Coarse Lipschitz embeddings of James spaces

F. Netillard^{*}

Abstract

We prove that, for $1 , there does not exist any coarse Lipschitz embedding between the two James spaces <math>J_p$ and J_q , and that, for $1 and <math>1 < r < \infty$ such that $r \notin \{p,q\}$, J_r does not coarse Lipschitz embed into $J_p \oplus J_q$.

1 Introduction

Let (M, d) and (N, δ) be two metric spaces and $f : M \to N$. The map f is said to be a *coarse Lipschitz embedding* if there exist θ , A, B > 0 such that

$$\forall x, y \in M \ d(x,y) \ge \theta \Rightarrow Ad(x,y) \le \delta(f(x), f(y)) \le Bd(x,y).$$

Then we say that *M* coarse Lipschitz embeds into *N*.

R.C. James introduced in [7] a non-reflexive space defined by :

$$J = \left\{ x : \mathbb{N} \to \mathbb{R} \text{ s.t. } x(n) \to 0 \text{ and} \right.$$

$$\|x\|_{J} = \sup_{p_{1} < \ldots < p_{n}} \left(\sum_{i=1}^{n-1} |x(p_{i+1}) - x(p_{i})|^{2} \right)^{\frac{1}{2}} < \infty \right\}$$

Bull. Belg. Math. Soc. Simon Stevin 25 (2018), 71-84

^{*}The author was partially supported by the French "Investissements d'Avenir" program, project ISITE-BFC, contract ANR-15-IDEX-03.

Received by the editors in November 2016 - In revised form in July 2017. Communicated by G. Godefroy.

²⁰¹⁰ Mathematics Subject Classification : Primary 46B20; Secondary 46B80.

Key words and phrases : Banach spaces, James spaces, coarse Lipschitz embeddings.

We will use the following spaces (where 1), which are variants of*J*:

$$J_p = \left\{ x : \mathbb{N} \to \mathbb{R} \text{ s.t. } x(n) \to 0 \text{ and} \\ \|x\|_{J_p} = \sup_{p_1 < \dots < p_n} \left(\sum_{i=1}^{n-1} |x(p_{i+1}) - x(p_i)|^p \right)^{\frac{1}{p}} < \infty \right\}$$

Like in the case of *J*, the codimension of J_p in J_p^{**} is 1. In this respect, we precise that J_p^{**} can be seen as :

$$J_p^{**} = \left\{ x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \sup_{p_1 < \dots < p_n} \left(\sum_{i=1}^{n-1} |x(p_{i+1}) - x(p_i)|^p \right)^{\frac{1}{p}} < \infty \right\}$$

All those spaces are studied in [13].

In 2008, N.J. Kalton and N.L. Randrianarivony [10] proved that, if $r \notin \{p_1, \ldots, p_n\}$ where $1 \le p_1 < p_2 < \ldots < p_n < \infty$, then ℓ_r does not coarse Lipschitz embed into $\ell_{p_1} \oplus \ldots \oplus \ell_{p_n}$.

The aim of this article is to prove similar results for the J_p spaces. One of the main obstacles is the lack of reflexivity, which was crucial in Kalton-Randrianarivony's work. However, the James spaces have nice properties of asymptotic uniform smoothness and weak* asymptotic uniform convexity that we shall use (see [10] or [11] for the definitions). We shall not refer to these notions in our paper, but we will build concrete equivalent norms on J_p that will serve our purpose. Some compactness arguments will also be used to deal with the extra dimension in J_p^{**} .

This paper is organized as follows. In Section 2 we summarize the notation and terminology and we give the basic results. Section 3 contains the proof of the nonexistence of a coarse Lipschitz embedding between two James spaces J_p and J_q for $1 . At the end of this last section, we show that, for <math>1 and <math>1 < r < \infty$ such that $r \notin \{p,q\}$, J_r does not coarse Lipschitz embed into $J_p \oplus J_q$.

2 Preliminaries

Notation 2.1. Let e_n defined by $e_n(k) = \delta_{n,k}$ for $k \in \mathbb{N}$. The sequence $(e_n)_{n=1}^{\infty}$ is a Schauder basis of J_p (where p > 1).

Moreover, the sequence $(e_n^*)_{n=1}^{\infty}$ of the coordinate functionals associated with $(e_n)_{n=1}^{\infty}$ is a Schauder basis of J_p^* .

For $x \in J_p$, we denote supp $(x) = \{n \in \mathbb{N}, e_n^*(x) \neq 0\}$ (support of *x*).

When *u* and *v* in J_p have consecutive and disjoint finite supports with respect to $(e_n)_{n=1}^{\infty}$, we will denote $u \prec v$.

Likewise, when u^* and v^* in J_p^* have a consecutive and disjoint finite supports with respect to $(e_n^*)_{n=1}^{\infty}$, we will denote $u^* \prec v^*$.

We start with the construction of an ad'hoc equivalent norm on J_p . We follow the construction given in [12] for J_2 .

Lemma 2.2. Let x_1, \ldots, x_n in J_p such that their supports are consecutive and finite with respect to the basis $(e_n)_{n=1}^{\infty}$. Then

$$\|\sum_{i=1}^{n} x_i\|_{J_p}^{p} \le (2^{p}+1)\sum_{i=1}^{n} \|x_i\|_{J_p}^{p}.$$

Proof. We can find disjoint intervals in \mathbb{N} , $[s_i, s'_i]$, with $1 \le i \le n$ and $s'_i < s_{i+1}$, such that :

 $\forall 1 \leq i \leq n$, supp $(x_i) \subset [s_i, s'_i]$ (for convenience, we fix $s_1 = 0$ et we denote $s_{n+1} = \infty$).

Let now $q_1 < \ldots < q_k$ be an arbitrary sequence in \mathbb{N} . We must show that

$$\sum_{j=1}^{k-1} |y(q_j) - y(q_{j+1})|^p \le (2^p + 1) \sum_{i=1}^n ||x_i||_{J_p}^p,$$

where $y = \sum_{i=1}^{n} x_i$.

There exist an increasing sequence $(i_m)_{m=1}^l$ in $\{1, \ldots, n\}$ and an increasing sequence $(j_m)_{m=1}^l$ in $\{1, \ldots, k\}$ with $j_1 = 1$ such that, for any $1 \le m \le l-1$, $\{q_{j_m}, \ldots, q_{j_{m+1}-1}\} \subset [s_{i_m}, s_{i_m+1})$. Therefore

We have that

$$\forall 1 \leq m \leq l-1, \sum_{j=j_m}^{j_{m+1}-2} |y(q_j)-y(q_{j+1})|^p \leq ||x_{i_m}||_{J_p}^p.$$

And for all $2 \le m \le l - 1$,

$$|y(q_{j_m-1}) - y(q_{j_m})|^p \le 2^{p-1} |y(q_{j_m-1})|^p + 2^{p-1} |y(q_{j_m})|^p \le 2^{p-1} ||x_{i_{m-1}}||_{J_p}^p + 2^{p-1} ||x_{i_m}||_{J_p}^p.$$

Then

$$\sum_{j=1}^{k-1} |y(q_j) - y(q_{j+1})|^p \le (2^{p-1} + 1) ||x_{i_1}||_{J_p}^p + (2^p + 1) ||x_{i_2}||_{J_p}^p + \dots + (2^p + 1) ||x_{i_{l-1}}||_{J_p}^p + (2^{p-1} + 1) ||x_{i_l}||_{J_p}^p.$$

This concludes the proof of our lemma.

We now define a new norm on J_p^* as follows. Let q be the conjugate exponent of p, in other words $\frac{1}{p} + \frac{1}{q} = 1$, where $p \in (1, \infty)$. For $x^* \in J_p^*$, we set

$$|x^*|_{J_p^*} = \sup\left\{\left(\sum_{i=1}^n \|x_i^*\|_{J_p^*}^q\right)^{\frac{1}{q}} : x^* = x_1^* + \ldots + x_n^* \text{ and } x_1^* \prec \ldots \prec x_n^*\right\},\$$

where $\|\cdot\|_{J_p^*}$ denotes the dual norm of $\|\cdot\|_{J_p}$. Note that x_n^* is not supposed to be finitely supported.

We can now state the following proposition.

Proposition 2.3. *The norm* $| \cdot |_{J_p^*}$ *is the dual norm of an equivalent norm on* J_p *(that we shall denote* $| \cdot |_{J_p}$ *).*

Moreover, $|\cdot|_{J_p^*}$ satisfies the following property: for any x^*, y^* in J_p^* such that $x^* \prec y^*$, we have that

$$|x^* + y^*|_{J_p^*}^q \ge |x^*|_{J_p^*}^q + |y^*|_{J_p^*}^q.$$

Proof. To show that $|\cdot|_{J_p^*}$ is a norm, we only detail the proof of the triangle inequality : let $(x^*, y^*) \in (J_p^*)^2$ that we may assume with finite supports. Let now $u_1^* \prec u_2^* \prec \ldots \prec u_n^*$ in J_p^* such that

$$x^* + y^* = u_1^* + \ldots + u_n^*$$

We write, for $i \in [1, n] \cap \mathbb{N}$, $u_i^* = x_i^* + y_i^*$, where $x^* = \sum_{i=1}^n x_i^*$ and $y^* = \sum_{i=1}^n y_i^*$. Thank to the triangle inequality for $\|\cdot\|_{J_p^*}$, we get:

$$\left(\sum_{i=1}^{n} \|u_{i}^{*}\|_{J_{p}^{*}}^{q}\right)^{\frac{1}{q}} \leq \left(\sum_{i=1}^{n} \left(\|x_{i}^{*}\|_{J_{p}^{*}} + \|y_{i}^{*}\|_{J_{p}^{*}}\right)^{q}\right)^{\frac{1}{q}}.$$

It then follows from Minkowski's inequality that

$$\left(\sum_{i=1}^{n} \|u_{i}^{*}\|_{J_{p}^{*}}^{q}\right)^{\frac{1}{q}} \leq \left(\sum_{i=1}^{n} \|x_{i}^{*}\|_{J_{p}^{*}}^{q}\right)^{\frac{1}{q}} + \left(\sum_{i=1}^{n} \|y_{i}^{*}\|_{J_{p}^{*}}^{q}\right)^{\frac{1}{q}} \leq |x^{*}|_{J_{p}^{*}} + |y^{*}|_{J_{p}^{*}}$$

We have shown that the triangle inequality is valid for $|.|_{I_n^*}$.

Next we show that for x_1^*, \ldots, x_n^* in J_p^* satisfying $x_1^* \prec \ldots \prec x_n^*$ with respect to the basis $(e_n^*)_{n=1}^{\infty}$, we have:

$$\|\sum_{i=1}^{n} x_{i}^{*}\|_{J_{p}^{*}}^{q} \geq \frac{1}{2^{q}(2^{p}+1)^{q-1}}\sum_{i=1}^{n} \|x_{i}^{*}\|_{J_{p}^{*}}^{q}.$$
(2.1)

So, let $x_1^* \prec \ldots \prec x_n^*$, with, for $i \in [1, n-1] \cap \mathbb{N}$, $\operatorname{supp}(x_i^*) \subseteq [r_i, s_i]$, where $s_i < r_{i+1}$ for $i \in [1, n-2]$, and $\operatorname{supp}(x_n^*) \subseteq [r_n, \infty)$. Fix now $\varepsilon > 0$.

$$\exists y_i \in J_p, \begin{cases} x_i^*(y_i) \geq \|x_i^*\|_{J_p^*}^q - \varepsilon \\ \|y_i\|_{J_p} \leq \|x_i^*\|_{J_p^*}^{q-1} \end{cases}$$

For $r \in \mathbb{N}$, denote P_r the projection onto the linear span of $\{e_i, 1 \le i \le r\}$ with kernel $\overline{\text{span}}\{e_i, i > r\}$. Since $(e_i)_{i=1}^{\infty}$ is a monotone basis, $||P_{s_i} - P_{r_i-1}|| \le 2$ and, for $x_i = (P_{s_i} - P_{r_i-1})(y_i)$,

Since $(P_i)_{i=1}$ is a monotone basis, $||P_{s_i} - P_{r_i-1}|| \le 2$ and, for $x_i = (P_{s_i} - P_{r_i-1})(y_i)$, we have $x_i^*(x_i) = x_i^*(y_i)$. So:

$$\exists x_i \in J_p, \begin{cases} x_i^*(x_i) \geq \|x_i^*\|_{J_p^*}^q - \varepsilon \\ \|x_i\|_{J_p} \leq 2\|x_i^*\|_{J_p^*}^{q-1} \\ \operatorname{supp}(x_i) \subseteq [r_i, s_i] \end{cases}$$

Thank to Lemma 2.2: $\|\sum_{i=1}^{n} x_i\|_{J_p}^p \le (2^p + 1)\sum_{i=1}^{n} \|x_i\|_{J_p}^p$. Since $\|\cdot\|_{J_p^*}$ is the dual norm of $\|\cdot\|_{J_p}$, we have that

$$\|\sum_{i=1}^{n} x_{i}^{*}\|_{J_{p}^{*}} \geq \left(\sum_{i=1}^{n} x_{i}^{*}\right) \left(\sum_{i=1}^{n} x_{i}\right) \left(\|\sum_{i=1}^{n} x_{i}\|_{J_{p}}\right)^{-1}$$

and

$$\begin{split} \|\sum_{i=1}^{n} x_{i}^{*}\|_{J_{p}^{*}} \geq \left(\sum_{i=1}^{n} x_{i}^{*}(x_{i})\right) \left(\|\sum_{i=1}^{n} x_{i}\|_{J_{p}}\right)^{-1} \geq \\ \left(\sum_{i=1}^{n} \|x_{i}^{*}\|_{J_{p}^{*}}^{q} - n\varepsilon\right) \left((2^{p}+1)^{\frac{1}{p}} \left(\sum_{i=1}^{n} \|x_{i}\|_{J_{p}}^{p}\right)^{\frac{1}{p}}\right)^{-1}. \end{split}$$
Foreover,
$$\left(\sum_{i=1}^{n} \|x_{i}\|_{J_{p}^{*}}^{p}\right)^{\frac{1}{p}} \leq 2\left(\sum_{i=1}^{n} \|x^{*}\|_{J_{p}^{p}}^{p(q-1)}\right)^{\frac{1}{p}} - 2\left(\sum_{i=1}^{n} \|x^{*}\|_{J_{p}^{*}}^{q}\right)^{\frac{1}{p}}.$$

Moreover, $\left(\sum_{i=1}^{n} \|x_i\|_{J_p}^{p}\right)^{\overline{p}} \le 2\left(\sum_{i=1}^{n} \|x_i^*\|_{J_p^*}^{p(q-1)}\right)^{\overline{p}} = 2\left(\sum_{i=1}^{n} \|x_i^*\|_{J_p^*}^{q}\right)^{\overline{p}}$. Letting ε tend to 0, we obtain :

$$\|\sum_{i=1}^{n} x_{i}^{*}\|_{J_{p}^{*}} \geq \frac{1}{2(2^{p}+1)^{\frac{1}{p}}} \left(\sum_{i=1}^{n} \|x_{i}^{*}\|_{J_{p}^{*}}^{q}\right)^{1-\frac{1}{p}} = \frac{1}{2(2^{p}+1)^{\frac{1}{p}}} \left(\sum_{i=1}^{n} \|x_{i}^{*}\|_{J_{p}^{*}}^{q}\right)^{\frac{1}{q}}.$$

So, we have established inequality (2.1). It follows easily that

$$\|x^*\|_{J_p^*} \le |x^*|_{J_p^*} \le 2(2^p+1)^{1-\frac{1}{q}} \|x^*\|_{J_p^*} = 2(2^p+1)^{\frac{1}{p}} \|x^*\|_{J_p^*}.$$

Moreover, $|\cdot|_{J_p^*}$ is the dual norm of an equivalent norm on J_p . Indeed, it is clear that $|\cdot|_{J_p^*}$ is $\sigma(J_p^*, J_p)$ lower semi-continuous.

Finally, it follows clearly from the definition of $|\cdot|_{J_p^*}$ that for all x^*, y^* in J_p^* such that $x^* \prec y^*$, we have that

$$|x^* + y^*|_{J_p^*}^q \ge |x^*|_{J_p^*}^q + |y^*|_{J_p^*}^q.$$

Corollary 2.4. The dual norm $|\cdot|_{J_p^{**}}$ of $|\cdot|_{J_p^*}$ satisfies the following property. For $x \in J_p$ with a finite support and $y \in J_p^{**}$ (not necessarily with finite support) such that $x \prec y$, we have

$$|x+y|_{J_p^{**}}^p \le |x|_{J_p^{**}}^p + |y|_{J_p^{**}}^p.$$

Proof. Let $x \in J_p$ which has a finite support and $y \in J_p^{**}$ such that $x \prec y$, with $\operatorname{supp}(x) \subset [m, n]$, $\operatorname{supp}(y) \subset [m', \infty)$ and n < m'. Fix $\varepsilon > 0$. There exists $z^* \in J_p^*$ such that

$$|z^*|_{J_p^*} = |x+y|_{J_p^{**}}^{p-1}$$
 and $z^*(x+y) \ge |x+y|_{J_p^{**}}^p - \varepsilon.$

Moreover, we can write $z^* = x^* + y^*$, with $x^* \prec y^*$, $z^*(x) = x^*(x)$ and $z^*(y) = y^*(y)$. We deduce that $|x + y|_{J_p^{**}}^p \leq x^*(x) + y^*(y) + \varepsilon$. Then Hölder's inequality and Proposition 2.3 yield

$$|x+y|_{J_{p}^{**}}^{p} \leq (|x^{*}|_{J_{p}^{*}}^{q} + |y^{*}|_{J_{p}^{*}}^{q})^{\frac{1}{q}}(|x|_{J_{p}^{**}}^{p} + |y|_{J_{p}^{**}}^{p})^{\frac{1}{p}} + \varepsilon \leq (|x^{*}+y^{*}|_{J_{p}^{*}})(|x|_{J_{p}^{**}}^{p} + |y|_{J_{p}^{**}}^{p})^{\frac{1}{p}} + \varepsilon$$

Since $|z^*|_{J_p^*} = |x + y|_{J_p^{**}}^{p-1}$, we get

$$|x+y|_{J_p^{**}}^p \le (|x+y|_{J_p^{**}}^{p-1})(|x|_{J_p^{**}}^p + |y|_{J_p^{**}}^p)^{\frac{1}{p}} + \varepsilon.$$

We conclude our proof by letting ε tend to 0.

We now turn to the study of the coarse Lipschitz embeddings between James spaces. Let us first recall some notation.

Definition 2.5. Let (M, d) and (N, δ) be two metric spaces and $f : M \to N$ be a mapping. If (M, d) is unbounded, we define

$$\forall s > 0, \ Lip_s(f) = \sup\left\{\frac{\delta((f(x), f(y)))}{d(x, y)}, \ d(x, y) \ge s\right\} \text{ and } Lip_{\infty}(f) = \inf_{s>0} Lip_s(f).$$

Note that *f* is coarse Lipschitz if and only if $Lip_{\infty}(f) < \infty$.

We also recall a classical definition.

Definition 2.6. Given a metric space *X*, two points $x, y \in X$, and $\delta > 0$, the approximate metric midpoint set between *x* and *y* with error δ is the set :

$$Mid(x,y,\delta) = \left\{ z \in X : \max\{d(x,z), d(y,z)\} \le (1+\delta)\frac{d(x,y)}{2} \right\}$$

The use of approximate metric midpoints in the study of nonlinear geometry is due to Enflo in an unpublished paper and has been used elsewhere, e.g. [2], [4] and [8]. The next proposition and its proof can be found for instance in [10] and [11].

Proposition 2.7. Let X be a normed space and suppose M is a metric space. Let $f : X \to M$ be a coarse Lipschitz map. If $Lip_{\infty}(f) > 0$, then for any $t, \varepsilon > 0$ and any $0 < \delta < 1$, there exist $x, y \in X$ with ||x - y|| > t and

$$f(Mid(x, y, \delta)) \subset Mid(f(x), f(y), (1 + \varepsilon)\delta).$$

Let us now recall the definition of the metric graphs introduced in [10] that will be crucial in our proofs.

Notation 2.8. Let \mathbb{M} be an infinite subset of \mathbb{N} and $k \in \mathbb{N}$. We denote

$$G_k(\mathbb{M}) = \{\overline{n} = (n_1, \dots, n_k), n_i \in \mathbb{M} \quad n_1 < \dots < n_k\}.$$

Then we equip $G_k(\mathbb{M})$ with the Hamming distance $d_H(\overline{n}, \overline{m}) = |\{j, n_j \neq m_j\}|$.

We end these preliminaries by recalling Ramsey's theorem and one of its immediate corollaries (see [5] for instance).

Theorem 2.9. Let $k, r \in \mathbb{N}$ and $f : G_k(\mathbb{N}) \to \{1, ..., r\}$ be any map. Then there exists an infinite subset \mathbb{M} of \mathbb{N} and $i \in \{1, ..., r\}$ such that, for every $\overline{n} \in G_k(\mathbb{M})$, $f(\overline{n}) = i$.

Corollary 2.10. Let (K, d) be a compact metric space, $k \in \mathbb{N}$ and $f : G_k(\mathbb{N}) \to K$. Then for every $\epsilon > 0$, there exist an infinite subset \mathbb{M} of \mathbb{N} such that for every $\overline{n}, \overline{m} \in G_k(\mathbb{M}), d(f(\overline{n}), f(\overline{m})) < \epsilon$.

3 The main results

Our first lemma gives a description of approximate metric midpoints in J_p that is analogous to the situation in ℓ_p (see [10] or [11]). However, we need to use both the original and our new norm on J_p .

Lemma 3.1. Let $1 . We denote <math>E_N$ the closed linear span of $\{e_i, i > N\}$. Let now $x, y \in J_p$, $\delta \in (0, 1)$, $u = \frac{x + y}{2}$ and $v = \frac{x - y}{2}$. Then (i) There exists $N \in \mathbb{N}$ such that:

$$u+\delta^{\frac{1}{p}}|v|_{J_p}B_{(E_N,|\cdot|_{J_p})}\subset Mid_{|\cdot|_{J_p}}(x,y,\delta).$$

(ii) There is a compact subset K of J_p such that:

$$Mid_{\|\cdot\|_{J_p}}(x,y,\delta) \subset K + 2\delta^{\frac{1}{p}} \|v\|_{J_p} B_{(J_p,\|\cdot\|_{J_p})}.$$

Proof. Fix $\lambda > 0$.

Let $N \in \mathbb{N}$ such that $|v - v_N|_{J_p} \leq \lambda |v|_{J_p}$, where $v_N = \sum_{i=1}^N v(i)e_i$.

(i) Let now $z \in E_N$ so that $|z|_{I_n}^p \leq \delta |v|_{I_n}^p$. Then

$$|x - (u + z)|_{J_p}^p = |v - z|_{J_p}^p = |v - v_N + v_N - z|_{J_p}^p$$

It follows from the Corollary 2.4 that:

$$x - (u+z)|_{J_p}^p \le |v - v_N - z|_{J_p}^p + |v_N|_{J_p}^p \le (|v - v_N|_{J_p} + |z|_{J_p})^p + |v_N|_{J_p}^p$$

Therefore, thanks to the last inequality and the triangle inequality for $|\cdot|_{J_p}$, we obtain :

$$|x - (u+z)|_{J_p}^p \le \left((\lambda + \delta^{1/p})^p + (\lambda + 1)^p \right) |v|_{J_p}^p \le (1 + \delta)^p |v|_{J_p}^p,$$

if λ was chosen initially small enough.

We argue similarly to show that $|y - (u + z)|_{J_p} = |v + z|_{J_p} \leq (1 + \delta)|v|_{J_p}$ and deduce that $u + z \in Mid(x, y, \delta)$.

(ii) Fix $\nu > 0$ and choose $N \in \mathbb{N}$ such that $\|v_N\|_{J_p}^p \ge (1 - \nu^p) \|v\|_{J_p}^p$. We assume now that $u + z \in Mid_{\|\cdot\|_{J_p}}(x, y, \delta)$ and write z = z' + z'' with $z' \in F_N =$ span $\{e_i, i \le N\}$ and $z'' \in E_N$.

Since $\|v - z\|_{J_p}$, $\|v + z\|_{J_p} \le (1 + \delta) \|v\|_{J_p}$, we get, by convexity, that

$$||z'||_{J_p} \le ||z||_{J_p} \le (1+\delta) ||v||_{J_p}.$$

Therefore, u + z' belongs to the compact set $K = u + (1 + \delta) ||v||_{J_p} B_{(F_N, \|\cdot\|_{J_p})}$. Moreover, for any $(m, n) \in (\mathbb{N}^*)^2$, with m > n:

$$\max\{|v(n) - v(m)|^{p}, |z(n) - z(m)|^{p}\} \le \frac{1}{2}(|(v(n) - z(n)) - (v(m) - z(m))|^{p} + |(v(n) + z(n)) - (v(m) + z(m))|^{p}).$$

Therefore

$$\begin{aligned} (1-\nu^p) \|v\|_{J_p}^p + \|z''\|_{J_p}^p &\leq \|v_N\|_{J_p}^p + \|z''\|_{J_p}^p \leq \\ & \frac{1}{2}(\|v-z\|_{J_p}^p + \|v+z\|_{J_p}^p) \leq (1+\delta)^p \|v\|_{J_p}^p. \end{aligned}$$

Then, if ν was chosen small enough, we get

$$\|z''\|_{J_p}^p \le [(1+\delta)^p - (1-\nu^p)] \|v\|_{J_p}^p \le 2^p \delta \|v\|_{J_p}^p.$$

Proposition 3.2. Let $1 and <math>f : (J_q, |\cdot|_{J_q}) \to (J_p, ||\cdot||_{J_p})$ be a coarse Lipschitz embedding. Then, for any $\tau > 0$ and for any $\varepsilon > 0$, there exist $u \in J_q$, $\theta > \tau$, $N \in \mathbb{N}$ and K a compact subset of J_p such that

$$f(u+\theta B_{(E_N,|\cdot|_{J_q})}) \subset K+\varepsilon\theta B_{(J_p,||\cdot||_{J_p})}$$

Proof. If $Lip_{\infty}(f) = 0$, the conclusion is clear. So we assume that $Lip_{\infty}(f) > 0$. We choose a small $\delta > 0$ (to be detailed later). Then we choose *s* large enough so that $Lip_s(f) \leq 2Lip_{\infty}(f)$. Then, by Proposition 2.7,

$$\exists x, y \in J_q, |x-y|_{J_q} \ge s \text{ and } f(Mid_{\|\cdot\|_{J_q}}(x, y, \delta)) \subset Mid_{\|\cdot\|_{J_p}}(f(x), f(y), 2\delta).$$

Denote $u = \frac{x+y}{2}$, $v = \frac{x-y}{2}$ and $\theta = \delta^{\frac{1}{q}} |v|_{J_q}$. By Lemma 3.1, there exists $N \in \mathbb{N}$ such that $u + \theta B_{(E_N, |\cdot|_{J_q})} \subset Mid_{|\cdot|_{J_q}}(x, y, \delta)$ and there exists a compact subset K of J_p so that $Mid_{\|\cdot\|_{J_p}}(f(x), f(y), 2\delta) \subset K + (2\delta)^{\frac{1}{p}} \|f(x) - f(y)\|_{J_p} B_{(J_p, \|\cdot\|_{J_p})}$. But : $(2\delta)^{\frac{1}{p}} \|f(x) - f(y)\|_{J_p} \leq 2Lip_{\infty}(f)(2\delta)^{\frac{1}{p}} |x-y|_{J_q}$

$$\leq 4Lip_{\infty}(f)2^{\frac{1}{p}}\delta^{\frac{1}{p}-\frac{1}{q}}\theta \leq \varepsilon\theta,$$

if δ was chosen initially small enough.

Then an appropriate choice of a large *s* will ensure that $\theta \ge \frac{1}{2}\delta^{\frac{1}{q}}s > \tau$. This finishes the proof.

Corollary 3.3. Let 1 . $Then <math>J_q$ does not coarse Lipschitz embed into J_p .

Proof. We proceed by contradiction and suppose that there exists a coarse Lipschitz embedding $f : (J_{q}, |\cdot|_{J_q}) \to (J_p, ||\cdot||_{J_p})$.

With the notation of the previous proposition, we can find a sequence $(u_n)_{n=1}^{\infty}$ in $u + \theta B_{(E_N, |\cdot|_{J_q})}$, such that $|u_n - u_m|_{J_q} \ge \theta$ for $n \ne m$. Then $f(u_n) = k_n + \varepsilon \theta v_n$, with $k_n \in K$ et $v_n \in B_{(J_p, \|\cdot\|_{J_p})}$. Since K is compact, by extracting a subsequence, we may assume that $\|f(u_n) - f(u_m)\|_{J_p} \le 3\varepsilon\theta$.

Since ε can be chosen arbitrarily small and θ arbitrarily large, this yields a contradiction.

In order to treat the coarse Lipschitz embeddability in the other direction, we shall use the Kalton-Randrianarivony graphs and some special sets of pairs of elements of these graphs that we introduce now.

Definition 3.4. Let \overline{n} , $\overline{m} \in G_k(\mathbb{M})$ (where \mathbb{M} is an infinite subset of \mathbb{N}). We say that $(\overline{n}, \overline{m}) \in I_k(\mathbb{M})$ if $n_1 < m_1 < n_2 < m_2 < \ldots < n_k < m_k$.

Proposition 3.5. Let $\varepsilon > 0$ and $f : G_k(\mathbb{N}) \to (J_p^{**}, |\cdot|_{J_p^{**}})$ be a Lipschitz map. Then, for any infinite subset \mathbb{M} of \mathbb{N} , there exists $(\overline{n}, \overline{m}) \in I_k(\mathbb{M})$ such that

$$|f(\overline{n}) - f(\overline{m})|_{J_p^{**}} \le 2Lip(f)k^{\frac{1}{p}} + \varepsilon$$

Proof. We shall prove this statement by induction on $k \in \mathbb{N}$.

The proposition is clearly true for k = 1.

Assume now that it is true for $k \ge 1$.

Let $f : G_k(\mathbb{M}) \to J_v^{**}$ be a Lipschitz map and $\varepsilon > 0$.

By a diagonal extraction process and thank to weak*-compactness, we can find an infinite subset \mathbb{M}_1 of \mathbb{M} such that

$$\forall \,\overline{n} \in G_{k-1}(\mathbb{M}_1), \, w^* - \lim_{n_k \in \mathbb{M}_1} f(\overline{n}, n_k) = g(\overline{n}) \in J_p^{**}$$
(3.2)

Then $Lip(g) \leq Lip(f)$, by weak*-lower semicontinuity of $|\cdot|_{J_p^{**}}$. We recall that the codimension of J_p in J_p^{**} is 1.

So, we can denote $g(\overline{n}) = v(\overline{n}) + c_{\overline{n}} \mathbb{1}$ (where $v(\overline{n}) \in J_p$, $c_{\overline{n}} \in \mathbb{R}$ and $\mathbb{1}$ is the constant sequence (1, 1, 1, ...)).

Let $\eta > 0$ (small enough : to be detailed later).

By Ramsey's theorem, there exists an infinite subset \mathbb{M}_2 of \mathbb{M}_1 such that

$$\forall \,\overline{n}, \overline{m} \in G_{k-1}(\mathbb{M}_2), \quad |c_{\overline{n}} - c_{\overline{m}}| = |(v(\overline{n}) - v(\overline{m})) - (g(\overline{n}) - g(\overline{m}))|_{J_p^{**}} < \eta. \tag{3.3}$$

For $\overline{n}, \overline{m} \in G_{k-1}(\mathbb{M}_2)$ and $t, l \in \mathbb{M}_2$, set

$$u_{\overline{n},\overline{m},t,l} = f(\overline{n},t) - g(\overline{n}) + g(\overline{m}) - f(\overline{m},l).$$

Using (3.2), we have

$$\forall \ \overline{n} \in G_{k-1}(\mathbb{M}_2), \ w^* - \lim_{n_k \in \mathbb{M}_2} \left(f(\overline{n}, n_k) - g(\overline{n}) \right) = 0.$$

Then, with Corollary 2.4, we deduce that there exists $l_0 \in \mathbb{N}$ such that for all $t, l \in \mathbb{M}_2 \cap [l_0, +\infty)$:

$$|g(\overline{n}) - g(\overline{m}) + u_{\overline{n},\overline{m},t,l}|_{J_p^{**}}^p \leq |v(\overline{n}) + c_{\overline{n}}\mathbb{1} - v(\overline{m}) - c_{\overline{m}}\mathbb{1}|_{J_p^{**}}^p + |u_{\overline{n},\overline{m},t,l}|_{J_p^{**}}^p + \eta.$$

Note that $f(\overline{n}, t) - f(\overline{m}, l) = g(\overline{n}) - g(\overline{m}) + u_{\overline{n}, \overline{m}, t, l}$. Then it follows from (3.3) and the triangle inequality, that for all $t, l \in \mathbb{M}_2 \cap [l_0, +\infty)$:

$$|f(\overline{n},t)-f(\overline{m},l)|_{J_p^{**}}^p \leq |u_{\overline{n},\overline{m},t,l}|_{J_p^{**}}^p + (|v(\overline{n})-v(\overline{m})|_{J_p}+\eta)^p + \eta.$$

Moreover : $f(\overline{n}, t) - g(\overline{n}) = w^* - \lim_i (f(\overline{n}, t) - f(\overline{n}, i)).$ Therefore, by weak*-lower semicontinuity of $|\cdot|_{J_p^{**}} : |f(\overline{n}, t) - g(\overline{n})|_{J_p^{**}} \le Lip(f).$ Likewise : $|f(\overline{m}, l) - g(\overline{m})|_{J_p^{**}} \le Lip(f).$

Then, we deduce the following inequality : $|u_{\overline{n},\overline{m},t,l}|_{J_p^{**}}^p \leq 2^p Lip(f)^p$. On the other hand, it follows from our induction hypothesis that:

$$\exists (\overline{n}, \overline{m}) \in I_{k-1}(\mathbb{M}_2), |g(\overline{n}) - g(\overline{m})|_{J_p^{**}} \leq 2Lip(f)(k-1)^{\frac{1}{p}} + \eta.$$

Then, for $t, l \in \mathbb{M}_2 \cap [l_0, +\infty)$ such that $m_{k-1} < t < l$, we have $((\overline{n}, t), (\overline{m}, l)) \in I_k(\mathbb{M}_2)$, and

$$|f(\overline{n},t) - f(\overline{m},l)|_{J_{p}^{**}}^{p} \leq 2^{p}Lip(f)^{p} + (2Lip(f)(k-1)^{\frac{1}{p}} + 2\eta)^{p} + \eta.$$

So:

$$|f(\overline{n},t) - f(\overline{m},l)|_{J_p^{**}}^p \leq 2^p Lip(f)^p k + \varphi(\eta), \text{ with } \varphi(\eta) \xrightarrow[\eta \to 0]{} 0.$$

Thus, if η was chosen small enough :

$$|f(\overline{n},t) - f(\overline{m},l)|_{J_p^{**}} \le 2Lip(f)k^{\frac{1}{p}} + \varepsilon.$$

This finishes our inductive proof.

Corollary 3.6. Let $1 < q < p < \infty$. Then J_q does not coarse Lipschitz embed into J_p .

Proof. Suppose that $g : J_q \to J_p$ is a map such that there exist θ , *A* and *B* real positive numbers such that :

$$\forall x, y \in J_q, \|x-y\|_{J_q} \ge \theta \Rightarrow A\|x-y\|_{J_q} \le |g(x)-g(y)|_{J_p} \le B\|x-y\|_{J_q}.$$

Let us rescale by defining $f(v) = (A\theta)^{-1}g(\theta v)$, for $v \in J_q$. We have that there exists $C \ge 1$ such that

$$\forall x, y \in J_q, \|x - y\|_{J_q} \ge 1 \Rightarrow \|x - y\|_{J_q} \le |f(x) - f(y)|_{J_p} \le C \|x - y\|_{J_q}.$$
 (3.4)

We still denote $(e_n)_{n=1}^{\infty}$ the canonical basis of J_q .

Consider the map φ : $(G_k(\mathbb{N}), d_H) \to (J_q, \|\cdot\|_{J_q})$ defined by $\varphi(\overline{n}) = e_{n_1} + \ldots + e_{n_k}$. Note that for all $\overline{n}, \overline{m} \in G_k(\mathbb{N})$,

$$\|(e_{n_1}+\ldots+e_{n_k})-(e_{m_1}+\ldots+e_{m_k})\|_{J_q} \leq \sum_{n_i\neq m_i} \|e_{n_i}-e_{m_i}\|_{J_q} \leq 2d_H(\overline{n},\overline{m}).$$

Thus, $Lip(\varphi) \leq 2$. Since moreover $\|\varphi(\overline{n}) - \varphi(\overline{m})\|_{J_q} \geq 1$ whenever $\overline{n} \neq \overline{m}$, we have that $Lip(f \circ \varphi) \leq 2C$. It then follows from Proposition 3.5 that there exists $(\overline{n}, \overline{m}) \in I_k(\mathbb{N})$ such that:

$$|(f \circ \varphi)(\overline{n}) - (f \circ \varphi)(\overline{m})|_{J_p} \le 5Ck^{\frac{1}{p}}.$$

On the other hand, since $(\overline{n}, \overline{m}) \in I_k(\mathbb{N})$, we have that

$$\|\varphi(\overline{n}) - \varphi(\overline{m})\|_{J_q} \ge 2k^{\frac{1}{q}}, \text{ for } k \ge 2$$

This is in contradiction with (3.4), for k large enough. Therefore, there is no coarse Lipschitz embedding from J_q into J_p .

We now explain how to get a quantitative version of the above result. A similar study was done by F. Baudier [1] for ℓ_p -spaces and by B.M. Braga [3] for the p-convexified Tsirelson spaces. First we introduce a definition due to E. Guentner and J. Kaminker [6].

Definition 3.7. Let *X* and *Y* be two Banach spaces. The *compression exponent* of *X* in *Y*, denoted $\alpha_Y(X)$ is the supremum of all $\alpha \in (0, 1]$ such that there exist a constant C > 0 and a map $f : X \to Y$ so that

$$\forall x, x' \in X \ C^{-1} \| x - x' \|^{\alpha} - C \le \| f(x) - f(x') \| \le C \| x - x' \| + C.$$

The next result follows from a straightforward adaptation of the previous proof.

Theorem 3.8. Let $1 < q < p < \infty$. Then $\alpha_{J_p}(J_q) \leq \frac{q}{p}$.

We conclude with a result combining the approximate midpoint principle and the use of Kalton-Randrianarivony's graphs.

Corollary 3.9. Let 1 , and <math>r > 1 such that $r \notin \{p, q\}$. Then J_r does not coarse Lipschitz embed into $J_p \oplus J_q$.

Proof. When r > q, the argument is based on a midpoint technique like in the proof of Corollary 3.3.

If r < p, we mimic the proof of Corollary 3.6.

So we assume, as we may, that $1 and <math>f : J_r \to J_p \oplus_{\infty} J_q$ is a map such that there exists $C \ge 1$ such that

$$\forall x, y \in J_r \ |x - y|_{J_r} \ge 1 \Rightarrow |x - y|_{J_r} \le ||f(x) - f(y)|| \le C|x - y|_{J_r}.$$
 (3.5)

We follow the proof in [10] and write f = (g, h). We still denote $(e_n)_{n=1}^{\infty}$ the canonical basis of J_r . We fix $k \in \mathbb{N}$ and $\varepsilon > 0$. We recall that

$$\exists \gamma > 0, \forall x \in J_r, \gamma ||x||_{J_r} \le |x|_{J_r} \le ||x||_{J_r}.$$

We start by applying the midpoint technique to the coarse Lipschitz map g and deduce from Proposition 3.2 that there exist $\theta > \gamma^{-1}(2k)^{\frac{1}{r}}$, $u \in J_r$, $N \in \mathbb{N}$ and K a compact subset of J_p such that :

$$g(u + \theta B_{(E_{N_{\ell}}|\cdot|_{I_{r}})}) \subset K + \varepsilon \theta B_{(I_{p_{\ell}}\|\cdot\|_{I_{n}})}.$$
(3.6)

Let $\mathbb{M} = \{n \in \mathbb{N}, n > N\}$ and $\varphi : G_k(\mathbb{M}) \mapsto J_r$ be defined as follows

$$\forall \,\overline{n} = (n_1, \ldots, n_k) \in G_k(\mathbb{M}), \ \varphi(\overline{n}) = u + \theta(2k)^{-\frac{1}{r}} (e_{n_1} + \ldots + e_{n_k}).$$

Then $\varphi(\overline{n}) \in u + \theta B_{(E_N, |\cdot|_{L^r})}$ for all $\overline{n} \in G_k(\mathbb{M})$.

And, from (3.6) we deduce that $(g \circ \varphi)(G_k(\mathbb{M})) \subset K + \varepsilon \theta B_{(J_p, \|\cdot\|_{J_p})}$. Thus, by Ramsey's theorem, there is an infinite subset \mathbb{M}' of \mathbb{M} such that

$$\operatorname{diam}_{\|\cdot\|_{I_n}}(g \circ \varphi)(G_k(\mathbb{M}')) \le 3\varepsilon\theta.$$
(3.7)

Since for $\overline{n} \neq \overline{m}$, we have

$$|\varphi(\overline{n}) - \varphi(\overline{m})|_{J_r} \ge \gamma \|\varphi(\overline{n}) - \varphi(\overline{m})\|_{J_r} \ge \gamma \theta(2k)^{-\frac{1}{r}} > 1,$$

it follows from (3.5) that

 $\forall \overline{n}, \overline{m} \in G_k(\mathbb{M}) \ \|h \circ \varphi(\overline{n}) - h \circ \varphi(\overline{m})\|_{J_q} \leq C |\varphi(\overline{n}) - \varphi(\overline{m})|_{J_r} \leq C ||\varphi(\overline{n}) - \varphi(\overline{m})||_{J_r}.$ We recall that for all $\overline{n}, \overline{m} \in G_k(\mathbb{N})$,

$$\|(e_{n_1}+\ldots+e_{n_k})-(e_{m_1}+\ldots+e_{m_k})\|_{J_q}\leq \sum_{n_i\neq m_i}\|e_{n_i}-e_{m_i}\|_{J_q}\leq 2d_H(\overline{n},\overline{m}).$$

Since moreover $|\cdot|_{J_q} \leq ||\cdot||_{J_q}$, $Lip(h \circ \varphi) \leq 2C\theta(2k)^{-\frac{1}{r}}$, when $h \circ \varphi$ is considered as a map from $G_k(\mathbb{M}')$ to $(J_q, |\cdot|_{J_q})$. Thus, we can apply Proposition 3.5 to obtain:

$$\exists \ (\overline{n},\overline{m}) \in I_k(\mathbb{M}'), \ |h \circ \varphi(\overline{n}) - h \circ \varphi(\overline{m})|_{J_q} \leq 5C\theta(2k)^{-\frac{1}{r}}k^{\frac{1}{q}}.$$

Then, if *k* was chosen large enough, we have:

$$\exists (\overline{n}, \overline{m}) \in I_k(\mathbb{M}'), \ |h \circ \varphi(\overline{n}) - h \circ \varphi(\overline{m})|_{J_q} \leq \varepsilon \theta.$$

This, combined with (3.7) implies that

$$\exists (\overline{n},\overline{m}) \in I_k(\mathbb{M}') \ \|f \circ \varphi(\overline{n}) - f \circ \varphi(\overline{m})\| \leq 3\varepsilon\theta.$$

But,

$$\forall (\overline{n}, \overline{m}) \in I_k(\mathbb{M}') \ |\varphi(\overline{n}) - \varphi(\overline{m})|_{J_r} \geq \gamma \|\varphi(\overline{n}) - \varphi(\overline{m})\|_{J_r} \geq \gamma \theta.$$

If ε was initially chosen such that $\varepsilon < \frac{\gamma}{3}$, this yields a contradiction with (3.5), which concludes our proof.

Remark. This result can be easily extended as follows. Assume $r \in (1, \infty) \setminus \{p_1, \ldots, p_n\}$ where $1 < p_1 < p_2 < \ldots < p_n < \infty$, then J_r does not coarse Lipschitz embed into $J_{p_1} \oplus \ldots \oplus J_{p_n}$.

ACKNOWLEDGMENT

The author is grateful to Gilles Lancien for sharing his knowledge and experience, and for helpful discussions that contributed to shape this paper.

References

- [1] F. Baudier, Quantitative nonlinear embeddings into Lebesgue sequence spaces, J. Topol. Anal., 08, (2016), 117–150.
- [2] J. Bourgain, Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms, Geometrical aspects of functional analysis (1985/86), *Lecture Notes in Math.*, 1267, Springer Berlin, (1987), 157–167.
- [3] B.M. Braga, Asymptotic structure and coarse Lipschitz geometry of Banach spaces, *Studia Mathematica*, **237**, (2017), 71–97.
- [4] E. Gorelik, The uniform nonequivalence of *L_p* and *l_p*, *Israel J. Math*, **87**, (1994), 1–8.
- [5] W.T. Gowers, Ramsey methods in Banach spaces, *Handbook of the geometry of Banach spaces*, **2**, North-Holland, Amsterdam, (2003), 1071–1097.
- [6] E. Guentner and J. Kaminker, Exactness and uniform embeddability of discrete groups, *J. London Math. Soc.* (2), **70**, (2004), no. 3, 703-718.
- [7] R.C. James, A separable somewhat reflexive Banach space with nonseparable dual, *Bull. A.M.S.*, **80**, (1974), no. 4, 738–743.
- [8] W.B. Johnson, J. Lindenstrauss and G. Schechtman, Banach spaces determined by their uniform structures, *Geom. Funct. Anal.*, 6, (1996), 430–470.
- [9] N.J. Kalton, Coarse and uniform embeddings into reflexive spaces, *Quart. J. Math. (Oxford)*, **58**, (2007), no. 3, 393–414.
- [10] N.J. Kalton, N.L. Randrianarivony, The coarse Lipschitz geometry of $\ell_p \oplus \ell_q$, *Math. Ann.*, **341**, (2008), 223–237.
- [11] G. Lancien, A short course on non linear geometry of Banach spaces. Topics in Functional and Harmonic Analysis, Theta Series in Advanced Mathematics, (2012), 77–102.
- [12] G. Lancien, Réflexivité et normes duales possédant la propriété uniforme de Kadec-Klee, Publ. Math. de la Fac. des sciences de Besançon, Fascicule 14, (1993-94), 69–74.

[13] G. Pisier, The dual *J*^{*} of the James Space has cotype 2 and the Gordon-Lewis property, *Proc. Cambridge Phil.*, **103**, (1988), 323–331.

Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cédex, Besançon, France email: francois.netillard@univ-fcomte.fr