Periodic points on T-fiber bundles over the circle

Weslem Liberato Silva

Rafael Moreira de Souza

Introduction

Let $f : M \to M$ be a map and $x \in M$, where M a compact manifold. The point x is called a periodic point of f if there exists $n \in \mathbb{N}$ such that $f^n(x) = x$, in this case x a periodic point of f of period n. The set of all $\{x \in M | x \text{ is periodic}\}$ is called the set of periodic points of f and is denoted by P(f).

If *M* is a compact manifold then the Nielsen theory can be generalized to periodic points. Boju Jiang introduced (Chapter 3 in [1]) a Nielsen-type homotopy invariant $NF_n(f)$ being a lower bound of the number of n-periodic points, for each *g* homotopic to *f*; $Fix(g^n) \ge NF_n(f)$. In case $dim(M) \ge 3$, *M* compact PL-manifold, then any map $f : M \to M$ is homotopic to a map *g* satisfying $Fix(g^n) = NF_n(f)$, this was proved in [2].

Consider a fiber bundle $F \to M \xrightarrow{p} B$ where F, M, B are closed manifolds and $f: M \to M$ a fiber-preserving map over B. In natural way is to study periodic points of f on M, that is, given $n \in \mathbb{N}$ we want to study the set $\{x \in M \mid f^n(x) = x\}$. The our main question is; when f can be deformed by a fiberwise homotopy to a map $g: M \to M$ such that $Fix(g^n) = \emptyset$?

This paper is organized into three sections besides one. In Section 1 we describe our problem in the general context of fiber bundle with base and fiber closed manifolds.

In section 2, given a positive integer *n* and a fiber-preserving map $f: M \to M$, in a fiber bundle with base circle and fiber torus, we present necessary and sufficient conditions to deform $f^n: M \to M$ to a fixed point free map over S^1 , see Theorem 2.3. In the Theorem 2.4 we described linear models of maps,

Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 747-767

Received by the editors in October 2016 - In revised form in September 2017. Communicated by Dekimpe, Gonçalves, Wong.

²⁰¹⁰ Mathematics Subject Classification : Primary 55M20; Secondary 37C25.

Key words and phrases : Periodic points, fiber bundle, fiberwise homotopy.

on the universal covering of the torus, which induces fiber-preserving maps on the fiber bundle.

In section 3, in the Theorem 3.1, we used the models of maps of the section 2 to find a map $g : M \to M$, fiberwise homotopic to a given map $f : M \to M$ such that $g^n : M \to M$ is a fixed point free map over S^1 .

1 General problem

Let $F \to M \xrightarrow{p} B$ be a fibration and $f : M \to M$ a fiber-preserving map over B, where F, M, B are closed manifolds. Given $n \in \mathbb{N}$, from relation $p \circ f = p$, we obtain $p \circ f^n = p$, thus $f^n : M \to M$ is also a fiber-preserving map for each $n \in \mathbb{N}$. We want to know when f can be deformed by a fiberwise homotopy to a map $g : M \to M$ such that $Fix(g^n) = \emptyset$. The the following lemma give us a necessary condition to a positive answer the question above.

Lemma 1.1. Let $f : M \to M$ be a fiber-preserving map and n a positive integer. If the map $f^k : M \to M$ can not be deformed to a fixed point free map by a fiberwise homotopy, where k is a positive divisor of n, then there is not map $g : M \to M$ fiberwise homotopic to f such that $g^n : M \to M$ is a fixed point free map.

Proof. Suppose that exists $g \sim_B f$ such that $Fix(g^n) = \emptyset$. Since $Fix(g^k) \subset Fix(g^n)$ and $Fix(g^k) \neq \emptyset$ then we have a contradiction.

Therefore, a necessary condition to deform $f : M \to M$ to a map $g : M \to M$ by a fiberwise homotopy, such that $Fix(g^n) = \emptyset$, is that for all positive integer k, where k divides n, the map $f^k : M \to M$ must be deformed by a fiberwise homotopy to a fixed point free map.

Note that for each *n* the square of the following diagram is commutative;

In our case, all topological spaces are path-connected then we will represent the generators of the groups $\pi_1(M, f^n(x_0))$ for each *n*, with the same letters. The same thing we will do with $\pi_1(T, f^n(0))$.

Let $M \times_B M$ be the pullback of $p : M \to B$ by $p : M \to B$ and $p_i : M \times_B M \to M$, i = 1, 2, the projections to the first and the second coordinates, respectively.

The inclusion $M \times_B M - \Delta \hookrightarrow M \times_B M$, where Δ is the diagonal in $M \times_B M$, is replaced by the fiber bundle $q : E_B(M) \to M \times_B M$, whose fiber is denoted by \mathcal{F} . We have $\pi_m(E_B(M)) \approx \pi_m(M \times_B M - \Delta)$ where $E_B(M) = \{(x, \omega) \in B \times A^I | i(x) = \omega(0)\}$, with $A = M \times_B M$, $B = M \times_B M - \Delta$ and q is given by $q(x, \omega) = \omega(1)$.

E. Fadell and S. Husseini in [4] studied the problem to deform the map f^n , for each $n \in \mathbb{N}$, to a fixed point free map. They supposed that $dim(F) \ge 3$ and that F, M, B are closed manifolds. The necessary and sufficient condition to deform f^n is given by the following theorem that the proof can be find in [4].

Theorem 1.1. *Given a positive integer n, the map* $f^n : M \to M$ *is deformable to a fixed point free map if and only if there exists a lift* $\sigma(n)$ *in the following diagram;*

where $E_B(f^n) \to M$ is the fiber bundle induced from q by $(1, f^n)$.

In the Theorem 1.1 we have $\pi_{j-1}(\mathcal{F}) \cong \pi_j(M \times_B M, M \times_B M - \Delta) \cong \pi_j(F, F - x)$ where *x* is a point in *F*. In this situation, that is, $dim(F) \ge 3$ the classical obstruction was used to find a cross section.

When *F* is a surface with Euler characteristic ≤ 0 then by Proposition 1.6 from [5] we have necessary e sufficient conditions to deform f^n to a fixed point free map over *B*. The next proposition gives a relation between a geometric diagram and our problem.

Proposition 1.1. Let $f : M \to M$ be a fiber-preserving map over B. Then there is a map $g, g \sim_B f$, such that $Fix(g^n) = \emptyset$ if and only if there is a map $h_n : M \to M \times_B M - \Delta$ of the form $h_n = (Id, s^n)$, where $s : M \to M$, is fiberwise homotopic to f and makes the diagram below commutative up to homotopy.

$$M \times_{B} M - \Delta$$

$$\stackrel{h_{n} \longrightarrow \mathcal{T}}{\downarrow_{i}} M \xrightarrow{}_{B} M$$

$$(2)$$

Proof. (\Rightarrow) Suppose that exists $g : M \to M$, $g \sim_B f$, with $Fix(g^n) = \emptyset$. Is enough to define $h_n = (Id, g^n)$, that is, s = g.

(⇐) If there is $h_n : M \to M \times_B M - \Delta$ such that $h_n = (Id, s^n)$, where $s \sim_B f$, then $s^n(x) \neq x$ for all $x \in M$. Thus, takes g = s.

2 Torus fiber-preserving maps

Let *T* be, the torus, defined as the quotient space $\mathbb{R} \times \mathbb{R}/\mathbb{Z} \times \mathbb{Z}$. We denote by (x, y) the elements of $\mathbb{R} \times \mathbb{R}$ and by [(x, y)] the elements in T.

Let $MA = \frac{T \times [0,1]}{([(x,y)],0) \sim ([A(\frac{x}{y})],1)}$ be the quotient space, where *A* is a homeomorphism of *T* induced by an operator in \mathbb{R}^2 that preserves $\mathbb{Z} \times \mathbb{Z}$. The space *MA* is a fiber bundle over the circle S^1 where the fiber is the torus. For more details on these bundles see [5].

Given a fiber-preserving map $f : MA \to MA$, i.e. $p \circ f = p$, we want to study the set $Fix(g^n)$ for each map g fiberwise homotopic to f.

Consider the loops in *MA* given by; $a(t) = \langle [(t,0)], 0 \rangle, b(t) = \langle [(0,t)], 0 \rangle$ and $c(t) = \langle [(0,0)], t \rangle$ for $t \in [0,1]$. We denote by *B* the matrix of the homomorphism induced on the fundamental group by the restriction of *f* to the fiber *T*. From [5] we have the following theorem that provides a relationship between the matrices *A* and *B*, where

$$A = \left(\begin{array}{cc} a_1 & a_3 \\ a_2 & a_4 \end{array}\right).$$

From [5] the induced homomorphism $f_{\#} : \pi_1(MA) \to \pi_1(MA)$ is given by; $f_{\#}(a) = a^{b_1}b^{b_2}, f_{\#}(b) = a^{b_3}b^{b_4}, f_{\#}(c) = a^{c_1}b^{c_2}c$. Thus

$$B = \left(\begin{array}{cc} b_1 & b_3 \\ b_2 & b_4 \end{array}\right).$$

Theorem 2.1. (1) $\pi_1(MA, 0) = \langle a, b, c | [a, b] = 1, cac^{-1} = a^{a_1}b^{a_2}, cbc^{-1} = a^{a_3}b^{a_4} \rangle$ (2) *B* commutes with *A*.

(3) If f restricted to the fiber is deformable to a fixed point free map then the determinant of B - I is zero, where I is the identity matrix.

(4) If v is an eigenvector of B associated to 1 (for $B \neq Id$) then A(v) is also an eigenvector of B associated to 1.

(5) Consider w = A(v) if the pair v, w generators $\mathbb{Z} \times \mathbb{Z}$, otherwise let w be another vector so that v, w span $\mathbb{Z} \times \mathbb{Z}$. Define the linear operator $P : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by $P(v) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $P(w) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Consider an isomorphism of fiber bundles, also denoted by $P, P : MA \to M(A^1)$ where $A^1 = P \cdot A \cdot P^{-1}$. Then MA is homeomorphic to $M(A^1)$ over S^1 . Moreover we have one of the cases of the table below with $B^1 = P \cdot A \cdot P^{-1}$ and $B^1 \neq Id$, except in case I:

Case I	$A^{1} = \begin{pmatrix} a_{1} & a_{3} \\ a_{2} & a_{4} \end{pmatrix}, B^{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $a_{3} \neq 0$
Case II	$A^1 = \begin{pmatrix} 1 & a_3 \\ 0 & 1 \end{pmatrix}$, $B^1 = \begin{pmatrix} 1 & b_3 \\ 0 & b_4 \end{pmatrix}$
	$a_3(b_4 - 1) = 0$
Case III	$A^1=\left(egin{array}{cc} 1&a_3\0&-1\end{array} ight)$, $B^1=\left(egin{array}{cc} 1&b_3\0&b_4\end{array} ight)$
	$a_3(b_4-1) = -2b_3$
Case IV	$A^1=\left(egin{array}{cc} -1 & a_3 \ 0 & -1 \end{array} ight)$, $B^1=\left(egin{array}{cc} 1 & b_3 \ 0 & b_4 \end{array} ight)$
	$a_3(b_4 - 1) = 0$
Case V	$A^1 = \left(egin{array}{cc} -1 & a_3 \ 0 & 1 \end{array} ight)$, $B^1 = \left(egin{array}{cc} 1 & b_3 \ 0 & b_4 \end{array} ight)$
	$a_3(b_4-1) = 2b_3$

From Theorem 4.1 in [5], we have necessary and sufficient conditions to deform f to a fixed point free map over S^1 . The next theorem is equivalent to Theorem 4.1 in [5], this equivalence was made in [6].

Theorem 2.2. A fiber-preserving map $f : MA \to MA$ can be deformed to a fixed point free map by a homotopy over S^1 if and only if one of the cases below holds:

(1) MA is as in case I and f is arbitrary

(2) *MA* is as in one of the cases II or III and $c_1(b_4 - 1) - c_2b_3 = 0$

(3) *MA* is as in case *IV* and $b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2 \equiv 0 \mod 2$ except when:

*a*₃ *is odd and* $[(c_1, c_2)] = [(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1, 2), (0, 4) \rangle}$ *or a*₃ *is even and* $[(c_1, c_2)] = [(0, 0)]$ *, with* $[(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2, 0), (0, 2) \rangle}$.

(4) MA is as in case V and either

*a*₃ *is even and* $(b_4 - 1)(c_1 - \frac{a_3}{2}c_2 - 1) \equiv 0 \mod 2$, except when $c_1 - \frac{a_3}{2}c_2 - 1$ and $\frac{b_4 - 1}{L}$ are odd, or

 $a_3 \text{ is odd and } \frac{b_4-1}{2}(1+c_2) \equiv 0 \mod 2 \text{ except when } 1+c_2 \text{ and } \frac{b_4-1}{L} \text{ are odd, where } L := gcd(b_4-1,c_2).$

Given $n \in \mathbb{N}$ we denote the induced homomorphism $f_{\#}^{n} : \pi_{1}(MA) \to \pi_{1}(MA)$ by $f_{\#}(a) = a^{b_{1n}}b^{b_{2n}}$, $f_{\#}(b) = a^{b_{3n}}b^{b_{4n}}$ and $f_{\#}(c) = a^{c_{1n}}b^{c_{2n}}c$, where $b_{j1} = b_{j}$, j = 1, ..., 4 and $c_{j1} = c_{j}$, j = 1, 2. Thus the matrix of the homomorphism induced on the fundamental group by the restriction of f^{n} to the fiber *T* is given by:

$$B_n = \left(\begin{array}{cc} b_{1n} & b_{3n} \\ b_{2n} & b_{4n} \end{array}\right),$$

where $B_1 = B$ is the matrix of $(f_{|T})_{\#}$ and $B_n = B^n$. From [8] we have

$$N(h^n) = |L(h^n)| = |det([h_{\#}]^n - I)|,$$

for each map $h : T \to T$ on torus, where $[h_{\#}]$ is the matrix of induced homomorphism and *I* is the identity.

Since $(B^n - I) = (B - I)(B^{n-1} + ... + B + I)$ then $det(B^n - I) = det(B - I)det(B^{n-1} + ... + B + I)$. Therefore, if $f_{|T}$ is deformable to a fixed point free map then $f_{|T}^n$ is deformable to a fixed point free map.

Remark 2.1. *C.Y.You in* [10] proved that if $h : X \to X$ is a map, where X is a torus, then there exist g homotopic to h such that $NF_n(h) = \#Fix(g^n)$. Note that we do not have yet the Nielsen Jiang number defined for a map $f : M \to M$ in a fiber bundle over B. This work investigates when there exist a such map g, fiberwise homotopic to f, with $Fix(g^n) = \emptyset$, with n > 1.

In the Theorems 2.1 and 2.2, putting f^n in the place of f we will get conditions to f^n . The conditions in Theorem 2.1 to f^n is the same of f but the conditions to f^n in the Theorem 2.2 are different of f and are in the Theorem 2.3.

Given a fiber-preserving map $f : MA \to MA$, if $f \sim_{S^1} g$ then $f^n \sim_{S^1} g^n$. Therefore, if $Fix(g^n) = \emptyset$ then the homomorphism $f_{\#}^n : \pi_1(M) \to \pi(M)$ satisfies the condition of deformability gives in [5].

Proposition 2.1. Let $f : MA \to MA$ be a fiber-preserving map, where MA is a *T*-bundle over S^1 . Suppose that f restricted to the fiber can be deformed to a fixed point free map. This implies $L(f|_T) = 0$. From Theorem 2.1 we can suppose that the induced

homomorphism $f_{\#}$: $\pi_1(MA) \rightarrow \pi_1(MA)$ is given by; $f_{\#}(a) = a$, $f_{\#}(b) = a^{b_3}b^{b_4}$, $f_{\#}(c) = a^{c_1}b^{c_2}c$. Given $n \in \mathbb{N}$ then from relation $(f_{\#})^n = f_{\#}^n$ we obtain;

$$f_{\#}^{n}(a) = a,$$

$$f_{\#}^{n}(b) = a^{b_{3}\sum_{i=0}^{n-1}b_{4}^{i}}b_{4}^{b_{4}^{n}},$$

$$f_{\#}^{n}(c) = a^{nc_{1}+b_{3}c_{2}\sum_{i=0}^{n-1}(n-1-i)b_{4}^{i}}b_{2}^{c_{2}\sum_{i=0}^{n-1}b_{4}^{i}}c.$$

Proof. In fact, $f_{\#}^{2}(b) = f_{\#}(a^{b_{3}}b^{b_{4}}) = a^{b_{3}}(a^{b_{3}}b^{b_{4}})^{b_{4}} = a^{b_{3}+b_{3}b_{4}}b^{b_{4}^{2}}$ and $f_{\#}^{2}(c) = f_{\#}(a^{c_{1}}b^{c_{2}}c) = a^{c_{1}}(a^{b_{3}}b^{b_{4}})^{c_{2}}(a^{c_{1}}b^{c_{2}}c) = a^{2c_{1}+b_{3}c_{2}}b^{c_{2}+c_{2}b_{4}}c$. Suppose $f_{\#}^{n}(b) = a^{b_{3}\sum_{i=0}^{n-1}b_{4}^{i}}b^{b_{4}^{n}}$ and $f_{\#}^{n}(c) = a^{nc_{1}+b_{3}c_{2}\sum_{i=0}^{n-1}(n-1-i)b_{4}^{i}}b^{c_{2}}\sum_{i=0}^{n-1}b_{4}^{i}}c$. Then,

$$\begin{array}{rcl} f^{n+1}_{\#}(b) &=& f_{\#}(a^{b_{3}}\Sigma^{n-1}_{i=0}b^{i}_{4}b^{b^{n}_{4}}) &=& a^{b_{3}}\Sigma^{n-1}_{i=0}b^{i}_{4}(a^{b_{3}}b^{b}_{4})b^{n}_{4} \\ &=& a^{b_{3}}\Sigma^{n-1}_{i=0}b^{i}_{4}(a^{b_{3}}b^{n}_{4}b^{b^{n+1}_{4}}) &=& a^{b_{3}}\Sigma^{n}_{i=0}b^{i}_{4}b^{b^{n+1}_{4}}; \end{array}$$

$$\begin{aligned} f_{\#}^{n+1}(c) &= f_{\#}(a^{nc_{1}+b_{3}c_{2}}\sum_{i=0}^{n-1}(n-1-i)b_{4}^{i}b^{c_{2}}\sum_{i=0}^{n-1}b_{4}^{i}c) \\ &= a^{nc_{1}+b_{3}c_{2}}\sum_{i=0}^{n-1}(n-1-i)b_{4}^{i}(a^{b_{3}}b^{b_{4}})^{c_{2}}\sum_{i=0}^{n-1}b_{4}^{i}(a^{c_{1}}b^{c_{2}}c) \\ &= a^{(nc_{1}+b_{3}c_{2}}\sum_{i=0}^{n-1}(n-1-i)b_{4}^{i}) + (b_{3}c_{2}\sum_{i=0}^{n-1}b_{4}^{i}) + (c_{1})b^{(c_{2}}\sum_{i=1}^{n}b_{4}^{i}) + (c_{2})c \\ &= a^{(n+1)c_{1}+b_{3}c_{2}}\sum_{i=0}^{n}(n-i)b_{4}^{i}b^{c_{2}}\sum_{i=0}^{n}b_{4}^{i}c. \end{aligned}$$

We will denote; $f_{\#}^{n}(b) = a^{b_{3n}}b^{b_{4n}}$ and $f_{\#}^{n}(c) = a^{c_{1n}}b^{c_{2n}}c$.

Theorem 2.3. Let $f : MA \to MA$ be a fiber-preserving map, where MA is a T-bundle over S^1 . Suppose that f restricted to the fiber can be deformed to a fixed point free map and that the induced homomorphism $f_{\#} : \pi_1(MA) \to \pi_1(MA)$ is given by; $f_{\#}(a) = a$, $f_{\#}(b) = a^{b_3}b^{b_4}$, $f_{\#}(c) = a^{c_1}b^{c_2}c$ as in cases of the Theorem 2.2. If n is a positive integer, then $f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 if and only if the following conditions are satisfies;

1) MA is as in case I and f is arbitrary.

2) *MA* is as in cases II, III and $(c_1(b_4 - 1) - c_2b_3)\left(\sum_{i=0}^{n-1} b_4^i\right) = 0$

3) *MA* is as in case *IV* and $n(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2) - (n - 1)$ $(b_4 - 1) \equiv 0 \mod 2$ except when:

 $a_{3} \text{ is odd and } \left[\left(nc_{1} + \frac{n(n-1)}{2} b_{3}c_{2}, nc_{2} \right) \right] = \left[(0,0) \right] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1,2), (0,4) \rangle} \text{ or }$ $a_{3} \text{ is even and } \left[\left(nc_{1} + \frac{n(n-1)}{2} b_{3}b_{4}c_{2}, c_{2} + (n-1)b_{4}c_{2} \right) \right] = \left[(0,0) \right] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2,0), (0,2) \rangle}.$

4) *MA* is as in case *V* and either a_3 is even and $n(b_4 - 1)(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)(b_4 - 1) \equiv 0 \mod 2$, except when $n(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)$ and $\frac{b_4 - 1}{L}$ are odd, or a_3 is odd and $\frac{b_4 - 1}{2}((1 + c_2)(1 + (n - 1)b_4)) \equiv 0 \mod 2$ except when $(1 + c_2)(1 + (n - 1)b_4)$ and $\frac{b_4 - 1}{L}$ are odd, where $L := gcd(b_4 - 1, c_2)$. *Proof.* By Proposition 2.1 we know $f_{\#}^{n}(a) = a$, $f_{\#}^{n}(b) = a^{b_{3n}}b^{b_{4n}}$ and $f_{\#}^{n}(c) = a^{c_{1n}}b^{c_{2n}}c$.

(1) From Theorem 2.2 each map $f : MA \to MA$ is fiberwise homotopic to a fixed point free map over S^1 in particular that happens with $f^n : MA \to MA$ for each $n \in \mathbb{N}$.

(2) If $b_4 = 1$ then the assumption of the Theorem means $c_2b_3 = 0$. Moreover $b_{3n} = nb_3$, $b_{4n} = 1$, $c_{1n} = nc_1 + b_3c_2\frac{n(n-1)}{2}$ and $c_{2n} = nc_2$. In this sense, following Theorem 2.2, in cases *II* and *III*, f^n can be deformed, by a fiberwise homotopy, to a fixed point free map if and only if $c_{1n}(b_{4n} - 1) - c_{2n}b_{3n} = 0$. However, $c_{1n}(b_{4n} - 1) - c_{2n}b_{3n} = -n^2c_2b_3$, and $-n^2c_2b_3 = 0$ if and only if $c_2b_3 = 0$.

For
$$b_4 \neq 1$$
 we have $b_{3n} = b_3 \sum_{i=0}^{n-1} b_4^i = b_3 \frac{b_4^n - 1}{b_4 - 1}$, $b_{4n} = b_4^n$, $c_{1n} = nc_1 + b_3 c_2$

$$\sum_{i=0}^{n-1} (n-1-i)b_4^i \text{ and } c_{2n} = c_2 \sum_{i=0}^{n-1} b_4^i = c_2 \frac{b_4^n - 1}{b_4 - 1}.$$
Note that; $\sum_{i=0}^{n-1} (n-1-i)b_4^i = \sum_{i=0}^{n-1} \frac{(n-1-i)b_4^i (b_4 - 1)^2}{(b_4 - 1)^2} =$

$$= \frac{\sum_{i=0}^{n-1} (n-1-i)b_4^{i+2} - 2\sum_{i=0}^{n-1} (n-1-i)b_4^{i+1} + \sum_{i=0}^{n-1} (n-1-i)b_4^i}{(b_4 - 1)^2}$$

$$= \frac{\sum_{i=2}^{n+1} (n+1-i)b_4^i - 2\sum_{i=1}^n (n-i)b_4^i + \sum_{i=0}^{n-1} (n-1-i)b_4^i}{(b_4 - 1)^2} =$$

$$= \frac{\sum_{i=2}^{n-1} [(n+1-i) - 2(n-i) + (n-1-i)]b_4^i + b_4^n + (-2(n-1) + n-2)b_4 + n-1}{(b_4 - 1)^2}$$

Therefore, $c_{1n}(b_{4n}-1) - c_{2n}b_{3n} = \frac{n(b_4^n-1).(c_1(b_4-1)-c_2b_3)}{b_4-1}$. In fact,

$$c_{1n}(b_{4n}-1) = \left(nc_1 + c_2 b_3 \frac{b_4^n - nb_4 + n - 1}{(b_4 - 1)^2}\right) \left(b_4^n - 1\right)$$

= $nc_1(b_4^n - 1) + c_2 b_3 \left(\frac{(b_4^n - 1) - n(b_4 - 1)}{(b_4 - 1)^2}\right) \left(b_4^n - 1\right)$
= $nc_1(b_4^n - 1) + c_2 b_3 \left(\frac{b_4^n - 1}{b_4 - 1}\right)^2 - nc_2 b_3 \left(\frac{b_4^n - 1}{b_4 - 1}\right);$
 $c_{2n}b_{3n} = \left(c_2 \frac{b_4^n - 1}{b_4 - 1}\right) \left(b_3 \frac{b_4^n - 1}{b_4 - 1}\right) = c_2 b_3 \left(\frac{b_4^n - 1}{b_4 - 1}\right)^2.$

Therefore,

$$c_{1n}(b_{4n}-1) - c_{2n}b_{3n} = nc_1(b_4^n - 1) - nc_2b_3\left(\frac{b_4^n - 1}{b_4 - 1}\right)$$

= $n(b_4^n - 1)\left(c_1 - \frac{c_2b_3}{b_4 - 1}\right)$
= $n\left(\frac{b_4^n - 1}{b_4 - 1}\right)(c_1(b_4 - 1) - c_2b_3)$
= $n(c_1(b_4 - 1) - c_2b_3)\left(\sum_{i=0}^{n-1} b_4^i\right).$

(3) Following Theorem 2.2, in cases *IV*, f^n can be deformed, by a fiberwise homotopy, to a fixed point free map iff $b_{4n}(b_{3n} + 1) - 1 - c_{1n}(b_{4n} - 1) + c_{2n}b_{3n} \equiv$

0 *mod* 2 except when a_3 even and $[(c_{1n}, c_{2n})] = [(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2, 0), (0, 2) \rangle}$, or a_3 odd and $[(c_{1n}, c_{2n})] = [(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1, 2), (0, 4) \rangle}$.

As in (2), we have
$$-c_{1n}(b_{4n}-1) + c_{2n}b_{3n} = -n(c_1(b_4-1)-c_2b_3)\left(\sum_{i=0}^{n-1}b_4^i\right)$$
 and
 $b_{4n}(b_{3n}+1) - 1 = b_4^n\left(1 + b_3\sum_{i=0}^{n-1}b_4^i\right) - 1 = (b_4^n - 1) + b_4^nb_3\left(\sum_{i=0}^{n-1}b_4^i\right) = (b_4 - 1)\left(\sum_{i=0}^{n-1}b_4^i\right) + b_4^nb_3\left(\sum_{i=0}^{n-1}b_4^i\right)$. Thus,
 $b_{4n}(b_{3n}+1) - 1 - c_{1n}(b_{4n}-1) + c_{2n}b_{3n} = (b_4 - 1)\left(\sum_{i=0}^{n-1}b_4^i\right) + b_3b_4^n\left(\sum_{i=0}^{n-1}b_4^i\right) - n(c_1(b_4-1) - c_2b_3)\left(\sum_{i=0}^{n-1}b_4^i\right) = (b_4 - 1 + b_2b_1^n - n(c_1(b_4-1) - c_2b_3))\left(\sum_{i=0}^{n-1}b_4^i\right) = mod 2$

The exceptions holds for a_3 even and $[(c_{1n}, c_{2n})] = [(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2, 0), (0, 2) \rangle}$, or a_3 odd and $[(c_{1n}, c_{2n})] = [(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1, 2), (0, 4) \rangle}$.

In this sense, we have $(c_{1n}, c_{2n}) = \left(nc_1 + b_3c_2\sum_{i=0}^{n-1}(n-1-i)b_4^i, c_2\sum_{i=0}^{n-1}b_4^i\right)$. If a_3 is odd then $b_4 = 1$, $c_2\sum_{i=0}^{n-1}1^i = nc_2$ and $nc_1 + b_3c_2\sum_{i=0}^{n-1}(n-1-i)1^i = nc_1 + b_3c_2\frac{n(n-1)}{2}$. If a_3 is even then $c_2\sum_{i=0}^{n-1}b_4^i \equiv c_2(1+(n-1)b_4) \mod 2$ and $nc_1 + b_3c_2\sum_{i=0}^{n-1}(n-1-i)b_4^i \equiv nc_1 + \frac{n(n-1)}{2}b_3b_4c_2 \mod 2$.

(4) From Theorem 2.2 the map f^n can be deformed, over S^1 , to a fixed point free map if and only if the following condition holds:

*a*₃ is even and $(b_{4n} - 1)(c_{1n} - \frac{a_3}{2}c_{2n} - 1) \equiv 0 \mod 2$, except when $c_{1n} - \frac{a_3}{2}c_{2n} - 1$ and $\frac{b_{4n} - 1}{L}$ are odd, or

*a*₃ is odd and $\frac{b_{4n}-1}{2}(1+c_{2n}) \equiv 0 \mod 2$ except when $1+c_{2n}$ and $\frac{b_{4n}-1}{L}$ are odd, where $L := gcd(b_{4n}-1,c_{2n})$.

Note that if $b_4 = 1$ then from Theorem 2.1 we must have $b_3 = 0$ and this situation return in the case *I*. Therefore let us suppose $b_4 \neq 1$.

From previous calculation we have; $b_{4n} = b_4^n$, $b_{3n} = b_3 \frac{b_4^n - 1}{b_4 - 1}$, $c_{2n} = c_2 \frac{b_4^n - 1}{b_4 - 1}$ and $c_{1n} = nc_1 + b_3 c_2 \frac{b_4^n - nb_4 + n - 1}{(b_4 - 1)^2}$. From Theorem 2.1 we have $a_3(b_4 - 1) = 2b_3$.

Suppose a_3 even. Since $c_{1n}(b_{4n}-1) - c_{2n}b_{3n} = \frac{n(b_4^n-1)(c_1(b_4-1)-c_2b_3)}{b_4-1}$. Then

$$(b_{4n}-1)(c_{1n}-\frac{a_3}{2}c_{2n}-1) = n(b_4^n-1)(c_1-\frac{a_3}{2}c_2-1) + (n-1)(b_4^n-1).$$
 In fact,

$$c_{1n}-\frac{a_3}{2}c_{2n} = nc_1 + b_3c_2\frac{b_4^n-nb_4+n-1}{(b_4-1)^2} - \frac{a_3}{2}c_2\frac{b_4^n-1}{b_4-1}$$

$$= nc_1 + b_3c_2\frac{(b_4^n-1)-n(b_4-1)}{(b_4-1)^2} - b_3c_2\frac{b_4^n-1}{(b_4-1)^2}$$

$$= nc_1 - \frac{b_3c_2n}{b_4-1}$$

$$= n(c_1 - \frac{a_3}{2}c_2).$$

We have defined $L := gcd(b_4 - 1, c_2)$. Therefore, $kL = gcd(k(b_4 - 1), kc_2)$. We have defined $L' := gcu(b_4 - 1, c_2)$. Therefore, $kL = gcu(k(b_4 - 1), kc_2)$. We also define $L' := gcd(b_{4n} - 1, c_{2n})$. Now $L' = \frac{b_4^n - 1}{(b_4 - 1)}L$, since $b_{4n} - 1 = \frac{b_4^n - 1}{(b_4 - 1)}(b_4 - 1)$ and $c_{2n} = c_2 \frac{b_4^n - 1}{(b_4 - 1)}$. Furthermore, $\frac{b_{4n} - 1}{L'} = \frac{b_{4n} - 1}{L} \frac{b_4 - 1}{(b_4^n - 1)} = \frac{b_4 - 1}{L}$. With these calculations we obtain the conditions statements on the theorem. In the case a_3 odd we must have: $\frac{b_4^n - 1}{2}(1 + c_2 \frac{b_4^n - 1}{b_4 - 1}) \equiv 0 \mod 2$ except when

 $1 + c_2 \frac{b_4^n - 1}{b_4 - 1}$ and $\frac{b_4 - 1}{L}$ are odd, where $L := gcd(b_4 - 1, c_2)$.

Note that $\frac{b_4^n - 1}{b_4 - 1}$ is even if and only if $1 + (n - 1)b_4$ is even, and $b_4^n - 1$ is even if and only if $b_4 - 1$ is even, for all $n \in \mathbb{N}$. With this we obtain the enunciate of the theorem.

Corollary 2.1. From Theorem 2.3, if $f : MA \to MA$ can be deformed to a fixed point free map over S^1 and n is a odd positive integer, then $f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 .

Proof. If $f : MA \to MA$ is deformed to a fixed point free map over S^1 then the conditions of the Theorem 2.2 are satisfied. Suppose *n* odd then the conditions of the Theorem 2.3 also are satisfied. Thus $f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 .

In the corollary above if *n* is even the above statement may not holds, for example in the case V of the Theorem 2.3 if n, b_4 , a_3 and $c_1 - \frac{a_3}{2}c_2 - 1$ are even then $f: MA \to MA$ is deformed to a fixed point free map over \tilde{S}^1 but f^n is not.

Proposition 2.2. Let $f : MA \to MA$ be a fiber-preserving map. Suppose that for some n, odd positive integer, $f^n: MA \to MA$ can be deformed to a fixed point free map over S^1 , as in Theorem 2.3. If k is a positive divisor of n then the map $f^k : MA \to MA$ can be deformed, by a fiberwise homotopy, to a fixed point free map over S^1 .

Proof. It is enough to verify that if the conditions of the Theorem 2.3 are satisfied for some n > 1 odd then those conditions are also satisfied for n = 1. The validity of the conditions for any k which divides n follows of the Corollary 2.1. We will analyze each case of the Theorem 2.3.

Case I. In this case for each $n \in \mathbb{N}$ the fiber-preserving map can be deformed over S^1 to a fixed point free map.

Cases II and III. In these cases if for some n odd the fiber-preserving map $f^n: MA \to MA$ is deformed to a fixed point free map over S^1 then we must have; $c_1(b_4 - 1) - c_2b_3 = 0$. Thus, for all $k \leq n$, f^k can be deformed to a fixed point free map over S^1 , in particular when k divides n.

Case IV. Suppose that for some odd positive integer *n* the fiber-preserving map $f^n : MA \to MA$ is deformed to a fixed point free map over S^1 , then $n(b_4(b_3+1)-1-c_1(b_4-1)+b_3c_2)-(n-1)(b_4-1) \equiv 0 \mod 2$ and if a_3 is odd then $[(nc_1 + \frac{n(n-1)}{2}b_3c_2, nc_2)] \neq [(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1,2), (0,4) \rangle}$ or if a_3 is even then $[(nc_1 + \frac{n(n-1)}{2}b_3b_4c_2, c_2 + (n-1)b_4c_2)] \neq [(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2,0), (0,2) \rangle}$.

Suppose a_3 is odd. If $f : MA \to MA$ can not be deformed to a fixed point free map over S^1 , then we must have $[(c_1, c_2)] = [(0, 0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1, 2), (0, 4) \rangle}$ or $(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2)$ odd, that is, $c_2 - 2c_1 \equiv 0 \mod 4$ or $(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2)$ odd. Note that $(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2)$ odd iff $n(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2) - (n - 1)(b_4 - 1)$ odd for any n odd. Now, if $c_2 - 2c_1 \equiv 0 \mod 4$ then we have c_2 even and therefore $c_2 - 2c_1 - (n - 1)b_3c_2 \equiv 0 \mod 4$. Thus, we have $c_2 - 2c_1 - (n - 1)b_3c_2 \equiv 0 \mod 4$ or $n(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2) - (n - 1)(b_4 - 1)$ odd. These two conditions guarantee that f^n can not be deformed to a fixed point free map over S^1 , which is a contradiction by hypothesis.

If a_3 is even then

$$[(c_1, c_2)] = [(c_1 + \frac{(n-1)}{2}b_3b_4c_2, c_2)] \\ \neq [(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2,0), (0,2) \rangle}.$$

Then, $f : MA \to MA$ can be deformed to a fixed point free map over S^1 .

Case V. Suppose that for some *n* odd, $n \in \mathbb{N}$ the fiber-preserving map $f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 .

If a_3 is even then f^n can be deformed if $n(b_4 - 1)(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)$ $(b_4 - 1) \equiv 0 \mod 2$, except when $n(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)$ and $\frac{b_4 - 1}{L}$ are odd, where $L := gcd(b_4 - 1, c_2)$. But $n(b_4 - 1)(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)(b_4 - 1)$ even implies $(b_4 - 1)(c_1 - \frac{a_3}{2}c_2 - 1)$ even, and $n(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)$ odd implies $(c_1 - \frac{a_3}{2}c_2 - 1)$ odd. Therefore, $f : MA \to MA$ can be deformed to a fixed point free map over S^1 . The case a_3 odd is analogous.

Proposition 2.3. Let $f : MA \to MA$ be a fiber-preserving map. If m, n are odd positive integers, then f^m is deformable to a fixed point free map over S^1 if and only if f^n is deformable to a fixed point free map over S^1 .

Proof. If *m*, *n* are odd and f^m is deformable to a fixed point free map over S^1 then by Proposition 2.2 *f* is deformable to a fixed point free map over S^1 . From Corollary 2.1 f^n is deformable to a fixed point free map over S^1 .

We have a analogous result for even numbers;

Proposition 2.4. Let $f : MA \to MA$ be a fiber-preserving map, where MA is a *T*-bundle over S^1 . Suppose that the induced homomorphism $f_{\#} : \pi_1(MA) \to \pi_1(MA)$ is given by; $f_{\#}(a) = a$, $f_{\#}(b) = a^{b_3}b^{b_4}$, $f_{\#}(c) = a^{c_1}b^{c_2}c$ as in cases of the Theorem 2.2. Given an even positive integer *n* such that f^n is deformable to a fixed point free map over S^1 , as in Theorem 2.3, then f^k is deformable to a fixed point free map over S^1 , for all even positive integer *k* divisor of *n*.

Proof. Is enough to verify that if the conditions of the Theorem 2.3 are satisfied for some *n* even then those conditions are also satisfied by every even *k*. We will analyze each case of the Theorem 2.3.

Case I. In this case for each $n \in \mathbb{N}$ the fiber-preserving map can be deformed over S^1 to a fixed point free map.

Cases II and III. In these cases if for some n even the fiber-preserving map $f^n: MA \to MA$ is deformed to a fixed point free map over S^1 then we must have; $c_1(b_4 - 1) - c_2b_3 = 0$ or $b_4 = -1$. Thus, for all even k, f^k can be deformed to a fixed point free map over S^1 .

Case IV. If *n* is an even positive integer and $f^n : MA \to MA$ is deformed to a fixed point free map over S^1 , then $n(b_4(b_3 + 1) - 1 - c_1(b_4 - 1) + b_3c_2) - b_3c_3 - b_$ $(n-1)(b_4-1) \equiv 0 \mod 2$ and

if a_3 is odd then $[(nc_1 + \frac{n(n-1)}{2}b_3c_2, nc_2)] \neq [(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1,2), (0,4) \rangle}$ or if a_3 is even then $[(nc_1 + \frac{n(n-1)}{2}b_3b_4c_2, c_2 + (n-1)b_4c_2)] \neq [(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2,0), (0,2) \rangle}$.

Note that b_4 is odd when *n* is even. If a_3 is odd then $b_4 = 1$ and

$$\begin{bmatrix} (nc_1 + \frac{n(n-1)}{2}b_3c_2, nc_2) \end{bmatrix} = \begin{bmatrix} (0, nc_2 - 2(nc_1 + \frac{n(n-1)}{2}b_3c_2)) \end{bmatrix} \\ = \begin{bmatrix} (0, n(c_2 - 2c_1 - (n-1)b_3c_2)) \end{bmatrix} \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1,2), (0,4) \rangle}; \\ \Rightarrow n(c_2 - 2c_1 - (n-1)b_3c_2) \not\equiv 0 \mod 4 \\ \Rightarrow \begin{cases} c_2 - 2c_1 - (n-1)b_3c_2 \equiv 1 \mod 2; \\ n \equiv 2 \mod 4. \end{cases}$$

If *a*³ is even we have

$$\left[\left(nc_1 + \frac{n(n-1)}{2}b_3b_4c_2, c_2 + (n-1)b_4c_2\right)\right] = \left[\left(\frac{n}{2}b_3c_2, 0\right)\right] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2,0), (0,2) \rangle}$$

 $\Rightarrow \frac{n}{2}b_3c_2 \equiv 1 \mod 2 \Rightarrow n \equiv 2 \mod 4 \text{ and } b_3c_2 \equiv 1 \mod 2.$

Note that, if f^n can be deformed to a fixed point free map over S^1 then $n \equiv 2 \mod 4$. Let *k* be an even positive integer, then

$$k(b_4(b_3+1)-1-c_1(b_4-1)+b_3c_2)-(k-1)(b_4-1)\equiv 0 \bmod 2.$$

Hence, $f^k : MA \to MA$ can be deformed to a fixed point free map over S^1 except when $k \equiv 0 \mod 4$ since;

if a_3 is odd then

$$[(kc_1 + \frac{k(k-1)}{2}b_3c_2, kc_2)] = [(0, k(c_2 - 2c_1 - (k-1)b_3c_2))] = [(0, k)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (1,2), (0,4) \rangle},$$

because $c_2 - 2c_1 - (k-1)b_3c_2 \equiv 1 \mod 2$ if *a*³ is even then

$$\left[\left(kc_1+\frac{k(k-1)}{2}b_3b_4c_2,c_2+(k-1)b_4c_2\right)\right]=\left[\left(\frac{k}{2},0\right)\right]\in\frac{\mathbb{Z}\oplus\mathbb{Z}}{\langle(2,0),(0,2)\rangle}.$$

Case V. If *n* is an even positive integer and $f^n : MA \to MA$ is deformed to a fixed point free map over S^1 , then

if a_3 is odd then $\frac{b_4-1}{2}((1+c_2)(1+(n-1)b_4)) \equiv 0 \mod 2$ and at least one of $(1+c_2)(1+(n-1)b_4)$ and $\frac{b_4-1}{L}$ is even, where $L := gcd(b_4-1,c_2)$, or if a_3 is even then $n(b_4 - 1)(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)(b_4 - 1) \equiv 0 \mod 2$ and at least one of $n(c_1 - \frac{a_3}{2}c_2 - 1) + (n - 1)$ and $\frac{b_4 - 1}{L}$ is even, where $L := gcd(b_4 - 1, c_2)$. Let a_3 odd and k an even positive integer then

$$\begin{array}{rcl} (1+(k-1)b_4)) &\equiv& (1+(n-1)b_4) \bmod 2\\ \Rightarrow & \frac{b_4-1}{2}((1+c_2)(1+(k-1)b_4)) &\equiv& \frac{b_4-1}{2}((1+c_2)(1+(n-1)b_4)) \bmod 2\\ &\equiv& 0 \bmod 2;\\ (1+c_2)(1+(k-1)b_4) &\equiv& (1+c_2)(1+(n-1)b_4) \bmod 2. \end{array}$$

Then, $f^k : MA \to MA$ can be deformed to a fixed point free map over S^1 for a_3 odd. Let *a*₃ even and *k* an even positive integer then

$$\begin{array}{rcl} n(b_4-1)(c_1-\frac{a_3}{2}c_2-1)+(n-1)(b_4-1)&\equiv&b_4-1\mbox{ mod }2;\\ n(c_1-\frac{a_3}{2}c_2-1)+(n-1)&\equiv&1\mbox{ mod }2;\\ \Rightarrow&k(b_4-1)(c_1-\frac{a_3}{2}c_2-1)+(k-1)(b_4-1)&\equiv&0\mbox{ mod }2. \end{array}$$

Then, $f^k : MA \to MA$ can be deformed to a fixed point free map over S^1 for a_3 even.

Given $n \in \mathbb{N}$ and $f : MA \to MA$ a fiber-preserving. If $f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 , then from Propositions 2.3 and 2.4 the conditions to deform f and f^n to a fixed point free map over S^1 are enough to deform f^k to a fixed point free map over S^1 for all k divisor of n.

Theorem 2.4. Let $f : T \times I \rightarrow T \times I$ be the map defined by;

$$f(x,y,t) = (x+b_3y+c_1t+\varepsilon,b_4y+c_2t+\delta,t).$$

Denoting $f^n: T \times I \to T \times I$ by $f^n(x, y, t) = (x_n, y_n, t)$, then x_n and y_n are given by

$$x_n = x + b_3 y \sum_{i=0}^{n-1} b_4^i + (nc_1 + b_3 c_2 \sum_{i=0}^{n-1} i b_4^{n-1-i})t + b_3 \delta \sum_{i=0}^{n-1} i b_4^{n-1-i} + n\varepsilon$$

$$y_n = b_4^n y + c_2 t \sum_{i=0}^{n-1} b_4^i + \delta \sum_{i=0}^{n-1} b_4^i.$$

If for each positive integer n and ε , δ satisfying the following conditions, in each case of the Theorem 2.1,

$$\begin{array}{ll} Case \ I) & a_1 \epsilon + a_3 \delta = \epsilon + k \ and \ a_2 \epsilon + a_4 \delta = \delta + l \ where \ k, l \in \mathbb{Z} \\ Case \ II) & a_3 \delta \in \mathbb{Z} \\ Case \ III) & a_3 \delta \in \mathbb{Z} \ and \ \delta = \frac{k}{2}, k \in \mathbb{Z} \\ Case \ IV) & \epsilon = \frac{a_3 m + 2k}{4} \ and \ \delta = \frac{m}{2} \ where \ m, k \in \mathbb{Z} \\ Case \ V) & \epsilon = \frac{a_3 \delta + k}{4} \ where \ k \in \mathbb{Z} \end{array}$$

then the map $f : T \times I \rightarrow T \times I$ induces a fiber-preserving map in the fiber bundle MA, as in Theorem 2.1, such that the induce homomorphism $f_{\#}$ is given by; $f_{\#}(a) = a$, $f_{\#}(b) = a^{b_3}b^{b_4}, f_{\#}(c) = a^{c_1}b^{c_2}c$. Moreover, the map $f^n: T \times I \to T \times I$ induces a fiberpreserving map in the fiber bundle MA, which we will represent by $f^n(\langle x, y, t \rangle) = \langle x_n, y_n, t \rangle$, such that the induces homomorphism $(f^n)_{\#}$ is as in the Proposition 2.1.

Proof. Denote $f^n(x, y, t) = (x_n, y_n, t)$ for each positive integer *n*. We have $x_2 = x_1 + b_3y_1 + c_1t + \varepsilon = (x + b_3y + c_1t + \varepsilon) + b_3(b_4y + c_2t + \delta) + c_1t + \varepsilon = x + b_3y(b_4 + 1) + (2c_1 + b_3c_2)t + b_3\delta + 2\varepsilon$. Also, $y_2 = b_4y_1 + c_2t + \delta = b_4(b_4y + c_2t + \delta) + c_2t + \delta = b_4^2y + c_2(b_4 + 1)t + (b_4 + 1)\delta$.

Suppose that $f^n(x, y, t) = (x_n, y_n, t)$ as in hypothesis, then

$$f^{n+1}(x,y,t) = (x_n + b_3y_n + c_1t + \varepsilon, b_4y_n + c_2t + \delta, t) = (x_{n+1}, y_{n+1}, t),$$

where; $x_{n+1} = x_n + b_3 y_n + c_1 t + \varepsilon$

$$= (x + b_3 y \sum_{i=0}^{n-1} b_4^i + (nc_1 + b_3 c_2 \sum_{i=0}^{n-1} ib_4^{n-1-i})t + b_3 \delta \sum_{i=0}^{n-1} ib_4^{n-1-i} + n\varepsilon) + b_3 (b_4^n y + c_2 t \sum_{i=0}^{n-1} b_4^i + \delta \sum_{i=0}^{n-1} b_4^i) + c_1 t + \varepsilon$$

$$= x + (b_3 y \sum_{i=0}^{n-1} b_4^i + b_3 y b_4^n) + ((nc_1 + b_3 c_2 \sum_{i=0}^{n-1} ib_4^{n-1-i})t + c_1 t + b_3 c_2 t \sum_{i=0}^{n-1} b_4^i) + (b_3 \delta \sum_{i=0}^{n-1} ib_4^{n-1-i} + b_3 \delta \sum_{i=0}^{n-1} b_4^i) + (n\varepsilon + \varepsilon)$$

$$= x + b_3 y \sum_{i=0}^{n} b_4^i + ((n+1)c_1 + b_3 c_2 \sum_{i=0}^{n} ib_4^{n-i})t + b_3 \delta \sum_{i=0}^{n} ib_4^{n-i}$$

$$+ (n+1)\varepsilon;$$

$$y_{n+1} = b_4 y_n + c_2 t + \delta$$

= $b_4 (b_4^n y + c_2 t \sum_{i=0}^{n-1} b_4^i + \delta \sum_{i=0}^{n-1} b_4^i) + c_2 t + \delta$
= $b_4^{n+1} y + (c_2 t \sum_{i=1}^n b_4^i + c_2 t) + (\delta \sum_{i=1}^n b_4^i + \delta)$
= $b_4^{n+1} y + c_2 t \sum_{i=0}^n b_4^i + \delta \sum_{i=0}^n b_4^i$,

as we wish. Now, we will verify that $f(\langle x, y, 0 \rangle) = f(\langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle)$.

We have; $\langle x, y, 0 \rangle = \langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle = \langle a_1 x + a_3 y, a_2 x + a_4 y, 1 \rangle,$ $f(\langle x, y, 0 \rangle) = \langle x + b_3 y + \varepsilon, b_4 y + \delta, 0 \rangle$ and $f(\langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle) = \langle (a_1 + a_2 b_3) x + (a_3 + b_3 a_4) y + c_1 + \varepsilon, b_4 a_2 x + b_4 a_4 y + c_2 + \delta, 1 \rangle.$

Now, we will analyze each case of the Theorem 2.1.

Case I. In this case we need consider $b_3 = 0$ and $b_4 = 1$. Thus, in *MA* we have $f(\langle x, y, 0 \rangle) = \langle x + \epsilon, y + \delta, 0 \rangle = \langle a_1x + a_3y + a_1\epsilon + a_3\delta, a_2x + a_4y + a_2\epsilon + a_4\delta, 1 \rangle$ and $f(\langle A\begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle) = \langle a_1x + a_3y + c_1 + \epsilon, a_2x + a_4y + c_2 + \delta, 1 \rangle$. Therefore, $f(\langle x, y, 0 \rangle) = f(\langle A\begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle)$ if $a_1\epsilon + a_3\delta = \epsilon + k$ and $a_2\epsilon + a_4\delta = \delta + l$ where $k, l \in \mathbb{Z}$.

Case II. In this case we have $a_1 = a_4 = 1$, $a_2 = 0$ and $a_3(b_4 - 1) = 0$. Therefore, $f(< x, y, 0 >) = < x + b_3y + \epsilon$, $b_4y + \delta$, $0 > = < x + (a_3 + b_3)y + \epsilon + \epsilon$ $a_{3}\delta, b_{4}y + \delta, 1 >= \langle x + (a_{3} + b_{3})y + \epsilon + a_{3}\delta, b_{4}y + \delta, 1 \rangle, \text{ and } f(\langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle) = \langle x + (a_{3} + b_{3})y + c_{1} + \epsilon, b_{4}y + c_{2} + \delta, 1 \rangle \text{ . Thus, } f(\langle x, y, 0 \rangle) = f(\langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle) \text{ if } a_{3}\delta \in \mathbb{Z}.$

Case III. In this case we have $a_1 = 1$, $a_4 = -1$, $a_2 = 0$ and $a_3(b_4 - 1) = -2b_3$. Therefore, $f(\langle x, y, 0 \rangle) = \langle x + b_3y + \epsilon, b_4y + \delta, 0 \rangle = \langle x + (a_3b_4 + b_3)y + \epsilon + a_3\delta, -b_4y - \delta, 1 \rangle = \langle x + (a_3 - b_3)y + \epsilon + a_3\delta, -b_4y - \delta, 1 \rangle$, and $f(\langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle) = \langle x + (a_3 - b_3)y + c_1 + \epsilon, -b_4y + c_2 + \delta, 1 \rangle$. Then, $f(\langle x, y, 0 \rangle) = f(\langle A \begin{pmatrix} x \\ y \end{pmatrix}, 1 \rangle)$ if $a_3\delta \in \mathbb{Z}$ and $\delta = \frac{k}{2}$, $k \in \mathbb{Z}$.

Case IV. In this case we have $a_1 = -1$, $a_4 = -1$, $a_2 = 0$ and $a_3(b_4-1) = 0$. Thus, $f(< x, y, 0 >) = < x + b_3y + \epsilon$, $b_4y + \delta$, $0 > = < -x + (a_3b_4 - b_3)y - \epsilon + a_3\delta$, $-b_4y - \delta$, $1 > = < -x + (a_3 - b_3)y - \epsilon + a_3\delta$, $-b_4y - \delta$, 1 >, and $f(< A \begin{pmatrix} x \\ y \end{pmatrix}, 1 >) = < -x + (a_3 - b_3)y + c_1 + \epsilon$, $-b_4y + c_2 + \delta$, 1 >. Therefore, $f(< x, y, 0 >) = f(< A \begin{pmatrix} x \\ y \end{pmatrix}, 1 >)$ if $\epsilon = \frac{a_3m+2k}{4}$ and $\delta = \frac{m}{2}$ where $m, k \in \mathbb{Z}$.

Case V. In this case we have $a_1 = -1$, $a_4 = 1$, $a_2 = 0$ and $a_3(b_4 - 1) = 2b_3$. Therefore, $f(< x, y, 0 >) = < x + b_3y + \epsilon$, $b_4y + \delta$, $0 > = < -x + (a_3b_4 - b_3)y - \epsilon + a_3\delta$, $b_4y + \delta$, $1 > and f(< A\begin{pmatrix} x \\ y \end{pmatrix}, 1 >) = < -x + (a_3 + b_3)y - \epsilon + a_3\delta$, $b_4y + \delta$, $1 > and f(< A\begin{pmatrix} x \\ y \end{pmatrix}, 1 >) = < -x + (a_3 + b_3)y + c_1 + \epsilon$, $b_4y + c_2 + \delta$, 1 > . Thus, $f(< x, y, 0 >) = f(< A\begin{pmatrix} x \\ y \end{pmatrix}, 1 >)$ if $\epsilon = \frac{a_3\delta + k}{2}$ where $k \in \mathbb{Z}$.

In an analogous way we obtain the following conditions for f^n , in each case of the Theorem 2.1.

$$\begin{array}{ll} \text{Case I}) & na_{1}\varepsilon + na_{3}\delta = n\varepsilon + k, \text{ and } na_{2}\varepsilon + na_{4}\delta = n\delta + l\\ \text{Case II}) & \delta a_{3}\sum_{i=0}^{n-1}b_{4}^{i} \in \mathbb{Z}\\ \text{Case III}) & 2\delta\sum_{i=0}^{n-1}b_{4}^{i} \in \mathbb{Z} \text{ and } \left(a_{3}\sum_{i=0}^{n-1}b_{4}^{i} + 2b_{3}\sum_{i=0}^{n-1}ib_{4}^{n-1-i}\right)\delta \in \mathbb{Z}\\ \text{Case IV}) & 2\delta\sum_{i=0}^{n-1}b_{4}^{i} \in \mathbb{Z} \text{ and } 2n\varepsilon = a_{3}\delta\sum_{i=0}^{n-1}b_{4}^{i} + k,\\ \text{Case V}) & 2n\varepsilon = a_{3}\delta\sum_{i=0}^{n-1}b_{4}^{i} + k\end{array}$$

where $k, l \in \mathbb{Z}$. Thus for each $n \in \mathbb{N}$ and ϵ, δ satisfying the conditions above the map $f^n : T \times I \to T \times I$ induces a fiber-preserving map on *MA* which will be represent by the same symbol.

Proposition 2.5. Let n, b_3 , b_4 , c_1 , $c_2 \in \mathbb{Z}$, $n \ge 1$. If $c_1(b_4 - 1) - c_2b_3 \ne 0$ then for all ε , $\delta \in \mathbb{R}$ there are k_n , $l_n \in \mathbb{Z}$ such that $x_n = x + k_n$ and $y_n = y + l_n$ has solution $(x, y, t) \in \mathbb{R}^2 \times I$, where:

$$x_{n} = x + b_{3}y \sum_{i=0}^{n-1} b_{4}^{i} + (nc_{1} + b_{3}c_{2} \sum_{i=0}^{n-1} ib_{4}^{n-1-i})t + b_{3}\delta \sum_{i=0}^{n-1} ib_{4}^{n-1-i} + n\varepsilon;$$

$$y_{n} = b_{4}^{n}y + c_{2}t \sum_{i=0}^{n-1} b_{4}^{i} + \delta \sum_{i=0}^{n-1} b_{4}^{i}.$$

Proof. Suppose $b_4 \neq 1$ and $b_4 \neq -1$ with *n* even ($b_4 = -1$ with *n* odd is allowed) and $c_1(b_4 - 1) - b_3c_2 \neq 0$ then given ε , $\delta \in \mathbb{R}$ we have the solutions $x \in \mathbb{R}$ and:

$$t = \frac{nb_3\delta - n(b_4 - 1)\varepsilon - (b_4 - 1)k_n - b_3l_n}{n(c_1(b_4 - 1) - b_3c_2)};$$

$$y = \frac{nc_2\varepsilon - nc_1\delta - k_nc_2}{n(c_1(b_4 - 1) - b_3c_2)} + l_n\left(\frac{1}{b_4^n - 1} + \frac{b_3c_2}{n(b_4 - 1)(c_1(b_4 - 1) - b_3c_2)}\right) \in \mathbb{R}.$$

Thus, we need to find k_n , $l_n \in \mathbb{Z}$ such that $0 \le t \le 1$. Let $\Delta_0 = n(c_1(b_4 - 1) - b_3c_2) \in \mathbb{Z}$, $\Delta_0 \ne 0$, and $\Delta_1 = nb_3\delta - n(b_4 - 1)\varepsilon \in \mathbb{R}$, $t = \frac{\Delta_1 - (b_4 - 1)k_n - b_3l_n}{\Delta_0}$. If $0 \le \Delta_1 \le \Delta_0$ or $\Delta_0 \le \Delta_1 \le 0$ let $k_n = l_n = 0$, then $t = \frac{\Delta_1}{\Delta_0}$. If $0 < \Delta_0 \le \Delta_1$ or $\Delta_1 \le 0 < \Delta_0$ then there are d, $q \in \mathbb{Z}$ such that $\Delta_1 = d\Delta_0 + q$ with $0 \le q < \Delta_0$. Let $k_n = nc_1d$ and $l_n = nc_2d$, then

$$t = \frac{d\Delta_0 + q - (b_4 - 1)nc_1d - b_3nc_2d}{\Delta_0} = d + \frac{q}{\Delta_0} - \frac{d\Delta_0}{\Delta_0} = \frac{q}{\Delta_0}$$

If $\Delta_1 \leq \Delta_0 < 0$ or $\Delta_0 < 0 \leq \Delta_1$ then there are $d, q \in \mathbb{Z}$ such that $\Delta_1 = d\Delta_0 + q$ with $0 \leq q < |\Delta_0|$. Let $k \in \mathbb{Z}$ the least integer greater than $\frac{-q}{\Delta_0}$, $k_n = nc_1(d-k)$ and $l_n = nc_2(d-k)$, then

$$t = \frac{d\Delta_0 + q - (b_4 - 1)nc_1(d - k) - b_3nc_2(d - k)}{\Delta_0} = \frac{q}{\Delta_0} + k.$$

Then, $0 \le t \le 1$. If $b_4 = 1$ and $c_1(b_4 - 1) - b_3c_2 \ne 0$ then $b_3c_2 \ne 0$. Thus, given ε , $\delta \in \mathbb{R}$ we have the solutions $x \in \mathbb{R}$ and:

$$t = \frac{l_n}{nc_2} - \frac{\delta}{c_2};$$

$$y = \frac{-nc_2\varepsilon + nc_1\delta + k_nc_2}{nb_3c_2} - l_n\left(\frac{c_1}{nb_3c_2} + \frac{n-1}{2n}\right) \in \mathbb{R}.$$

We need to find $l_n \in \mathbb{Z}$ such that $0 \le t \le 1$. If $c_2 > 0$ take $n\delta \le l_n \le n(c_2 + \delta)$ and if $c_2 < 0$ take $n\delta \ge l_n \ge n(c_2 + \delta)$.

Remark 2.2. Note that the hypothesis $f, f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 , is equivalent to require that the induced homomorphisms $f_{\#}$ and $f_{\#}^n$ satisfy the conditions of the Theorem 2.3 in each case of the fiber bundle MA. But if $f_{\#}$ and $f_{\#}^n$ satisfy the conditions of the Theorem 2.3 then, by Propositions 2.2, 2.3 and 2.4, the induced homomorphism $f_{\#}^k$ satisfies the conditions of the Theorem 2.3 for each k positive divisor of n. Thus, the hypothesis $f, f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 implies that $f^k : MA \to MA$ can be deformed to a fixed point free map over S^1 , for each k positive divisor of n.

3 Fixed points of f^n

In this section we will give the proof of the main result.

Theorem 3.1 (Main Theorem). Let $f : MA \to MA$ be a fiber-preserving map, where MA is a T-bundle over S^1 as in the Theorem 2.1, and n > 1 a positive integer. Suppose $f_{\#}(a) = a$, $f_{\#}(b) = a^{b_3}b^{b_4}$ and $f_{\#}(c) = a^{c_1}b^{c_2}c$, and $f, f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 . If the following conditions are satisfied in each case bellow then f is fiberwise homotopic to a g so that g^n is fixed point free.

Case I

i) $(a_1 - 1)(a_4 - 1) - a_2a_3 \neq 0$ and $gcd((a_4 + a_2 - 1), (a_3 + a_1 - 1)) > 1$. ii) $(a_1 - 1)(a_4 - 1) - a_2a_3 = 0, c_2 \neq 0$ and $a_1 = 1$. **Case II** i) $c_1(b_4 - 1) - c_2b_3 = 0, |b_3| + |b_4 - 1| \neq 0$ and $b_4 \neq 1$ ii) $c_1(b_4 - 1) - c_2b_3 = 0, |b_3| + |b_4 - 1| \neq 0, b_4 = 1$ and a_3 not divides n. iii) $c_1(b_4 - 1) - c_2b_3 = 0, |b_3| + |b_4 - 1| \neq 0, b_4 = 1$ and $a_3 = 0$. **Case III** $c_1(b_4 - 1) - c_2b_3 = 0, |b_3| + |b_4 - 1| \neq 0$. **Case IV** $c_1(b_4 - 1) - c_2b_3 = 0, |b_3| + |b_4 - 1| \neq 0$. **Case V** $c_1(b_4 - 1) - c_2b_3 = 0, |b_3| + |b_4 - 1| \neq 0$.

Remark 3.1. Note that in the Case III, the condition $c_1(b_4 - 1) - c_2b_3 = 0$ is necessary and sufficient to deform f and f^n to a fixed point free map. Thus, if $c_1(b_4 - 1) - c_2b_3 \neq 0$ can not exist g fiberwise homotopic to f such g^n is fixed point free. The condition $|b_3| + |b_4 - 1| \neq 0$ in the cases II, III, IV and V is only to guarantee that the matrix $B = [(f_{|T})_{\#}]$ is not the identity matrix is these cases.

Proof (of the main theorem). The technique used to proof the main theorem consists to show that for appropriated ε and δ the map $g : T \times I \to T \times I$ defined by; $g((x, y, t)) = (x + b_3y + c_1t + \varepsilon, b_4y + c_2t + \delta, t)$ induces a fiber-preserving map on *MA*, which we will represent by the same symbol, such that $f \sim_{S^1} g$ and g^n is a fixed point free map. Note that if $c_1(b_4 - 1) - c_2b_3 \neq 0$, then by Proposition 2.5 that map g does not works, that is, g^n will have fixed points. Thus, will use g in the situation $c_1(b_4 - 1) - c_2b_3 = 0$. From Theorem 2.4, the map g^n induces a fiber-preserving map if ε , δ satisfy the following conditions, in each case of the Theorem 2.1,

$$\begin{array}{ll} Case \ I) & na_{1}\varepsilon + na_{3}\delta = n\varepsilon + k, \ and \ na_{2}\varepsilon + na_{4}\delta = n\delta + l \\ Case \ II) & \delta a_{3}\sum_{i=0}^{n-1}b_{4}^{i} \in \mathbb{Z} \\ Case \ III) & 2\delta\sum_{i=0}^{n-1}b_{4}^{i} \in \mathbb{Z} \ and \ \left(a_{3}\sum_{i=0}^{n-1}b_{4}^{i} + 2b_{3}\sum_{i=0}^{n-1}ib_{4}^{n-1-i}\right)\delta \in \mathbb{Z} \\ Case \ IV) & 2\delta\sum_{i=0}^{n-1}b_{4}^{i} \in \mathbb{Z} \ and \ 2n\varepsilon = a_{3}\delta\sum_{i=0}^{n-1}b_{4}^{i} + k, \\ Case \ V) & 2n\varepsilon = a_{3}\delta\sum_{i=0}^{n-1}b_{4}^{i} + k \end{array}$$

where $k, l \in \mathbb{Z}$. Is important to observe that our interest is in the case n > 1. Let us suppose that each map $f, f^n : MA \to MA$ can be deformed to a fixed point free map over S^1 .

(Case I) For each map f such that $(f_{|T})_{\#} = Id$ consider the map g' fiberwise homotopic to f given by: $g'(\langle x, y, t \rangle) = \langle x + c_1t + \epsilon, y + c_2t + \delta, t \rangle$, with ϵ, δ satisfying the conditions;

$$(I) \begin{cases} na_1\epsilon + na_3\delta = n\epsilon + k_n \\ na_2\epsilon + na_4\delta = n\delta + l_n \end{cases}$$

for some k_n , $l_n \in \mathbb{Z}$. If $det = (a_1 - 1)(a_4 - 1) - a_2a_3 \neq 0$, we obtain

(II)
$$\epsilon = \frac{k_n(a_4-1)-a_3l_n}{ndet}$$
 and $\delta = \frac{l_n(a_1-1)-a_2k_n}{ndet}$

Note that g' is fiberwise homotopic to the map g defined by:

$$g(< x, y, t >) = \begin{cases} < x + 2c_1t + \epsilon, y + \delta, t > & \text{if } 0 \le t \le \frac{1}{2} \\ < x + c_1 + \epsilon, y + c_2(2t - 1) + \delta, t > & \text{if } \frac{1}{2} \le t \le 1 \end{cases}$$

In fact, $H : MA \times I \rightarrow MA$ defined by:

$$H(< x, y, t>, s) = \begin{cases} < x + c_1t + \epsilon, y + c_2t + \delta, t> & if \quad 0 \le t \le s \\ < x + c_1(2t - s) + \epsilon, y + c_2s + \delta, t> & if \quad s \le t \le \frac{s+1}{2} \\ < x + c_1 + \epsilon, y + c_2(2t - 1) + \delta, t> & if \quad \frac{s+1}{2} \le t \le 1 \end{cases}$$

is a homotopy between g' and g. Note that,

$$g^n(\langle x,y,t\rangle) = \begin{cases} \langle x+n2c_1t+n\epsilon,y+n\delta,t\rangle & if \quad 0 \le t \le \frac{1}{2} \\ \langle x+nc_1+n\epsilon,y+nc_2(2t-1)+n\delta,t\rangle & if \quad \frac{1}{2} \le t \le 1 \end{cases}$$

i) Suppose $det \neq 0$ and $d = gcd((a_4 + a_2 - 1), (a_3 + a_1 - 1)) > 1$. Choose $\epsilon = \delta = \frac{1}{nd}$. This values satisfy the system (*I*) and $n\epsilon = n\delta = \frac{1}{d} \in \mathbb{Q} - \mathbb{Z}$. If g^n has a fixed point for $0 \leq t \leq \frac{1}{2}$ then we must have $n\delta \in \mathbb{Z}$. Also, if g^n has a fixed point for $\frac{1}{2} \leq t \leq 1$ then we must have $n\epsilon \in \mathbb{Z}$, which is a contradiction, that is, $Fix(g^n) = \emptyset$.

ii) Suppose $0 = det = (a_1 - 1)(a_4 - 1) - a_2a_3$, $c_2 \neq 0$ and $a_1 = 1$. Thus, we must have $a_2 = 0$. From system (*I*) we obtain the equations; $na_3\delta = k_n$ and $n(a_4 - 1)\delta = l_n$, for some $k_n, l_n \in \mathbb{Z}$. This equations do not depend of ϵ , therefore we can choose ϵ an irrational number. Thus, we choose ϵ an irrational number and $\delta = \frac{1}{n}$.

We observe that both g and g' are fiberwise homotopic to the given map f, and $(g')^n (\langle x, y, t \rangle) = \langle x + nc_1t + n\epsilon, y + nc_2t + n\delta, t \rangle$, with ϵ, δ satisfying the conditions of the system (I). If $(g')^n$ has a fixed point then we must have $nc_1t + n\epsilon = p_n$ and $nc_2t + n\delta = q_n$ for some $p_n, q_n \in \mathbb{Z}$. If $c_1 = 0$ we have a contradiction because ϵ is an irrational number. If $c_1 \neq 0$ and $c_2 \neq 0$ then we have $nc_2\epsilon - nc_1\delta = c_2p_n - c_1q_n$, which is a contradiction because ϵ is an irrational number and $\delta = \frac{1}{n}$. Therefore, $(g')^n$ can not have a fixed point. (Case II) Let $g : MA \to MA$ be the map fiberwise homotopy to f given by $g(\langle x, y, t \rangle) = \langle x + b_3y + c_1t + \varepsilon, b_4y + c_2t + \delta, t \rangle$, where $a_3\delta \in \mathbb{Z}$. If $b_4 = 1$ then $c_2b_3 = 0$, but if $b_3 = 0$ then the matrix B of $(f_{|T})_{\#}$ is the identity, contradicting a hypothesis. Suppose $b_4 = 1$, $b_3 \neq 0$ and $c_2 = 0$, by Theorem 2.4, $g^n(\langle x, y, t \rangle) = \langle x_n, y_n, t \rangle$ for each $n \in \mathbb{N}$ where,

$$\begin{cases} x_n = x + nb_3y + nc_1t + \left(\frac{n(n-1)}{2}\right)b_3\delta + n\varepsilon, \\ y_n = y + n\delta. \end{cases}$$

If $g^n : MA \to MA$ has a fixed point $\langle x, y, t \rangle$ then $x_n = x + k_n$ and $y_n = y + l_n$ for some $k_n, l_n \in \mathbb{Z}$. By the second equation of the system above we must have $n\delta = l_n$ for some $l_n \in \mathbb{Z}$. Therefore, $g^n : MA \to MA$ is fixed point free if $a_3 = 0$ and $\delta \in \mathbb{R} - \mathbb{Q}$ or if a_3 not divides n and $\delta = \frac{1}{a_3}$.

Now we suppose $b_4 \neq 1$ and we choose $\delta = 0$ then $g^n(\langle x, y, t \rangle) = \langle x_n, y_n, t \rangle$, where

$$\begin{array}{lll} x_n &=& x+b_3y\sum\limits_{i=0}^{n-1}b_4^i+\left(nc_1+b_3c_2\sum\limits_{i=0}^{n-1}ib_4^{n-1-i}\right)t+n\varepsilon\\ &=& x+\left(\frac{b_4^n-1}{b_4-1}\right)b_3y+\left(nc_1+\frac{b_3c_2(b_4^n-1+n(1-b_4))}{(b_4-1)^2}\right)t+n\varepsilon\\ &=& x+\left(\frac{b_4^n-1}{b_4-1}\right)b_3y+\left(\frac{b_4^n-1}{b_4-1}\right)c_1t+n\varepsilon;\\ y_n &=& b_4^ny+c_2t\sum\limits_{i=0}^{n-1}b_4^i \\ &=& b_4^ny+\left(\frac{b_4^n-1}{b_4-1}\right)c_2t. \end{array}$$

If $b_4 = -1$ and *n* is even then $g^n : MA \to MA$ is fixed point free for $\varepsilon \in \mathbb{R} - \mathbb{Q}$, otherwise we had $n\varepsilon = k_n \in \mathbb{Z}$. Suppose $b_4 \neq 1$ or $b_4 = -1$ with *n* odd. If $c_2 \neq 0$ we have:

$$t = \frac{l_n(b_4 - 1)}{c_2(b_4^n - 1)} + \frac{1 - b_4}{c_2}y.$$

$$\Rightarrow x_n = x + \left(\frac{b_4^n - 1}{b_4 - 1}\right)b_3y + \left(\frac{b_4^n - 1}{b_4 - 1}\right)c_1t + n\varepsilon$$

$$= x - \left(\frac{(b_4^n - 1)((b_4 - 1)c_1 - c_2b_3)}{(b_4 - 1)c_2}\right)y + n\varepsilon + \frac{c_1l_n}{c_2}$$

$$= x + n\varepsilon + \frac{c_1l_n}{c_2}$$

$$\Rightarrow x + k_n = x + n\varepsilon + \frac{c_1l_n}{c_2} \Rightarrow k_n = n\varepsilon + \frac{c_1l_n}{c_2}.$$

Hence, then $g^n : MA \to MA$ is fixed point free for $\varepsilon \in \mathbb{R} - \mathbb{Q}$. On the other hand, if $c_2 = 0$ then $c_1 = 0$ because $b_4 \neq 1$. Therefore,

$$\begin{aligned} x_n &= x + \left(\frac{b_4^n - 1}{b_4 - 1}\right) b_3 y + \left(\frac{b_4^n - 1}{b_4 - 1}\right) c_1 t + n\varepsilon \\ &= x + \left(\frac{b_4^n - 1}{b_4 - 1}\right) b_3 y + n\varepsilon; \\ y_n &= b_4^n y + \left(\frac{c_2(b_4^n - 1)}{b_4 - 1}\right) t = b_4^n y. \end{aligned}$$

So, $g^n : MA \to MA$ is fixed point free for $\varepsilon \in \mathbb{R} - \mathbb{Q}$, otherwise $y = \frac{l_n}{b_4^n - 1}$,

 $x_n = x + n\varepsilon + \frac{b_3 l_n}{b_4 - 1}$ and

$$x + n\varepsilon + \frac{b_3 l_n}{b_4 - 1} = x + k_n \Rightarrow \underbrace{\varepsilon}_{\in \mathbb{R} - \mathbb{Q}} = \underbrace{\frac{k_n}{n} - \frac{b_3 l_n}{n(b_4 - 1)}}_{\in \mathbb{Q}}$$

(**Case III**) The proof in this case is similar to the case (2), but here we consider $a_3(b_4 - 1) = -2b_3$, $\delta = \frac{k}{2}$ with $a_3\delta \in \mathbb{Z}$ and $k \in \mathbb{Z}$. If $b_4 = 1$ then $b_3 = 0$, and this situation we will have $|b_3| + |b_4 - 1| = 0$ contradicting a hypothesis. If $b_4 \neq 1$ then $g^n : MA \to MA$ is fixed point free for $\varepsilon \in \mathbb{R} - \mathbb{Q}$ and the proof is the same of the case II.

(Case IV) Suppose $g(\langle x, y, t \rangle) = \langle x + b_3y + c_1t + \varepsilon, b_4y + c_2t + \delta, t \rangle$ such that $b_4(nb_3 + 1) \equiv 1 \mod 2$, $a_3(b_4 - 1) = 0$, $\delta = \frac{m}{2}$ and $\varepsilon = \frac{a_3m+2r}{4}$, $m, r \in \mathbb{Z}$. Thus, given $n \geq 1$ and $g^n(\langle x, y, t \rangle) = \langle x_n, y_n, t \rangle$ we want to know when g^n has a fixed point, i.e., there are $k_n, l_n \in \mathbb{Z}$ such that $x_n = x + k_n$ and $y_n = y + l_n$.

Note that the expression $b_4(nb_3 + 1) \equiv 1 \mod 2$ follows from item 3 of Theorem 2.3 as below

$$n(b_4(b_3+1)-1-\underbrace{c_1(b_4-1)+b_3c_2}_{=0})-(n-1)(b_4-1) \equiv 0 \mod 2$$

$$\Rightarrow nb_4b_3+nb_4-n-(n-1)b_4+(n-1) \equiv 0 \mod 2$$

$$\Rightarrow nb_4b_3+b_4-1 \equiv 0 \mod 2.$$

If $b_4 = 1$ and n is odd then we must have $c_2 = 0$ because if $b_3 = 0$ then we would have $|b_3| + |b_4 - 1| = 0$. So, $g^n : MA \to MA$ has not a fixed point $\langle x, y, t \rangle$ for $\delta = \frac{1}{2}$, otherwise we had $y + l_n = y + \frac{n}{2}$ and $l_n = \frac{n}{2} \in \mathbb{Z}$. Note that we have a exception if $b_4 = 1$ and n even, because $c_2 = 0$. Hence, g^n is fixed point free if $b_4 = 1$ and $\delta = \frac{1}{2}$.

Suppose $b_4 \neq 1$. From expression $b_4(nb_3 + 1) \equiv 1 \mod 2$, proved above, we must have b_4 odd. Thus, we have $a_3 = 0$ and $[(nc_1 + \frac{n(n-1)}{2}b_3b_4c_2, c_2 + (n-1)b_4c_2)] = [(nc_1, nc_2)] \neq [(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle (2,0), (0,2) \rangle}$. If $g^n : MA \to MA$ has a fixed point $\langle x, y, t \rangle$ then

$$y + l_n = b_4^n y + c_2 \left(\frac{b_4^n - 1}{b_4 - 1}\right) t + \left(\frac{b_4^n - 1}{b_4 - 1}\right) \delta$$

$$\Rightarrow y = \frac{l_n (b_4 - 1) - (\delta + c_2 t) (b_4^n - 1)}{(b_4 - 1) (b_4^n - 1)}$$

$$\Rightarrow x_n = x + \frac{b_3(l_n - n\delta)}{(b_4 - 1)} + n\varepsilon \Rightarrow k_n = \frac{b_3(l_n - n\delta)}{(b_4 - 1)} + n\varepsilon.$$

So, $k_n \notin \mathbb{Z}$ for appropriates δ and ε , $n \in \mathbb{N}$. Therefore, $g^n : MA \to MA$ is fixed point free.

(Case V) Suppose $g(\langle x, y, t \rangle) = \langle x + b_3y + c_1t + \varepsilon, b_4y + c_2t + \delta, t \rangle$ such that $a_3(b_4 - 1) = 2b_3$, $\varepsilon = \frac{a_3\delta + 1}{2}$, $m \in \mathbb{Z}$. We must consider $b_4 \neq 1$, otherwise we

will obtain $b_3 = 0$ since $a_3(b_4 - 1) = 2b_3$, therefore $|b_3| + |b_4 - 1| = 0$ contradicting our hypothesis. Suppose $b_4 \neq 1$. From Theorem 2.4 we have two equations;

$$(I) \quad x_n = x + b_3 y \sum_{i=0}^{n-1} b_4^i + (nc_1 + b_3 c_2 \sum_{i=0}^{n-1} ib_4^{n-1-i})t + b_3 \delta \sum_{i=0}^{n-1} ib_4^{n-1-i} + n\varepsilon$$
$$= x + b_3 y \sum_{i=0}^{n-1} b_4^i + c_1 t \sum_{i=0}^{n-1} b_4^i + b_3 \delta \sum_{i=0}^{n-1} ib_4^{n-1-i} + n\varepsilon$$
$$(II) \quad y_n = b_4^n y + c_2 t \sum_{i=0}^{n-1} b_4^i + \delta \sum_{i=0}^{n-1} b_4^i.$$

If $b_4 = -1$ and *n* is even then $g^n : MA \to MA$ has not a fixed point $\langle x, y, t \rangle$ for $\delta \in \mathbb{R} - \mathbb{Q}$ and $\varepsilon = \frac{a_3\delta + 1}{2}$, otherwise

$$\begin{array}{ll} x+k_n &= x-\frac{nb_3\delta}{2}+n\varepsilon, \ k_n \in \mathbb{Z} \\ \Rightarrow k_n &= \frac{n\delta(a_3-b_3)+1}{2} \notin \mathbb{Z}. \end{array}$$

Now suppose n > 1 any natural number with $b_4 \neq 1$, (except $b_4 = -1$ and n even, which was already made). In this situation $g^n : MA \rightarrow MA$ has not a fixed point $\langle x, y, t \rangle$ for $\delta \in \mathbb{R} - \mathbb{Q}$ and $\varepsilon = \frac{a_3\delta+1}{2n}$, otherwise we will obtain $x_n = x + k_n$ and $y_n = y + l_n$ with $k_n, l_n \in \mathbb{Z}$. From equation (*II*) we obtain

$$y + l_n = b_4^n y + c_2 \left(\frac{b_4^n - 1}{b_4 - 1}\right) t + \left(\frac{b_4^n - 1}{b_4 - 1}\right) \delta$$

$$\Rightarrow y = \frac{l_n (b_4 - 1) - (\delta + c_2 t) (b_4^n - 1)}{(b_4 - 1) (b_4^n - 1)}$$

Replacing the value of *y* of the last equation into equation (*I*), and using $\varepsilon = \frac{a_3\delta+1}{2n}$, we will obtain;

$$x_n = x + \frac{b_3 l_n (b_4^n - 1)}{(b_4 - 1)} - \delta \frac{b_3 (n - 1)}{b_4 - 1} + \frac{1}{2}$$

Replacing this value into the equation $x_n = x + k_n$ we obtain;

$$k_n = \frac{b_3 l_n (b_4^n - 1)}{(b_4 - 1)^2} - \delta \frac{b_3 (n - 1)}{b_4 - 1} + \frac{1}{2}$$

When $b_3 \neq 0$ we have a contradiction because $\delta \in \mathbb{R} - \mathbb{Q}$. When $b_3 = 0$ we have a contradiction because $k_n \in \mathbb{Z}$. Therefore, $g^n : MA \to MA$ is a fixed point free map.

Acknowledgments. We would like to thank the referee by your comments and suggestions, which helped to improve the manuscript.

References

- [1] B.J. Jiang; *Lectures on the Nielsen Fixed Point Theory*, Contemp. Math., vol. 14, Amer. Math. Soc., Providence, 1983.
- [2] J. Jezierski; Weckens theorem for periodic points in dimension at least 3, Topology and its Applications 153 (2006) 18251837.
- [3] J. Jezierski and W. Marzantowicz; *Homotopy Methods in Topological Fixed and Periodic Point Theory*, vol. 3, Topological Fixed Point Theory and Its Applications, Springer, 2006.
- [4] E. Fadell and S. Hussein; *A fixed point theory for fibre-preserving maps* Lectures Notes in Mathematics, vol.886, Springer Verlag, 1981, 49-72.
- [5] D. L. Gonçalves, D.Penteado and J.P Vieira; *Fixed Points on Torus Fiber Bundles over the Circle*, Fundamenta Mathematicae, vol.183 (1), 2004, 1-38.
- [6] G. L. Prado; *Deformabilidade sobre S*¹ *a livre de ponto fixo para auto-aplicações de T-fibrados e Reidemeister sobre S*¹, Master dissertation, USP, 2010.
- [7] B. Halpern, Periodic points on tori, Pacific J. Math. 83 (1979), no. 1, 117133.
- [8] Edward Keppelmann, *Periodics points on nilmanifolds and solvmanifolds*, Pacific Journal of Mathematics, vol.164 (1) (1994), 105–128.
- [9] G. W. Whitehead; *Elements of Homotopy Theory*, Springer-Verlag, 1918.
- [10] C.Y. You; The least number of periodic points on tori, Adv. Math. (China) 24 (2) (1995) 155-160.

Dept. de Ciêcias Exatas e Tecnológicas Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade Rodovia Jorge Amado, Km 16, Bairro Salobrinho CEP 45662-900 Ilhéus-Bahia, Brazil email: wlsilva@uesc.br

Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados Caixa postal 351 CEP: 79804-970, Dourados-MS, Brazil email: moreira@uems.br