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Abstract

We prove that, for 1 < p 6= q < ∞, there does not exist any coarse
Lipschitz embedding between the two James spaces Jp and Jq, and that, for
1 < p < q < ∞ and 1 < r < ∞ such that r /∈ {p, q}, Jr does not coarse
Lipschitz embed into Jp ⊕ Jq.

1 Introduction

Let (M, d) and (N, δ) be two metric spaces and f : M → N.
The map f is said to be a coarse Lipschitz embedding if there exist θ, A, B > 0 such
that

∀ x, y ∈ M d(x, y) ≥ θ ⇒ Ad(x, y) ≤ δ( f (x), f (y)) ≤ Bd(x, y).

Then we say that M coarse Lipschitz embeds into N.

R.C. James introduced in [7] a non-reflexive space defined by :

J =

{

x : N → R s.t. x(n) → 0 and

‖x‖J = sup
p1<...<pn

(

n−1

∑
i=1

|x(pi+1)− x(pi)|
2

)
1
2

< ∞

}
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We will use the following spaces (where 1 < p < ∞), which are variants of J :

Jp =

{

x : N → R s.t. x(n) → 0 and

‖x‖Jp = sup
p1<...<pn

(

n−1

∑
i=1

|x(pi+1)− x(pi)|
p

) 1
p

< ∞

}

Like in the case of J, the codimension of Jp in J∗∗p is 1.
In this respect, we precise that J∗∗p can be seen as :

J∗∗p =

{

x : N → R s.t. sup
p1<...<pn

(

n−1

∑
i=1

|x(pi+1)− x(pi)|
p

)
1
p

< ∞

}

All those spaces are studied in [13].

In 2008, N.J. Kalton and N.L. Randrianarivony [10] proved that, if r /∈ {p1, . . . , pn}
where 1 ≤ p1 < p2 < . . . < pn < ∞, then ℓr does not coarse Lipschitz embed into
ℓp1

⊕ . . . ⊕ ℓpn .
The aim of this article is to prove similar results for the Jp spaces. One of the main
obstacles is the lack of reflexivity, which was crucial in Kalton-Randrianarivony’s
work. However, the James spaces have nice properties of asymptotic uniform
smoothness and weak∗ asymptotic uniform convexity that we shall use (see [10]
or [11] for the definitions). We shall not refer to these notions in our paper, but
we will build concrete equivalent norms on Jp that will serve our purpose. Some
compactness arguments will also be used to deal with the extra dimension in J∗∗p .

This paper is organized as follows. In Section 2 we summarize the notation and
terminology and we give the basic results. Section 3 contains the proof of the
nonexistence of a coarse Lipschitz embedding between two James spaces Jp and
Jq for 1 < p 6= q < ∞. At the end of this last section, we show that, for 1 < p <

q < ∞ and 1 < r < ∞ such that r /∈ {p, q}, Jr does not coarse Lipschitz embed
into Jp ⊕ Jq.

2 Preliminaries

Notation 2.1. Let en defined by en(k) = δn,k for k ∈ N. The sequence (en)∞
n=1 is a

Schauder basis of Jp (where p > 1).
Moreover, the sequence (e∗n)

∞
n=1 of the coordinate functionals associated with

(en)
∞
n=1 is a Schauder basis of J∗p .

For x ∈ Jp, we denote supp(x) = {n ∈ N, e∗n(x) 6= 0} (support of x).
When u and v in Jp have consecutive and disjoint finite supports with respect to
(en)∞

n=1, we will denote u ≺ v.
Likewise, when u∗ and v∗ in J∗p have a consecutive and disjoint finite supports

with respect to (e∗n)
∞
n=1, we will denote u∗ ≺ v∗.

We start with the construction of an ad’hoc equivalent norm on Jp. We follow
the construction given in [12] for J2.
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Lemma 2.2. Let x1, . . . , xn in Jp such that their supports are consecutive and finite with
respect to the basis (en)∞

n=1. Then

‖
n

∑
i=1

xi‖
p
Jp
≤ (2p + 1)

n

∑
i=1

‖xi‖
p
Jp

.

Proof. We can find disjoint intervals in N, [si, s′i], with 1 ≤ i ≤ n and s′i < si+1,
such that :
∀ 1 ≤ i ≤ n, supp(xi) ⊂ [si, s′i] (for convenience, we fix s1 = 0 et we denote
sn+1 = ∞).
Let now q1 < . . . < qk be an arbitrary sequence in N. We must show that

k−1

∑
j=1

∣

∣y(qj)− y(qj+1)
∣

∣

p
≤ (2p + 1)

n

∑
i=1

‖xi‖
p
Jp

,

where y =
n

∑
i=1

xi.

There exist an increasing sequence (im)l
m=1 in {1, . . . , n} and an increasing

sequence (jm)l
m=1 in {1, . . . , k} with j1 = 1 such that,

for any 1 ≤ m ≤ l − 1, {qjm , . . . , qjm+1−1} ⊂ [sim
, sim+1). Therefore

k−1

∑
j=1

∣

∣y(qj)− y(qj+1)
∣

∣

p
=

j2−2

∑
j=1

∣

∣y(qj)− y(qj+1)
∣

∣

p
+
∣

∣y(qj2−1)− y(qj2)
∣

∣

p
+

j3−2

∑
j=j2

∣

∣y(qj)− y(qj+1)
∣

∣

p
+ . . .+

∣

∣y(qjl−1−1)− y(qjl−1
)
∣

∣

p
+

jl−2

∑
j=jl−1

∣

∣y(qj)− y(qj+1)
∣

∣

p
.

We have that

∀ 1 ≤ m ≤ l − 1,
jm+1−2

∑
j=jm

∣

∣y(qj)− y(qj+1)
∣

∣

p
≤ ‖xim‖

p
Jp

.

And for all 2 ≤ m ≤ l − 1,

∣

∣y(qjm−1)− y(qjm)
∣

∣

p
≤ 2p−1

∣

∣y(qjm−1)
∣

∣

p
+ 2p−1

∣

∣y(qjm)
∣

∣

p
≤

2p−1‖xim−1
‖

p
Jp
+ 2p−1‖xim

‖
p
Jp

.

Then

k−1

∑
j=1

|y(qj)− y(qj+1)|
p ≤ (2p−1 + 1)‖xi1‖

p
Jp
+ (2p + 1)‖xi2‖

p
Jp
+ . . .+

(2p + 1)‖xil−1
‖

p
Jp
+ (2p−1 + 1)‖xil

‖
p
Jp

.

This concludes the proof of our lemma.
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We now define a new norm on J∗p as follows. Let q be the conjugate exponent of

p, in other words
1

p
+

1

q
= 1, where p ∈ (1, ∞). For x∗ ∈ J∗p , we set

|x∗|J∗p = sup
{

(
n

∑
i=1

‖x∗i ‖
q
J∗p
)

1
q : x∗ = x∗1 + . . . + x∗n and x∗1 ≺ . . . ≺ x∗n

}

,

where ‖ · ‖J∗p denotes the dual norm of ‖ · ‖Jp . Note that x∗n is not supposed to be

finitely supported.
We can now state the following proposition.

Proposition 2.3. The norm | · |J∗p is the dual norm of an equivalent norm on Jp (that we

shall denote | · |Jp).

Moreover, | · |J∗p satisfies the following property: for any x∗, y∗ in J∗p such that x∗ ≺ y∗,

we have that
|x∗ + y∗|

q
J∗p
≥ |x∗|

q
J∗p
+ |y∗|

q
J∗p

.

Proof. To show that | · |J∗p is a norm, we only detail the proof of the triangle

inequality : let (x∗, y∗) ∈
(

J∗p

)2
that we may assume with finite supports. Let

now u∗
1 ≺ u∗

2 ≺ . . . ≺ u∗
n in J∗p such that

x∗ + y∗ = u∗
1 + . . . + u∗

n

.

We write, for i ∈ [1, n] ∩ N, u∗
i = x∗i + y∗i , where x∗ =

n

∑
i=1

x∗i and y∗ =
n

∑
i=1

y∗i .

Thank to the triangle inequality for ‖ · ‖J∗p , we get:

(

n

∑
i=1

‖u∗
i ‖

q
J∗p

) 1
q

≤

(

n

∑
i=1

(

‖x∗i ‖J∗p + ‖y∗i ‖J∗p

)q
) 1

q

.

It then follows from Minkowski’s inequality that

(

n

∑
i=1

‖u∗
i ‖

q
J∗p

) 1
q

≤

(

n

∑
i=1

‖x∗i ‖
q
J∗p

) 1
q

+

(

n

∑
i=1

‖y∗i ‖
q
J∗p

) 1
q

≤ |x∗|J∗p + |y∗|J∗p .

We have shown that the triangle inequality is valid for |.|J∗p .

Next we show that for x∗1 , . . . , x∗n in J∗p satisfying x∗1 ≺ . . . ≺ x∗n with respect to

the basis (e∗n)
∞
n=1, we have:

‖
n

∑
i=1

x∗i ‖
q
J∗p
≥

1

2q(2p + 1)q−1

n

∑
i=1

‖x∗i ‖
q
J∗p

. (2.1)

So, let x∗1 ≺ . . . ≺ x∗n, with, for i ∈ [1, n − 1] ∩ N, supp(x∗i ) ⊆ [ri, si], where
si < ri+1 for i ∈ [1, n − 2], and supp(x∗n) ⊆ [rn, ∞). Fix now ε > 0.

∃ yi ∈ Jp,

{

x∗i (yi) ≥ ‖x∗i ‖
q
J∗p
− ε

‖yi‖Jp ≤ ‖x∗i ‖
q−1
J∗p
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For r ∈ N, denote Pr the projection onto the linear span of {ei, 1 ≤ i ≤ r} with
kernel span{ei, i > r}.
Since (ei)

∞
i=1 is a monotone basis, ‖Psi

− Pri−1‖ ≤ 2 and, for xi = (Psi
− Pri−1)(yi),

we have x∗i (xi) = x∗i (yi). So:

∃ xi ∈ Jp,











x∗i (xi) ≥ ‖x∗i ‖
q
J∗p
− ε

‖xi‖Jp ≤ 2‖x∗i ‖
q−1
J∗p

supp(xi) ⊆ [ri, si]

Thank to Lemma 2.2: ‖
n

∑
i=1

xi‖
p
Jp
≤ (2p + 1)

n

∑
i=1

‖xi‖
p
Jp

.

Since ‖ · ‖J∗p is the dual norm of ‖ · ‖Jp , we have that

‖
n

∑
i=1

x∗i ‖J∗p ≥

(

n

∑
i=1

x∗i

)(

n

∑
i=1

xi

)(

‖
n

∑
i=1

xi‖Jp

)−1

and

‖
n

∑
i=1

x∗i ‖J∗p ≥

(

n

∑
i=1

x∗i (xi)

)(

‖
n

∑
i=1

xi‖Jp

)−1

≥

(

n

∑
i=1

‖x∗i ‖
q
J∗p
− nε

)



(2p + 1)
1
p

(

n

∑
i=1

‖xi‖
p
Jp

)
1
p





−1

.

Moreover,

(

n

∑
i=1

‖xi‖
p
Jp

)
1
p

≤ 2

(

n

∑
i=1

‖x∗i ‖
p(q−1)
J∗p

)
1
p

= 2

(

n

∑
i=1

‖x∗i ‖
q
J∗p

)
1
p

.

Letting ε tend to 0, we obtain :

‖
n

∑
i=1

x∗i ‖J∗p ≥
1

2(2p + 1)
1
p

(

n

∑
i=1

‖x∗i ‖
q
J∗p

)1− 1
p

=
1

2(2p + 1)
1
p

(

n

∑
i=1

‖x∗i ‖
q
J∗p

)
1
q

.

So, we have established inequality (2.1).
It follows easily that

‖x∗‖J∗p ≤ |x∗|J∗p ≤ 2(2p + 1)
1− 1

q ‖x∗‖J∗p = 2(2p + 1)
1
p ‖x∗‖J∗p .

Moreover, | · |J∗p is the dual norm of an equivalent norm on Jp. Indeed, it is clear

that | · |J∗p is σ(J∗p , Jp) lower semi-continuous.

Finally, it follows clearly from the definition of | · |J∗p that for all x∗, y∗ in J∗p such

that x∗ ≺ y∗, we have that

|x∗ + y∗|
q
J∗p
≥ |x∗|

q
J∗p
+ |y∗|

q
J∗p

.

Corollary 2.4. The dual norm | · |J∗∗p
of | · |J∗p satisfies the following property.

For x ∈ Jp with a finite support and y ∈ J∗∗p (not necessarily with finite support) such
that x ≺ y, we have

|x + y|
p
J∗∗p

≤ |x|
p
J∗∗p

+ |y|
p
J∗∗p

.
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Proof. Let x ∈ Jp which has a finite support and y ∈ J∗∗p such that x ≺ y, with

supp(x) ⊂ [m, n], supp(y) ⊂ [m′, ∞) and n < m′. Fix ε > 0.
There exists z∗ ∈ J∗p such that

|z∗|J∗p = |x + y|
p−1
J∗∗p

and z∗(x + y) ≥ |x + y|
p
J∗∗p

− ε.

Moreover, we can write z∗ = x∗ + y∗, with x∗ ≺ y∗, z∗(x) = x∗(x) and
z∗(y) = y∗(y).
We deduce that |x + y|

p
J∗∗p

≤ x∗(x) + y∗(y) + ε. Then Hölder’s inequality and

Proposition 2.3 yield

|x+ y|
p
J∗∗p

≤ (|x∗|
q
J∗p
+ |y∗|

q
J∗p
)

1
q (|x|

p
J∗∗p

+ |y|
p
J∗∗p
)

1
p + ε ≤ (|x∗+ y∗|J∗p )(|x|

p
J∗∗p

+ |y|
p
J∗∗p
)

1
p + ε.

Since |z∗|J∗p = |x + y|
p−1
J∗∗p

, we get

|x + y|
p
J∗∗p

≤ (|x + y|
p−1
J∗∗p

)(|x|
p
J∗∗p

+ |y|
p
J∗∗p
)

1
p + ε.

We conclude our proof by letting ε tend to 0.

We now turn to the study of the coarse Lipschitz embeddings between James
spaces. Let us first recall some notation.

Definition 2.5. Let (M, d) and (N, δ) be two metric spaces and f : M → N be a
mapping. If (M, d) is unbounded, we define

∀s > 0, Lips( f ) = sup
{δ(( f (x), f (y))

d(x, y)
, d(x, y) ≥ s

}

and Lip∞( f ) = inf
s>0

Lips( f ).

Note that f is coarse Lipschitz if and only if Lip∞( f ) < ∞.

We also recall a classical definition.

Definition 2.6. Given a metric space X, two points x, y ∈ X, and δ > 0, the
approximate metric midpoint set between x and y with error δ is the set :

Mid(x, y, δ) =

{

z ∈ X : max{d(x, z), d(y, z)} ≤ (1 + δ)
d(x, y)

2

}

The use of approximate metric midpoints in the study of nonlinear geometry
is due to Enflo in an unpublished paper and has been used elsewhere, e.g. [2], [4]
and [8]. The next proposition and its proof can be found for instance in [10] and
[11].

Proposition 2.7. Let X be a normed space and suppose M is a metric space.
Let f : X → M be a coarse Lipschitz map. If Lip∞( f ) > 0, then for any t, ε > 0
and any 0 < δ < 1, there exist x, y ∈ X with ‖x − y‖ > t and

f (Mid(x, y, δ)) ⊂ Mid ( f (x), f (y), (1 + ε)δ) .
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Let us now recall the definition of the metric graphs introduced in [10] that
will be crucial in our proofs.

Notation 2.8. Let M be an infinite subset of N and k ∈ N. We denote

Gk(M) = {n = (n1, . . . , nk), ni ∈ M n1 < . . . < nk}.

Then we equip Gk(M) with the Hamming distance dH(n, m) = |{j, nj 6= mj}|.

We end these preliminaries by recalling Ramsey’s theorem and one of its im-
mediate corollaries (see [5] for instance).

Theorem 2.9. Let k, r ∈ N and f : Gk(N) → {1, . . . , r} be any map. Then there exists
an infinite subset M of N and i ∈ {1, . . . , r} such that, for every n ∈ Gk(M), f (n) = i.

Corollary 2.10. Let (K, d) be a compact metric space, k ∈ N and f : Gk(N) → K.
Then for every ǫ > 0, there exist an infinite subset M of N such that for every
n, m ∈ Gk(M), d( f (n), f (m)) < ǫ.

3 The main results

Our first lemma gives a description of approximate metric midpoints in Jp that is
analogous to the situation in ℓp (see [10] or [11]). However, we need to use both
the original and our new norm on Jp.

Lemma 3.1. Let 1 < p < ∞. We denote EN the closed linear span of {ei, i > N}. Let

now x, y ∈ Jp, δ ∈ (0, 1), u =
x + y

2
and v =

x − y

2
. Then

(i) There exists N ∈ N such that:

u + δ
1
p |v|Jp B(EN ,|·|Jp)

⊂ Mid|·|Jp
(x, y, δ).

(ii) There is a compact subset K of Jp such that:

Mid‖·‖Jp
(x, y, δ) ⊂ K + 2δ

1
p ‖v‖Jp B(Jp,‖·‖Jp)

.

Proof. Fix λ > 0.
Let N ∈ N such that |v − vN |Jp ≤ λ|v|Jp , where vN = ∑

N
i=1 v(i)ei.

(i) Let now z ∈ EN so that |z|
p
Jp
≤ δ|v|

p
Jp

. Then

|x − (u + z)|
p
Jp
= |v − z|

p
Jp
= |v − vN + vN − z|

p
Jp

It follows from the Corollary 2.4 that:

|x − (u + z)|
p
Jp
≤ |v − vN − z|

p
Jp
+ |vN |

p
Jp
≤ (|v − vN |Jp + |z|Jp)

p + |vN |
p
Jp

Therefore, thanks to the last inequality and the triangle inequality for | · |Jp , we
obtain :

|x − (u + z)|
p
Jp
≤
(

(λ + δ1/p)p + (λ + 1)p
)

|v|
p
Jp
≤ (1 + δ)p|v|

p
Jp

,
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if λ was chosen initially small enough.
We argue similarly to show that |y − (u + z)|Jp = |v + z|Jp ≤ (1 + δ)|v|Jp and

deduce that u + z ∈ Mid(x, y, δ).

(ii) Fix ν > 0 and choose N ∈ N such that ‖vN‖
p
Jp

≥ (1 − νp)‖v‖
p
Jp

. We

assume now that u + z ∈ Mid‖·‖Jp
(x, y, δ) and write z = z′ + z′′ with z′ ∈ FN =

span{ei, i ≤ N} and z′′ ∈ EN .
Since ‖v − z‖Jp , ‖v + z‖Jp ≤ (1 + δ)‖v‖Jp , we get, by convexity, that

‖z′‖Jp ≤ ‖z‖Jp ≤ (1 + δ)‖v‖Jp .

Therefore, u + z′ belongs to the compact set K = u + (1 + δ)‖v‖Jp B(FN,‖·‖Jp)
.

Moreover, for any (m, n) ∈ (N∗)2, with m > n:

max{|v(n) − v(m)|p, |z(n)− z(m)|p} ≤
1

2
(|(v(n) − z(n)) − (v(m)− z(m))|p

+|(v(n) + z(n)) − (v(m) + z(m))|p).
Therefore

(1 − νp)‖v‖
p
Jp
+ ‖z′′‖

p
Jp
≤ ‖vN‖

p
Jp
+ ‖z′′‖

p
Jp
≤

1

2
(‖v − z‖

p
Jp
+ ‖v + z‖

p
Jp
) ≤ (1 + δ)p‖v‖

p
Jp

.

Then, if ν was chosen small enough, we get

‖z′′‖
p
Jp
≤ [(1 + δ)p − (1 − νp)]‖v‖

p
Jp
≤ 2pδ‖v‖

p
Jp

.

Proposition 3.2. Let 1 < p < q < ∞ and f : (Jq, | · |Jq) → (Jp, ‖ · ‖Jp) be a coarse
Lipschitz embedding. Then, for any τ > 0 and for any ε > 0, there exist u ∈ Jq, θ > τ,
N ∈ N and K a compact subset of Jp such that

f (u + θB(EN ,|·|Jq)
) ⊂ K + εθB(Jp ,‖·‖Jp)

.

Proof. If Lip∞( f ) = 0, the conclusion is clear. So we assume that Lip∞( f ) > 0.
We choose a small δ > 0 (to be detailed later). Then we choose s large enough so
that Lips( f ) ≤ 2Lip∞( f ).
Then, by Proposition 2.7,

∃ x, y ∈ Jq, |x − y|Jq ≥ s and f (Mid|·|Jq (x, y, δ)) ⊂ Mid‖·‖Jp
( f (x), f (y), 2δ).

Denote u =
x + y

2
, v =

x − y

2
and θ = δ

1
q |v|Jq . By Lemma 3.1, there exists N ∈ N

such that u + θB(EN ,|·|Jq)
⊂ Mid|·|Jq (x, y, δ) and there exists a compact subset K of

Jp so that Mid‖·‖Jp
( f (x), f (y), 2δ) ⊂ K + (2δ)

1
p‖ f (x)− f (y)‖Jp B(Jp,‖·‖Jp)

. But :

(2δ)
1
p ‖ f (x)− f (y)‖Jp ≤ 2Lip∞( f )(2δ)

1
p |x − y|Jq

≤ 4Lip∞( f )2
1
p δ

1
p−

1
q θ ≤ εθ,

if δ was chosen initially small enough.

Then an appropriate choice of a large s will ensure that θ ≥
1

2
δ

1
q s > τ. This

finishes the proof.
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Corollary 3.3. Let 1 < p < q < ∞.
Then Jq does not coarse Lipschitz embed into Jp.

Proof. We proceed by contradiction and suppose that there exists a coarse Lips-
chitz embedding f : (Jq, | · |Jq) → (Jp, ‖ · ‖Jp).

With the notation of the previous proposition, we can find a sequence (un)
∞
n=1 in

u + θB(EN ,|·|Jq)
, such that |un − um|Jq ≥ θ for n 6= m. Then f (un) = kn + εθvn, with

kn ∈ K et vn ∈ B(Jp,‖·‖Jp)
. Since K is compact, by extracting a subsequence, we

may assume that ‖ f (un)− f (um)‖Jp ≤ 3εθ.
Since ε can be chosen arbitrarily small and θ arbitrarily large, this yields a contra-
diction.

In order to treat the coarse Lipschitz embeddability in the other direction, we
shall use the Kalton-Randrianarivony graphs and some special sets of pairs of
elements of these graphs that we introduce now.

Definition 3.4. Let n, m ∈ Gk(M) (where M is an infinite subset of N).
We say that (n, m) ∈ Ik(M) if n1 < m1 < n2 < m2 < . . . < nk < mk.

Proposition 3.5. Let ε > 0 and f : Gk(N) → (J∗∗p , | · |J∗∗p
) be a Lipschitz map.

Then, for any infinite subset M of N, there exists (n, m) ∈ Ik(M) such that

| f (n)− f (m)|J∗∗p
≤ 2Lip( f )k

1
p + ε

Proof. We shall prove this statement by induction on k ∈ N.
The proposition is clearly true for k = 1.
Assume now that it is true for k ≥ 1.
Let f : Gk(M) → J∗∗p be a Lipschitz map and ε > 0.
By a diagonal extraction process and thank to weak∗-compactness, we can find
an infinite subset M1 of M such that

∀ n ∈ Gk−1(M1), w∗ − lim
nk∈M1

f (n, nk) = g(n) ∈ J∗∗p (3.2)

Then Lip(g) ≤ Lip( f ), by weak∗-lower semicontinuity of | · |J∗∗p
.

We recall that the codimension of Jp in J∗∗p is 1.

So, we can denote g(n) = v(n) + cn1I (where v(n) ∈ Jp, cn ∈ R and 1I is the
constant sequence (1, 1, 1, . . .)).
Let η > 0 (small enough : to be detailed later).
By Ramsey’s theorem, there exists an infinite subset M2 of M1 such that

∀ n, m ∈ Gk−1(M2), |cn − cm| = |(v(n)− v(m))− (g(n)− g(m))|J∗∗p
< η. (3.3)

For n, m ∈ Gk−1(M2) and t, l ∈ M2, set

un,m,t,l = f (n, t)− g(n) + g(m)− f (m, l).

Using (3.2), we have

∀ n ∈ Gk−1(M2), w∗ − lim
nk∈M2

( f (n, nk)− g(n)) = 0.
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Then, with Corollary 2.4, we deduce that there exists l0 ∈ N such that for all
t, l ∈ M2 ∩ [l0, + ∞):

|g(n)− g(m) + un,m,t,l|
p
J∗∗p

≤ |v(n) + cn1I − v(m)− cm1I|
p
J∗∗p

+ |un,m,t,l|
p
J∗∗p

+ η.

Note that f (n, t)− f (m, l) = g(n)− g(m) + un,m,t,l.
Then it follows from (3.3) and the triangle inequality, that for all
t, l ∈ M2 ∩ [l0, + ∞):

| f (n, t)− f (m, l)|
p
J∗∗p

≤ |un,m,t,l|
p
J∗∗p

+ (|v(n)− v(m)|Jp + η)p + η.

Moreover : f (n, t)− g(n) = w∗ − lim
i
( f (n, t)− f (n, i)).

Therefore, by weak∗-lower semicontinuity of | · |J∗∗p
: | f (n, t)− g(n)|J∗∗p

≤ Lip( f ).

Likewise : | f (m, l)− g(m)|J∗∗p
≤ Lip( f ).

Then, we deduce the following inequality : |un,m,t,l|
p
J∗∗p

≤ 2pLip( f )p .

On the other hand, it follows from our induction hypothesis that:

∃ (n, m) ∈ Ik−1(M2), |g(n)− g(m)|J∗∗p
≤ 2Lip( f )(k − 1)

1
p + η.

Then, for t, l ∈ M2 ∩ [l0, + ∞) such that mk−1 < t < l, we have ((n, t), (m, l)) ∈
Ik(M2), and

| f (n, t)− f (m, l)|
p
J∗∗p

≤ 2pLip( f )p + (2Lip( f )(k − 1)
1
p + 2η)p + η.

So :
| f (n, t)− f (m, l)|

p
J∗∗p

≤ 2pLip( f )pk + ϕ(η), with ϕ(η) −→
η→0

0.

Thus, if η was chosen small enough :

| f (n, t)− f (m, l)|J∗∗p
≤ 2Lip( f )k

1
p + ε.

This finishes our inductive proof.

Corollary 3.6. Let 1 < q < p < ∞.
Then Jq does not coarse Lipschitz embed into Jp.

Proof. Suppose that g : Jq → Jp is a map such that there exist θ, A and B real
positive numbers such that :

∀x, y ∈ Jq, ‖x − y‖Jq ≥ θ ⇒ A‖x − y‖Jq ≤ |g(x)− g(y)|Jp ≤ B‖x − y‖Jq .

Let us rescale by defining f (v) = (Aθ)−1g(θv), for v ∈ Jq. We have that there
exists C ≥ 1 such that

∀x, y ∈ Jq, ‖x − y‖Jq ≥ 1 ⇒ ‖x − y‖Jq ≤ | f (x)− f (y)|Jp ≤ C‖x − y‖Jq . (3.4)

We still denote (en)∞
n=1 the canonical basis of Jq.
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Consider the map ϕ : (Gk(N), dH) → (Jq, ‖ · ‖Jq) defined by ϕ(n) = en1
+ . . . +

enk
.

Note that for all n, m ∈ Gk(N),

‖(en1
+ . . . + enk

)− (em1
+ . . . + emk

)‖Jq ≤ ∑
ni 6=mi

‖eni
− emi

‖Jq ≤ 2dH(n, m).

Thus, Lip(ϕ) ≤ 2. Since moreover ‖ϕ(n) − ϕ(m)‖Jq ≥ 1 whenever n 6= m, we

have that Lip( f ◦ ϕ) ≤ 2C. It then follows from Proposition 3.5 that there exists
(n, m) ∈ Ik(N) such that:

|( f ◦ ϕ)(n)− ( f ◦ ϕ)(m)|Jp ≤ 5Ck
1
p .

On the other hand, since (n, m) ∈ Ik(N), we have that

‖ϕ(n)− ϕ(m)‖Jq ≥ 2k
1
q , for k ≥ 2.

This is in contradiction with (3.4), for k large enough.
Therefore, there is no coarse Lipschitz embedding from Jq into Jp.

We now explain how to get a quantitative version of the above result. A sim-
ilar study was done by F. Baudier [1] for ℓp-spaces and by B.M. Braga [3] for the
p-convexified Tsirelson spaces. First we introduce a definition due to E. Guentner
and J. Kaminker [6].

Definition 3.7. Let X and Y be two Banach spaces. The compression exponent of
X in Y, denoted αY(X) is the supremum of all α ∈ (0, 1] such that there exist a
constant C > 0 and a map f : X → Y so that

∀x, x′ ∈ X C−1‖x − x′‖α − C ≤ ‖ f (x)− f (x′)‖ ≤ C‖x − x′‖+ C.

The next result follows from a straightforward adaptation of the previous
proof.

Theorem 3.8. Let 1 < q < p < ∞. Then αJp(Jq) ≤
q
p .

We conclude with a result combining the approximate midpoint principle and
the use of Kalton-Randrianarivony’s graphs.

Corollary 3.9. Let 1 < p < q < ∞, and r > 1 such that r /∈ {p, q}.
Then Jr does not coarse Lipschitz embed into Jp ⊕ Jq.

Proof. When r > q, the argument is based on a midpoint technique like in the
proof of Corollary 3.3.

If r < p, we mimic the proof of Corollary 3.6.

So we assume, as we may, that 1 < p < r < q < ∞ and f : Jr → Jp ⊕∞ Jq is a
map such that there exists C ≥ 1 such that

∀ x, y ∈ Jr |x − y|Jr ≥ 1 ⇒ |x − y|Jr ≤ ‖ f (x)− f (y)‖ ≤ C|x − y|Jr . (3.5)
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We follow the proof in [10] and write f = (g, h). We still denote (en)
∞
n=1 the

canonical basis of Jr. We fix k ∈ N and ε > 0. We recall that

∃ γ > 0, ∀ x ∈ Jr, γ‖x‖Jr ≤ |x|Jr ≤ ‖x‖Jr .

We start by applying the midpoint technique to the coarse Lipschitz map g and

deduce from Proposition 3.2 that there exist θ > γ−1(2k)
1
r , u ∈ Jr, N ∈ N and K

a compact subset of Jp such that :

g(u + θB(EN ,|·|Jr)
) ⊂ K + εθB(Jp ,‖·‖Jp)

. (3.6)

Let M = {n ∈ N, n > N} and ϕ : Gk(M) 7→ Jr be defined as follows

∀ n = (n1, . . . , nk) ∈ Gk(M), ϕ(n) = u + θ(2k)−
1
r (en1

+ . . . + enk
).

Then ϕ(n) ∈ u + θB(EN ,|·|Jr )
for all n ∈ Gk(M).

And, from (3.6) we deduce that (g ◦ ϕ)(Gk(M)) ⊂ K + εθB(Jp ,‖·‖Jp)
. Thus, by

Ramsey’s theorem, there is an infinite subset M
′ of M such that

diam‖·‖Jp
(g ◦ ϕ)(Gk(M

′)) ≤ 3εθ. (3.7)

Since for n 6= m, we have

|ϕ(n)− ϕ(m)|Jr ≥ γ‖ϕ(n)− ϕ(m)‖Jr ≥ γθ(2k)−
1
r > 1,

it follows from (3.5) that

∀n, m ∈ Gk(M) ‖h ◦ ϕ(n)− h ◦ ϕ(m)‖Jq ≤ C|ϕ(n)− ϕ(m)|Jr ≤ C||ϕ(n)− ϕ(m)||Jr .

We recall that for all n, m ∈ Gk(N),

‖(en1
+ . . . + enk

)− (em1
+ . . . + emk

)‖Jq ≤ ∑
ni 6=mi

‖eni
− emi

‖Jq ≤ 2dH(n, m).

Since moreover | · |Jq ≤ ‖ · ‖Jq , Lip(h ◦ ϕ) ≤ 2Cθ(2k)−
1
r , when h ◦ ϕ is considered

as a map from Gk(M
′) to (Jq, | · |Jq). Thus, we can apply Proposition 3.5 to obtain:

∃ (n, m) ∈ Ik(M
′), |h ◦ ϕ(n)− h ◦ ϕ(m)|Jq ≤ 5Cθ(2k)−

1
r k

1
q .

Then, if k was chosen large enough, we have:

∃ (n, m) ∈ Ik(M
′), |h ◦ ϕ(n)− h ◦ ϕ(m)|Jq ≤ εθ.

This, combined with (3.7) implies that

∃ (n, m) ∈ Ik(M
′) ‖ f ◦ ϕ(n)− f ◦ ϕ(m)‖ ≤ 3εθ.

But,
∀(n, m) ∈ Ik(M

′) |ϕ(n)− ϕ(m)|Jr ≥ γ‖ϕ(n)− ϕ(m)‖Jr ≥ γθ.

If ε was initially chosen such that ε <
γ
3 , this yields a contradiction with (3.5),

which concludes our proof.
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Remark. This result can be easily extended as follows. Assume r ∈ (1, ∞) \
{p1, . . . , pn} where 1 < p1 < p2 < . . . < pn < ∞, then Jr does not coarse Lipschitz
embed into Jp1

⊕ . . . ⊕ Jpn .
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