On (t — 1)-colored paths in t-colored complete
graphs®

Amir Khamseh

Abstract

Given t distinct colors, we order the t subsets of { — 1 colors in some
arbitrary manner. Let Gy, Gy, ..., G; be graphs. The (t — 1)-chromatic Ram-
sey number, denoted by rf_l (G1,Gy, ..., Gy),is defined to be the least number
n such that if the edges of the complete graph K,, are colored in any fashion
with t colors, then for some i the subgraph whose edges are colored with
the ith subset of colors contains a G;. In this paper, we find the value of
r3(Gy, ..., Gs) when each G; is a path.

1 Introduction

At first, let us fix some notation and introduce some terminology. If G is a graph,
V will denote its vertex set and E its edge set. The number of vertices of G is
denoted by |G|. As usual, P; is a path on 7 vertices and C; is a cycle of length i.
Recall that a t-coloring of the edges of G is a partition of E into ¢ classes. Typically
weusel,2,...,tas the set of colors. For every coloring of the edges of G, E. is the
set of edges in color ¢ and for x € V, d.(x) is the number of edges incident to x
in color c¢. An s-colored graph G is a graph whose edges are colored with a set of
s colors. In particular Py, ¢, . ) and Ci(c, ¢, .. c.) Tespectively denote a path and a
cycle with i vertices whose edges are colored in ¢y, ¢y, . . ., ¢s.

Let G1,Gy,...,G; be graphs. Then r(Gy, Gy, ...,Gt) denotes the classical
t-color Ramsey number for these graphs and is defined as the least integer 1 such
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that, in any coloring of the edges of the complete graph K, with ¢ colors 1,2, ..., ¢
for some i the subgraph induced by color i contains a copy of G;. In particular
(G, Gp) is the smallest integer n such that in any two-coloring of the edges of
the complete graph Kj, there is a monochromatic copy of G; in the first color or a
monochromatic copy of Gy in the second color. Note that any re-ordering of the
components of (Gy, Gy, ..., G) in the above definition will have no effect on the
value of n. The two-color Ramsey number of paths was determined by Gerencsér
and Gyarfés.

Theorem 1.1. ([4]) For2 <i <j,r(P;,P;) =j+[i/2] - 1

For three colors, Faudree and Schelp [3] proved that if k > 6(i + j)?, then
r(P, P, Py) = k+[i/2] +[j/2] —2 for i,j > 2 and conjectured that for all i,
r(P;, P;, P;) = 2i — 2+ (i mod 2). The conjecture is true for i < 9 (see [11]) and
for i large enough, it was proved in [5]. Although a formula for 7(P;,..., P, ) was
presented in [3] for large i1, the exact value of the Ramsey number of paths is not
known even in the case of three colors. For more information we refer the reader

to [11].

Let us now consider a special case of generalized Ramsey numbers defined
by Chung and Liu [2]. The interested reader can find some results concerning
d-chromatic Ramsey numbers in [1], [2], [7], and [9]. Given ¢t distinct colors, we
order the t subsets of t — 1 colors in some arbitrary manner. The (¢ — 1)-chromatic
Ramsey number, denoted by ri_l (G1,Gy, ..., Gy), is defined to be the least num-
ber n such that if the edges of the complete graph K, are colored in any fashion
with t colors, then for some i the subgraph whose edges are colored with the
ith subset of colors contains a G;. Although in classical Ramsey numbers we
are looking for a monochromatic copy of G; in color i, in this special case of the
relaxed version of Chung and Liu, we are looking for a copy of G; in the sub-
graph of K, colored in ¢t — 1 colors and hence G; need not be monochromatic.
We shall denote the f colors 1,2,...,t and order the t subsets of t — 1 colors as
A1, Ay, ..., Ay, where fori = 1,2,...,t, A; = {1,2,...,t} ~ {i}. Thus for ex-
ample, the 2-chromatic Ramsey number r%(Gl, Gy, G3) is defined to be the least
number 7 such that if the edges of the complete graph K;, are colored with three
colors 1,2,3, then there is either a G; in colors 2,3 or a G, in colors 1,3 or a G3
in colors 1,2 in the graph K,. Note that if t = 2, (t — 1)-colored is the same as
monochromatic and so 3(Gy, G2) = r(Gy, Gp).

For graphs G, Gy, and Gz with |G| < |Gy| < |G3] it is shown in [2] that
13(G1, Gy, G3) < 1(Gy, Gp) and equality holds if |Gs| > r(Gy, G,). Theorem 1.2, is
a straightforward generalization of this result. For a proof of this theorem see [9].

Theorem 1.2. Let Gy,..., Gt be graphs and |G1| < --- < |Gy|. Then we have
rt (Gi,...,Gt) <r73(Gy,..., G 1) and equality holds if |G;| > r'=2(Gy,...,G_1).

For further reference, we state the following corollary of Theorem 1.2.

Theorem 1.3. Let2 <i < j <k <[ <m. Then
ri(pilpjlpklpllpm) S r%(pi/pj/pklpl) S T’S(IJizpjzpk) S r(Pl,P])

Moreover
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o Ifm > 15(P, Pj, Py, P), then r;(P;, P;, Py, Py, Py) = 15(D;, P;, i, ).
o If1 > 1r3(P, P;, Py), then r3(P;, Pj, P, P;) = r3(P;, Pj, Py).

o Ifk > r(P;, Pj), then r3(P;, P;, P) = r(P;, D).

The exact value of the (f — 1)-chromatic Ramsey number of paths when the
number of colors is three or four is known.
Theorem 1.4. ([10]) Let 2 < i < j < k. Then the value of rg(P,-, P, Py) is equal to
[ML;”_Z] if k < r(P;, P;) and is equal to r(P;, P;), otherwise.

Theorem 1.5. ([8]) Let 2 < i < j < k < I. Then the value ofr%(P,-, P;, Py, Py) is equal
o [BEHIET2) ey < r3(P;, Pj, Py) and is equal to r3(P;, P;, Py), otherwise.

Following the above pattern, the authors of [8] presented the following con-
jecture.

Conjecture. For each t > 3, and for ny,ny,...,nywithny <np <--- <y,

Y 12l —2
ri—l(PTlllpnz,-..,Pnt) — [ i=0 1+ )

Y2
where n; < ri:%(Pnl,Pnz, R
Note that the conjecture is consistent with the main result of [6].

Theorem 1.6. ([6]) Every t-coloring of K,, contains a (t — 1)-colored matching of size k
provided that n > 2k + [ L }

217

By Theorems 1.1, 1.4, 1.5, respectively for t = 2,3,4, not only a (t — 1)-colored
matching of size k can be guaranteed, but a (¢ — 1)-colored path on 2k vertices.

In this paper, we prove the above conjecture for t = 5 by showing that for
2<i<j<k <1< m,thevalueof rZ(Pl-, Py, P, P, Py,) isequal to [16m+81+§g+2]+1_2]

ifm < rg(Pl-, P, Py, P;) and is equal to rg(Pi, P, P, P;), otherwise.

2 Main Result
Lemma2l. Let2 <i<j<k<I<mandi <3. Then

16m + 81 + 4k +2j +i — 2
30 I

r3(P;, Pj, P, P, Pu) < [

Proof . By Theorems 1.3 and 1.1 and the fact that 2 <i < 3,

16m + 81 + 4k +2j +i — 2
30 )

r3(Pi, P, P, P, Py) < 1(P,P) = j+1i/2] 1= <
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Lemma 22. Let 4 < i < j < k < 1 < m < r4P,P,P,P), and

s = [?6m+?l+§g+2j+i_2]. Suppose that the edges of K are colored by 1,2, 3, 4 and 5. If K
contains either Clic12345) Cli-111345) Ck-1)1,2,45) Ci-1](1,235) O Clm—1](1,2,34)-

then K contains either P53 45), Pi1345) Pk(1245) P1(1,23,5) 0 Pu(1,2,3,4), respectively.

Proof . If r3(P;, P, P) < I, then by Theorem 13, m < r3(P;, P, P, P) <
r%(Pi,Pj, Py) <1 < m, a contradiction. So I < rg’ (Pi,Pj, P;) and by Theorem 1.5,
r3(P, P, P, P) = [2EEH2 Gimlarly, if 7(P, Pj) < k, then by Theorem 1.3,
1 <73(P, P;, Py) < r(P;, Pj) <k <1, a contradiction. So k < r(P;, P;) and by Theo-
rem 1.4,73(D;, P;, ) = [w] Now we get from m < [%] that m <

s and from [ < [M%Z] that | < r3(P;, P;, P, Py). Since the arguments for all
five possible cases are similar, we only consider that Ks contains C = Cj;_1j(2,3,45)
but not a P53 45) and show that K, contains either Pj(1 345, Px(1,2,45), Pi(1,2,35) OF
Pr(1,2,3,4)- Let Q be the graph induced by the

g=s—(i—1)= [16m+81+4]§+2] 201281 Vertices in V(Ks) \ V(C). Since there exists
no P;345) in K; all of the edges between C and Q have color 1. We consider two
cases as follows.

Case 1. j—29 < 1. If g < i—1, then we have a Pjp;1j(1) and hence a P;). If
q > i—1, then thereis a Pp(;_1)41)1)- S0 if j < 2(i — 1) + 1, we have a Pjy). Thus
we may assume thatg > i—1andj > 2(i — 1) + 2 = 2i. We now show that

73 (P Pia(i—1) Pecaio1)s Pioa(i=1)s Pu—a(i-1)) <4 1)

First suppose that i < j—2(i —1). Since k < j+[i/2] =1, k—-2(i—1) <
j—2(i—1)+][i/2] —1and so

13(Py, Pi_o(i—1y, Peeaiz1y, P_a(i—1) Pu—2(i-1)) Sr%(Pi,Pj 2(i-1)r pk 2(i-1 ))
[4k+2] 111+10
< [16m+81+4k3—(s)—2] 20428 _

Note that for the first inequality we use Theorem 1.3 and then we use Theorem
1.4.
Ifj—2(i—1) <i<k—2(i—1),then! > k > 3i — 2 and so by Theorems 1.3 and
1.1,

(i ) .
i+[(j - 2(i ~1))/2] =1 = [j/2]
[16m+81+4lg—6—2] 291+28] .

r3(Pi, Pi_oii1y Pecagio1y, Pioaiio1) Puoagio1)) <

IN

Ifk—2(i—1) < i, then 3i > k+ 2 and so by Theorems 1.3 and 1.1,
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r3(Pi Pi_oii—1) Pecaio1y, Pi—aii—1) Pu—a(i-1))

< r(p]'_z(i_1)/pk—2(i—1))
—k—2(i—1)+[(j—-2(—1))/2] -1
_ (Zetibi+d

o 2
< 16m+8l+4k+2j—29i+287
< Gl | =

We have thus proved (1). Hence Q contains either Pjy345), Plj—2(i—1))(1,345)
P aii-1))(1,2,45) Pli—2(i-1)](1,23,5)s OF Plm—2(i-1)](1,2,34)- Denote this path by P. If
P = Pj345), we are done. So let P # Pjp345). Sinces =q+(i—1) >m>j >
2i,q > m —i+ 1 and so there are at least i — 1 vertices of Q not in P (see Figure
1). So i — 1 such vertices together with i — 1 vertices of C make the monochro-

Cc=C
[i-1](2,3,4,5)

Figure 1: Graph K;

matic path P’ = Pjy(;_1))(1)- Remembering that the vertices of C are joined to the
vertices of Q by edges of color 1, note that the constructed path P’ visits alternat-
ingly a vertex of C and a vertex among the extra i — 1 vertices of Q. Let u be the
end-vertex of P’ that does lie on C and v be an end-vertex of P. Clearly u is joined
to v by an edge of color 1. We now add P’ to P to obtain either Pi1345) Pr1,2,45)

P 1(1,2,3,5) O P, m(1,2,3,4)

Case 2. j — 29 > 2. We shall show that

73(Pi, P20, Pe—2g, Pi—g, Pr—2q) < i— 1. @)

Since 30g > 16m + 8] + 4k + 2j — 29i — 2, we have 30q — 15m + 151 >
m + 8l + 4k + 2j — 14i — 2 > 0, which implies m — 29 < i and so by Theorem
1.3, 7’2 (Pi/ Pj—Zqz Pk—Zq/ PZ—Zq/ Pm—Zq) < r%(Pj—Zq/ Pk—2q/ PZ—Zq/ Pm—Zq)- By definition
of q,30q > 16m + 8] + 4k +2j —29i —2s030q —8m — 4l — 2k —j+14i +2 > 0,
Buutdl+2ktj=2-30g) ;4

14 = :

which implies |
Hence if m — 29 < 13 (Pj—2q, Pc—2q, Pi—2),
FZ(PiI pj—qu pk—Zq/ Pl—2q1 Pm—Zq) < rél(p]'—ZQI Pk—qu pl—qu pm—Zq)
_ [8(m—2q)+4(l—2q)+2(k—2q)+j—2q—2]

L 14
SZ_]-/
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“C1-11(2,3,4,5)

d vertices

N

Figure 2: Graph K;

Note that for the first inequality we use Theorem 1.3 and then we use Theorem
1.5.

On the other hand, if rg (Pj_zq, P2, PZ—Zq) < m — 2q, remembering that m —2g <
i, by Theorems 1.3 and 1.5,

rZ(Pi/ Pj—Zq/ Pk—Zq/ PZ—2q)/ Pm—Zq)

~—~

P] ZqIPk Zq/Pl Zq/Pm—Zq)
Pi_2q, Pc—2q, P1—24)
—2q

=
N GO QW
—~

INIA I IA
Nl §
=

We have thus proved (2). Hence in the subgraph induced by the i — 1
vertices of C, there exist either P;5345), Pli_24)(1,345) Pik—24/(1,245)7 Pli-24](1,2,35)
or P, _og)(1,234)- Denote this path by P. If P = Pj5345), we are done. So let

Pio345)- Sinces =i —1+¢ > m, C contains at least g vertices not in P (see
Figure 2). So q such vertices together with g vertices of Q make the monochro-
matic path P’ = Pp5;1). Remembering that the vertices of Q are joined to the
vertices of C by edges of color 1, note that the constructed path P’ visits alter-
natingly a vertex of Q and a vertex among the extra g vertices of C. Let u be the
end-vertex of P’ that does lie on Q. Clearly u is joined to the end-vertices of P by
edges of color 1. We now add P’ to P to obtain either Pi1345) Pr1,2,45) Pr(1,235)
or Py(1234)- U

Lemma23. Let4 <i <j<k<I<m<rj(P,P,P,D)s [16m+81+4k+2]+1 2],
and suppose that the edges of G = K are colored by 1, 2, 3, 4 and 5. Let f(1) =

f(2)=j,f(3) =k f(4) =1, and f(5) = m. Fixa € {1,...,5}. Suppose that there
exists a vertex x1 of G such that dn(x1) > d. (x) for each vy, 1 < o < 5, and for each
vertex x of G. If G — xy contains either of Pif(g)—21¢(p)({1,...5}~{p}), Where B ranges
over all elementsof {1,...,5}~{a}and g(B) = 0if p < wand g(B) = 1if B > w, then
G contains either of Pi¢(g))({1,...5)~{}) Tespectively, where again p € {1,...,5} \ {a}.

Proof . We prove the lemma for « = 5 and leave the other cases to the reader.
Hence there exists a vertex x; of G such that n = ds(x1) > d(x) for each 7,
1 < 4 < 5, and for each vertex x of G. We must show that if G — x; contains
either Pj;_52345), Plj—2)(1345)s Plk—2)(1,24,5), OF Pi-2)(1,2,35), then G contains either
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Pi2345) Pi1345) Pr(1,245), OF Pi(1,235), respectively. Since the arguments for all
four possible cases are similar, we consider that G — x; contains Pj;_|(1,2,45) but
G does not contain Py(q 5 4 5) and show that G contains either P;;3 45, Pj(1345), or
Py1,235)- Lety and z be the end-vertices of Pj_j(1245) and denote this path by
P = (y,...,z). If both of xy and x;1z are in E; U E; U E4 U Es, then the assertion
follows from Lemma 2.2. Otherwise, we consider two cases as follows.

Case 1. x;y € Ey UEy;UE4UEs and x1z € Ej. First note that since there exists
no Py1245), x1w & Es for each w € V \ (V(P) U {x1}). This means that all
of the n vertices joined to x; by edges of color 5 are in V(P). Letv # y be a
vertex of P with x;0 € Es. Then v splits P into a yv-path P’ and a vz-path. Let
u € N(v) such that uv € E(P"). Then zu € Ej3, since otherwise existence of the
cycle (xqv...zu...y) implies existence of the desired path by Lemma 2.2. Note
that v...z refers to the subpath of P between v and z. Summarizing, for each
edge x1v € Es we get an edge zu € Ej, plus the edge zx; € E3, we see that
ds(z) > ds(x1) (and it is possible that x1y € Es). Letw € V \ (V(P) U{x1}). If
zw € EyUEy UE4UEs, then (x1y ... zw) is a Py(1 2,45, which is impossible. Hence
zw € E3, where w € V\ (V(P)U{x1}). So d3(z) > ds(x1) + 1. This contradicts
our assumption that ds(xq) > d,(x) for each 7y, 1 < v <5, and for each vertex x
of G.

Case 2. x1y, x1z € E3. Let x; be adjacent to 1y vertices of V' \ V(P) in color 5. First
suppose that n; > 0. Let w be any vertex of V' \ (V(P) U {x;}) with x;w € Es. If
zw € Ey U Ey U EqgUEs, then (y...zwx1) is a Py(1p45)- This contradiction shows
that zw € Ez. That is, for each edge x;w € Es we get an edge zw € E3. Hence if
n = ny, then ds3(z) > ny, plus the edge zx; € Es, we see that d3(z) > ds(x1) + 1.
This contradicts our assumption that ds(x1) > d(x) for eachy,1 < ¢ < 5, and
for each vertex x of G. Thus we may suppose that n > n;. Let v be a vertex of P
with x1v € Es. Then v splits P into a yv-path P’ and a vz-path. Let u € N(v) such
that uv € E(P'). Then zu € Ejs, since otherwise (wx1v...zu...y) is a Py p45):-
Summarizing, for each edge x;v € Es we get an edge zu € Ej, plus the edge
zx1 € Ej, we see that d3(z) > ds(x1) + 1. This contradicts our assumption that
ds(x1) > d,(x) for each v, 1 <y <5, and for each vertex x of G.

We now turn to the case n; = 0. That is, x; is adjacent to n vertices of V(P)
by edges of color 5. Let v be a vertex of P with xjv € Es. Then v splits P into a
yv-path P’ and a vz-path P”. Let u € N(v) such that uv € E(P).

Claim. zu € Es.

Proof of claim. Suppose, contrary to our claim, that zu € E; UE; U E4 U E5. We
aim to get the contradiction d3(y) > ds(x1). Let us first outline the proof. For
each vertex a with xja € Es we get a vertex b with yb € Ej to conclude that
ds(y) > ds(x1), and then we find an extra vertex w with yw € Ej. First note that,
if xyu € Es, then yz € Ejs, since otherwise existence of the cycle (v...zy...ux;)
implies existence of the desired path by Lemma 2.2. Let v’ # u be a vertex of
the subpath (y...u) of P’ with x1v" € Es. Then ¢’ splits P into a yv'-path Pj
and a v'z-path P{’. Let u’ € N(v') such that u’v’ € E(P/"). Then yu’ € Ej, since
otherwise existence of the cycle (u'...uz...vx10'...y) implies existence of the
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desired path by Lemma 2.2. Similarly, let v” be a vertex of the subpath (v...z)
of P” with x19” € Es. Then v splits P into a yv”-path P, and a v"/z-path P}. Let
u" € N(v") such that u”"v" € E(P}). Then yu” € Es, since otherwise existence of
the cycle (1 ...vx10" ...zu...y) (also existence of the cycle (vx10”...zu...y),
when v = u”) implies existence of the desired path by Lemma 2.2. Summa-
rizing, for each edge x10' € Es and x10” € Es we get an edge yu’' € E3 and
yu'" € Ej, respectively, plus the edges xjv € Es and yx; € E3, we see that
d3(y) > d5(x1). Letw € V\ (V(P) U {xl}). If yw € E; UEy; UE4UEs, then
(x10...zu...yw) isa Py1p45). Soyw € E3, wherew € V' \ (V(P) U {x1}). There-
fore d3(y) > ds(x1) + 1. This contradiction completes the proof of our claim.

Hence by the claim, for each edge x;v € Es5 we get an edge zu € E3, plus the
edge zx1 € E3, we have d3(z) > ds(x1) 4+ 1, which is impossible. n

Theorem 2.4. Let 2 <i < j<k <I<m <r3(P,P;,P,P). Then

16m-|—81-|—4k+2]'+i—2]
30 '
Proof . The assertion holds for i < 3 by Lemma 2.1. Leti > 4 and the edges of

G = K; be colored by 1, 2, 3, 4, and 5, where s = [16m+81+§g+2]+1_2]. We saw in
Lemma 2.2 that s > m. The proof is by induction. First suppose that i = j. Since
all the eight possible cases use completely similar arguments, we only consider
thati = j < k = I < m and leave the other cases to the reader. Moreover, without

loss of generality we can consider three cases as follows.

r3(P, P, P, P, Py) < [

Case 1. There exists a vertex xq such that n = ds(x1) > d(x) foreachy,1 <y <
5, and for each vertex x of G. If m > r%(Pi_z,Pj_z, Py_5,P;_5), by Theorems 1.3
and 1.5 we obtain

T’Z (Pi—ZI Pj—Z/ Pk—Z/ Pl—Z/ Pm)
= r3(Pi—2, Pj_o, P, Pz-z) |
[8(1—2)+4(k—ﬂ+2(1—2)+z—4] f1-2 < T%(Pi—z, Pj—2/ Pk—z),
r3(Pi—2, Pi_2, Pr_») if 13(Pi—p, Pji—p, Pe_p) <1—2

S 5— 1/
and if m < rg(Pi_z, Pi_, P, P, ,), then by the induction hypothesis,

r3(Pi_2, P2, Pc_2,Pi_5, Py) <
lem+8(1—2)+4(k—2)+2(j—2)+(i—2)—2
[ 30
So G — xq contains either P[i—Z} (2,3,4,5)7 P[j—2}(1,3,4,5)/ P[k—Z](1,2,4,5)/ P[l—2}(1,2,3,5)/ or
Pm(1,2,3,4)- If Pm(1,2,3,4) is present, there is nothing to prove. If P[i—z} (2,34,5)7
Pii_21345) Pk-21,2,45) OF Pi_2)(12;35) 18 present, G contains the desired path
by Lemma 2.3.

]=s—-1

Case 2. There exists a vertex x; such that n = dy(x1) > d(x) foreachy,1 <y
5, and for each vertex x of G. We shall show that 3(P;_», Pi_2, Px_, P, Pyy—1)

VANIZAN
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s — 1. Ifr5(Pi_p, Pj_p, P_p, P;) <m—1, then
5(p. ) — 4. .
r3(Pi—2, Pj 2, P2, P, Py—1) =713(Pi2,Pj 2, Pr 2, ) <m—-1<s—1,
and if m — 1 < r5(P;_2, Pj_2, Pc_y, P1), by induction hypothesis,

T’Z(Pi_z, Pj—Z/ Pk—Z/ Pl/ Pm—l) S
16(m — 1) + 81 +4(k —2) +2( —2) + (i —2) — 2

[ 30 ]=s—-1

So G — X1 contains either p[i_z](2/3/4/5)’ p[]'_z}(1,3,4,5), P[k—ZKl,ZA,S)I pl(1,2,3,5)’ or
Py_1)1234)- I Pi1235) is present, there is nothing to prove. If P;_y2345),
P 211345) Pk—2](1,245), O Pl—1)(1,2,3,4) is present, G contains the desired path
by Lemma 2.3.

Case 3. There exists a vertex x; such that n = dy(x;) > d,(x) for each 7,
1 < 9 <5, and for each vertex x of G. We leave it to the reader to verify that
r3(Pi_a, P, Pc1,P_1,Pp-1) < s—1and so G — x; contains either Pj;_52345)
Pi1345) P-11,245) Pi-11,235) OF Pm-1)(1,234)- If Pj(1,345) is present, there

is nothing to prove. If P; 5 (2345), Pk-1)(1,245) Pli-1)1235)s OF Pim—1](1,234) 18
present, G contains the desired path by Lemma 2.3.

Now suppose that i < j. Let x1 be a vertex with X2 _,d,(x1) < Z0_,d,(x),
for each vertex x. That is, among the vertices of G, x; has the minimum value
in the sum of the degrees in colors 2,...,5 and hence the maximum degree in
color 1. If ¥2_,d,(x;) > [j/2] and the subgraph induced by U>_,E, is con-
nected then G, by the standard result stating that every connected graph G has
a path of length at least min{25(G), |G| — 1}, contains a Pj»(j/21](2,34,5) and hence
a Pi(p345)- Otherwise, if the subgraph induced by U>_,E, is disconnected, then
all of its components are of order at least [j/2] and so G contains P;(;). Thus we
may suppose that X)_,d,(x;) < [j/2]. It is obvious that G — x; contains either
Pio345) Pii-1(1,345) Pk-1](1,245), Pl1-1)1,23,5), OF Plm—1)(1,2,3,4)- Suppose that one
of the latter four paths is present and denote it by P. Since d1(x1) >s—1—1[j/2],
x1 is adjacent to two successive vertices of P by edges of color 1, which implies
the desired path. [

Theorem 2.5. Let 2 <i < j <k <I<m <r3(P,P;,P,P). Then

16m + 81 + 4k + 2j + i — 2

13(P;, Pj, P, P, Pu) > | 20

- 1.

PT’OOf ' Let s _ [16m+81+;l(1)<+2]'—|—i—2], X _ (8m+4l+2k4éj—i—1—12s],

Xy = [4m+2l+k_3]+1_2_65], x3 =4s—2m —1—k, x4 =2s—1—m, and x5 = s — m.

First note that x1 + xp = 4m + 2] + k — 1 — 6s. Moreover by m < r%(Pi, P, P, py)
and the definition of s and x;’s, it is straightforward to check that
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X1+x2+x3+x4+x5=5—1,
X1+x2+x3+xg=m—1,

X1+ x4+ x3+2x5=1-—1,

X1+ X0+ 2x4 +2x5 =k —1,

X1 +2x3 +2x4 +2x5 < j—1,

2x0 +2x3 +2x4 +2x5+1 <1 -1,
x1 >0,

[ %, >0,2<i<5.

Now partition the vertices of K;_ into five sets X;, 1 < i < 5 with |X;| = x;. Paint
with 1 all edges which are incident with two vertices of X;. Fori = 2, 3,4, 5, paint
with i the edges having two vertices in X; or one vertex in X; and one vertex in X;
where j < i. The conditions in (3) guarantee that K;_; does not contain P;(5 34 5),
Pi1,345) Pr12,45) Pr(1,235)s and Pyy(123,4)- U

)

Corollary 2.6. Let 2 < i < j < k <1 < m. Then r(P;, Pj, Py, P}, Py) is equal to
[16m+81+§g+2]+1_2] if m < r3(P;, P;, Py, P) and is equal to r5(P;, P;, P, Py), otherwise.

Acknowledgements

The author would like to thank the anonymous referee for several valuable com-
ments and suggestions which significantly improved the paper. In particular, the
present form of the statement of Lemma 2.3 and some other explanations are due
to the referee.

References

[1] KM. Chung, M.L. Chung and C.L. Liu, A generalization of Ramsey theory
for graphs-with stars and complete graphs as forbidden subgraphs, Congr.
Numer. 19 (1977) 155-161.

[2] KM. Chung and C.L. Liu, A generalization of Ramsey theory for graphs,
Discrete Math. 2 (1978) 117-127.

[3] R.J.Faudree and R.H. Schelp, Path Ramsey Numbers in Multicolorings, Jour-
nal of Combinatorial Theory, Series B 19 (1975) 150-160.

[4] L. Gerencsér and A. Gyarfds, On Ramsey-type problems, Ann. Univ. Sci.
Budapest Eotvds. 10 (1967) 167-170.

[5] A.Gyérfas, M. Ruszink6, G.N. Sarkozy and E. Szemerédi, Three-color Ram-
sey Numbers for Paths, Combinatorica 27 (2007) 35-69. Corrigendum in 28
(2008) 499-502.

[6] A. Gyarfas, G.N. Sarkozy and S. Selkow, Coverings by few monochromatic
pieces: a transition between two Ramsey problems, Graphs Combin., 31(1)
(2015) 131-140.



On (t — 1)-colored paths in t-colored complete graphs 207

[7] H. Harborth and M. Moller, Weakened Ramsey numbers, Discrete Applied
Math. 95 (1999) 279-284.

[8] A. Khamseh and R. Omidi, A generalization of Ramsey theory for linear
forests, Int. |. Comput. Math., 89(10) (2012) 1303-1310.

[9] A.Khamseh and R. Omidi, A generalization of Ramsey theory for stars and
one matching, Math. Reports, 19(69), 1 (2017), 85-92.

[10] R. Meenakshi and P.S. Sundararaghavan, Generalized Ramsey numbers for
paths in 2-chromatic graphs, Internat. |. Math. Sci. 9 (1986) 273-276.

[11] S.P. Radziszowski, Small Ramsey numbers, Electronic . Combin. 1 (1994) Dy-
namic Surveys, DS1.15 (March 3, 2017).

Department of Mathematics, Kharazmi University,
15719-14911 Tehran Iran

and

School of Mathematics,

Institute for Research in Fundamental Sciences (IPM),
PO Box 19395-5746 Tehran Iran

email :khamseh@khu.ac.ir



