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Abstract

In this paper, we deal with compact (necessarily with nonempty bound-
ary) generalized linear Weingarten spacelike hypersurfaces immersed into
the Lorentz-Minkowski space Ln+1, which means that there exists a linear
relation involving some of the corresponding higher order mean curvatures.
In this setting, we obtain a sharp height estimate concerning such a hyper-
surfaces whose boundary is contained in a spacelike hyperplane of Ln+1.
Furthermore, we apply our estimate to describe the nature of the end of a
complete generalized linear Weingarten spacelike hypersurface in Ln+1.

1 Introduction

The last few decades have seen a steadily growing interest in the study of the
geometry of spacelike hypersurfaces in Lorentzian spacetimes from both physi-
cal and mathematical points of view. From a physical point of view, such interest
is motivated by their role in different problems of general relativity. For instance,
Lichnerowicz [12] showed that zero mean curvature spacelike hypersurfaces are
convenient as initial data for solving the Cauchy problem of the Einstein equa-
tions. We also refer to [10, 15] and references therein for other reasons justifying
that interest.

From the mathematical point of view, this is mostly due to the fact that such
hypersurfaces exhibit nice Bernstein-type properties, and one can truly say that
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the first remarkable results in this branch were the rigidity theorems of Calabi [6]
and Cheng and Yau [9], who showed (the former for n ≤ 4, and the latter for gen-
eral n) that the only maximal complete, noncompact, spacelike hypersurfaces of
the Lorentz-Minkowski space Ln+1 are the spacelike hyperplanes. On the other
hand, Aiyama [1] and Xin [17] simultaneous and independently characterized
the spacelike hyperplanes as the only complete constant mean curvature space-
like hypersurfaces of the Lorentz-Minkowski space having the image of its Gauss
map contained in a geodesic ball of the n-dimensional hyperbolic space (see also
[16] for a weaker first version of this result given by Palmer).

More recently, the study of estimates for the height function of compact space-
like hypersurfaces (necessarily with nonempty boundary; see, for instance,
Section 2 of [5]) having some constant higher order mean curvature in the Lorentz-
Minkowski space Ln+1 has become subject of increasing research. In this setting,
López [14] studied compact spacelike surfaces with constant mean curvature in
the 3-dimensional Lorentz-Minkowski space L3 and, when the boundary of the
surface is a planar curve, he obtained an estimate for the height of the surface
measured from the plane that contains its boundary. Moreover, López showed
that such estimate is reached only if the surface is a planar domain or a hyper-
bolic cap. In [13], the second author also studied height estimates and obtained
a sharp estimate for compact spacelike hypersurface with some constant higher
order mean curvature in the Lorentz-Minkowski space Ln+1 and with boundary
contained in a spacelike hyperplane. These estimates have the important feature
that they only depend on the constant higher order mean curvature of the hyper-
surface and on the radius of a appropriate geodesic ball in the hyperbolic space.
Due to this feature, he was able to apply them to the study of topological prop-
erties of complete spacelike hypersurfaces with some positive constant higher
order mean curvature in the Lorentz-Minkowski space.

Proceeding with the picture described above, in this paper our purpose is to
get a height estimate for a wider class of spacelike hypersurfaces in the Lorentz-
Minkowski space, which extends that one having some constant higher order
mean curvature. Precisely, we consider generalized linear Weingarten spacelike
hypersurfaces immersed in Ln+1, which means that there exists a linear relation
involving some of the corresponding higher order mean curvatures (for more
details, see Section 3). Our aim is just to extend the technique developed in [13] in
order to obtain a sharp estimate for the height function of a compact generalized
linear Weingarten spacelike hypersurfaces in Ln+1 (see Theorem 1 and Corollary
1). We point out that, for spacelike hypersurfaces having some constant higher
order mean curvature, our results improve the estimates obtained by the second
author in [13] (see Remark 1). Finally, we prove a topological result concern-
ing the nature of the end of a complete generalized linear Weingarten spacelike
hypersurface immersed in Ln+1 (see Theorem 2).



Sharp height estimate revisited 31

2 Preliminaries

Let Ln+1 denote the (n + 1)-dimensional Lorentz-Minkowski space, that is, the
real vector space R

n+1 endowed with the Lorentzian metric

〈 , 〉 = dx2
1 + . . . + dx2

n − dx2
n+1,

where (x1, . . . , xn+1) are the canonical coordinates in Rn+1. In this paper, for
convenience, we will adopt as model for the Lorentz-Minkowski space Ln+1 the
product manifold Rn × R1 endowed with the Lorentzian metric

〈 , 〉 = π∗
Rn(dx2)− π∗

R(dt2),

where π∗
Rn and π∗

R
denote the canonical projections from Rn × R on each factor,

dx2 = dx2
1 + . . . + dx2

n is the canonical Riemannian metric on the n-dimensional
Euclidean space Rn and R1 stands for R furnished with the metric −dt2. We
observe that ∂t is an unitary timelike vector field globally defined on L

n+1, which
determines a time-orientation on Ln+1.

In this context, we consider a (connected) spacelike hypersurface ψ : Σn →
Ln+1 immersed in Ln+1, which means that the metric induced on Σn via ψ is a
Riemannian metric. As usual, we also denote for 〈 , 〉 the metric of Σn induced
via ψ. Since ∂t is a globally defined timelike vector field on Ln+1, there exists an
unique unitary timelike normal vector field N globally defined on Σn which is
either in the same time-orientation of ∂t, that is, 〈N, ∂t〉 ≤ −1 or in the opposite
time-orientation of ∂t, that is, 〈N, ∂t〉 ≥ 1.

Let us denote by A : X(Σ) → X(Σ) the shape operator of Σn in L
n+1 with

respect to a choice of orientation N of Σn, which is given by AX = −∇◦
X N,

where ∇◦ stands for the Levi-Civita connection of Ln+1. Associated to the shape
operator A there are n algebraic invariants, which are the elementary symmetric
functions Sr of its principal curvatures κ1, . . . , κn, given by

Sk = Sk(κ1, . . . , κn) = ∑
i1<...<ir

κi1 · · · κir , 1 ≤ k ≤ n.

As is well known, the k-mean curvature Hk of the spacelike hypersurface Σn is
defined by

(

n

k

)

Hk = (−1)kSk(κ1, . . . , κn).

In particular, when k = 1,

H1 = −
1

n ∑
i

κi = −
1

n
tr(A) = H

is the mean curvature of Σn, which is the main extrinsic curvature of the hyper-
surface.

It is a classical fact that the higher order mean curvatures satisfy a very useful
set of inequalities. For future reference, we collect them here. A proof can be
found in [11] (see also [7], Proposition 2.3).
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Lemma 1. Let ψ : Σn → L
n+1 be a spacelike hypersurface immersed into the Lorentz-

Minkowski space Ln+1. Suppose that there exists an elliptic point in Σn. If Hk+1 is
positive on Σn, we have that the same holds for Hj, j = 1, · · · , k. Moreover,

(a) HjHj+2 ≤ H2
j+1 for every j = 1, · · · , k;

(b) H1 ≥ H1/2
2 ≥ . . . ≥ H1/k

k ,

and equality holds only at umbilical points.

Here, by an elliptic point in a spacelike hypersurface Σn we mean a point
p0 ∈ Σn where all principal curvatures κi(p0) are negative with respect to an
appropriate choice of the orientation N of Σn.

Now, let us consider Pk : X(Σ) → X(Σ) the k-th Newton transformation of the
spacelike hypersurface ψ : Σn → Ln+1, 0 ≤ k ≤ n, which are given by

Pk =

(

n

k

)

Hk I +

(

n

k − 1

)

Hk−1A + . . . +

(

n

1

)

H1Ak−1 + Ak,

where I denotes the identity in X (Σ), or inductively, by putting P0 = I and, for
1 ≤ k ≤ n,

Pk =

(

n

k

)

Hk I + APk−1.

It is easy to see that each Pk is a self-adjoint operator which commutes with the
shape operator A, in the sense that if a local orthonormal frame on Σn diagonal-
izes A, then it also diagonalizes each Pk.

Let ∇ be the Levi-Civita connection of the spacelike hypersurface Σn. Associ-
ated to each Newton transformation Pk, one has the second order linear differen-
tial operator Lk : C∞(Σ) → C∞(Σ), defined by

Lku = tr(Pk∇
2u).

where C∞(Σ) stands for the ring of the smooth real functions on Σn and
∇2u : X(Σ) → X(Σ) denotes the self-adjoint linear operator metrically
equivalent to the hessian of u which is given by

〈∇2u(X), Y〉 = 〈∇X∇u, Y〉,

for all X, Y ∈ X(Σ).
We observe that L0 = ∆ is just the Laplacian of Σn, which is always an elliptic

operator in divergence form. For a general index k, it follows from equation (3.4)
of [4] jointly with Corollary 3.2 of [3] that

Lku = div(Pk∇u). (2.1)

Consequently, we conclude that the operator Lk is elliptic if and only if Pk is posi-
tive definite. For our applications, it will be useful to have some geometric condi-
tions which guarantee the ellipticity of Lk when k ≥ 1. For k = 1, the next lemma
assures the ellipticity of L1 (see Lemma 3.2 of [4]).
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Lemma 2. Let ψ : Σn → L
n+1 be a spacelike hypersurface immersed into the Lorentz-

Minkowski space Ln+1. If H2 > 0 on Σ, then L1 is elliptic or, equivalently, P1 is positive
definite (for a appropriate choice of the Gauss map N).

When k ≥ 2, the following lemma give us sufficient conditions to guarantee
the ellipticity of Lk. The proof follows from Proposition 3.2 of [8] (see also Lemma
3.3 of [4]).

Lemma 3. Let ψ : Σn → Ln+1 be a spacelike hypersurface immersed into the Lorentz-
Minkowski space Ln+1. If there exists an elliptic point of Σn, with respect to an appro-
priate choice of the Gauss map N, and Hk+1 > 0 on Σn, for some 2 ≤ k ≤ n − 1, then
for all 1 ≤ j ≤ k the operator Lj is elliptic or, equivalently, Pj is positive definite (for a
appropriate choice of the Gauss map N, if j is odd).

Now, we consider two particular functions naturally attached to a spacelike
hypersurface Σn, namely, the (vertical) height function h = πR ◦ ψ and the angle
function Θ = 〈N, ∂t〉. The following formulas are, in fact, particular cases of
ones obtained by Alı́as and Colares [4] in the context of the so-called generalized
Robertson-Walker spacetimes.

Proposition 1. Let ψ : Σn → L
n+1 be a spacelike hypersurface. With the previous

notation and denoting ck = (k + 1)

(

n

k + 1

)

for every k = 0, . . . , n − 1, we have

(a) Lkh = −ckHk+1Θ;

(b) LkΘ = Θtr(A2 ◦ Pk) +
ck

k + 1
〈∇Hk+1, ∂t〉.

3 Height estimate of generalized linear Weingarten hypersur-

farces

This section is devoted to establish our results concerning estimates of the height
function h of a wide class of spacelike hypersurfaces in the Lorentz-Minkowski
space, which extends that ones having some constant higher order mean cur-
vature. Specifically, let us consider ψ : Σn → Ln+1 a spacelike hypersurface
immersed into the Lorentz-Minkowski space. We say that Σn is (r, s)-linear Wein-
garten, for some 0 ≤ r ≤ s, if there exist nonnegative real numbers br, · · · , bs

(at least one of them nonzero) such that the following linear relation holds on Σn:

s

∑
k=r

bkHk+1 = d ∈ R.

Taking into account that R = −H2, where R stands for the normalized scalar
curvature of Σn, we observe that (0, 1)-linear Weingarten spacelike hypersur-
faces are called simply linear Weingarten spacelike hypersurfaces. Moreover,
(r, r)-linear Weingarten spacelike hypersurfaces are just the spacelike hypersur-
faces having Hr+1 constant.



34 E.L. de Lima – H.F. de Lima – C.P. Aquino

We also note that the Gauss map N ∈ X
⊥(Σ) of a spacelike hypersurface

Σn immersed into the Lorentz-Minkowski space Ln+1 can be regarded as a map
N : Σn → Hn, where Hn denotes the n-dimensional hyperbolic space, that is,

H
n = {x ∈ L

n+1 ; 〈x, x〉 = −1}.

In this setting, the image N(Σ) will be called the hyperbolic image of Σn.
Now, we are in the position to state and prove our main result. More pre-

cisely, we will establish an estimate for the height function concerning compact
(r, s)-linear Weingarten spacelike hypersurfaces in the Lorentz-Minkowski space.

Theorem 1. Let ψ : Σn → Ln+1 be a compact (r, s)-linear Weingarten spacelike hy-
persurface immersed into the Lorentz-Minkowski space such that Hs+1 has strict sign on
it and whose boundary ∂Σ is contained in the hyperplane Rn × {0}. If the hyperbolic
image of Σn is contained in a geodesic ball of center en+1 ∈ Hn and radius ̺ > 0, then
the height function h of Σn satisfies the following estimate

|h| ≤
cosh ̺ − 1

minΣ |H|
. (3.1)

Moreover, the estimate (3.1) is sharp in the sense that it is reached by the hyperbolic cap

Σλ =
{

x ∈ L
n+1; 〈x, x〉 = −λ2, λ ≤ xn+1 ≤

√

1 + λ2
}

, (3.2)

where λ is the positive constant given by λ = (cosh ̺ − 1)−1/2.

Proof. From Lemma 1 of [5], our assumption that the boundary of Σn is contained
into the hyperplane Rn ×{0} implies that (after an appropriate choice of orienta-
tion on Σn) there exists an elliptic point in Σn. Thus, we can suppose that Hs+1 > 0
on Σn and apply Lemma 3 (or Lemma 2 if s = 1) to guarantee the ellipticity of the
operators Lk for every k = r, . . . , s.

Thus, we introduce the following second order linear differential operator
L : C∞(Σ) → C∞(Σ) defined by

Lu =
s

∑
k=r

(k + 1)c−1
k bkLku.

It follows from (2.1) that we can write the operator L as

Lu =
s

∑
k=r

div
(

(k + 1)c−1
k bkPk∇u

)

.

Then, since (k + 1)c−1
k bk > 0 for every k = r, . . . , s and each operator Lk is elliptic

(equivalently, each Pk is positive definite), we have that the operator

P =
s

∑
k=r

(k + 1)c−1
k bkPk is positive definite and, consequently, L is also elliptic.

Let us suppose that the Gauss map N is in the same time-orientation as ∂t,
that is, Θ ≤ −1. In this case, from Proposition 1 and from the definition of the
operator L we see that

Lh =
s

∑
k=r

(k + 1)c−1
k bkLkh = −

s

∑
k=r

(k + 1)bkHk+1Θ.
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Thus, since Hk+1 is positive for every k = r, . . . , s, we get Lh ≥ 0 on Σn. Then, by
the weak maximum principle, we must to have h ≤ 0 on Σn. Now, we consider
on Σn the smooth function ϕ = ch − Θ, where c ∈ R is a negative constant to be
chosen in an appropriated way. Observe that our hypothesis on the hyperbolic
image of Σn implies

1 ≤ −Θ ≤ cosh ̺,

which gives ϕ ≤ cosh ̺ on ∂Σn.
On the other hand, using once more Proposition 1 and the fact that Σn is

(r, s)-linear Weingarten, we obtain

Lϕ =
s

∑
k=r

(k + 1)c−1
k bkLk ϕ

= −
s

∑
k=r

(k + 1)bkΘ
(

cHk+1 + c−1
k tr(A2 ◦ Pk)

)

.

With a straightforward computation, we can to show that

tr(A2 ◦ Pk) =
ck

k + 1
(nHHk+1 − (n − k − 1)Hk+2),

which implies

Lϕ = −
s

∑
k=r

bkΘ ((k + 1)cHk+1 + nHHk+1 − (n − k − 1)Hk+2)

= −
s

∑
k=r

bkΘ ((k + 1)Hk+1(H + c) + (n − k − 1)(HHk+1 − Hk+2)) .

But, from Lemma 1 we have that

HHk+1 − Hk+2 ≥ HHk+1 − H2
k+1H−1

k =
Hk+1

Hk
(HHk − Hk+1) .

Thus, using once more Lemma 1, we get

HHk+1 − Hk+2 ≥
Hk+1

Hk

(

HHk − H
(k+1)/k
k

)

= Hk+1(H − H1/k
k ) ≥ 0.

Consequently, we obtain that

Lϕ ≥ −
s

∑
k=r

(k + 1)bkHk+1Θ (H + c) .

So, choosing c = −minΣ H in the definition of the function ϕ, it follows from
the last inequality that Lϕ ≥ 0 on Σn and, using once more the weak maximum
principle, we conclude that ϕ ≤ cosh ̺ on Σn. Therefore,

h ≥
cosh ̺ − 1

c
.
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Now, suppose that the Gauss map N is in the opposite time-orientation of ∂t,
that is, Θ ≥ 1. Then, from Proposition 1, Lh ≤ 0 on Σn and, in this case, h ≥ 0
on Σn. Hence, at this point we can reason in a similar way as before using the
smooth function ϕ = ch + Θ, with c = minΣ H, and conclude that

h ≤
cosh ̺ − 1

c
.

Finally, it is not difficult to verify that the hyperbolic cap Σλ defined in (3.2) is a
spacelike hypersurface of the Lorentz-Minkowski space Ln+1 which has constant
(r + 1)-mean curvature given by

Hr+1 =
1

λr+1
> 0,

for every 0 ≤ r ≤ n − 1 (if we choose the Gauss map N in the same time-
orientation of en+1, for the case r even). Moreover, the hyperbolic image of Σλ

is contained in the geodesic ball of center en+1 ∈ Hn+1 and radius

̺ = cosh−1

√

1 +
1

λ2
.

Thus, the height function of Σλ is given by

h =
cosh ̺ − 1

minΣλ
H

,

showing that the estimate (3.1) is sharp.

Remark 1. We point out that, for a spacelike hypersurface with constant
(r + 1)-mean curvature Hr+1, Theorem 1 improves the estimate obtained by the
second author in Theorem 4.2 of [13]. Indeed, it follows from item (b) of Lemma 1
that

cosh ̺ − 1

minΣ H
≤

cosh ̺ − 1

H
1/(r+1)
r+1

for every r = 0, . . . , n − 1.

For a fixed real number t0 ∈ R, we recall that the translation by t0,
Φt0 : Ln+1 → Ln+1, defined by

Φt0(p1, . . . , pn+1) = (p1, . . . , pn+1 − t0),

is an isometry of Ln+1. In particular, for any spacelike hyperplane Rn × {t} of
L

n+1 we have that Φt0(R
n × {t}) = R

n × {t − t0}. So, from Theorem 1 we obtain
the following result.

Corollary 1. Let ψ : Σn → L
n+1 be a compact (r, s)-linear Weingarten spacelike hyper-

surface immersed into the Lorentz-Minkowski space such that (s + 1)-mean curvature
Hs+1 has strict sign and boundary contained into the spacelike hyperplane Rn × {t}. If
the hyperbolic image of Σn is contained in a geodesic ball of center en+1 ∈ Hn and radius
̺ > 0, then

Σ ⊂ R
n × [t, t + C], or Σ ⊂ R

n × [t − C, t],

where C =
cosh ̺ − 1

minΣ |H|
.
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According to Section 5 of [13], a complete spacelike hypersurface
ψ : Σn → Ln+1 immersed into the Lorentz-Minkowski space with one end can be
regarded as

Σn = Σn
t ∪ Cn,

where Σn
t is a compact hypersurface in Ln+1 with boundary contained into a

spacelike slice Rn × {t} and Cn is a hypersurface diffeomorphic to the cylinder
Sn−1 × [t, ∞). In this setting, we say that the end of Σn is divergent when, consid-
ering Cn with coordinates p = (q, s) ∈ S

n−1 × [t, ∞), we have that

lim
s→∞

h(p) = ∞,

where h denotes the height function of Σn.
Taking into account Theorem 1, we can reason as in the proof of Theorem 5.1

of [13] to get the following

Theorem 2. Let ψ : Σn → Ln+1 be a complete (r, s)-linear Weingarten spacelike
hypersurface immersed into the Lorentz-Minkowski space with one end. Suppose that
(s + 1)-mean curvature Hs+1 satisfies infΣ |Hs+1| > 0. If the hyperbolic image of Σn is
contained in a geodesic ball of Hn, then its end cannot be divergent.

Remark 2. Finally, we also note that our assumption on the hyperbolic image of
the spacelike hypersurface in Theorem 2 is necessary. Indeed, given a positive
constant λ,

Σn =
{

x ∈ L
n+1; 〈x, x〉 = −λ2, xn+1 ≥ λ

}

is a complete spacelike hypersurface with positive constant higher order mean
curvatures and, consequently, it is a (r, s)-linear Weingarten for any 0 ≤ r ≤ s.
Moreover, Σn has one end which is divergent, but its hyperbolic image is just the
hyperbolic space Hn.
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