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Abstract

Given t distinct colors, we order the t subsets of t − 1 colors in some
arbitrary manner. Let G1, G2, . . . , Gt be graphs. The (t − 1)-chromatic Ram-
sey number, denoted by rt

t−1(G1, G2, . . . , Gt), is defined to be the least number
n such that if the edges of the complete graph Kn are colored in any fashion
with t colors, then for some i the subgraph whose edges are colored with
the ith subset of colors contains a Gi. In this paper, we find the value of
r5

4(G1, . . . , G5) when each Gi is a path.

1 Introduction

At first, let us fix some notation and introduce some terminology. If G is a graph,
V will denote its vertex set and E its edge set. The number of vertices of G is
denoted by |G|. As usual, Pi is a path on i vertices and Ci is a cycle of length i.
Recall that a t-coloring of the edges of G is a partition of E into t classes. Typically
we use 1, 2, . . . , t as the set of colors. For every coloring of the edges of G, Ec is the
set of edges in color c and for x ∈ V, dc(x) is the number of edges incident to x
in color c. An s-colored graph G is a graph whose edges are colored with a set of
s colors. In particular Pi(c1,c2,...,cs) and Ci(c1,c2,...,cs) respectively denote a path and a
cycle with i vertices whose edges are colored in c1, c2, . . . , cs.

Let G1, G2, . . . , Gt be graphs. Then r(G1, G2, . . . , Gt) denotes the classical
t-color Ramsey number for these graphs and is defined as the least integer n such
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that, in any coloring of the edges of the complete graph Kn with t colors 1, 2, . . . , t
for some i the subgraph induced by color i contains a copy of Gi. In particular
r(G1, G2) is the smallest integer n such that in any two-coloring of the edges of
the complete graph Kn there is a monochromatic copy of G1 in the first color or a
monochromatic copy of G2 in the second color. Note that any re-ordering of the
components of (G1, G2, . . . , Gt) in the above definition will have no effect on the
value of n. The two-color Ramsey number of paths was determined by Gerencsér
and Gyárfás.

Theorem 1.1. ([4]) For 2 ≤ i ≤ j, r(Pi, Pj) = j + [i/2]− 1.

For three colors, Faudree and Schelp [3] proved that if k ≥ 6(i + j)2, then
r(Pi , Pj, Pk) = k + [i/2] + [j/2] − 2 for i, j ≥ 2 and conjectured that for all i,
r(Pi , Pi, Pi) = 2i − 2 + (i mod 2). The conjecture is true for i ≤ 9 (see [11]) and
for i large enough, it was proved in [5]. Although a formula for r(Pi1 , . . . , Pik

) was
presented in [3] for large i1, the exact value of the Ramsey number of paths is not
known even in the case of three colors. For more information we refer the reader
to [11].

Let us now consider a special case of generalized Ramsey numbers defined
by Chung and Liu [2]. The interested reader can find some results concerning
d-chromatic Ramsey numbers in [1], [2], [7], and [9]. Given t distinct colors, we
order the t subsets of t− 1 colors in some arbitrary manner. The (t− 1)-chromatic
Ramsey number, denoted by rt

t−1(G1, G2, . . . , Gt), is defined to be the least num-
ber n such that if the edges of the complete graph Kn are colored in any fashion
with t colors, then for some i the subgraph whose edges are colored with the
ith subset of colors contains a Gi. Although in classical Ramsey numbers we
are looking for a monochromatic copy of Gi in color i, in this special case of the
relaxed version of Chung and Liu, we are looking for a copy of Gi in the sub-
graph of Kn colored in t − 1 colors and hence Gi need not be monochromatic.
We shall denote the t colors 1, 2, . . . , t and order the t subsets of t − 1 colors as
A1, A2, . . . , At, where for i = 1, 2, . . . , t, Ai = {1, 2, . . . , t} r {i}. Thus for ex-
ample, the 2-chromatic Ramsey number r3

2(G1, G2, G3) is defined to be the least
number n such that if the edges of the complete graph Kn are colored with three
colors 1, 2, 3, then there is either a G1 in colors 2, 3 or a G2 in colors 1, 3 or a G3

in colors 1, 2 in the graph Kn. Note that if t = 2, (t − 1)-colored is the same as
monochromatic and so r2

1(G1, G2) = r(G1, G2).

For graphs G1, G2, and G3 with |G1| ≤ |G2| ≤ |G3| it is shown in [2] that
r3

2(G1, G2, G3) ≤ r(G1, G2) and equality holds if |G3| ≥ r(G1, G2). Theorem 1.2, is
a straightforward generalization of this result. For a proof of this theorem see [9].

Theorem 1.2. Let G1, . . . , Gt be graphs and |G1| ≤ · · · ≤ |Gt|. Then we have
rt

t−1(G1, . . . , Gt) ≤ rt−1
t−2(G1, . . . , Gt−1) and equality holds if |Gt| ≥ rt−1

t−2(G1, . . . , Gt−1).

For further reference, we state the following corollary of Theorem 1.2.

Theorem 1.3. Let 2 ≤ i ≤ j ≤ k ≤ l ≤ m. Then

r5
4(Pi, Pj, Pk, Pl, Pm) ≤ r4

3(Pi, Pj, Pk, Pl) ≤ r3
2(Pi, Pj, Pk) ≤ r(Pi, Pj).

Moreover
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• If m ≥ r4
3(Pi, Pj, Pk, Pl), then r5

4(Pi, Pj, Pk, Pl, Pm) = r4
3(Pi, Pj, Pk, Pl).

• If l ≥ r3
2(Pi, Pj, Pk), then r4

3(Pi, Pj, Pk, Pl) = r3
2(Pi, Pj, Pk).

• If k ≥ r(Pi, Pj), then r3
2(Pi, Pj, Pk) = r(Pi, Pj).

The exact value of the (t − 1)-chromatic Ramsey number of paths when the
number of colors is three or four is known.

Theorem 1.4. ([10]) Let 2 ≤ i ≤ j ≤ k. Then the value of r3
2(Pi, Pj, Pk) is equal to

[ 4k+2j+i−2
6 ] if k < r(Pi, Pj) and is equal to r(Pi, Pj), otherwise.

Theorem 1.5. ([8]) Let 2 ≤ i ≤ j ≤ k ≤ l. Then the value of r4
3(Pi, Pj, Pk, Pl) is equal

to [ 8l+4k+2j+i−2
14 ] if l < r3

2(Pi, Pj, Pk) and is equal to r3
2(Pi, Pj, Pk), otherwise.

Following the above pattern, the authors of [8] presented the following con-
jecture.

Conjecture. For each t ≥ 3, and for n1, n2, . . . , nt with n1 ≤ n2 ≤ · · · ≤ nt,

rt
t−1(Pn1

, Pn2, . . . , Pnt) =

[

∑
t−1
i=0 2ini+1 − 2

∑
t−1
i=1 2i

]

,

where nt < rt−1
t−2(Pn1

, Pn2 , . . . , Pnt−1
).

Note that the conjecture is consistent with the main result of [6].

Theorem 1.6. ([6]) Every t-coloring of Kn contains a (t − 1)-colored matching of size k

provided that n ≥ 2k +
[

k−1
2t−1−1

]

.

By Theorems 1.1, 1.4, 1.5, respectively for t = 2, 3, 4, not only a (t − 1)-colored
matching of size k can be guaranteed, but a (t − 1)-colored path on 2k vertices.
In this paper, we prove the above conjecture for t = 5 by showing that for

2 ≤ i ≤ j ≤ k ≤ l ≤ m, the value of r5
4(Pi, Pj, Pk, Pl, Pm) is equal to [ 16m+8l+4k+2j+i−2

30 ]

if m < r4
3(Pi, Pj, Pk, Pl) and is equal to r4

3(Pi, Pj, Pk, Pl), otherwise.

2 Main Result

Lemma 2.1. Let 2 ≤ i ≤ j ≤ k ≤ l ≤ m and i ≤ 3. Then

r5
4(Pi, Pj, Pk, Pl, Pm) ≤ [

16m + 8l + 4k + 2j + i − 2

30
].

Proof . By Theorems 1.3 and 1.1 and the fact that 2 ≤ i ≤ 3,

r5
4(Pi, Pj, Pk, Pl, Pm) ≤ r(Pi, Pj) = j+[i/2]− 1 = j ≤ [

16m + 8l + 4k + 2j + i − 2

30
].
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Lemma 2.2. Let 4 ≤ i ≤ j ≤ k ≤ l ≤ m < r4
3(Pi, Pj, Pk, Pl), and

s = [ 16m+8l+4k+2j+i−2
30 ]. Suppose that the edges of Ks are colored by 1, 2, 3, 4 and 5. If Ks

contains either C[i−1](2,3,4,5), C[j−1](1,3,4,5), C[k−1](1,2,4,5), C[l−1](1,2,3,5) or C[m−1](1,2,3,4),
then Ks contains either Pi(2,3,4,5), Pj(1,3,4,5), Pk(1,2,4,5), Pl(1,2,3,5) or Pm(1,2,3,4), respectively.

Proof . If r3
2(Pi, Pj, Pk) ≤ l, then by Theorem 1.3, m < r4

3(Pi, Pj, Pk, Pl) ≤

r3
2(Pi, Pj, Pk) ≤ l ≤ m, a contradiction. So l < r3

2(Pi, Pj, Pk) and by Theorem 1.5,

r4
3(Pi, Pj, Pk, Pl) = [ 8l+4k+2j+i−2

14 ]. Similarly, if r(Pi, Pj) ≤ k, then by Theorem 1.3,

l < r3
2(Pi, Pj, Pk) ≤ r(Pi, Pj) ≤ k ≤ l, a contradiction. So k < r(Pi, Pj) and by Theo-

rem 1.4, r3
2(Pi, Pj, Pk) = [ 4k+2j+i−2

6 ]. Now we get from m < [ 8l+4k+2j+i−2
14 ] that m ≤

s and from l < [ 4k+2j+i−2
6 ] that l ≤ r4

3(Pi, Pj, Pk, Pl). Since the arguments for all
five possible cases are similar, we only consider that Ks contains C = C[i−1](2,3,4,5)
but not a Pi(2,3,4,5) and show that Ks contains either Pj(1,3,4,5), Pk(1,2,4,5), Pl(1,2,3,5) or
Pm(1,2,3,4). Let Q be the graph induced by the

q = s − (i − 1) = [ 16m+8l+4k+2j−29i+28
30 ] vertices in V(Ks) \V(C). Since there exists

no Pi(2,3,4,5) in Ks all of the edges between C and Q have color 1. We consider two
cases as follows.

Case 1. j − 2q ≤ 1. If q < i − 1, then we have a P[2q+1](1) and hence a Pj(1). If

q ≥ i − 1, then there is a P[2(i−1)+1](1). So if j ≤ 2(i − 1) + 1, we have a Pj(1). Thus

we may assume that q ≥ i − 1 and j ≥ 2(i − 1) + 2 = 2i. We now show that

r5
4(Pi, Pj−2(i−1), Pk−2(i−1), Pl−2(i−1), Pm−2(i−1)) ≤ q (1)

First suppose that i ≤ j − 2(i − 1). Since k < j + [i/2] − 1, k − 2(i − 1) <

j − 2(i − 1) + [i/2]− 1 and so

r5
4(Pi, Pj−2(i−1), Pk−2(i−1), Pl−2(i−1), Pm−2(i−1)) ≤ r3

2(Pi, Pj−2(i−1), Pk−2(i−1))

= [
4(k−2(i−1))+2(j−2(i−1))+i−2

6 ]

= [ 4k+2j−11i+10
6 ]

≤ [ 16m+8l+4k+2j−29i+28
30 ] = q.

Note that for the first inequality we use Theorem 1.3 and then we use Theorem
1.4.
If j − 2(i − 1) < i ≤ k − 2(i − 1), then l ≥ k ≥ 3i − 2 and so by Theorems 1.3 and
1.1,

r5
4(Pi, Pj−2(i−1), Pk−2(i−1), Pl−2(i−1), Pm−2(i−1)) ≤ r(Pj−2(i−1), Pi)

= i + [(j − 2(i − 1))/2] − 1 = [j/2]

≤ [
16m+8l+4k+2j−29i+28

30 ] = q.

If k − 2(i − 1) < i, then 3i > k + 2 and so by Theorems 1.3 and 1.1,
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r5
4(Pi, Pj−2(i−1), Pk−2(i−1), Pl−2(i−1), Pm−2(i−1))

≤ r(Pj−2(i−1), Pk−2(i−1))

= k − 2(i − 1) + [(j − 2(i − 1))/2] − 1

= [
2k+j−6i+4

2 ]

≤ [
16m+8l+4k+2j−29i+28

30 ] = q.

We have thus proved (1). Hence Q contains either Pi(2,3,4,5), P[j−2(i−1)](1,3,4,5),
P[k−2(i−1)](1,2,4,5), P[l−2(i−1)](1,2,3,5), or P[m−2(i−1)](1,2,3,4). Denote this path by P. If

P = Pi(2,3,4,5), we are done. So let P 6= Pi(2,3,4,5). Since s = q + (i − 1) ≥ m ≥ j ≥
2i, q ≥ m − i + 1 and so there are at least i − 1 vertices of Q not in P (see Figure
1). So i − 1 such vertices together with i − 1 vertices of C make the monochro-

P=P
i-1 vertices

C=C
[i-1](2,3,4,5)

P’=P
[2(i-1)](1)

u

1

v

[l-2(i-1)](1,2,3,5)
Q

Figure 1: Graph Ks

matic path P′ = P[2(i−1)](1). Remembering that the vertices of C are joined to the

vertices of Q by edges of color 1, note that the constructed path P′ visits alternat-
ingly a vertex of C and a vertex among the extra i − 1 vertices of Q. Let u be the
end-vertex of P′ that does lie on C and v be an end-vertex of P. Clearly u is joined
to v by an edge of color 1. We now add P′ to P to obtain either Pj(1,3,4,5), Pk(1,2,4,5),
Pl(1,2,3,5) or Pm(1,2,3,4).

Case 2. j − 2q ≥ 2. We shall show that

r5
4(Pi, Pj−2q, Pk−2q, Pl−2q, Pm−2q) ≤ i − 1. (2)

Since 30q > 16m + 8l + 4k + 2j − 29i − 2, we have 30q − 15m + 15i >

m + 8l + 4k + 2j − 14i − 2 > 0, which implies m − 2q < i and so by Theorem
1.3, r5

4(Pi, Pj−2q, Pk−2q, Pl−2q, Pm−2q) ≤ r4
3(Pj−2q, Pk−2q, Pl−2q, Pm−2q). By definition

of q, 30q > 16m + 8l + 4k + 2j − 29i − 2 so 30q − 8m − 4l − 2k − j + 14i + 2 > 0,

which implies [
8m+4l+2k+j−2−30q

14 ] ≤ i − 1.

Hence if m − 2q < r3
2(Pj−2q, Pk−2q, Pl−2q),

r5
4(Pi, Pj−2q, Pk−2q, Pl−2q, Pm−2q) ≤ r4

3(Pj−2q, Pk−2q, Pl−2q, Pm−2q)

= [
8(m−2q)+4(l−2q)+2(k−2q)+j−2q−2

14 ]

= [
8m+4l+2k+j−2−30q

14 ]
≤ i − 1,
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C=C
[i-1](2,3,4,5)

q vertices

q vertices

[l-2q](1,2,3,5)
P=P

u

1
P’=P

[2q](1)

Q

Figure 2: Graph Ks

Note that for the first inequality we use Theorem 1.3 and then we use Theorem
1.5.
On the other hand, if r3

2(Pj−2q, Pk−2q, Pl−2q) ≤ m− 2q, remembering that m− 2q <

i, by Theorems 1.3 and 1.5,

r5
4(Pi, Pj−2q, Pk−2q, Pl−2q), Pm−2q) ≤ r4

3(Pj−2q, Pk−2q, Pl−2q, Pm−2q)

= r3
2(Pj−2q, Pk−2q, Pl−2q)

≤ m − 2q
≤ i − 1.

We have thus proved (2). Hence in the subgraph induced by the i − 1
vertices of C, there exist either Pi(2,3,4,5), P[j−2q](1,3,4,5), P[k−2q](1,2,4,5), P[l−2q](1,2,3,5)
or P[m−2q](1,2,3,4). Denote this path by P. If P = Pi(2,3,4,5), we are done. So let
P 6= Pi(2,3,4,5). Since s = i − 1 + q ≥ m, C contains at least q vertices not in P (see
Figure 2). So q such vertices together with q vertices of Q make the monochro-
matic path P′ = P[2q](1). Remembering that the vertices of Q are joined to the

vertices of C by edges of color 1, note that the constructed path P′ visits alter-
natingly a vertex of Q and a vertex among the extra q vertices of C. Let u be the
end-vertex of P′ that does lie on Q. Clearly u is joined to the end-vertices of P by
edges of color 1. We now add P′ to P to obtain either Pj(1,3,4,5), Pk(1,2,4,5), Pl(1,2,3,5),
or Pm(1,2,3,4). �

Lemma 2.3. Let 4 ≤ i ≤ j ≤ k ≤ l ≤ m < r4
3(Pi, Pj, Pk, Pl), s = [

16m+8l+4k+2j+i−2
30 ],

and suppose that the edges of G = Ks are colored by 1, 2, 3, 4 and 5. Let f (1) = i,
f (2) = j, f (3) = k, f (4) = l, and f (5) = m. Fix α ∈ {1, . . . , 5}. Suppose that there
exists a vertex x1 of G such that dα(x1) ≥ dγ(x) for each γ, 1 ≤ γ ≤ 5, and for each
vertex x of G. If G − x1 contains either of P[ f (β)−2+g(β)]({1,...,5}r{β}), where β ranges

over all elements of {1, . . . , 5}r {α} and g(β) = 0 if β < α and g(β) = 1 if β > α, then
G contains either of P[ f (β)]({1,...,5}r{β}), respectively, where again β ∈ {1, . . . , 5}r {α}.

Proof . We prove the lemma for α = 5 and leave the other cases to the reader.
Hence there exists a vertex x1 of G such that n = d5(x1) ≥ dγ(x) for each γ,
1 ≤ γ ≤ 5, and for each vertex x of G. We must show that if G − x1 contains
either P[i−2](2,3,4,5), P[j−2](1,3,4,5), P[k−2](1,2,4,5), or P[l−2](1,2,3,5), then G contains either
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Pi(2,3,4,5), Pj(1,3,4,5), Pk(1,2,4,5), or Pl(1,2,3,5), respectively. Since the arguments for all
four possible cases are similar, we consider that G − x1 contains P[k−2](1,2,4,5) but
G does not contain Pk(1,2,4,5) and show that G contains either Pi(2,3,4,5), Pj(1,3,4,5), or
Pl(1,2,3,5). Let y and z be the end-vertices of P[k−2](1,2,4,5) and denote this path by

P = (y, . . . , z). If both of x1y and x1z are in E1 ∪ E2 ∪ E4 ∪ E5, then the assertion
follows from Lemma 2.2. Otherwise, we consider two cases as follows.

Case 1. x1y ∈ E1 ∪ E2 ∪ E4 ∪ E5 and x1z ∈ E3. First note that since there exists
no Pk(1,2,4,5), x1w 6∈ E5 for each w ∈ V \ (V(P) ∪ {x1}). This means that all

of the n vertices joined to x1 by edges of color 5 are in V(P). Let v 6= y be a
vertex of P with x1v ∈ E5. Then v splits P into a yv-path P′ and a vz-path. Let
u ∈ N(v) such that uv ∈ E(P′). Then zu ∈ E3, since otherwise existence of the
cycle (x1v . . . zu . . . y) implies existence of the desired path by Lemma 2.2. Note
that v . . . z refers to the subpath of P between v and z. Summarizing, for each
edge x1v ∈ E5 we get an edge zu ∈ E3, plus the edge zx1 ∈ E3, we see that
d3(z) ≥ d5(x1) (and it is possible that x1y ∈ E5). Let w ∈ V \ (V(P) ∪ {x1}). If
zw ∈ E1 ∪ E2 ∪ E4 ∪ E5, then (x1y . . . zw) is a Pk(1,2,4,5), which is impossible. Hence

zw ∈ E3, where w ∈ V \ (V(P) ∪ {x1}). So d3(z) ≥ d5(x1) + 1. This contradicts
our assumption that d5(x1) ≥ dγ(x) for each γ, 1 ≤ γ ≤ 5, and for each vertex x
of G.

Case 2. x1y, x1z ∈ E3. Let x1 be adjacent to n1 vertices of V \V(P) in color 5. First
suppose that n1 > 0. Let w be any vertex of V \ (V(P) ∪ {x1}) with x1w ∈ E5. If
zw ∈ E1 ∪ E2 ∪ E4 ∪ E5, then (y . . . zwx1) is a Pk(1,2,4,5). This contradiction shows
that zw ∈ E3. That is, for each edge x1w ∈ E5 we get an edge zw ∈ E3. Hence if
n = n1, then d3(z) ≥ n1, plus the edge zx1 ∈ E3, we see that d3(z) ≥ d5(x1) + 1.
This contradicts our assumption that d5(x1) ≥ dγ(x) for each γ, 1 ≤ γ ≤ 5, and
for each vertex x of G. Thus we may suppose that n > n1. Let v be a vertex of P
with x1v ∈ E5. Then v splits P into a yv-path P′ and a vz-path. Let u ∈ N(v) such
that uv ∈ E(P′). Then zu ∈ E3, since otherwise (wx1v . . . zu . . . y) is a Pk(1,2,4,5).
Summarizing, for each edge x1v ∈ E5 we get an edge zu ∈ E3, plus the edge
zx1 ∈ E3, we see that d3(z) ≥ d5(x1) + 1. This contradicts our assumption that
d5(x1) ≥ dγ(x) for each γ, 1 ≤ γ ≤ 5, and for each vertex x of G.

We now turn to the case n1 = 0. That is, x1 is adjacent to n vertices of V(P)
by edges of color 5. Let v be a vertex of P with x1v ∈ E5. Then v splits P into a
yv-path P′ and a vz-path P′′. Let u ∈ N(v) such that uv ∈ E(P′).

Claim. zu ∈ E3.
Proof of claim. Suppose, contrary to our claim, that zu ∈ E1 ∪ E2 ∪ E4 ∪ E5. We
aim to get the contradiction d3(y) > d5(x1). Let us first outline the proof. For
each vertex a with x1a ∈ E5 we get a vertex b with yb ∈ E3 to conclude that
d3(y) ≥ d5(x1), and then we find an extra vertex w with yw ∈ E3. First note that,
if x1u ∈ E5, then yz ∈ E3, since otherwise existence of the cycle (v . . . zy . . . ux1)
implies existence of the desired path by Lemma 2.2. Let v′ 6= u be a vertex of
the subpath (y . . . u) of P′ with x1v′ ∈ E5. Then v′ splits P into a yv′-path P′

1
and a v′z-path P′′

1 . Let u′ ∈ N(v′) such that u′v′ ∈ E(P′′
1 ). Then yu′ ∈ E3, since

otherwise existence of the cycle (u′ . . . uz . . . vx1v′ . . . y) implies existence of the
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desired path by Lemma 2.2. Similarly, let v′′ be a vertex of the subpath (v . . . z)
of P′′ with x1v′′ ∈ E5. Then v′′ splits P into a yv′′-path P′

2 and a v′′z-path P′′
2 . Let

u′′ ∈ N(v′′) such that u′′v′′ ∈ E(P′
2). Then yu′′ ∈ E3, since otherwise existence of

the cycle (u′′ . . . vx1v′′ . . . zu . . . y) (also existence of the cycle (vx1v′′ . . . zu . . . y),
when v = u′′) implies existence of the desired path by Lemma 2.2. Summa-
rizing, for each edge x1v′ ∈ E5 and x1v′′ ∈ E5 we get an edge yu′ ∈ E3 and
yu′′ ∈ E3, respectively, plus the edges x1v ∈ E5 and yx1 ∈ E3, we see that
d3(y) ≥ d5(x1). Let w ∈ V \ (V(P) ∪ {x1}). If yw ∈ E1 ∪ E2 ∪ E4 ∪ E5, then
(x1v . . . zu . . . yw) is a Pk(1,2,4,5). So yw ∈ E3, where w ∈ V \ (V(P) ∪ {x1}). There-

fore d3(y) ≥ d5(x1) + 1. This contradiction completes the proof of our claim. ⊣

Hence by the claim, for each edge x1v ∈ E5 we get an edge zu ∈ E3, plus the
edge zx1 ∈ E3, we have d3(z) ≥ d5(x1) + 1, which is impossible.

Theorem 2.4. Let 2 ≤ i ≤ j ≤ k ≤ l ≤ m < r4
3(Pi, Pj, Pk, Pl). Then

r5
4(Pi, Pj, Pk, Pl, Pm) ≤ [

16m + 8l + 4k + 2j + i − 2

30
].

Proof . The assertion holds for i ≤ 3 by Lemma 2.1. Let i ≥ 4 and the edges of

G = Ks be colored by 1, 2, 3, 4, and 5, where s = [ 16m+8l+4k+2j+i−2
30 ]. We saw in

Lemma 2.2 that s ≥ m. The proof is by induction. First suppose that i = j. Since
all the eight possible cases use completely similar arguments, we only consider
that i = j < k = l < m and leave the other cases to the reader. Moreover, without
loss of generality we can consider three cases as follows.

Case 1. There exists a vertex x1 such that n = d5(x1) ≥ dγ(x) for each γ, 1 ≤ γ ≤
5, and for each vertex x of G. If m ≥ r4

3(Pi−2, Pj−2, Pk−2, Pl−2), by Theorems 1.3
and 1.5 we obtain

r5
4(Pi−2, Pj−2, Pk−2, Pl−2, Pm)

= r4
3(Pi−2, Pj−2, Pk−2, Pl−2)

=

{

[
8(l−2)+4(k−2)+2(j−2)+i−4

14 ] if l − 2 < r3
2(Pi−2, Pj−2, Pk−2),

r3
2(Pi−2, Pj−2, Pk−2) if r3

2(Pi−2, Pj−2, Pk−2) ≤ l − 2

≤ s − 1,

and if m < r4
3(Pi−2, Pj−2, Pk−2, Pl−2), then by the induction hypothesis,

r5
4(Pi−2, Pj−2, Pk−2, Pl−2, Pm) ≤

[
16m + 8(l − 2) + 4(k − 2) + 2(j − 2) + (i − 2)− 2

30
] = s − 1.

So G − x1 contains either P[i−2](2,3,4,5), P[j−2](1,3,4,5), P[k−2](1,2,4,5), P[l−2](1,2,3,5), or
Pm(1,2,3,4). If Pm(1,2,3,4) is present, there is nothing to prove. If P[i−2](2,3,4,5),
P[j−2](1,3,4,5), P[k−2](1,2,4,5), or P[l−2](1,2,3,5) is present, G contains the desired path
by Lemma 2.3.

Case 2. There exists a vertex x1 such that n = d4(x1) ≥ dγ(x) for each γ, 1 ≤ γ ≤
5, and for each vertex x of G. We shall show that r5

4(Pi−2, Pj−2, Pk−2, Pl, Pm−1) ≤
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s − 1. If r4
3(Pi−2, Pj−2, Pk−2, Pl) ≤ m − 1, then

r5
4(Pi−2, Pj−2, Pk−2, Pl, Pm−1) = r4

3(Pi−2, Pj−2, Pk−2, Pl) ≤ m − 1 ≤ s − 1,

and if m − 1 < r4
3(Pi−2, Pj−2, Pk−2, Pl), by induction hypothesis,

r5
4(Pi−2, Pj−2, Pk−2, Pl, Pm−1) ≤

[
16(m − 1) + 8l + 4(k − 2) + 2(j − 2) + (i − 2)− 2

30
] = s − 1.

So G − x1 contains either P[i−2](2,3,4,5), P[j−2](1,3,4,5), P[k−2](1,2,4,5), Pl(1,2,3,5), or
P[m−1](1,2,3,4). If Pl(1,2,3,5) is present, there is nothing to prove. If P[i−2](2,3,4,5),
P[j−2](1,3,4,5), P[k−2](1,2,4,5), or P[m−1](1,2,3,4) is present, G contains the desired path
by Lemma 2.3.

Case 3. There exists a vertex x1 such that n = d2(x1) ≥ dγ(x) for each γ,
1 ≤ γ ≤ 5, and for each vertex x of G. We leave it to the reader to verify that
r5

4(Pi−2, Pj, Pk−1, Pl−1, Pm−1) ≤ s − 1 and so G − x1 contains either P[i−2](2,3,4,5),
Pj(1,3,4,5), P[k−1](1,2,4,5), P[l−1](1,2,3,5), or P[m−1](1,2,3,4). If Pj(1,3,4,5) is present, there
is nothing to prove. If P[i−2](2,3,4,5), P[k−1](1,2,4,5), P[l−1](1,2,3,5), or P[m−1](1,2,3,4) is
present, G contains the desired path by Lemma 2.3.

Now suppose that i < j. Let x1 be a vertex with Σ5
n=2dn(x1) ≤ Σ5

n=2dn(x),
for each vertex x. That is, among the vertices of G, x1 has the minimum value
in the sum of the degrees in colors 2, . . . , 5 and hence the maximum degree in
color 1. If Σ5

n=2dn(x1) ≥ ⌈j/2⌉ and the subgraph induced by ∪5
n=2En is con-

nected then G, by the standard result stating that every connected graph G has
a path of length at least min{2δ(G), |G| − 1}, contains a P[2⌈j/2⌉](2,3,4,5) and hence

a Pi(2,3,4,5). Otherwise, if the subgraph induced by ∪5
n=2En is disconnected, then

all of its components are of order at least ⌈j/2⌉ and so G contains Pj(1). Thus we

may suppose that Σ5
n=2dn(x1) ≤ [j/2]. It is obvious that G − x1 contains either

Pi(2,3,4,5), P[j−1](1,3,4,5), P[k−1](1,2,4,5), P[l−1](1,2,3,5), or P[m−1](1,2,3,4). Suppose that one

of the latter four paths is present and denote it by P. Since d1(x1) ≥ s − 1 − [j/2],
x1 is adjacent to two successive vertices of P by edges of color 1, which implies
the desired path. �

Theorem 2.5. Let 2 ≤ i ≤ j ≤ k ≤ l ≤ m < r4
3(Pi, Pj, Pk, Pl). Then

r5
4(Pi, Pj, Pk, Pl, Pm) > [

16m + 8l + 4k + 2j + i − 2

30
]− 1.

Proof . Let s = [
16m+8l+4k+2j+i−2

30 ], x1 = ⌈
8m+4l+2k+j−i−1−12s

3 ⌉,

x2 = [
4m+2l+k−j+i−2−6s

3 ], x3 = 4s − 2m − l − k, x4 = 2s − l − m, and x5 = s − m.

First note that x1 + x2 = 4m + 2l + k − 1 − 6s. Moreover by m < r4
3(Pi, Pj, Pk, Pl)

and the definition of s and xi’s, it is straightforward to check that
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x1 + x2 + x3 + x4 + x5 = s − 1,
x1 + x2 + x3 + x4 = m − 1,
x1 + x2 + x3 + 2x5 = l − 1,
x1 + x2 + 2x4 + 2x5 = k − 1,
x1 + 2x3 + 2x4 + 2x5 ≤ j − 1,
2x2 + 2x3 + 2x4 + 2x5 + 1 ≤ i − 1,
x1 > 0,
xi ≥ 0, 2 ≤ i ≤ 5.

(3)

Now partition the vertices of Ks−1 into five sets Xi, 1 ≤ i ≤ 5 with |Xi| = xi. Paint
with 1 all edges which are incident with two vertices of X1. For i = 2, 3, 4, 5, paint
with i the edges having two vertices in Xi or one vertex in Xi and one vertex in Xj

where j < i. The conditions in (3) guarantee that Ks−1 does not contain Pi(2,3,4,5),
Pj(1,3,4,5), Pk(1,2,4,5), Pl(1,2,3,5), and Pm(1,2,3,4). �

Corollary 2.6. Let 2 ≤ i ≤ j ≤ k ≤ l ≤ m. Then r5
4(Pi, Pj, Pk, Pl, Pm) is equal to

[
16m+8l+4k+2j+i−2

30 ] if m < r4
3(Pi, Pj, Pk, Pl) and is equal to r4

3(Pi, Pj, Pk, Pl), otherwise.
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