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Abstract

A topological space X has property (DC(w1)) if it has a dense subspace
every uncountable subset of which has a limit point in X. In this paper, we
make some observations on spaces with property (DC(w7)). In particular,
we prove that the cardinality of a space X with property (DC(w1)) does not
exceed ¢ if X satisfies one of the following conditions: (1) X is normal and
has a rank 2-diagonal; (2) X is perfect and has a rank 2-diagonal; (3) X has a
rank 3-diagonal; (4) X is perfect and has countable tightness. We also prove
that if X is a regular space with a Gs-diagonal and property (DC(w;)) then
the cardinality of X is at most 2°.

1 Introduction

All topological spaces in this paper are assumed to be Hausdorff unless otherwise
stated.

The property (DC(w;)) was first introduced and studied by Ikenaga in [10].
We say that a topological space X has property (DC(wy)) ([10]) if it has a dense
subspace every uncountable subset of which has a limit point in X. Obviously, ev-
ery separable space or every space with countable extent has property (DC(w1)).

The properties of the diagonal often imply restrictions on the cardinality. For
example, Ginsburg and Woods in [8] proved that the cardinality of a space with
countable extent and a Gs-diagonal is at most ¢. Buzyakova in [3] proved that if
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a space X with the countable Souslin number has a regular Gs-diagonal then the
cardinality of X does not exceed ¢. Arhangel’skii and Bella in [2] proved that if X
is a space with a rank 4-diagonal and cellularity at most ¢ then the cardinality of
X does not exceed ¢. In [14], we prove that the cardinality of a star Lindelof space
X does not exceed ¢ if X satisfies one of the following conditions: (1) X has a rank
3-diagonal; (2) X is normal and has a rank 2-diagonal; (3) X is first countable,
normal and has a G;-diagonal. For more results one can refer to [4, 6, 7].

In this paper, by developing the idea of [8], we prove that the cardinality of
a space X with property (DC(w;)) does not exceed ¢ if X satisfies one of the
following conditions: (1) X is normal and has a rank 2-diagonal; (2) X is perfect
and has a rank 2-diagonal; (3) X has a rank 3-diagonal; (4) X is perfect and has
countable tightness. We also prove that if X is a regular space with a Gs-diagonal
and property (DC(w7)) then the cardinality of X is at most 2°.

2 Notation and terminology

The cardinality of a set X is denoted by |X|, and [X]? will denote the set of
two-element subsets of X. As usual, w(X), x(X),d(X), nw(X) and ¢(X) denote
respectively the weight, character, density, network weight and pseudocharacter of X.
We write w for the first infinite cardinal and ¢ for the cardinality of the continuum.

If A is a subset of a space X and U is a family of subsets of X, then St(A,U) =
U{U eU :UNA # @}. We also put St°(A,U) = A and for a natural number
n, STV A,U) = St(St"(A,U),U). For simplicity, we write St*(x,) instead of
St"({x},U).

Definition 2.1. ([1]) A diagonal sequence of rank k on a space X, where k € w, is a
countable family {#4, : n € w} of open covering of X such that
{x} = N{St“(x,U,) : n € w} for each x € X.

Definition 2.2. ([1]) A space X has a rank k-diagonal, where k € w, if there is a
diagonal sequence {U, : n € w} on X of rank k. The rank of the diagonal of X
is defined as the greatest natural number k such that X has a rank k-diagonal, if
such a number k exists.

Definition 2.3. ([1]) Recall that a space X has a strong rank 1-diagonal if there exists
a sequence {U, : n € w} of open covers of X such that for each x € X, we have

the equality {x} = N{St(x,Uy) : n € w}.

Definition 2.4. ([15]) We say that a space X has a Gs-diagonal if there is a countable
family {U, : n € w} of open neighbourhoods of the diagonal Ax in the square
X x X such that Ax = N{U, : n € w}.

Definition 2.5. ([15]) We say that a space X has a reqular Gs-diagonal if there is a
countable family {U), : n € w} of open neighbourhoods of the diagonal A in the
square X x X such that Ax = ({U, : n € w}.

Zenor in [15] pointed out that a space X has a G;-diagonal if and only if X has
a rank 1-diagonal. If the rank of the diagonal of a space X is at least 3 then X has
a regular G;-diagonal. It is evident that every rank 2-diagonal is a strong rank
1-diagonal and every strong rank 1-diagonal is a Gs-diagonal (see [1]).
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Definition 2.6. A topological space X is called perfect if every closed subset of X
is a Gy-set.

Therefore, every perfect Ti-space has countable pseudocharacter.

Definition 2.7. We say that X has countable tightness if forany A C X, if x € A,
then there exists a countable set Ay C A such that x € Aj.

Definition 2.8. A topological space X is called a sequential space if a set A C X is
closed if and only if together with any sequence it contains all its limits.

Definition 2.9. If X is a topological space and A C X, say that a family / is an
open expansion of Aif U = {U,:a € A} and U, € t(a,X) for any a € A.

All notations and terminology not explained in the paper are given in [5].

3 Results

We will use a following set-theoretic theorem due to Erdos and Radé.

Lemma 3.1. ([9, p.8]) Let X be a set with |X| > ¢ and suppose [X]?> = J{Py : n € w}.
Then there exists ny < w and a subset S of X with |S| > w such that [S]* C Py,.

Proposition 3.2. If a space X has property (DC(wy)), then any discrete family of non-
empty open subsets of X is countable.

Proof. Assume the contrary. Then there exists a discrete family U = {U, : « < w1}
of non-empty open subsets in X. Let Y be a dense subspace of X such that every
uncountable subset of Y has a limit point in X. For each « < w; taked, € U, NY.
Then D = {d, : « < w,} is an uncountable closed and discrete subset of X, which
leads a contradiction. n

Proposition 3.3. If D is a closed and discrete subset of a normal space X and
U = {U(d) : d € D} is a pairwise disjoint open expansion of D, then there is a discrete
disjoint open expansion )V = {V(d) : d € D} of D such that d € V(d) C U(d) for each
deD.

Proof. Since X is normal, there exists an open set W C X such that D C W C
W C UU. Poreachd € D, let V(d) = U(d) N W. It is not difficult to show that
V = {V(d) : d € D} is a discrete disjoint open expansion of D. This completes
the proof. n

Proposition 3.4. If X is a perfect space and D is an uncountable discrete subset of X,
then there exists an uncountable subset E C D which is closed and discrete in X.

Proof. Let Y = {U(d) : d € D} be a family of open subsets of X such that
U(d)ND = {d} for each d € D. Since X is perfect, there are closed subsets
F, for n € w such that Uzep Uy = U, Fu. Clearly, there is an uncountable sub-
set E = DNF,, C X forsome ny € w. Now we show that E is closed and discrete
in X. Suppose not, then there is a limit point ¢ for E. Since F;, is closed, we have

feFkyC |JFR = Ua

new deD
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Therefore, there exists ' € D such that ¢ € U(d’), and hence U(d’) contains
infinite points of E, which contradicts the choice of ¢/. This completes the proof.
]

Proposition 3.5. If a regular space X has countable pseudocharacter and countable tight-
ness, then |Y| < ¢ for any subset Y C X with |Y| < .

Proof. LetU(x) = {U,(x) : n € w} be a family of open subsets of X such that

{x} =N, Un(x) for each x € Y, since X is regular and has countable pseudochar-
acter. Since X has countable tightness, for each x € Y there is a countable set
Ay C Y such that x € A,. Now defineamap f: Y — (Y¢)“ by

flx) ={Uy(x)NAyx:n € w}.
Since |Y| < ¢, it follows that |(Y¥)“| < c.
To complete the proof, we will show that such a mapping is injective. Fix any

two distinct points a,b € Y. Then there exists ny € w such that b ¢ U, (a).

It is obvious that b ¢ Uy, (a) NA; and b € U, (b) N Ay, which implies that
Uy, (a) N Ay # Uy, (b) N Ay for some ng € w. Thus f(a) # f(b). So the map-
ping f is injective and this completes the proof. n

Note that the regularity is necessary in Proposition 3.5, which can be seen in
the following example.

Example 3.6. ([11, p.64]) Let kN denote the Katetov’s extension of the natural
numbers with the discrete topology. The space kN has the following properties:
(a) kN is a Hausdorff non-regular space; (b) kN is separable; (c) kN has countable
tightness; (d) kN has countable pseudocharacter; (e) [kN| = 2°.

Proposition 3.7. If a space X has a rank 2-diagonal and | X| > c, then there exists an
uncountable closed and discrete subset of X which has a disjoint open expansion.

Proof. Assume the contrary. Since X has a rank 2-diagonal, there exists a sequence
{Uy, : n € w} of open covers of X such that {x} = N{St?(x,U,) : n € w} for every
x € X. Note that x € St?(y,U,,) if and only if y € St?(x,U,) for any distinct points
x,y € X by symmetry. For each n € w, let

P, = {{x,y} c[X]?:x ¢ Stz(y,un)}.

Thus, [X]? = U{P, : n € w} and hence there exists a subset D C X with |D| > w
and [D]? C Py, for some 19 € w by Lemma 3.1. Itis evident that D is a closed and
discrete set and {St(x,U,,) : x € D} is an uncountable pairwise disjoint family of
non-empty open sets of X by symmetry. This completes the proof. m

Corollary 3.8. If X is a normal space with a rank 2-diagonal and property
(DC(w1)), then the cardinality of X is at most c.

Proof. Assume the contrary. Then there exists an uncountable closed and discrete
subset D C X which has a disjoint open expansion by Proposition 3.7, since X has
a rank 2-diagonal. Therefore, D shall have a discrete disjoint open expansion by
Proposition 3.3 and normality of X. But every discrete family of non-empty open
subsets of X is countable by Proposition 3.2, since X has property (DC(w1)). This
contradiction completes the proof. n



Observations on spaces with property (DC(w)) 59

The following corollary shows that the condition “normal” in Corollary 3.8
can be replaced by “perfect”.

Corollary 3.9. If X is a perfect space with a rank 2-diagonal and property
(DC(w1)), then the cardinality of X is at most c.

Proof. Assume the contrary. Then there exists an uncountable closed and discrete
subset S C X which has a disjoint open expansion {U(x) : x € S} by Proposition
3.7, since X has a rank 2-diagonal. Let Y be a dense subspace of X such that every
uncountable subset of Y has a limit point in X. For each x € S taked, € U(x)NY.
Then D = {d, : x € S} is an uncountable discrete subset of Y. It follows from
Proposition 3.4 that there exists an uncountable subset E C D which is closed and
discrete in X, since X is perfect. This contradicts the choice of Y and completes
the proof. m

Corollary 3.10. If X is a Moore space with property (DC(wy)), then the cardinal-
ity of X is at most ¢.

Proof. Since every Moore space is perfect and has a rank 2-diagonal ([1]), we
could conclude that | X| < ¢ by Corollary 3.9. ]

The following questions look interesting.

Question 3.11. Let X be a Hausdorff (regular, Tychonoff) space with a rank
2-diagonal and property (DC(w1)). Must the cardinality of X be at most ¢?

Question 3.12. ([7]) Let X be a weakly Lindelof space with a rank 2-diagonal.
Must the cardinality of X be at most ¢?

Question 3.13. ([7]) Let X be a weakly Lindeldf Moore space. Must the cardinality
of X be at most ¢?

Theorem 3.14. If X is a reqular space with a Gs-diagonal and property (DC(w1)), then
the cardinality of X is at most 2°.

Proof. Since X has a Gs-diagonal, there exists a sequence {Gy : k € w} of open
sets of X? such that Ay = N{Gy : k € w}. For each k € w and x € X, there
exists an open subset Vi(x) of X such that (x,x) € Vi(x) x Vi(x) C Gg. Thus
without loss of generality, we assume that Gy = U{Vi(x) x Vi(x) : x € X} and
Git1 C Gy

Assume that Y is the dense subspace of X which witnesses that X has property
(DC(wy7)). We shall show that |Y| < ¢. Suppose not. For each n € w, let

Pr={{xy} € ]: (xy) & Gu}.

Clearly, for any {x,y} € [Y]? there exists n € w such that {x,y} € P,. Thus,
[Y]? = U{P, : n € w}. Then by Lemma 3.1 there exists a subset S C Y with
S| > w and [S]*> C Py, for some 1y € w. It follows that S has a limit point x € X
by the choice of Y. Since X is T;, each neighborhood of x meets infinitely many
members of S. In particular, there exist distinct points iy and z in S N Vj,,(x). Thus
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(y,2) € Viy(x) X Viyy(x) C Gyy. However, since {y,z} € Py, (y,2) ¢ Gp,, which
is a contradiction. This shows that |Y| < c.

Since w(X) < 2%X) holds for any regular space X and d(X) < |Y| < ¢, we
have w(X) < 2°. Therefore, | X| < nw(X)¥X) < w(X)¥X) < (29)« = 2¢, n

The conclusion in Theorem 3.14 is also true for Hausdorff spaces if we replace
“Gs-diagonal” with “strong rank 1-diagonal”.

Proposition 3.15. If X is a Hausdorff space with a strong rank 1-diagonal and property
(DC(wny)), then the cardinality of X is at most 2°.

Proof. Since every strong rank 1-diagonal is a Gs-diagonal, by using the proof of
Theorem 3.14, we could conclude that there exists a dense set Y C X of cardinality
at most ¢, thus d(X) < ¢. Since X has a strong rank 1-diagonal, it follows that
sA(X) = w (see [4]). It has been established in [4] that |X| < 2¢(X)s2(X) for any
Hausdorff space X so we have |X| < 2““ = 2°. This completes the proof. |

Theorem 3.16. If X is a space with a rank 3-diagonal and property (DC(wy)), then the
cardinality of X is at most c.

Proof. Assume the contrary. Since X has a rank 3-diagonal, there exists a sequence
{Uy, : n € w} of open covers of X such that {x} = N{St?(x,U,) : n € w} for every
x € X. Note that x € St3(y,U,,) if and only if y € St?(x,U,) for any distinct points
x,y € X by symmetry. For each n € w, let

P, = {{x,y} ceXP:x¢ St3(y,un)}.

Thus, [X]? = U{P, : n € w}. Then by Lemma 3.1 there exists a subset S of X with
|S| > w and [S]®> C Py, for some ny € w. Itis evident that {St(x,Uy,) : x € S}
is an uncountable discrete family of non-empty open subsets of X. But every
discrete family of non-empty open subsets of X is countable by Proposition 3.2,
since X has property (DC(w1)). This contradiction completes the proof. ]

Note that every rank 3-diagonal is a regular Gs-diagonal, however the con-
verse doesn’t hold in general. Thus the following question arises naturally.

Question 3.17. Let X be a space with a regular Gs-diagonal and property
(DC(w1)). Is the cardinality of X at most ¢? What if X is additionally first count-
able?

Theorem 3.18. If X is a regular perfect space of countable tightness with property
(DC(wy)), then the cardinality of X is at most c.

Proof. Let Y be a dense subspace of X which witnesses that X has property
(DC(w1)). We shall show that |Y| < ¢. Suppose not. Since X is a perfect space, X
has countable pseudocharacter. For each x € Y, let B(x) = {B,(x) : n € w} bea
family of open sets of X such that N B(x) = {x} and B, 11 C B, for each n € w.
For each n € w, let

Py ={{xy} € Y"1y & Bulw)ix £ Bu(y) }.
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It is easy to check that [Y]? = J{P, : n € w}. We can apply Lemma 3.1 to
conclude that there exists an uncountable subset S of Y and [S]> C Py, for some
ng € w. Note that for each x € S, B,,(x) NS = {x}. It follows from Proposition
3.4 that there exists an uncountable subset E C S which is closed and discrete in
X. This contradiction the choice of Y shows that |Y| < ¢. Now we could conclude
that | X| = |Y| < ¢ by Proposition 3.5, since X has countable pseudocharacter and
countable tightness and Y is dense in X. This completes the proof. n

Since every first countable (Fréchet, sequential) space has countable tightness,
we have the following corollaries by Theorem 3.18.

Corollary 3.19. If X is a regular, perfect and sequential space with property
(DC(w1)), then the cardinality of X is at most c.

Corollary 3.20. If X is a regular, perfect and Fréchet space with property
(DC(w1)), then the cardinality of X is at most c.

Corollary 3.21. If X is a regular, perfect and first countable space with property
(DC(w1)), then the cardinality of X is at most c.

If we drop the condition “countable tightness” in Theorem 3.18, then 2¢ would
be the least upper bound of X.

Proposition 3.22. If X is a reqular perfect space with property (DC(wy)), then the
cardinality of X is at most 2°.

Proof. By using the proof of Theorem 3.18, we could conclude that there exists a
dense set Y C X of cardinality at most ¢, thus d(X) < ¢. Since |X| < 2¢(X)¥(X)
holds for any regular space X, we conclude that | X| < 2¢ = 2¢ which completes
the proof. n
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