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Abstract

We prove that every infinite dimensional Banach space can be equiva-
lently renormed so that the set of norm attaining functionals contains an
infinite dimensional vector subspace.

1 Introduction and background

Following the notion of a “big set” in the measure theory sense (the complemen-
tary of a measure zero set) and in the Baire theory sense (a comeager set), Gurariy
coined in 1991 (see [12]) a new version of this notion in the linear sense: lineabil-
ity and spaceability. However, this did not appear in the literature until the early
2000’sin [3, 13]. For the last decade there has been an intensive trend to search for
large algebraic and linear structures of special objects. We would like to mention
the nice survey paper [5] related to this topic and the very recent monograph [2].
Let us introduce what we are meaning: A subset M of a Banach space X is said to
be lineable (spaceable) if M U {0} contains an infinite dimensional (closed) vector
subspace. By A-lineable (A-spaceable) we mean that M U {0} contains a (closed)
vector subspace of dimension A.

Throughout this paper, we will deal with a special friend: NA (X), the set of
norm-attaining functionals on a Banach space X. By a classical Bishop-Phelps’s
theorem it is known that NA (X) is always “topologically generic”, that is, dense
in X*, therefore it seems natural to raise the following question (originally posed
by Godefroy in [11]).
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Problem 1.1 (Godefroy, [11]). Given an infinite dimensional Banach space X, is NA (X)
always lineable?

Very recently, Rmoutil in [17] observed that the example of Read [16] of a
Banach space with no proximinal subspaces of codimension 2 is also an exam-
ple of a Banach space whose set of norm-attaining functionals does not contain
subspaces of dimension 2. In [1] it has been shown that the above question has
a positive answer for some classical Banach spaces like the C(K) and the Li(u)
spaces. In [9] it is observed that not all closed infinite dimensional subspaces
of l« verify that the set of norm-attaining functionals is lineable. In the same
manuscript it is also found a class of closed infinite dimensional subspaces of /.,
called filling subspaces of /«, such that the set of norm-attaining functionals is
lineable. We recall the reader that a closed infinite dimensional subspace V' of
(s is said to be filling provided that for every infinite subset A of supp(V) there
exists x € Sy with supp(x) C A and x attains its sup norm. In [10] the previous
results are generalized in the following way:.

Theorem 1.2 (Garcia-Pacheco and Puglisi, 2017). Let X be a Banach space. There
exists a biorthogonal system (x;, X7 )icy such that {x} : i € I} is norming if and only
if X is linearly isometric to a filling subspace of Lo (N). In this situation, NA(X) is
card (A)-lineable.

Another isometric result concerning the lineability of the norm-attaining func-
tionals was given in [8], where it is proved that if a Banach space admits a mono-
tonic projection basis then the set of norm-attaining functionals is lineable.

Concerning Question 1.1 in terms of spaceability, the main effort has been
done by Bandyopadhyay and Godefroy in [4], where it was shown that Asplund
Banach spaces with the Dunford-Pettis property cannot be equivalently renormed
to make the norm-attaining functionals spaceable. In particular, if K is an infinite
Hausdorff scattered compact topological space, then NA (C(K)) is lineable but not
spaceable.

As far as we know, the main result obtained until now concerning the iso-
morphic lineability of NA (X) was obtained in [8], where it is shown that every
Banach space admitting an infinite dimensional separable quotient can be equiv-
alently renormed so that the set of its norm-attaining functionals is lineable. In
[10] it also provided an isomorphic condition for the lineability of NA (X).

Theorem 1.3 (Garcia-Pacheco and Puglisi, 2017). Let X be a Banach space. There
exists a biorthogonal system (x;,x})icy such that {x’ : i € I} is bounded and

span (abcow*{x;-" ciel }) = X* ifand only if X is isomorphic to a filling subspace of

los (). In this situation, X can be equivalently renormed to make NA(X) be card(A)-
lineable.

In this note we solve completely the isomorphic version of Godefroy’s ques-
tion 1.1.
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2 Main results

Let (X, || - ||) be a Banach space. A closed subspace M of X* is said to be total if
for every 0 # x € X thereis an f € M such that f(x) # 0. For a total subspace
M C X* one can define a norm on X

lxlim = sup{|f(x)| : feM, |fll <1}.

It is clear that || - ||y < || - |l. If || - ||m is equivalent to || - ||, then M is said
to be norming. A first example of a total non-norming subspace goes back to S.
Mazurkiewicz [14]. Observe that if M is a total non-norming subspace of X*, then
Bx is not a neighborhood of 0in (X, || - ||»r) and, since By is absolutely convex, we
deduce that Bx has empty interior in (X, || - ||s) as well as in its completion. In
[7], W.J. Davis and J. Lindenstrauss proved that a Banach space X has a total non-
norming subspace in X* if and only if X has infinite codimension in its second
dual, i.e. dim X** /X = oo (see also [15]).

Lemma 2.1. Let X be a Banach space and A a closed absolutely convex subset of X with
empty interior. Then for every € > 0 there exists f, € Sx» such that |f¢(a)| < e for all
a€ A

Proof. Consider the polar set A? := {f € X* : [f(a)] <1 Va € A}. We will show
that A? is unbounded. Otherwise, there exists « > 0 such that A’ C aBx+. Then
aBx = (aBx-)y C (A%), = abco(A) = A. This contradicts the fact that A has
empty interior, therefore A” is unbounded. Let (f,),en be a sequence in A° such
that (|| fu||)nen diverges to co. Let ng € IN such that || f,|| > 1. Finally, it suffices

to take fe := fu, /|| fuoll- m

Lemma 2.2. Let X be a topological vector space, A and B non-empty subsets of X, and
Y a proper subspace of X. If A+ B C 'Y, then both A and B have empty interior.

Proof. We will show that A has empty interior. In a similar way it can be shown
that B has empty interior. Fix an arbitrary b € B. Then A+b C A+B C Y
and since Y is proper we have that Y has empty interior in X, therefore A + b has
empty interior in X. Since translations are homeomorphisms, we deduce that A
has empty interior in X. m

We are now in the right position to state and prove the main result in this
manuscript. The argument used in the proof resembles the one in [15].

Theorem 2.3. Every infinite dimensional Banach space X admits an equivalent norm
such that NA (X) is lineable.

Proof. In case dim X**/X < oo, X is a quasi-reflexive space and hence by [18]
X is a direct sum of a reflexive subspace Y and a separable subspace Z. There-
fore it has a separable infinite—dimensional quotient space and the thesis follows
directly by [8, Corollary 3.3].

Let us suppose that dim X**/X = co. By the Davis-Lindenstrauss’s theorem
[7], there exists a closed subspace M C X* which is total non-norming. Let us
define Xy to be the completion of (X, | - ||») and let

Ey: X — Xp
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be the natural embedding.

We have that Ey(Bx) does not have interior point in Xj;. Therefore, by the
Lemma 2.1 there exists f1 € Sx;, such that

AE) < 5oy Vr By,

Let vy € X such that ||[Eq(vo)||m < 2and f1(Ep(vg)) = 1 and define
E1: X — Xy

by
E1(x) = Eo(x) — f1(Eo(x))Eo(vo).

Therefore we have
(i) (Eo — E1)(X) = span{Eq(vo)},
(i) E5(f)llx- < 73/
(ilig) [|Eo — E1ll < 3,
(ivg) E1(X) C ker(f1) N Ep(X).

According to Lemma 2.2, E1(Bx) does not have interior points in Xj;. Hence,
we can proceed exactly as before with E; instead of Ej, to create an operator
Ey : X — Xpand f, € Sy, satisfying suitable conditions. Iterating this process,
for each n € N U {0}, we obtain a sequence of operators

E,: X — Xum,
a sequence of functionals (f, ), C SXXA and (v,,), C X, such that
(in) fat1(En(vn)) =1,
(iin) |E5 (far1)llx: < 5501,
(ilin) (En — Ep41)(X) = span{Ex(vn)},

(ivn) [En = Ensall < 5751,

(va) Ens1(X) € Ker(fupn) N Ea(X) € (Nftker(fi)) N Eo(X).

Directly from the construction it follows that

e The sequence (f,), is linearly independent. Indeed, by (in) f,+1 does not
vanish on E,;(X) and then by (vy), it does not vanish on N} ker(f;).

e Foralln € N, Eg(vg), ..., En(vy) € span{Ey(v;) : 0 <i < m}.
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By (ivn), the sequence (E, ), converges in the norm-operator topology to some
operator
D:X — Xy,

which by (vy)
D(X) C (m ker(fn>> N Eo(X). 1)
n=0

We obtain that

[e¢]

Eo =) (En—Eus1) +D.
n=0

From this equality, since Eo(X) is dense in X, we easily obtain that

span{E,(v,): n € N} & D(X) is dense in Xp;. (2.2)
By (iin) above, we have that )~ |E; (fu+1)(x)| < oo for all x € X. Thus

Y |fu(x)] < oo forallx € Xp/D(X). (2.3)

n>1

Next, we will use a classical basic sequence construction. Let (¢,), be a
sequence such that 0 < ¢, < 1and )} ,&;, < oo. Using (2.3) inductively one
can find a strictly increasing sequence (p,), in IN, and an increasing sequence of

finitesets A, C B Xu/DX) such that

e For each u € (span{fy,, ..., fp,})" with ||u|]| < 1 thereis an x € A, such

that c
u(f) = fF)| < FIfIl forevery f € span{fy,, .., fp,}

o [fp,41(x)] <% forevery x € Ay

Therefore, it is easy to check that
If +Afptl = A —e)|fIl forall f € span{fy,..., fu,}, A € R.

By the classical Mazur lemma, the sequence (f, ) is basic in (XM / W) *,
and passing to a quotient if necessary we can assume without any loss of gen-
erality that the corresponding biorthogonal sequence of coordinates (z,), is a
Schauder basis in X/ D(X). Moreover we can consider an equivalent norm on

Xy /D(X) such that such that (z,), is a monotone Schauder basis.
Now we apply [4, Lemma 2.4] to find an equivalent norm | - | on X,s which

coincides with the original norm on D(X) and makes D(X) proximinal.

At this point, we may assume that (z,),en C Span{Eo(v,) : n € N}. Thus
there exists a bounded subset A of X such that every f, attains its norm at an
element of A.

Therefore, the norm whose unit ball is abco (Bx U A) defines an equivalent
renorming on X that makes

span{f,: n € N} C NA(X). u



146 FE ]J. Garcia-Pacheco — D. Puglisi

References

[1] M.D. Acosta, A. Aizpuru, R M. Aron, E]J. Garcia-Pacheco; Functionals that
do not attain their norm, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007),
407-418.

[2] RM. Aron, L. Bernal-Gonzélez, D. Pellegrino, J.B. Seoane-Septlveda, Lin-
eability: The Search for Linearity in Mathematics, Monographs and Research
Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2015.

[3] R. M. Aron, V. L. Gurariy and J. B. Seoane-Septlveda, Lineability and space-
ability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005), 795-803.

[4] P. Bandyopadhyay and G. Godefroy; Linear structure in the set of norm-
attaining functionals on a Banach space, J. Convex Anal. 13 (2006), 489—-497.

[5] L. Bernal-Gonzalez, D. Pellegrino, J.B. Seoane-Septilveda; Linear subsets of
nonlinear sets in topological vector spaces. Bull. Amer. Math. Soc. (N.S.) 51
(2014), no. 1, 71-130.

[6] E.Bishop, R.R. Phelps; A proof that every Banach space is subreflexive. Bull.
Amer. Math. Soc. 67 (1961) 97-98.

[7] WJ. Davis, J. Lindenstrauss, On total nonnorming subspaces, Proc. Amer.
Math. Soc. 31 (1972), 109-111.

[8] FJ. Garcia-Pacheco, D. Puglisi; Lineability of functionals and operators.
Studia Math. 201 (2010), no. 1, 37-47.

[9] FJ. Garcia-Pacheco, D. Puglisi; A short note on the lineability of norm-
attaining functionals in subspaces of {«. Arch. Math. (Basel) 105 (2015), no.
5, 461-465.

[10] EJ. Garcia-Pacheco, D. Puglisi; Renormings concerning the lineability of the
norm-attaining functionals. |. Math. Anal. Appl. 445 (2017), no. 2, 1321-1327.

[11] G. Godefroy; The Banach space cy, Extracta Math. 16 (1) (2001) 1-25.

[12] V.I. Gurariy; Linear spaces composed of everywhere nondifferentiable func-
tions, C. R. Acad. Bulgare. Sci. 44 (1991) 13-16.

[13] V.I. Gurariy and L. Quarta, On lineability of sets of continuous functions,
J. Math. Anal. Appl. 294 (2004), 62-72.

[14] S. Mazurkiewicz; Sur la dérivée faible d’un ensemble de fonctionnelles
linéaires, Studia Math. 2 (1930), 68-71.

[15] M. I. Ostrovskii, Characterization of Banach spaces which are completions
with respect to total non-norming subspaces. Arch. Math. (Basel) 60 (1993),
no. 4, 349-358.



Lineability of functionals and renormings 147

[16] C.J. Read; Banach spaces with no proximinal subspaces of codimension 2.
arXiv: 1307.7958v1.

[17] M. Rmoutil; Norm-attaining functionals and proximinal subspaces, J. Funct.
Anal. 272 (2017), no. 3, 918-928.

[18] M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977), 11-13.

Department of Mathematics, University of Cadiz,
Puerto Real, 11519, Spain (EU)
email: garcia.pacheco@uca.es

Department of Mathematics and Computer Sciences,
University of Catania,

Catania, 95125, Italy (EU)
emaildpuglisi@dmi.unict.it



