by S(x). This leads to a functor G : HopfK → Grp, we also denote
G(H) = GH for a given Hopf algebra H. Moreover, this functor G has a left
adjoint K[−] : Grp → HopfK, which assigns to a group G the group algebra
K[G] endowed with a comultiplication that turns all elements of G into grouplike
elements. If K is a field, then the above adjunction induces an equivalence of
categories between GrpHopfK and Grp.

An element x of a Hopf K-algebra H is called primitive if ∆(x) = 1⊗ x + x ⊗ 1
(remark that in this case ǫ(x) = 0). A Hopf algebra is called a primitive Hopf algebra
if it is generated as an algebra by primitive elements. The full replete subcategory
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of HopfK whose objects are primitive Hopf algebras is denoted by PrimHopfK.
The set of all primitive elements of a given Hopf algebra H is denoted by P(H)
and the commutator bracket (i.e. [x, y] = yx − xy) induces a Lie algebra structure
on P(H). This leads to a functor P : HopfK → LieAlgK, where LieAlgK de-
notes the category of Lie K-algebras and Lie algebra morphisms. We also denote
P(H) = LH for a given Hopf algebra H. Moreover, this functor has a left adjoint
U : LieAlgK → HopfK, which associates to each Lie algebra the universal en-
veloping algebra U(L). Since U(L) is generated as an algebra by the elements of
L, and these are primitive elements in the Hopf algebra U(L), the image of the
functor U lies in PrimHopfK. In the case where K is a field of characteristic 0, the
above adjunction induces an equivalence between the category PrimHopfK and
the category LieAlgK, see [18, Theorem 5.18].

By construction both GrpHopfK and PrimHopfK are full and replete sub-
categories of HopfK,coc and the above adjunctions can be viewed as adjunctions
between the category HopfK,coc and the categories Grp and LieAlgK respectively.

The category HopfK,coc is protomodular [7], which can be most easily seen
by viewing it as the category of internal groups in the category of cocommuta-
tive coalgebras. In particular, the zero object in this category is given by the base
field K, and the zero morphism between Hopf algebras A and B is the morphism
uB ◦ ǫA. Furthermore, in this category, monomorphisms are exactly the injective
morphisms and the classes of normal epimorphisms, regular epimorphisms, epi-
morphisms and surjective morphisms coincide (see [14]).

A short exact sequence in the category HopfK,coc is a sequence of the form

0 // A k // H
p

// B // 0 (2.4)

where 0 represents the zero object, i.e. the base field K, k and p are Hopf algebra
morphisms such that k is the kernel of p and p is the cokernel of k. Recall that a
kernel of a morphism p : H → B in the category of cocommutative Hopf algebras
can be computed explicitly by means of the following subobject of H

HKer(p) = {h ∈ H | p(h1)⊗ h2 = 1B ⊗ h}.

By abuse of notation, we will sometimes denote as well HKer(p) for the kernel
morphism HKer(p) → H in HopfK,coc. Remark that an expression of the form
(2.4) is an exact sequence in HopfK,coc, whenever p is a surjective homomorphism
and k is the kernel of p. A short exact sequence is said to be split if there exists
moreover a Hopf algebra morphism s : B → H such that p ◦ s = idB.

2.3 Actions in the category of cocommutative Hopf algebras

Let us recall some useful results from [19].

Definition 2.3.1. Let B be a cocommutative Hopf algebra. A B-module Hopf algebra
is a Hopf algebra A that is at the same time a left B-module, with action denoted
by ρ : B ⊗ A → A, ρ(b ⊗ a) = b · a, such that its bialgebra maps (multiplication,
unit, comultiplication and counit) are maps of B-modules. Explicitly, the linear
map ρ has to satisfy the following axioms for any b ∈ B and any a ∈ A:
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(Axiom 1) 1B · a = a;

(Axiom 2) (bb′) · a = b · (b′ · a);

(Axiom 3) b · (aa′) = (b1 · a)(b2 · a′);

(Axiom 4) b · 1A = ǫ(b)1A;

(Axiom 5) (b · a)1 ⊗ (b · a)2 = b1 · a1 ⊗ b2 · a2;

(Axiom 6) ǫ(b · a) = ǫ(b)ǫ(a).

If also A is a cocommutative Hopf algebra, we then say that ρ is an action of B
on A in HopfK,coc.

Remark that A is a B-module Hopf algebra if and only if A is an internal Hopf
algebra in the symmetric monoidal category of B-modules.

Proposition 2.3.2. [19] Let B be a cocommutative Hopf algebra and A a B-module Hopf
algebra with action ρ : B ⊗ A → A. Then there exists a Hopf algebra A ⋊ρ B, whose
underlying vector space is A ⊗ B and whose structure maps are given by

uA⋊B = uA ⊗ uB

MA⋊ρB(a ⊗ b ⊗ a′ ⊗ b′) = a(b1 · a′)⊗ b2b′

∆A⋊B = (idA ⊗ σ ⊗ idB)(∆A ⊗ ∆B)

ǫA⋊B = ǫA ⊗ ǫB

SA⋊B(a ⊗ b) = (SA(a)⊗ 1B)(1A ⊗ SB(b)) = SB(b1) · SA(a)⊗ SB(b2)

If moreover A is cocommutative, then A ⋊ρ B is also cocommutative.
We call A⋊ρ B the semi-direct product of Hopf algebras (also known as smash prod-

uct) of B and A.

The following useful lemma about split short exact sequences proved in [14]
is a reformulation of Theorem 4.1 in [19].

Lemma 2.3.3. Every split short exact sequence in HopfK,coc

0 // A
k // H

p
// B

s
oo // 0

is canonically isomorphic to the semi-direct product exact sequence

0 // A
i1 // A ⋊ B

p2
// B

i2
oo // 0

where i1 = idA ⊗ uB, i2 = uA ⊗ idB and p2 = ǫA ⊗ idB.

Examples 2.3.4. 1. [19] Let N and M be groups and τ : M −→ Aut(N) be
a group homomorphism defining an action of M on N. Then the map
M × N −→ N defined by (m, n) 7→ τ(m)(n) induces a coalgebra map
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K[M] ⊗ K[N] −→ K[N] which makes K[N] into a K[M]-module Hopf
algebra. Thus K[N]⋊ K[M] is a Hopf algebra. One actually has that

K[N]⋊ K[M] ∼= K[N ⋊τ M]

where N ⋊τ M is the usual semi-direct product of groups with the multipli-
cation defined ∀n1, n2 ∈ N, ∀m1, m2 ∈ M by

(n1, m1)(n2, m2) = (n1τ(m1)(n2), m1m2).

2. [19] Similarly, for Lie algebras L and M and ν : L −→ Der(M), a Lie algebra
homomorphism, the action L × M −→ M defined by (l, m) 7→ ν(l)(m) (for
any (l, m) ∈ L × M) induces a coalgebra map U(L) ⊗ U(M) −→ U(M)
making U(M) into a U(L)-module Hopf algebra, and as above the Hopf
algebra

U(M)⋊U(L) ∼= U(M ⋊ν L)

where M ⋊ν L is the usual semi-direct product of Lie algebra with the Lie
bracket defined ∀m1, m2 ∈ M, ∀l1, l2 ∈ L by

[

(m1, l1), (m2, l2)
]

=
(

[m1, m2] + ν(l1)(m2)− ν(l2)(m1), [l1, l2]
)

.

3. Let X be a normal Hopf subalgebra of a cocommutative Hopf algebra H.
Then X has a structure of H-module Hopf algebra with action defined by

h · x = h1xS(h2),

for all x ∈ X and h ∈ H.

4. Let H be any Hopf algebra. Consider P(H) = LH the Lie algebra of prim-
itive elements of H and G(H) = GH the group of grouplike elements of H.
Then U(LH) and K[GH ] are cocommutative Hopf algebras and by setting

g · x = gxS(g) = gxg−1,

∀x ∈ LH and ∀g ∈ GH one defines an action of K[GH ] on U(LH). Further-
more, the map

ωH : U(LH)⋊ K[GH ] → H, ωH(x ⊗ g) = xg (2.5)

is a Hopf algebra morphism between the induced semi-direct product Hopf
algebra and the original Hopf algebra H.

We use Lemma 2.3.3 to reformulate the well-known structure theorem for
cocommutative Hopf algebras over an algebraically closed field of characteristic
zero in terms of split exact sequences (see for instance [21], page 279 in combina-
tion with Lemma 8.0.1(c)):
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Theorem 2.3.5 (Cartier-Gabriel-Kostant-Milnor-Moore). For any cocommutative
Hopf K-algebra H, over an algebraically closed field K of characteristic 0, the Hopf
algebra morphism ωH (2.5) defined by ωH(x ⊗ g) = xg (for any g ∈ GH and x ∈ LH)
is an isomorphism:

U(LH)⋊ K[GH ]
ωH∼= H.

Consequently, for each H there exists a canonical split exact sequence of cocommutative
Hopf algebras of the following form

0 // U(LH)
iH // H

pH
// K[GH]

sH

oo // 0

where iH = ωH ◦ i1, sH = ωH ◦ i2 and pH = p2 ◦ ω−1
H with the notations of Lemma

2.3.3.

Proposition 2.3.6. Over an algebraically closed field K of characteristic 0, the functor

K[−] : Grp → HopfK,coc

is both a right and a left adjoint to the functor

G : HopfK,coc → Grp.

Proof. We already remarked that the functor K[−] is a left adjoint to the functor G
(even in the general case of any commutative base ring K)

Grp
K[−]

⊥
//
HopfK,coc.

G
oo

Indeed, if G ∈ Grp, by definition all elements of G are grouplike elements in
K[G]. Hence there is a canonical inclusion ηG : G −→ G

(

K[G]
)

. One can easily
check that ηG is natural and universal. In case that K is a field, it is well-known
that ηG = idG (see e.g. [14]), and the functor K[−] is then fully faithful.

When K is an algebraically closed field of characteristic zero, as stated, the
functor K[−] is actually also a right adjoint to the functor G.

Grp
K[−]

⊤
//
HopfK,coc

G
oo

To see this, let H ∈ HopfK,coc. We define the H-component of the unit of this
second adjunction H −→ K[G(H)] as the morphism pH defined in Theorem 2.3.5.

We clearly have that pH is natural in H, and pH is universal since for every
morphism f : H −→ K[G] in the following diagram

0 // U(LH)

""❊
❊❊

❊❊
❊❊

❊❊
❊

iH // H
pH

//

f
""❊

❊❊
❊❊

❊❊
❊❊

K[GH]

∃! f
��

sH

oo // 0

0 // K[G]
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we have that f ◦ iH = 0U(LH),K[G] since primitive elements are preserved by Hopf
algebra morphisms and there are no non-trivial primitive elements in a group
Hopf algebra. By the universal property of the cokernel pH , we conclude that

there exists a unique morphism f : K[GH ] −→ K[G] such that the above diagram
commutes. Since the functor K[−] : Grp → HopfK,coc is fully faithful (as ex-
plained in the first part of the proof), the required universal property of the unit
of the adjunction is satisfied.

Proposition 2.3.7. Over an algebraically closed field K of characteristic 0, the functor

U : LieK → HopfK,coc

has both a right adjoint P and a left adjoint Q.

Proof. It is well-known, and recalled above, that the primitive elements functor P
is a right adjoint for the universal enveloping functor U : LieK → HopfK,coc.

To construct the left adjoint Q, take any cocommutative Hopf algebra H and
write H ∼= U(LH)⋊ K[G]. Consider the (set-theoretic) equivalence relation R on
LH given by (x, y) ∈ R if and only if g · x = y for some g ∈ GH. One can then
construct, in the variety of Lie algebras, the smallest congruence (i.e. equivalence
relation compatible with the Lie algebra operations) R containing R. Let us call
Q(H) the quotient of LH under the equivalence relation R, then by [9, Theorem
6.12] the canonical Lie algebra morphism F1 : LH → Q(H) satisfies the property
that any morphism of Lie algebras F : LH → L will factor through F1 if and only
if (x, y) ∈ R implies F(x) = F(y).

Now consider any Lie algebra L and a Hopf algebra morphism f : H → L.
Since f is completely determined by the image of the grouplike and primitive
elements and U(L) has only one grouplike element (to know, the unit), f is com-
pletely determined by the Lie algebra morphism F := P( f ) : LH → L and
f (g) = 1 for any grouplike element g ∈ H.

Furthermore, for any x ∈ LH and g ∈ GH, we find f ((1 ⊗ g)(x ⊗ 1)) =
f (1 ⊗ g) f (x ⊗ 1) = 1 f (x ⊗ 1) = F(x) and, on the other hand, we have
f ((1 ⊗ g)(x ⊗ 1)) = f (g.x ⊗ g) = f (g.x ⊗ 1) f (1 ⊗ g) = F(g.x). Hence we find by
the above that F factors through F1 and, accordingly, we have shown that

HomHopf(H, U(L)) ∼= HomLie(Q(H), L),

which means that Q defines a left adjoint for the universal enveloping functor.

2.4 Compatibility condition on semi-direct products

We now give an algebraic condition that will be useful to guarantee the existence
of a Hopf algebra morphism between semi-direct products.

First remark that a semi-direct product of cocommutative Hopf algebras
A ⋊ B, is generated as an algebra by the images of the Hopf algebra morphisms
i1 : A → A ⋊ B and i2 : B → A ⋊ B. Indeed, it is enough to observe that

(a ⊗ b) = (a ⊗ 1B)(1A ⊗ b)
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in A ⋊ B. In fact, this property might be seen as a consequence of [7, Proposition
11], which implies that given any split short exact sequence in a pointed proto-
modular category

0 // A
k // C

f
// B

s
oo // 0

the pair of morphisms (k, s) is jointly epimorphic.
The next proposition shows that the equivalence between split extensions and

actions for Hopf algebras is also valid on the morphism-level.

Proposition 2.4.1. Consider the solid diagram in the category HopfK,coc

0 // H1
//

f
��

H1 ⋊ H2
//

h
��

H2

g
��

//qq
0

0 // F2
// F1 ⋊ F2

// F2
//qq
0

where the sequences are split exact. We write ·H for the action of H2 on H1 and ·F for
the action of F2 on F1. Then there exists a morphism h : H1 ⋊ H2 → F1 ⋊ F2 making the
diagram commute if and only if f and g are compatible in the following sense:

f (y ·H x) = g(y) ·F f (x) ∀x ∈ H1, ∀y ∈ H2.

If these equivalent conditions hold, then h = f ⊗ g.

Proof. First remark that, by the observation just before this Proposition, if a Hopf
algebra morphism h as in the diagram exists, then necessarily

h(a ⊗ b) = h(a ⊗ 1H2
)h(1H1

⊗ b) = ( f (a) ⊗ 1F2
)(1F2

⊗ g(b)) = f (a)⊗ g(b),

for any a ⊗ b ∈ H1 ⊗ H2. This shows that h = f ⊗ g.
Furthermore, given any coalgebra morphisms f and g, the map f ⊗ g is a

coalgebra morphism since the coalgebra structure of the semi-direct product of
two cocommutative Hopf algebras is given by the tensor product coalgebra (i.e.
the categorical product in the category of cocommutative coalgebras).

Finally, f ⊗ g is an algebra morphism if and only if for all x, x′ ∈ H1, y, y′ ∈ H2,
we have:

( f ⊗ g)
(

(x ⊗ y)(x′ ⊗ y′)
)

=
(

( f ⊗ g)(x ⊗ y)
)(

( f ⊗ g)(x′ ⊗ y′)
)

.

Let us compute the left and right hand side of this expression, using the explicit
form of the multiplication in the semi-direct product and the fact that f and g are
Hopf algebra morphisms. We find that

( f ⊗ g)
(

(x ⊗ y)(x′ ⊗ y′)
)

= ( f ⊗ g)
(

x(y1 ·H x′)⊗ y2y′
)

= f
(

x(y1 ·H x′)
)

⊗ g(y2y′)

= f (x) f
(

y1 ·H x′
)

⊗ g(y2)g(y
′)

and
(

( f ⊗ g)(x ⊗ y)
)(

( f ⊗ g)(x′ ⊗ y′)
)

=
(

f (x)⊗ g(y)
)(

f (x′)⊗ g(y′)
)

= f (x)
(

g(y)1 ·F f (x′)
)

⊗ g(y)2g(y′)

= f (x)
(

g(y1) ·F f (x′)
)

⊗ g(y2)g(y
′).
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Therefore f ⊗ g is an algebra morphism if and only if

f (x) f
(

y1 ·H x′
)

⊗ g(y2)g(y
′) = f (x)

(

g(y1) ·F f (x′)
)

⊗ g(y2)g(y
′)

for all x, x′ ∈ H1 and y, y′ ∈ H2. If the compatibility condition holds, then clearly
this condition is satisfied. Conversely, take x = 1H1

and y′ = 1H2
and apply id ⊗ ǫ

to the above identity to obtain the compatibility condition.

3 Split extension classifiers in HopfK,coc

The aim of this section is to construct the split extension classifier [H] for a given
cocommutative Hopf algebra H in HopfK,coc over an algebraically closed field
of characteristic zero K. Thanks to the decomposition theorem for these Hopf
algebras, we only have to identify the grouplike and primitive elements of [H].
It might be not a big surprise that G([H]) will turn out to be exactly the group
AutHopf(H) of Hopf algebra automorphisms of H. The primitive elements of [H]
turn out to be what we will call Hopf derivations.

3.1 Hopf derivations

Definition 3.1.1. Let H be a Hopf algebra. A Hopf derivation on H is a linear
endomorphism ψ of H which is at the same time a derivation on H, i.e. ψ satisfies
the Leibniz rule

ψ ◦ M = M ◦ (ψ ⊗ id + id ⊗ ψ)

and a coderivation on H, i.e. it satisfies the co-Leibniz rule

∆ ◦ ψ = (ψ ⊗ id + id ⊗ ψ) ◦ ∆.

The set of all Hopf derivations on H is denoted by DerHopf(H).

Given elements x, y ∈ H, we can express the Leibniz and co-Leibniz rules for
a linear map ψ : H → H respectively as

ψ(xy) = ψ(x)y + xψ(y);

ψ(x)1 ⊗ ψ(x)2 = ψ(x1)⊗ x2 + x1 ⊗ ψ(x2).

It is well known that the derivations of an algebra form a Lie algebra by means
of the commutator bracket. We start this section with the observation that Hopf
derivations also form a Lie algebra.

Lemma 3.1.2. Let H be a Hopf algebra. Then DerHopf(H) is a Lie algebra for the com-
mutator bracket

[ψ1, ψ2] = ψ1 ◦ ψ2 − ψ2 ◦ ψ1 ∀ψ1, ψ2 ∈ DerHopf(H).
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Proof. As already mentioned, it is well-known that [ψ1, ψ2] is again a derivation
on H for all derivations ψ1 and ψ2. By duality, it follows that [ψ1, ψ2] is a coderiva-
tion for all coderivations ψ1 and ψ2. Explicitly, this is shown by the following
computation:

∆ ◦ [ψ1, ψ2] = ∆ ◦ (ψ1 ◦ ψ2 − ψ2 ◦ ψ1)

= (∆ ◦ ψ1) ◦ ψ2 − (∆ ◦ ψ2) ◦ ψ1

= (ψ1 ⊗ id + id ⊗ ψ1) ◦ (ψ2 ⊗ id + id ⊗ ψ2) ◦ ∆

−(ψ2 ⊗ id + id ⊗ ψ2) ◦ (ψ1 ⊗ id + id ⊗ ψ1) ◦ ∆

=
(

(ψ1 ◦ ψ2)⊗ id + ψ1 ⊗ ψ2 + ψ2 ⊗ ψ1 + id ⊗ (ψ1 ◦ ψ2)
)

◦ ∆

−
(

(ψ2 ◦ ψ1)⊗ id + ψ2 ⊗ ψ1 + ψ1 ⊗ ψ2 + id ⊗ (ψ2 ◦ ψ1)
)

◦ ∆

=
(

(ψ1 ◦ ψ2)⊗ id + id ⊗ (ψ1 ◦ ψ2)
)

◦ ∆

−
(

(ψ2 ◦ ψ1)⊗ id + id ⊗ (ψ2 ◦ ψ1)
)

◦ ∆

=
(

(ψ1 ◦ ψ2 − ψ2 ◦ ψ1)⊗ id + id ⊗ (ψ1 ◦ ψ2 − ψ2 ◦ ψ1)
)

◦ ∆

=
(

[ψ1, ψ2]⊗ id + id ⊗ [ψ1, ψ2]
)

◦ ∆.

Hence we find that, in particular, DerHopf(H) is a Lie algebra for the commutator
bracket.

The following known result for derivations and coderivations will be useful.

Lemma 3.1.3. Let H be a Hopf algebra and ψ ∈ DerHopf(H). Then ψ ◦ u = 0 and
ǫ ◦ ψ = 0.

Proof. Let u(1K) = 1H ∈ H be the unit of H. When ψ is a derivation we find that

ψ(1H) = ψ(1H1H) = ψ(1H)1H + 1Hψ(1H) = ψ(1H) + ψ(1H),

hence ψ(1H) = 0 and ψ ◦ u = 0. Similarly, since ψ is a coderivation, we have for
all z ∈ H,

ǫ
(

ψ(z)
)

= ǫ
(

ψ(z)1ǫ
(

ψ(z)2

)

)

= ǫ
(

ψ(z1)ǫ(z2) + z1ǫ
(

ψ(z2)
)

)

= ǫ
(

ψ(z1)ǫ(z2)
)

+ ǫ
(

z1ǫ
(

ψ(z2)
)

)

= ǫ
(

ψ(z)
)

+ ǫ
(

ψ(z)
)

.

It follows that ǫ ◦ ψ(z) = 0.

3.2 Construction of an action of K[AutHopf(H)] on U
(

DerHopf(H)
)

Given a Hopf algebra H, denote by AutHopf(H) the group of Hopf algebra auto-
morphisms of H, i.e. the group of bialgebra automorphisms (= bijective endomor-
phisms) of H.
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Lemma 3.2.1. For any φ ∈ AutHopf(H) and ψ ∈ DerHopf(H), the linear endomorphism

φ · ψ := φ ◦ ψ ◦ φ−1 is a Hopf derivation on H, i.e. there is a map

ρ : AutHopf(H)×DerHopf(H) −→ DerHopf(H), ρ(φ, ψ) := φ ◦ ψ ◦ φ−1.

Proof. Let us first check that φ ◦ ψ ◦ φ−1 is indeed a derivation. For any x, y ∈ H
we find

(φ ◦ ψ ◦ φ−1)(xy) = (φ ◦ ψ)
(

φ−1(x)φ−1(y)
)

= φ
(

ψ
(

φ−1(x)
)

φ−1(y) + φ−1(x)ψ
(

φ−1(y)
)

)

= (φ ◦ ψ ◦ φ−1)(x)y + x(φ ◦ ψ ◦ φ−1)(y).

In the above equalities, we have used the fact that φ and φ−1 are algebra mor-
phisms, and that ψ is a derivation. Again, by duality, it follows that φ ◦ ψ ◦ φ−1 is
a coderivation as well. Let us give the explicit proof for sake of clarity:

∆ ◦ (φ · ψ) = ∆ ◦ φ ◦ ψ ◦ φ−1

= (φ ⊗ φ) ◦ ∆ ◦ ψ ◦ φ−1

= (φ ⊗ φ) ◦ (ψ ⊗ id + id ⊗ ψ) ◦ ∆ ◦ φ−1

= (φ ⊗ φ) ◦ (ψ ⊗ id + id ⊗ ψ) ◦ (φ−1 ⊗ φ−1) ◦ ∆

=
(

(φ ◦ ψ ◦ φ−1)⊗ id + id ⊗ (φ ◦ ψ ◦ φ−1)
)

◦ ∆

=
(

(φ · ψ)⊗ id + id ⊗ (φ · ψ)
)

◦ ∆

In the above equalities, we have used the fact that φ and φ−1 are coalgebra mor-
phisms, and that ψ is a coderivation.

Lemma 3.2.2. The map ρ from Lemma 3.2.1 induces a linear map

ρ : K[AutHopf(H)]⊗ U
(

DerHopf(H)
)

−→ U
(

DerHopf(H)
)

defined by ρ(φ⊗ψ) := ρ(φ, ψ) = φ ◦ψ ◦φ−1 for φ ∈ AutHopf(H) and ψ ∈ DerHopf(H).

Proof. First remark that the map ρ : AutHopf(H) × DerHopf(H) → DerHopf(H) is
K-linear in the second argument. Therefore, we find by linear extension a bilinear
map K[AutHopf(H)] × DerHopf(H) → DerHopf(H) which in turn induces a linear
map ρ′ : K[AutHopf(H)]⊗ DerHopf(H) → DerHopf(H).

Fix any φ ∈ AutHopf(H). Then the induced morphism ρφ : DerHopf(H) →
DerHopf(H) defined by ρφ(ψ) = ρ′(φ ⊗ ψ) = ρ(φ, ψ) is a Lie algebra morphism.
Indeed:

φ · [ψ, ψ
′
] = φ · (ψ ◦ ψ

′
− ψ

′
◦ ψ)

= φ ◦ ψ ◦ ψ
′
◦ φ−1 − φ ◦ ψ

′
◦ ψ ◦ φ−1

= [φ ◦ ψ ◦ φ−1, φ ◦ ψ
′
◦ φ−1]

= [φ · ψ, φ · ψ
′
].

Hence ρφ gives rise to an algebra map ρφ : U
(

DerHopf(H)
)

→ U
(

DerHopf(H)
)

.

We can now define ρ : K[AutHopf(H)] ⊗ U
(

DerHopf(H)
)

→ U
(

DerHopf(H)
)

as

ρ(φ ⊗ x) = ρφ(x) for φ ∈ AutHopf(H) and x ∈ U
(

DerHopf(H)
)

.
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Proposition 3.2.3. The map ρ from Lemma 3.2.2 defines an action of Hopf algebras
of K[AutHopf(H)] on U

(

DerHopf(H)
)

. Accordingly, this action corresponds to a split

exact sequence via the semidirect product U
(

DerHopf(H)
)

⋊ρ K[AutHopf(H)], that we
will denote by [H].

Proof. We have to verify that ρ satisfies the axioms of an action of cocommutative
Hopf algebras (Definition 2.3.1). Axiom 3 and Axiom 4 follow immediately from
the construction of ρ in the proof of Lemma 3.2.2. Indeed, by construction for any
φ ∈ K[AutHopf(H)], the map ρφ is an algebra morphism, which expresses exactly

Axiom 3 and Axiom 4. As a consequence, it is enough to verify the remaining
axioms on base elements of the vector space K[AutHopf(H)] (i.e. elements φ ∈
AutHopf(H)) and generators of the algebra U

(

DerHopf(H)
)

(i.e. elements of the
form ψ ∈ DerHopf(H)).

• (Axiom 1) idK[AutHopf(H)] · ψ = ψ;

• (Axiom 2) (φ ◦ φ
′
) · ψ = φ ◦ φ

′
◦ ψ ◦ φ

′−1 ◦ φ−1 = φ · (φ
′
· ψ);

• (Axiom 5) Remark that any φ ∈ AutHopf(H) is a grouplike element of
K[AutHopf(H)] and any ψ ∈ DerHopf(H) is a primitive element in
U
(

DerHopf(H)
)

. Since φ · ψ ∈ DerHopf(H) this is as well a primitive element

in U
(

DerHopf(H)
)

. Hence we obtain

(φ · ψ)1 ⊗ (φ · ψ)2 = ∆(φ · ψ) = (φ · ψ)⊗ id + id ⊗ (φ · ψ)

and

(φ1 · ψ1)⊗ (φ2 · ψ2) = (φ · ψ)⊗ (φ · id) + (φ · id)⊗ (φ · ψ)

= (φ · ψ)⊗ id + id ⊗ (φ · ψ),

from which the axiom follows.

• (Axiom 6) We have ǫ(φ · ψ) = 0 = ǫ(φ)ǫ(ψ) since φ · ψ and ψ are primitive
elements.

3.3 Construction of an action of [H] on H

Proposition 3.3.1. Let H be a Hopf algebra and consider the Hopf algebra [H] =
U
(

DerHopf(H)
)

⋊ρ K[AutHopf(H)] from Proposition 3.2.3. The map

⋆ : [H]⊗ H −→ H

given by
(ψ ⊗ φ) ⋆ h := ψ

(

φ(h)
)

,

for any ψ ∈ DerHopf(H) and φ ∈ AutHopf(H) turns H into an [H]-module Hopf algebra.

Proof. Let us check that ⋆ satisfies the axioms of a module Hopf algebra (Defini-
tion 2.3.1).
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• (Axiom 1)
(

id
U
(

DerHopf (H)
) ⊗ idK[AutHopf(H)]

)

⋆ h = h.

• (Axiom 2) One has the equalities

(ψ ⊗ φ)(ψ
′
⊗ φ

′
) ⋆ h =

(

ψ⊗(φ ·ρ ψ
′
)⊗ (φ ◦ φ

′
)
)

(h)

= (ψ ◦ φ ◦ ψ
′
◦ φ−1 ◦ φ ◦ φ

′
)(h)

= (ψ ⊗ φ) ⋆
(

(ψ
′
⊗ φ

′
) ⋆ h

)

.

Here we denoted by ⊗ the multiplication in the universal enveloping
algebra U

(

DerHopf(H)
)

.

• (Axiom 3) First remark that for any φ ∈ AutHopf(H) and ψ ∈ DerHopf(H) we
have

∆(ψ ⊗ φ) = (id ⊗ σ ⊗ id)
(

∆(ψ)⊗ ∆(φ)
)

= (id ⊗ σ ⊗ id)((ψ ⊗ 1 + 1 ⊗ ψ)⊗ (φ ⊗ φ))

= ψ ⊗ φ ⊗ id ⊗ φ + id ⊗ φ ⊗ ψ ⊗ φ

where we used that φ is grouplike and ψ is primitive. Then we can now
verify the axiom.

(ψ ⊗ φ) ⋆ hh′ = ψ
(

φ(hh′)
)

= ψ
(

φ(h)φ(h′)
)

= ψ(φ(h))φ(h′) + φ(h)ψ(φ(h′)),

=
(

(ψ ⊗ φ) ⋆ h)
(

(id ⊗ φ) ⋆ h′
)

+
(

(id ⊗ φ) ⋆ h)
(

(ψ ⊗ φ) ⋆ h′
)

=
(

(ψ ⊗ φ)1 ⋆ h
)(

(ψ ⊗ φ)2 ⋆ h′
)

where we used that φ is an algebra morphism in the second equality and
that ψ is a derivation in the third equality.

• (Axiom 4) The right-hand side of the equality is given by

(ψ ⊗ φ) ⋆ 1H = ψ
(

φ(1H)
)

= ψ(1H) = 0,

where we applied Lemma 3.1.3. The left-hand side of the equality is given
by

ǫ(ψ ⊗ φ)1H = ǫ(ψ)ǫ(φ)1H = 0

where used ǫ(ψ) = 0 since ψ is a primitive element of U
(

DerHopf(H)
)

.

• (Axiom 5) The left-hand side of the identity to be checked is given by

(

(ψ ⊗ φ) ⋆ h
)

1
⊗

(

(ψ ⊗ φ) ⋆ h
)

2
= ∆

(

(ψ ⊗ φ) ⋆ h
)

= ∆ ◦ ψ ◦ φ(h)

= (ψ ⊗ id + id ⊗ ψ) ◦ ∆ ◦ φ(h)

= (ψ ⊗ id + id ⊗ ψ) ◦ (φ ⊗ φ) ◦ ∆(h)

=
(

(ψ ◦ φ)⊗ φ + φ ⊗ (ψ ◦ φ)
)

◦ ∆(h).
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On the other hand, since

∆(ψ ⊗ φ) = ψ ⊗ φ ⊗ id ⊗ φ + id ⊗ φ ⊗ ψ ⊗ φ,

the right-hand side of the identity is given by
(

(ψ ⊗ φ)1 ⋆ h1

)

⊗
(

(ψ ⊗ φ)2 ⋆ h2

)

=
(

(ψ ⊗ φ) ⋆ h1

)

⊗
(

(id ⊗ φ) ⋆ h2

)

+
(

(id ⊗ φ) ⋆ h1

)

⊗
(

(ψ ⊗ φ) ⋆ h2

)

= ψ
(

φ(h1)
)

⊗ φ(h2) + φ(h1)⊗ ψ
(

φ(h2)
)

=
(

(ψ ◦ φ)⊗ φ + φ ⊗ (ψ ◦ φ)
)

◦ ∆(h).

• (Axiom 6) The right-hand side of the identity is given by

ǫ(ψ ⊗ φ)ǫ(h) = ǫ(ψ)ǫ(φ)ǫ(h) = 0

where we used again that ǫ(ψ) = 0 since ψ is a primitive element. The
left-hand side of the identity is given by

ǫ
(

(ψ ⊗ φ) ⋆ h
)

= ǫ ◦ ψ ◦ φ(h) = 0

where we used Lemma 3.1.3.

3.4 Universal property of the split extension classifier

The aim of this section is to prove that for a given cocommutative Hopf algebra
H, the Hopf algebra [H] constructed in Proposition 3.2.3 together with its action
on H defined in Proposition 3.3.1 is exactly the split extension classifier of H in
HopfK,coc, i.e. it satisfies the universal property recalled in the introduction.

Theorem 3.4.1. For any algebraically closed field K of characteristic 0, the split exten-
sion classifier of any cocommutative Hopf K-algebra H is given by

[H] = U
(

DerHopf(H)
)

⋊ρ K
[

AutHopf(H)
]

where
ρ : K[AutHopf(H)]⊗ U

(

DerHopf(H)
)

−→ U
(

DerHopf(H)
)

is defined by

ρ(φ ⊗ ψ) := φ · ψ = φ ◦ ψ ◦ φ−1

on the generators of K[AutHopf(H)]⊗ U
(

DerHopf(H)
)

.

Proof. Recall from Proposition 3.3.1 that [H] acts on H by ⋆, and therefore we have
the following split exact sequence in HopfK,coc

0 // H
i1 // H ⋊⋆ [H]

p2

// [H] //
i2oo 0 (3.1)

Consider now any split exact sequence in HopfK,coc of the form

0 // H // B // Aoo // 0. (3.2)
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By applying the semi-direct product decomposition of A recalled in Theorem
2.3.5, and by using Lemma 2.3.3, the split exact sequence (3.2) is isomorphic to
the following split exact sequence in HopfK,coc.

0 // H k // H ⋊A

(

U(LA)⋊ K[GA]
)

f
// U(LA)⋊ K[GA]

soo // 0.

We have to show that there is a unique morphism of split exact sequences
from (3.2) to (3.1). To this end, we will first construct a morphism

χ : U(LA)⋊ K[GA] −→ U
(

DerHopf(H)
)

⋊ρ K
[

AutHopf(H)
]

compatible with the morphism idH (i.e. such that the following diagram
commutes, see Proposition 2.4.1), and then prove the uniqueness of such a mor-
phism χ.

0 // H
k // H ⋊A

(

U(LA)⋊ K[GA]
)

f
//

idH⊗χ

��

U(LA)⋊ K[GA]

χ

��

//
soo

0

0 // H
i1 // H ⋊⋆

(

U
(

DerHopf (H
)

)⋊ρ K
[

AutHopf (H)
]

)

p2

// U
(

DerHopf (H)
)

⋊ρ K
[

AutHopf (H)
]

//
i2oo

0

(3.3)
Step 1: Existence of χ.

a) Construction of a group morphism χG : GA −→ AutHopf(H).

If ρ : A ⊗ H → H is the action of A on H induced by the split exact sequence
(3.2), defined by ρ(a ⊗ h) = a · h, one has a group homomorphism defined by
χG : GA −→ AutHopf(H) : χG(g)(h) := g · h, for any g ∈ GA and h ∈ H.

Let us first check that ∀g ∈ GA, the map χG(g) is an endomorphism of Hopf
algebras of H:

• χG(g) is an algebra morphism since ∀h, h′ ∈ H we have

χG(g)(hh′) = g · (hh′) = (g1 · h)(g2 · h′)

= (g · h)(g · h′) =
(

χG(g)(h)
)(

χG(g)(h
′)
)

χG(g)(1H) = g · 1H = ǫ(g)1H = 1H

by axioms 3 and 4 of an action of cocommutative Hopf algebras and by the
fact that g is a group-like element of H.

• χG(g) is a coalgebra morphism since for all h ∈ H we have

∆
(

χG(g)(h)
)

= ∆
(

g · h) = (g · h)1 ⊗ (g · h)2

= (g1 · h1)⊗ (g2 · h2) = (g · h1)⊗ (g · h2)

=
(

χG(g)⊗ χG(g)
)

∆(h)

ǫ
(

χG(g)(h)
)

= ǫ(g · h) = ǫ(g)ǫ(h) = ǫ(h)

by the axioms 5 and 6 of an action of cocommutative Hopf algebras and by
the fact that g is a group-like element of H.
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So far, we have proven that there is a well-defined map χG : GA → EndHopf(H).
Let us show now that χG is moreover a monoid morphism.

• indeed: for all g, g′ ∈ G and h ∈ H, we have
(

χG(g
′) ◦ χG(g)

)

(h) = g′ · (g · h)=(g′g) · h = χG(g
′g)(h)

where the second equality follows follows axiom 2. Observe that the map
χG preserves the neutral element by axiom 1.

In particular, it follows that χG(g
−1) = χG(g)

−1 and therefore, χG(g) is an auto-
morphism of Hopf algebras for all g ∈ G, i.e. χG : GA → AutHopf(H) is a group
morphism as stated.

b) Construction of a Lie algebra morphism χL : LA −→ DerHopf(H).

Consider again the action of A on H, ρ : A ⊗ H → H, with ρ(a ⊗ h) = a · h and
define χL : LA → EndL(H), χL(x)(h) = x · h for all x ∈ LA and h ∈ L. Let us
prove that χL(x) is a Hopf derivation in H for all x ∈ LA.

• χL(x) is a derivation since we have for all h, h′ ∈ H

χL(x)(hh′) = (x1 · h)(x2 · h′)

= (x · h)(1 · h′) + (1 · h)(x · h′)

= (x · h)h′ + h(x · h′)

= χL(x)(h)h
′ + hχL(x)(h

′)

by axiom 1 and 3 of an action of cocommutative Hopf algebras and by the
fact that x is a primitive element.

• Dually, we find that χL(x) is a coderivation . Explicitly, this follows since
we have for all h ∈ H,

(

∆ ◦ χL(x)
)

(h) = ∆(x · h)

= (x · h)1 ⊗ (x · h)2

=
(

x1 · h1

)

⊗
(

x2 · h2

)

=
(

x · h1

)

⊗
(

1 · h2

)

+
(

1 · h1

)

⊗
(

x · h2

)

=
(

x · h1

)

⊗ h2 + h1 ⊗
(

x · h2

)

= χL(x)(h1)⊗ h2 + h1 ⊗ χL(x)(h2)

=
(

χL(x)⊗ id + id ⊗ χL(x)
)

◦ ∆(h)

In the above equalities, we have used the axioms 1 and 5 of an action of
cocommutative Hopf algebras, and the fact that x is a primitive element.

Hence χL : LA → DerHopf(H) is well-defined. Furthermore, ∀x, y ∈ LA, ∀h ∈ H,
one has:

χL[x, y](h) = χL(xy − yx)(h)

= (xy − yx) · h

= (xy) · h − (yx) · h

= x · (y · h)− y · (x · h)

=
(

χL(x) ◦ χL(y)− χL(y) ◦ χL(x)
)

(h)

=
[

χL(x), χL(y)
]

(h)
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where we used the axiom 2 of action of cocommutative Hopf algebras. Therefore,
χL : LA → DerHopf(H) is a morphism of Lie algebras.

c) Compatibility between group and Lie algebra part.

Let us check that the morphisms

U(χL) : U(LA) −→ U
(

DerHopf(H)
)

and
K[χG] : K[GA] −→ K

[

AutHopf(H)
]

satisfy the compatibility condition (Proposition 2.4.1). We denote the action of
K[GA] on U(LA) by ·A. Recall from Example 2.3.4 (4) that g ·A x = gxg−1 for all
∀g ∈ GA, ∀x ∈ LA. Then for all h ∈ H we find

χL(g ·A x)(h) = (g ·A x) · h = (gxg−1) · h

= g ·
(

x · (g−1 · h)
)

=
(

χG(g) ◦ χL(x) ◦ χG(g
−1)

)

(h)

=
(

χG(g) ·ρ̄ χL(x)
)

(h)

where we applied again axiom 2 of a Hopf algebra action. As a consequence
we obtain the morphisms U(χL) and K[χG] can be recombined to define a Hopf
algebra morphism χ := U(χL)⊗ K[χG] : A → [H].

d) Compatibility between idH and χ.

We will now check that also the morphisms idH and χ satisfy the compatibility
condition (Proposition 2.4.1). Indeed, for a generator x ⊗ g ∈ U(LA)⋊A K[GA],
with x ∈ LA and g ∈ GA, associated with the element xg ∈ A by the isomorphism
of Cartier-Gabriel-Konstant-Milnor-Moore (Theorem 2.3.5), and for all h ∈ H, one
has:

(

χ(xg)
)

·⋆ idH(h) =
(

U(χL)(x)⊗ K[χG](g)
)

·⋆ idH(h)

=
(

χL(x) ◦ χG(g)
)

(h) = x · (g · h)

= (xg) · h = idH

(

(xg) · h
)

by the axiom 2 of an action of cocommutative Hopf algebras.
Step 2: The uniqueness of χ.

It remains to prove the uniqueness of the morphism χ. For this, consider two

other morphisms ξ and ξ making the following diagram commute

0 // H
k // H ⋊A

(

U(LA)⋊ K[GA]
)

f
//

ξ

��

U(LA)⋊ K[GA]

ξ

��

//
soo 0

0 // H
i1 // H ⋊⋆

(

U
(

DerHopf (H
)

)⋊ρ K
[

AutHopf (H)
]

)

p2

// U
(

DerHopf (H)
)

⋊ρ K
[

AutHopf (H)
]

//
i2oo 0

(3.4)

By Proposition 2.4.1 we know that ξ = idH ⊗ ξ and idH and ξ are compatible,
hence we obtain for all a ∈ A and h ∈ H the following equality in H

ξ(a) ·⋆ h = a · h = χ(a) ·⋆ h.
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The morphism ξ induces a group homomorphism ξG : GA → AutHopf(H) and a
Lie algebra homomorphism ξL : LA → DerHopf(H). We see that for all x ∈ LA and
g ∈ GA

ξL(x)(h) = χL(x)(h),

and
ξG(g)(h) = χG(g)(h).

Therefore, since A = U(LA)⋊ K[GA], we find that ξ = χ.

4 Centers and centralizers in HopfK,coc

In the last section we compare the categorical notions of center and centralizer
in the semi-abelian category HopfK,coc with the ones recently introduced in the
context of general Hopf algebras.

4.1 Centers and centralizers in semi-abelian action representable cate-

gories

Recall that the center of a group G, denoted by Z(G), is defined by

Z(G) = {x ∈ G, xg = gx ∀g ∈ G}.

More generally, the centralizer CG(H) of a subgroup H of a group G is the set of
elements of G which commute with every element of H, i.e.

CG(H) = {x ∈ G, xh = hx ∀h ∈ H}.

The center of a group G is the kernel of the conjugation map, i.e. the kernel of
the morphism φ : G −→ Aut(G), where φ(x) is defined by φ(x)(y) = xyx−1,
∀x, y ∈ G. In the same way, the centralizer of a subgroup H of a group G is the
kernel of the morphism φ : H −→ Aut(G), where φ(h) is defined by φ(h)(g) =
hgh−1, ∀h ∈ H, ∀g ∈ G.

In the category LieK of K-Lie algebras the notions of center and of centralizer
are defined similarly. The center of a Lie algebra L, denoted by Z(L), is the ideal

Z(L) = {x ∈ L, [x, a] = 0 ∀a ∈ L}

whereas the centralizer CL(I) of a Lie subalgebra I of a Lie algebra L is the ideal of the
elements that commute with every element of I, i.e.

CL(I) = {x ∈ L, [x, i] = 0 ∀i ∈ I}.

As in the case of groups, also in LieK these subalgebras occur as kernels of
suitable morphisms. Indeed, the center of a Lie algebra L is the kernel of the
adjoint representation, i.e. of the Lie algebra homomorphism ad : L −→ End(L)
defined by

ad(x) := [x,−], ∀x ∈ L.
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The centralizer of a Lie subalgebra I of L is the kernel of the homomorphism

ad : I −→ End(L)

defined by
ad(l) := [l,−], ∀l ∈ I.

In the context of action representable semi-abelian categories A. Cigoli and
S. Mantovani gave a description of the center and of the centralizer of a normal
subobject [8, 11] that is similar to the one just recalled in the categories of groups
and of Lie algebras. If h : H → A is a normal subobject of A, the quotient map will
be denoted by p : A → A/H, whereas

(

Eq(p), p1 , p2

)

will denote the equivalence
relation on A occurring as the kernel pair of p, so that p1 and p2 are the projections
in the following pullback:

Eq(p)
p2

//

p1

��

A

p

��
A p

// A/H

We write ∆ : A −→ Eq(p) for the unique morphism such that p1 ◦ ∆ = 1A =
p2 ◦ ∆, and CA(H) for the centralizer of the normal subobject H of A, that is the
largest subobject of A that centralizes H, in the sense that [H, A] = 0 (see [8]),
where [H, A] denotes the categorical commutator in the sense of Huq [15]. The
following theorem by Cigoli and Mantovani characterizes centralizers and cen-
ters in semi-abelian action representable categories. In the present paper we will
use this equivalent formulation as the definition of centralizer and center, respec-
tively.

Theorem 4.1.1. [11] In any semi-abelian action representable category the centralizer
CA(H) of a normal subobject H of A is the kernel of the unique morphism χ induced by
the universal property of the split extension classifier [H] of H:

0 // H
HKer(p1)

// Eq(p)
p1

//

χ
��

A

χ

��

//
∆oo 0

0 // H
i1 // H ⋊⋆ [H]

p2

// [H] //
i2oo 0

(4.1)

The center Z(A) of an object A is the centralizer of A in A:

Z(A) = CA(A).

Of course, in the case of the category of groups (resp. of the category of Lie
algebras), the upper split extension sequence in Diagram 4.1 gives rise to the
conjugation action of A on X (resp. to the adjoint representation). For instance, in
the case of groups the action of an element a ∈ A on an element x ∈ H is defined
by

a · x = ∆(a)HKer(p1)(x)∆(a)
−1 = (a, a)(1, x)(a−1 , a−1) = (1, axa−1),

which is exactly the conjugation action, by identifying the element x with its
image HKer(p1)(x) = (1, x) via the kernel map of p1. In this way the classical
notion of centralizer is recovered.
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4.2 Centers and centralizers in HopfK,coc

From now on K will always denote an algebraically closed field of zero charac-
teristic. Let H be a normal Hopf subalgebra of a cocommutative Hopf algebra A.
Then one can construct the augmentation ideal H+ = {h ∈ H | ǫH(h) = 0} of H,
and the quotient Hopf algebra A/J, where J = AH+A is the ideal in A generated
by H+, which is moreover a Hopf ideal. We write p : A → A/J for the canonical
projection map. The pullback Eq(p) = A ×H A of p along itself can be computed
explicitly in the category HopfK,coc as follows:

Eq(p) = {a ⊗ a′ ∈ A ⊗ A | p(a1)⊗ a2 ⊗ a′ = p(a′1)⊗ a ⊗ a′2 ∈ A/J ⊗ A ⊗ A}.

The projections p1, p2 : A×H A → A are given respectively by p1(a⊗ a′) = aǫ(a′)
and p2(a ⊗ a′) = ǫ(a)a′ for all a ⊗ a′ ∈ A ×H A. As explained above, we can then
consider the unique morphism ∆ : A → A×H A satisfying p1 ◦∆ = idA = p2 ◦∆,
which is exactly given by the corestriction of the comultiplication A → A × A of
A.
We know that a kernel of p1 is the morphism HKer(p1) : H → Eq(p) defined by
HKer(p1)(x) = 1 ⊗ x, for any x ∈ H. Since p1 is a split epimorphism in the semi-
abelian category HopfK,coc, it is necessarily the cokernel of its kernel, so that the
following sequence is exact:

0 // H
HKer(p1)

// Eq(p)
p1

// A //
∆oo 0. (4.2)

From Lemma 2.3.3 it follows that this split exact sequence is isomorphic to the
split exact sequence in the following commutative diagram

0 // H
HKer(p2)

// H ⋊ A
p2

// A //
i2oo 0, (4.3)

where the action of A on H is exactly the one recalled in Example 2.3.4.(3). It
follows that there is no restriction (up to isomorphism) in replacing diagram (4.1)
with the following one

0 // H
HKer(p2)

// H ⋊ A
p2

//

χ
��

A

χ

��

//
i2oo 0

0 // H
i1 // H ⋊⋆ [H]

p2

// [H] //
i2oo 0,

(4.4)

and the centralizer CA(H) in HopfK,coc of a normal Hopf subalgebra H of A will be
given by the kernel of χ in the following morphism of split extensions
(by Theorem 3.4.1):

0 // H
HKer(p2)

// H ⋊ A
p2

//

χ

��

A ∼= U(LA)⋊A K[GA]

χ=U(χL)⊗K[χG]
��

//
i2oo 0

0 // H
i1 // H ⋊⋆ [H]

p2

// [H] = U
(

DerHopf(H)
)

⋊ρ K
[

AutHopf(H)
]

//
i2oo 0
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In order to describe the centralizer CA(H) we have to compute the kernel of χ in
the category HopfK,coc, denoted by HKer(χ). We are going to show that

HKer(χ) = HKer
(

U(χL)⊗ K[χG]
) ∼= HKer

(

U(χL)
)

⋊A HKer
(

K[χG]
)

.

This is proved by computing the kernels of U(χL), χ and K[χG] in the following
commutative diagram

0 // U(LA)
iA //

U(χL)
��

U(LA)⋊A K[GA]
pA

//

χ=U(χL)⊗K[χG]
��

K[GA]

K[χG]
��

//
sAoo 0

0 // U
(

DerHopf(H)
)

i[H]
// U

(

DerHopf(H)
)

⋊ρ K
[

AutHopf(H)
]

p[H]

// K
[

AutHopf(H)
]

//
s[H]
oo 0

obtaining the following commutative diagram

0

��

0

��

0

��

HKer
(

U(χL)
)

HKer
(

U(χL)
)

��

i // HKer(χ)

HKer(χ)
��

p
// HKer

(

K[χG]
)

HKer
(

K[χG]
)

��

soo

0 // U(LA)
iA //

U(χL)
��

U(LA)⋊A K[GA]
pA

//

χ=U(χL)⊗K[χG]
��

K[GA]

K[χG]
��

//
sAoo 0

0 // U
(

DerHopf(H)
)

i[H]
// U

(

DerHopf(H)
)

⋊ρ K
[

AutHopf(H)
]

p[H]

// K
[

AutHopf(H)
]

//
s[H]
oo 0

where the upper row is easily seen to be a split short exact sequence. Let us now
show that

HKer
(

K[χG]
)

= K
[

kerGrp(χG)
]

,

and
HKer

(

U(χL)
)

= U
(

kerLie(χL)
)

.

Proposition 4.2.1. If f : G −→ G′ is a group homomorphism and ker( f ) its kernel in
Grp, then the Hopf kernel HKer( f ) of f = K[ f ] : K[G] −→ K[G′] in HopfK,coc is

given by K
[

ker( f )
]

.

Proof. This is an immediate consequence of Proposition 2.3.6, since right adjoint
functors between pointed finitely complete categories preserve kernels.

Proposition 4.2.2. Let f : L −→ L′ be a Lie K-algebra morphism and ker( f ) its ker-
nel in the category of Lie K-algebras. Then the Hopf kernel HKer( f ) of f = U( f ) :
U(L) −→ U(L′) in HopfK,coc is given by U

(

ker( f )
)

.

Proof. Again this is an immediate consequence of the fact that right adjoint func-
tors between pointed finitely complete categories preserve kernels, together with
Proposition 2.3.7 (one can also verify this property directly, by checking that
U
(

ker( f )
)

= HKer
(

U( f )
)

).

One can then compute HKer(χ) by computing kerLie(χL) and kerGrp(χG) and
obtain the following:
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Theorem 4.2.3. Given a normal subalgebra H of A ∈ HopfK,coc, the centralizer CA(H)
in the category of cocommutative Hopf algebras is given by

CA(H) = U
(

kerLie(χL))⋊A K
[

kerGrp(χG)
]

where

kerLie(χL) = {x ∈ LA such that [x, h] = 0, for all h ∈ H}

and

kerGrp(χG) = {g ∈ GA such that gh = hg, for all h ∈ H}.

Let us finally mention a result that follows immediately from a more general
one in the general context of an action representable semi-abelian category C [12].
Recall that a subobject F of G in C is called a characteristic subobject of G if, when-
ever G is a normal subobject in H for some object H in C, then F is also normal as
a subobject in H (see Remark 2.6 in [12]).

Proposition 4.2.4. For every normal Hopf subalgebra K of H, the centralizer ZH(K) of
K in H is a normal Hopf subalgebra in H. Moreover, the center Z(H) is a characteristic
Hopf subalgebra of H.

4.3 Arbitrary Hopf algebra centers

N. Andruskiewitsch [1] introduced the following definition of the center for an
arbitrary (not necessarily cocommutative) Hopf algebra (see also [10]).

Definition 4.3.1. Let A be any Hopf algebra. The Hopf algebra center HZ(A) of A
is the largest Hopf subalgebra of A contained in the algebraic center Zalg(A) of
A:

Zalg(A) = {x ∈ A s.t. xy = yx ∀y ∈ A}.

A. Chirvasitu and P. Kasprzak observe in [10, Theorem 2.2] that in the case of
a Hopf algebra A with bijective antipode (which holds for example in the cocom-
mutative context), the Hopf algebra center of A can be described as:

HZ(A) = {x ∈ A | ∆(x) ∈ A ⊗ Zalg(A)}.

Our final result shows that the Hopf algebra center in the sense of Andruskie-
witsch coincides with the categorical notion of a center for cocommutative Hopf
algebras over an algebraically closed field of characteristic zero.

Proposition 4.3.2. Given a cocommutative Hopf algebra A, then

Z(A) = HZ(A).

Here, Z(A) = HKer(χ) denotes the categorical center of A, where χ : A −→ [A] is
the unique morphism associated with the action of A on itself by conjugation. Writing
χ := U(χL)⊗ K[χG], we have

Z(A) = U
(

kerLie(χL)
)

⋊A K
[

kerGrp(χG)
]

where
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kerLie(χL) = {x ∈ LA such that [x, a] = 0, for all a ∈ A}

and

kerGrp(χG) = {g ∈ GA such that ga = ag, for all a ∈ A}.

Proof. The explicit description of the categorical center Z(A) follows directly from
Theorem 4.2.3.

Let us first prove that Z(A) ⊆ HZ(A). An element x ∈ A is in
Z(A) = HKer(χ) if and only if χ(x1)⊗ x2 = id[A] ⊗ x ∈ [A] ⊗ A. Let us prove

that x ∈ Zalg(A), i.e. xy = yx, ∀y ∈ A. To this end, denote the action of [A] on A
by

ρ : [A]⊗ A → A, ρ(u ⊗ x) = u.x

and define the following map for any y ∈ A

ry : [A]⊗ A → A, ry(u ⊗ x) = (u.y)x.

We have ry(id[A] ⊗ x) = idA(y)x = yx, and

ry

(

χ(x1)⊗ x2

)

= χ(x1)(y)x2

= x1yS(x2)x3

= x1yǫ(x2)

= xy.

We obtain that Z(A) ⊂ Zalg(A). Since Z(A) is a Hopf subalgebra of A, and
HZ(A) is the largest Hopf subalgebra in Zalg(A), it follows that Z(A) ⊆ HZ(A).

On the other hand, taking any a ∈ HZ(A) ⊂ Zalg(A), we find for any other
b ∈ A that the conjugate action of a on b is trivial:

a · b = a1bS(a2) = ba1S(a2) = bǫ(a)

Consequently, we find that χ composed with the inclusion map HZ(A) ⊂ A is the
zero morphism in HopfK,coc. By the universal property of the kernel HKer(χ) =
Z(A) we find, for any other b ∈ A, that HZ(A) ⊂ Z(A) and both have to be
equal.
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