Periodic points on T-fiber bundles over the circle

Weslem Liberato Silva

Rafael Moreira de Souza

Introduction

Let $f: M \rightarrow M$ be a map and $x \in M$, where M a compact manifold. The point x is called a periodic point of f if there exists $n \in \mathbb{N}$ such that $f^{n}(x)=x$, in this case x a periodic point of f of period n. The set of all $\{x \in M \mid \mathrm{x}$ is periodic $\}$ is called the set of periodic points of f and is denoted by $P(f)$.

If M is a compact manifold then the Nielsen theory can be generalized to periodic points. Boju Jiang introduced (Chapter 3 in [1]) a Nielsen-type homotopy invariant $N F_{n}(f)$ being a lower bound of the number of n-periodic points, for each g homotopic to $f ; \operatorname{Fix}\left(g^{n}\right) \geq N F_{n}(f)$. In case $\operatorname{dim}(M) \geq 3, M$ compact PL- manifold, then any map $f: M \rightarrow M$ is homotopic to a map g satisfying Fix $\left(g^{n}\right)=N F_{n}(f)$, this was proved in [2].

Consider a fiber bundle $F \rightarrow M \xrightarrow{p} B$ where F, M, B are closed manifolds and $f: M \rightarrow M$ a fiber-preserving map over B. In natural way is to study periodic points of f on M, that is, given $n \in \mathbb{N}$ we want to study the set $\{x \in M \mid$ $\left.f^{n}(x)=x\right\}$. The our main question is; when f can be deformed by a fiberwise homotopy to a map $g: M \rightarrow M$ such that $\operatorname{Fix}\left(g^{n}\right)=\varnothing$?

This paper is organized into three sections besides one. In Section 1 we describe our problem in the general context of fiber bundle with base and fiber closed manifolds.

In section 2, given a positive integer n and a fiber-preserving map $f: M \rightarrow M$, in a fiber bundle with base circle and fiber torus, we present necessary and sufficient conditions to deform $f^{n}: M \rightarrow M$ to a fixed point free map over S^{1}, see Theorem 2.3. In the Theorem 2.4 we described linear models of maps,

[^0]on the universal covering of the torus, which induces fiber-preserving maps on the fiber bundle.

In section 3, in the Theorem 3.1, we used the models of maps of the section 2 to find a map $g: M \rightarrow M$, fiberwise homotopic to a given map $f: M \rightarrow M$ such that $g^{n}: M \rightarrow M$ is a fixed point free map over S^{1}.

1 General problem

Let $F \rightarrow M \xrightarrow{p} B$ be a fibration and $f: M \rightarrow M$ a fiber-preserving map over B, where F, M, B are closed manifolds. Given $n \in \mathbb{N}$, from relation $p \circ f=p$, we obtain $p \circ f^{n}=p$, thus $f^{n}: M \rightarrow M$ is also a fiber-preserving map for each $n \in \mathbb{N}$. We want to know when f can be deformed by a fiberwise homotopy to a map $g: M \rightarrow M$ such that $\operatorname{Fix}\left(g^{n}\right)=\varnothing$. The the following lemma give us a necessary condition to a positive answer the question above.

Lemma 1.1. Let $f: M \rightarrow M$ be a fiber-preserving map and n a positive integer. If the map $f^{k}: M \rightarrow M$ can not be deformed to a fixed point free map by a fiberwise homotopy, where k is a positive divisor of n, then there is not map $g: M \rightarrow M$ fiberwise homotopic to f such that $g^{n}: M \rightarrow M$ is a fixed point free map.

Proof. Suppose that exists $g \sim_{B} f$ such that $\operatorname{Fix}\left(g^{n}\right)=\varnothing$. Since $\operatorname{Fix}\left(g^{k}\right) \subset \operatorname{Fix}\left(g^{n}\right)$ and Fix $\left(g^{k}\right) \neq \varnothing$ then we have a contradiction.

Therefore, a necessary condition to deform $f: M \rightarrow M$ to a map $g: M \rightarrow M$ by a fiberwise homotopy, such that $\operatorname{Fix}\left(g^{n}\right)=\varnothing$, is that for all positive integer k, where k divides n, the map $f^{k}: M \rightarrow M$ must be deformed by a fiberwise homotopy to a fixed point free map.

Note that for each n the square of the following diagram is commutative;

In our case, all topological spaces are path-connected then we will represent the generators of the groups $\pi_{1}\left(M, f^{n}\left(x_{0}\right)\right)$ for each n, with the same letters. The same thing we will do with $\pi_{1}\left(T, f^{n}(0)\right)$.

Let $M \times{ }_{B} M$ be the pullback of $p: M \rightarrow B$ by $p: M \rightarrow B$ and $p_{i}: M \times{ }_{B} M \rightarrow$ $M, i=1,2$, the projections to the first and the second coordinates, respectively.

The inclusion $M \times{ }_{B} M-\Delta \hookrightarrow M \times_{B} M$, where Δ is the diagonal in $M \times{ }_{B} M$, is replaced by the fiber bundle $q: E_{B}(M) \rightarrow M \times_{B} M$, whose fiber is denoted by \mathcal{F}. We have $\pi_{m}\left(E_{B}(M)\right) \approx \pi_{m}\left(M \times_{B} M-\Delta\right)$ where $E_{B}(M)=\{(x, \omega) \in$ $\left.B \times A^{I} \mid i(x)=\omega(0)\right\}$, with $A=M \times_{B} M, B=M \times_{B} M-\Delta$ and q is given by $q(x, \omega)=\omega(1)$.
E. Fadell and S. Husseini in [4] studied the problem to deform the map f^{n}, for each $n \in \mathbb{N}$, to a fixed point free map. They supposed that $\operatorname{dim}(F) \geq 3$ and that F, M, B are closed manifolds. The necessary and sufficient condition to deform f^{n} is given by the following theorem that the proof can be find in [4].

Theorem 1.1. Given a positive integer n, the map $f^{n}: M \rightarrow M$ is deformable to a fixed point free map if and only if there exists a lift $\sigma(n)$ in the following diagram;

where $E_{B}\left(f^{n}\right) \rightarrow M$ is the fiber bundle induced from q by $\left(1, f^{n}\right)$.
In the Theorem 1.1 we have $\pi_{j-1}(\mathcal{F}) \cong \pi_{j}\left(M \times_{B} M, M \times_{B} M-\Delta\right) \cong$ $\pi_{j}(F, F-x)$ where x is a point in F. In this situation, that is, $\operatorname{dim}(F) \geq 3$ the classical obstruction was used to find a cross section.

When F is a surface with Euler characteristic ≤ 0 then by Proposition 1.6 from [5] we have necessary e sufficient conditions to deform f^{n} to a fixed point free map over B. The next proposition gives a relation between a geometric diagram and our problem.
Proposition 1.1. Let $f: M \rightarrow M$ be a fiber-preserving map over B. Then there is a map $g, g \sim_{B} f$, such that Fix $\left(g^{n}\right)=\varnothing$ if and only if there is a map $h_{n}: M \rightarrow M \times_{B} M-\Delta$ of the form $h_{n}=\left(I d, s^{n}\right)$, where $s: M \rightarrow M$, is fiberwise homotopic to f and makes the diagram below commutative up to homotopy.

Proof. (\Rightarrow) Suppose that exists $g: M \rightarrow M, g \sim_{B} f$, with $\operatorname{Fix}\left(g^{n}\right)=\varnothing$. Is enough to define $h_{n}=\left(I d, g^{n}\right)$, that is, $s=g$.
(\Leftarrow) If there is $h_{n}: M \rightarrow M \times_{B} M-\Delta$ such that $h_{n}=\left(I d, s^{n}\right)$, where $s \sim_{B} f$, then $s^{n}(x) \neq x$ for all $x \in M$. Thus, takes $g=s$.

2 Torus fiber-preserving maps

Let T be, the torus, defined as the quotient space $\mathbb{R} \times \mathbb{R} / \mathbb{Z} \times \mathbb{Z}$. We denote by (x, y) the elements of $\mathbb{R} \times \mathbb{R}$ and by $[(x, y)]$ the elements in T .

Let $M A=\frac{T \times[0,1]}{([(x, y)], 0) \sim([A(x)], 1)}$ be the quotient space, where A is a homeomorphism of T induced by an operator in \mathbb{R}^{2} that preserves $\mathbb{Z} \times \mathbb{Z}$. The space $M A$ is a fiber bundle over the circle S^{1} where the fiber is the torus. For more details on these bundles see [5].

Given a fiber-preserving map $f: M A \rightarrow M A$, i.e. $p \circ f=p$, we want to study the set $\operatorname{Fix}\left(g^{n}\right)$ for each map g fiberwise homotopic to f.

Consider the loops in MA given by; $a(t)=<[(t, 0)], 0>, b(t)=<[(0, t)], 0>$ and $c(t)=<[(0,0)], t>$ for $t \in[0,1]$. We denote by B the matrix of the homomorphism induced on the fundamental group by the restriction of f to the fiber T. From [5] we have the following theorem that provides a relationship between the matrices A and B, where

$$
A=\left(\begin{array}{ll}
a_{1} & a_{3} \\
a_{2} & a_{4}
\end{array}\right)
$$

From [5] the induced homomorphism $f_{\#}: \pi_{1}(M A) \rightarrow \pi_{1}(M A)$ is given by; $f_{\#}(a)=a^{b_{1}} b^{b_{2}}, f_{\#}(b)=a^{b_{3}} b^{b_{4}}, f_{\#}(c)=a^{c_{1}} b^{c_{2}} c$. Thus

$$
B=\left(\begin{array}{ll}
b_{1} & b_{3} \\
b_{2} & b_{4}
\end{array}\right)
$$

Theorem 2.1. (1) $\pi_{1}(M A, 0)=\left\langle a, b, c \mid[a, b]=1, c a c^{-1}=a^{a_{1}} b^{a_{2}}, c b c^{-1}=a^{a_{3}} b^{a_{4}}\right\rangle$
(2) B commutes with A.
(3) If f restricted to the fiber is deformable to a fixed point free map then the determinant of $B-I$ is zero, where I is the identity matrix.
(4) If v is an eigenvector of B associated to $1($ for $B \neq I d)$ then $A(v)$ is also an eigenvector of B associated to 1 .
(5) Consider $w=A(v)$ if the pair v, w generators $\mathbb{Z} \times \mathbb{Z}$, otherwise let w be another vector so that v, w span $\mathbb{Z} \times \mathbb{Z}$. Define the linear operator $P: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by $P(v)=\binom{1}{0}$ and $P(w)=\binom{0}{1}$. Consider an isomorphism of fiber bundles, also denoted by $P, P: M A \rightarrow M\left(A^{1}\right)$ where $A^{1}=P \cdot A \cdot P^{-1}$. Then $M A$ is homeomorphic to $M\left(A^{1}\right)$ over S^{1}. Moreover we have one of the cases of the table below with $B^{1}=P \cdot A \cdot P^{-1}$ and $B^{1} \neq I d$, except in case I :

Case I	$A^{1}=\left(\begin{array}{ll}a_{1} & a_{3} \\ a_{2} & a_{4}\end{array}\right), B^{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ $a_{3} \neq 0$
Case II	$A^{1}=\left(\begin{array}{cc}1 & a_{3} \\ 0 & 1\end{array}\right), B^{1}=\left(\begin{array}{ll}1 & b_{3} \\ 0 & b_{4}\end{array}\right)$ $a_{3}\left(b_{4}-1\right)=0$
Case III	$A^{1}=\left(\begin{array}{cc}1 & a_{3} \\ 0 & -1\end{array}\right), B^{1}=\left(\begin{array}{ll}1 & b_{3} \\ 0 & b_{4}\end{array}\right)$ Case IV $a_{3}\left(b_{4}-1\right)=-2 b_{3}$ $a_{3}=\left(\begin{array}{cc}-1 & a_{3} \\ 0 & -1\end{array}\right), B^{1}=\left(\begin{array}{ll}1 & b_{3} \\ 0 & b_{4}\end{array}\right)$ Case V $A_{4}^{1}=\left(\begin{array}{cc}-1 & a_{3} \\ 0 & 1\end{array}\right), B^{1}=\left(\begin{array}{ll}1 & b_{3} \\ 0 & b_{4}\end{array}\right)$$b_{3}\left(b_{4}-1\right)=2 b_{3}$

From Theorem 4.1 in [5], we have necessary and sufficient conditions to deform f to a fixed point free map over S^{1}. The next theorem is equivalent to Theorem 4.1 in [5], this equivalence was made in [6].

Theorem 2.2. A fiber-preserving map $f: M A \rightarrow M A$ can be deformed to a fixed point free map by a homotopy over S^{1} if and only if one of the cases below holds:
(1) $M A$ is as in case I and f is arbitrary
(2) $M A$ is as in one of the cases II or III and $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0$
(3) $M A$ is as in case IV and $b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2} \equiv 0 \bmod 2$ except when:
a_{3} is odd and $\left[\left(c_{1}, c_{2}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(1,2),(0,4)\rangle}$ or
a_{3} is even and $\left[\left(c_{1}, c_{2}\right)\right]=[(0,0)]$, with $[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$.
(4) $M A$ is as in case V and either
a_{3} is even and $\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right) \equiv 0 \bmod 2$, except when $c_{1}-\frac{a_{3}}{2} c_{2}-1$ and $\frac{b_{4}-1}{L}$ are odd, or
a_{3} is odd and $\frac{b_{4}-1}{2}\left(1+c_{2}\right) \equiv 0$ mod 2 except when $1+c_{2}$ and $\frac{b_{4}-1}{L}$ are odd, where $L:=\operatorname{gcd}\left(b_{4}-1, c_{2}\right)$.

Given $n \in \mathbb{N}$ we denote the induced homomorphism $f_{\#}^{n}: \pi_{1}(M A) \rightarrow \pi_{1}(M A)$ by $f_{\#}(a)=a^{b_{1 n}} b^{b_{2 n}}, f_{\#}(b)=a^{b_{3 n}} b^{b_{4 n}}$ and $f_{\#}(c)=a^{c_{1 n}} b^{c_{2 n}} c$, where $b_{j 1}=b_{j}, j=$ $1, \ldots, 4$ and $c_{j 1}=c_{j}, j=1,2$. Thus the matrix of the homomorphism induced on the fundamental group by the restriction of f^{n} to the fiber T is given by:

$$
B_{n}=\left(\begin{array}{ll}
b_{1 n} & b_{3 n} \\
b_{2 n} & b_{4 n}
\end{array}\right)
$$

where $B_{1}=B$ is the matrix of $\left(f_{\mid T}\right)_{\#}$ and $B_{n}=B^{n}$. From [8] we have

$$
N\left(h^{n}\right)=\left|L\left(h^{n}\right)\right|=\left|\operatorname{det}\left(\left[h_{\#}\right]^{n}-I\right)\right|,
$$

for each map $h: T \rightarrow T$ on torus, where $\left[h_{\#}\right]$ is the matrix of induced homomorphism and I is the identity.

Since $\left(B^{n}-I\right)=(B-I)\left(B^{n-1}+\ldots+B+I\right)$ then $\operatorname{det}\left(B^{n}-I\right)=$ $\operatorname{det}(B-I) \operatorname{det}\left(B^{n-1}+\ldots+B+I\right)$. Therefore, if $f_{\mid T}$ is deformable to a fixed point free map then $f_{\mid T}^{n}$ is deformable to a fixed point free map.
Remark 2.1. C.Y.You in [10] proved that if $h: X \rightarrow X$ is a map, where X is a torus, then there exist g homotopic to h such that $N F_{n}(h)=\# F i x\left(g^{n}\right)$. Note that we do not have yet the Nielsen Jiang number defined for a map $f: M \rightarrow M$ in a fiber bundle over B. This work investigates when there exist a such map g, fiberwise homotopic to f, with $\operatorname{Fix}\left(g^{n}\right)=\varnothing$, with $n>1$.

In the Theorems 2.1 and 2.2, putting f^{n} in the place of f we will get conditions to f^{n}. The conditions in Theorem 2.1 to f^{n} is the same of f but the conditions to f^{n} in the Theorem 2.2 are different of f and are in the Theorem 2.3.

Given a fiber-preserving map $f: M A \rightarrow M A$, if $f \sim_{S^{1}} g$ then $f^{n} \sim_{S^{1}} g^{n}$. Therefore, if $\operatorname{Fix}\left(g^{n}\right)=\varnothing$ then the homomorphism $f_{\#}^{n}: \pi_{1}(M) \rightarrow \pi(M)$ satisfies the condition of deformability gives in [5].

Proposition 2.1. Let $f: M A \rightarrow M A$ be a fiber-preserving map, where $M A$ is a T-bundle over S^{1}. Suppose that f restricted to the fiber can be deformed to a fixed point free map. This implies $L\left(\left.f\right|_{T}\right)=0$. From Theorem 2.1 we can suppose that the induced
homomorphism $f_{\#}: \pi_{1}(M A) \rightarrow \pi_{1}(M A)$ is given by; $f_{\#}(a)=a, f_{\#}(b)=a^{b_{3}} b^{b_{4}}$, $f_{\#}(c)=a^{c_{1}} b^{c_{2}}$. Given $n \in \mathbb{N}$ then from relation $\left(f_{\#}\right)^{n}=f_{\#}^{n}$ we obtain;

$$
\begin{gathered}
f_{\#}^{n}(a)=a, \\
f_{\#}^{n}(b)=a^{b_{3} \sum_{i=0}^{n-1} b_{4}^{i} b^{n}}, \\
f_{\#}^{n}(c)=a^{n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i} b^{c_{2}} \sum_{i=0}^{n-1} b_{4}^{i}} c .
\end{gathered}
$$

Proof. In fact, $f_{\#}^{2}(b)=f_{\#}\left(a^{b_{3}} b^{b_{4}}\right)=a^{b_{3}}\left(a^{b_{3}} b^{b_{4}}\right)^{b_{4}}=a^{b_{3}+b_{3} b_{4}} b^{b_{4}^{2}}$ and $f_{\#}^{2}(c)=$ $f_{\#}\left(a^{c_{1}} b^{c_{2}} c\right)=a^{c_{1}}\left(a^{b_{3}} b^{b_{4}}\right)^{c_{2}}\left(a^{c_{1}} b^{c_{2}} c\right)=a^{2 c_{1}+b_{3} c_{2}} b^{c_{2}+c_{2} b_{4}} c$. Suppose $f_{\#}^{n}(b)=$ $a^{b_{3} \sum_{i=0}^{n-1} b_{4}^{i} b_{4}^{n}}$ and $f_{\#}^{n}(c)=a^{n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i} b^{c_{2}} \sum_{i=0}^{n-1} b_{4}^{i}}$. Then,

$$
\begin{aligned}
& f_{\#}^{n+1}(b)=f_{\#}\left(a^{\left.b_{3} \sum_{i=0}^{n-1} b_{4}^{i} b_{4}^{b_{4}^{n}}\right)}\right. \\
&=a^{b_{3} \sum_{i=0}^{n-1} b_{4}^{i}}\left(a^{b_{3} b_{4}^{n}} b_{4}^{b_{4}^{n+1}}\right)=a^{b_{3} \sum_{i=0}^{n-1} b_{4}^{i}}\left(a^{b_{3}} b^{b_{4}}\right)^{b_{3} \sum_{i=0}^{n} b_{4}^{i}} b_{4}^{b_{4}^{n+1}} ; \\
& \begin{aligned}
f_{\#}^{n+1}(c)= & f_{\#}\left(a^{n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i} c_{2} \sum_{i=0}^{n-1} b_{4}^{i}} c\right) \\
= & \left.a^{n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}} a^{b_{3}} b^{b_{4}}\right)^{c_{2} \sum_{i=0}^{n-1} b_{4}^{i}}\left(a_{1}^{c_{1}} b^{c_{2}} c\right) \\
= & a^{\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}\right)+\left(b_{3} c_{2} \sum_{i=0}^{n-1} b_{4}^{i}\right)+\left(c_{1}\right)} b^{\left(c_{2} \sum_{i=1}^{n} b_{4}^{i}\right)+\left(c_{2}\right)} c \\
= & a^{(n+1) c_{1}+b_{3} c_{2} \sum_{i=0}^{n}(n-i) b_{4}^{i}} b^{c_{2} \sum_{i=0}^{n} b_{4}^{i} c .} .
\end{aligned}
\end{aligned}
$$

We will denote; $f_{\#}^{n}(b)=a^{b_{3 n}} b^{b_{4 n}}$ and $f_{\#}^{n}(c)=a^{c_{1 n}} b^{c_{2 n}} c$.
Theorem 2.3. Let $f: M A \rightarrow M A$ be a fiber-preserving map, where $M A$ is a T-bundle over S^{1}. Suppose that f restricted to the fiber can be deformed to a fixed point free map and that the induced homomorphism $f_{\#}: \pi_{1}(M A) \rightarrow \pi_{1}(M A)$ is given by; $f_{\#}(a)=a$, $f_{\#}(b)=a^{b_{3}} b^{b_{4}}, f_{\#}(c)=a^{c_{1}} b^{c_{2}} c$ as in cases of the Theorem 2.2. If n is a positive integer, then $f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1} if and only if the following conditions are satisfies;

1) $M A$ is as in case I and f is arbitrary.
2) $M A$ is as in cases II, III and $\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)=0$
3) $M A$ is as in case IV and $n\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-(n-1)$ $\left(b_{4}-1\right) \equiv 0$ mod 2 except when:
a_{3} is odd and $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} c_{2}, n c_{2}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(1,2),(0,4)\rangle}$ or
a_{3} is even and $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} b_{4} c_{2}, c_{2}+(n-1) b_{4} c_{2}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$.
4) $M A$ is as in case V and either
a_{3} is even and $n\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)\left(b_{4}-1\right) \equiv 0$ mod 2 , except when $n\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)$ and $\frac{b_{4}-1}{L}$ are odd, or
a_{3} is odd and $\frac{b_{4}-1}{2}\left(\left(1+c_{2}\right)\left(1+(n-1) b_{4}\right)\right) \equiv 0 \bmod 2$ except when $\left(1+c_{2}\right)$ $\left(1+(n-1) b_{4}\right)$ and $\frac{b_{4}-1}{L}$ are odd, where $L:=\operatorname{gcd}\left(b_{4}-1, c_{2}\right)$.

Proof. By Proposition 2.1 we know $f_{\#}^{n}(a)=a, f_{\#}^{n}(b)=a^{b_{3 n}} b^{b_{4 n}}$ and $f_{\#}^{n}(c)=$ $a^{c_{1 n}} b^{c_{2 n}} c$.
(1) From Theorem 2.2 each map $f: M A \rightarrow M A$ is fiberwise homotopic to a fixed point free map over S^{1} in particular that happens with $f^{n}: M A \rightarrow M A$ for each $n \in \mathbb{N}$.
(2) If $b_{4}=1$ then the assumption of the Theorem means $c_{2} b_{3}=0$. Moreover $b_{3 n}=n b_{3}, b_{4 n}=1, c_{1 n}=n c_{1}+b_{3} c_{2} \frac{n(n-1)}{2}$ and $c_{2 n}=n c_{2}$. In this sense, following Theorem 2.2, in cases II and III, f^{n} can be deformed, by a fiberwise homotopy, to a fixed point free map if and only if $c_{1 n}\left(b_{4 n}-1\right)-c_{2 n} b_{3 n}=0$. However, $c_{1 n}\left(b_{4 n}-1\right)-c_{2 n} b_{3 n}=-n^{2} c_{2} b_{3}$, and $-n^{2} c_{2} b_{3}=0$ if and only if $c_{2} b_{3}=0$.

For $b_{4} \neq 1$ we have $b_{3 n}=b_{3} \sum_{i=0}^{n-1} b_{4}^{i}=b_{3} \frac{b_{4}^{n}-1}{b_{4}-1}, b_{4 n}=b_{4}^{n}, c_{1 n}=n c_{1}+b_{3} c_{2}$ $\sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}$ and $c_{2 n}=c_{2} \sum_{i=0}^{n-1} b_{4}^{i}=c_{2} \frac{b_{4}^{n}-1}{b_{4}-1}$.

Note that; $\sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}=\sum_{i=0}^{n-1} \frac{(n-1-i) b_{4}^{i}\left(b_{4}-1\right)^{2}}{\left(b_{4}-1\right)^{2}}=$

$$
\begin{aligned}
& =\frac{\sum_{i=0}^{n-1}(n-1-i) b_{4}^{i+2}-2 \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i+1}+\sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}}{\left(b_{4}-1\right)^{2}} \\
& =\frac{\sum_{i=2}^{n+1}(n+1-i) b_{4}^{i}-2 \sum_{i=1}^{n}(n-i) b_{4}^{i}+\sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}}{\left(b_{4}-1\right)^{2}}= \\
& \frac{\sum_{i=2}^{n-1}[(n+1-i)-2(n-i)+(n-1-i)] b_{4}^{i}+b_{4}^{n}+(-2(n-1)+n-2) b_{4}+n-1}{\left(b_{4}-1\right)^{2}}
\end{aligned}
$$

$$
=\frac{b_{4}^{n}-n b_{4}+n-1}{\left(b_{4}-1\right)^{2}} .
$$

Therefore, $c_{1 n}\left(b_{4 n}-1\right)-c_{2 n} b_{3 n}=\frac{n\left(b_{4}^{n}-1\right) \cdot\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)}{b_{4}-1}$. In fact,

$$
\begin{aligned}
c_{1 n}\left(b_{4 n}-1\right) & =\left(n c_{1}+c_{2} b_{3} \frac{b_{4}^{n}-n b_{4}+n-1}{\left(b_{4}-1\right)^{2}}\right)\left(b_{4}^{n}-1\right) \\
& =n c_{1}\left(b_{4}^{n}-1\right)+c_{2} b_{3}\left(\frac{\left(b_{4}^{n}-1\right)-n\left(b_{4}-1\right)}{\left(b_{4}-1\right)^{2}}\right)\left(b_{4}^{n}-1\right) \\
& =n c_{1}\left(b_{4}^{n}-1\right)+c_{2} b_{3}\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right)^{2}-n c_{2} b_{3}\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) ; \\
c_{2 n} b_{3 n} & =\left(c_{2} \frac{b_{4}^{n}-1}{b_{4}-1}\right)\left(b_{3} \frac{b_{4}^{n}-1}{b_{4}-1}\right)=c_{2} b_{3}\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right)^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
c_{1 n}\left(b_{4 n}-1\right)-c_{2 n} b_{3 n} & =n c_{1}\left(b_{4}^{n}-1\right)-n c_{2} b_{3}\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) \\
& =n\left(b_{4}^{n}-1\right)\left(c_{1}-\frac{c_{2} b_{3}}{b_{4}-1}\right) \\
& =n\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right)\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right) \\
& =n\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right) .
\end{aligned}
$$

(3) Following Theorem 2.2, in cases $I V, f^{n}$ can be deformed, by a fiberwise homotopy, to a fixed point free map iff $b_{4 n}\left(b_{3 n}+1\right)-1-c_{1 n}\left(b_{4 n}-1\right)+c_{2 n} b_{3 n} \equiv$

0 mod 2 except when a_{3} even and $\left[\left(c_{1 n}, c_{2 n}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$, or a_{3} odd and $\left[\left(c_{1 n}, c_{2 n}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(1,2),(0,4)\rangle}$.

As in (2), we have $-c_{1 n}\left(b_{4 n}-1\right)+c_{2 n} b_{3 n}=-n\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)$ and $b_{4 n}\left(b_{3 n}+1\right)-1=b_{4}^{n}\left(1+b_{3} \sum_{i=0}^{n-1} b_{4}^{i}\right)-1=\left(b_{4}^{n}-1\right)+b_{4}^{n} b_{3}\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)=$ $\left(b_{4}-1\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)+b_{4}^{n} b_{3}\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)$. Thus,
$b_{4 n}\left(b_{3 n}+1\right)-1-c_{1 n}\left(b_{4 n}-1\right)+c_{2 n} b_{3 n}=$
$\left(b_{4}-1\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)+b_{3} b_{4}^{n}\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)-n\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right)=$
$\left(b_{4}-1+b_{3} b_{4}^{n}-n\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)\right)\left(\sum_{i=0}^{n-1} b_{4}^{i}\right) \equiv \bmod 2$
$\left(b_{4}-1+b_{3} b_{4}-n\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)\right)\left(1+(n-1) b_{4}\right) \equiv \bmod 2$
$n\left(b_{3} b_{4}-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)+b_{4}-1=$
$n\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-(n-1)\left(b_{4}-1\right)$.
The exceptions holds for a_{3} even and $\left[\left(c_{1 n}, c_{2 n}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$, or a_{3} odd and $\left[\left(c_{1 n}, c_{2 n}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(1,2),(0,4)\rangle}$.

In this sense, we have $\left(c_{1 n}, c_{2 n}\right)=\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i}, c_{2} \sum_{i=0}^{n-1} b_{4}^{i}\right)$. If a_{3} is odd then $b_{4}=1, c_{2} \sum_{i=0}^{n-1} 1^{i}=n c_{2}$ and $n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) 1^{i}=$ $n c_{1}+b_{3} c_{2} \frac{n(n-1)}{2}$. If a_{3} is even then $c_{2} \sum_{i=0}^{n-1} b_{4}^{i} \equiv c_{2}\left(1+(n-1) b_{4}\right)$ mod 2 and $n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1}(n-1-i) b_{4}^{i} \equiv n c_{1}+\frac{n(n-1)}{2} b_{3} b_{4} c_{2} \bmod 2$.
(4) From Theorem 2.2 the map f^{n} can be deformed, over S^{1}, to a fixed point free map if and only if the following condition holds:
a_{3} is even and $\left(b_{4 n}-1\right)\left(c_{1 n}-\frac{a_{3}}{2} c_{2 n}-1\right) \equiv 0 \bmod 2$, except when $c_{1 n}-\frac{a_{3}}{2} c_{2 n}-1$ and $\frac{b_{4 n}-1}{L}$ are odd, or
a_{3} is odd and $\frac{b_{4 n}-1}{2}\left(1+c_{2 n}\right) \equiv 0 \bmod 2$ except when $1+c_{2 n}$ and $\frac{b_{4 n}-1}{L}$ are odd, where $L:=\operatorname{gcd}\left(b_{4 n}-1, c_{2 n}\right)$.

Note that if $b_{4}=1$ then from Theorem 2.1 we must have $b_{3}=0$ and this situation return in the case I. Therefore let us suppose $b_{4} \neq 1$.

From previous calculation we have; $b_{4 n}=b_{4}^{n}, b_{3 n}=b_{3} \frac{b_{4}^{n}-1}{b_{4}-1}, c_{2 n}=c_{2} \frac{b_{4}^{n}-1}{b_{4}-1}$ and $c_{1 n}=n c_{1}+b_{3} c_{2} \frac{b_{4}^{n}-n b_{4}+n-1}{\left(b_{4}-1\right)^{2}}$. From Theorem 2.1 we have $a_{3}\left(b_{4}-1\right)=2 b_{3}$.

Suppose a_{3} even. Since $c_{1 n}\left(b_{4 n}-1\right)-c_{2 n} b_{3 n}=\frac{n\left(b_{4}^{n}-1\right)\left(c_{1}\left(b_{4}-1\right)-c_{2} b_{3}\right)}{b_{4}-1}$. Then

$$
\begin{aligned}
\left(b_{4 n}-1\right)\left(c_{1 n}-\frac{a_{3}}{2} c_{2 n}-1\right) & =n\left(b_{4}^{n}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)\left(b_{4}^{n}-1\right) . \text { In fact, } \\
c_{1 n}-\frac{a_{3}}{2} c_{2 n} & =n c_{1}+b_{3} c_{2} \frac{b_{4}^{n}-n b_{4}+n-1}{\left(b_{4}-1\right)^{2}}-\frac{a_{3}}{2} c_{2} \frac{b_{4}^{n}-1}{b_{4}-1} \\
& =n c_{1}+b_{3} c_{2} \frac{\left(b_{4}^{n-1)-n\left(b_{4}-1\right)}\right.}{\left(b_{4}-1\right)^{2}}-b_{3} c_{2} \frac{b_{4}^{n}-1}{\left(b_{4}-1\right)^{2}} \\
& =n c_{1}-\frac{b_{3} c_{4} n}{b_{4}-1} \\
& =n\left(c_{1}-\frac{a_{3}}{2} c_{2}\right) .
\end{aligned}
$$

We have defined $L:=\operatorname{gcd}\left(b_{4}-1, c_{2}\right)$. Therefore, $k L=\operatorname{gcd}\left(k\left(b_{4}-1\right), k c_{2}\right)$. We also define $L^{\prime}:=\operatorname{gcd}\left(b_{4 n}-1, c_{2 n}\right)$. Now $L^{\prime}=\frac{b_{4}^{n}-1}{\left(b_{4}-1\right)} L$, since $b_{4 n}-1=$ $\frac{b_{4}^{n}-1}{\left(b_{4}-1\right)}\left(b_{4}-1\right)$ and $c_{2 n}=c_{2} \frac{b_{4}^{n}-1}{\left(b_{4}-1\right)}$. Furthermore, $\frac{b_{4 n}-1}{L^{\prime}}=\frac{b_{4 n}-1}{L} \frac{b_{4}-1}{\left(b_{4}^{n}-1\right)}=\frac{b_{4}-1}{L}$. With these calculations we obtain the conditions statements on the theorem.

In the case a_{3} odd we must have: $\frac{b_{4}^{n}-1}{2}\left(1+c_{2} \frac{b_{4}^{n}-1}{b_{4}-1}\right) \equiv 0 \bmod 2$ except when $1+c_{2} \frac{b_{4}^{n}-1}{b_{4}-1}$ and $\frac{b_{4}-1}{L}$ are odd, where $L:=\operatorname{gcd}\left(b_{4}-1, c_{2}\right)$.

Note that $\frac{b_{4}^{n}-1}{b_{4}-1}$ is even if and only if $1+(n-1) b_{4}$ is even, and $b_{4}^{n}-1$ is even if and only if $b_{4}-1$ is even, for all $n \in \mathbb{N}$. With this we obtain the enunciate of the theorem.

Corollary 2.1. From Theorem 2.3, if $f: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1} and n is a odd positive integer, then $f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}.

Proof. If $f: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1} then the conditions of the Theorem 2.2 are satisfied. Suppose n odd then the conditions of the Theorem 2.3 also are satisfied. Thus $f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}.

In the corollary above if n is even the above statement may not holds, for example in the case V of the Theorem 2.3 if n, b_{4}, a_{3} and $c_{1}-\frac{a_{3}}{2} c_{2}-1$ are even then $f: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1} but f^{n} is not.

Proposition 2.2. Let $f: M A \rightarrow M A$ be a fiber-preserving map. Suppose that for some n, odd positive integer, $f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}, as in Theorem 2.3. If k is a positive divisor of n then the map $f^{k}: M A \rightarrow M A$ can be deformed, by a fiberwise homotopy, to a fixed point free map over S^{1}.

Proof. It is enough to verify that if the conditions of the Theorem 2.3 are satisfied for some $n>1$ odd then those conditions are also satisfied for $n=1$. The validity of the conditions for any k which divides n follows of the Corollary 2.1. We will analyze each case of the Theorem 2.3.

Case I. In this case for each $n \in \mathbb{N}$ the fiber-preserving map can be deformed over S^{1} to a fixed point free map.

Cases II and III. In these cases if for some n odd the fiber-preserving map $f^{n}: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1} then we must have; $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0$. Thus, for all $k \leq n, f^{k}$ can be deformed to a fixed point free map over S^{1}, in particular when k divides n.

Case IV. Suppose that for some odd positive integer n the fiber-preserving $\operatorname{map} f^{n}: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1}, then $n\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-(n-1)\left(b_{4}-1\right) \equiv 0 \bmod 2$ and if a_{3} is odd then $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} c_{2}, n c_{2}\right)\right] \neq[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(1,2),(0,4)\rangle}$ or if a_{3} is even then $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} b_{4} c_{2}, c_{2}+(n-1) b_{4} c_{2}\right)\right] \neq[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$.

Suppose a_{3} is odd. If $f: M A \rightarrow M A$ can not be deformed to a fixed point free map over S^{1}, then we must have $\left[\left(c_{1}, c_{2}\right)\right]=[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(1,2),(0,4)\rangle}$ or $\left(b_{4}\left(b_{3}+\right.\right.$ 1) $\left.-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)$ odd, that is, $c_{2}-2 c_{1} \equiv 0 \bmod 4$ or $\left(b_{4}\left(b_{3}+1\right)-1-\right.$ $\left.c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)$ odd. Note that $\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)$ odd iff $n\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-(n-1)\left(b_{4}-1\right)$ odd for any n odd. Now, if $c_{2}-2 c_{1} \equiv 0$ mod 4 then we have c_{2} even and therefore $c_{2}-2 c_{1}-(n-1) b_{3} c_{2} \equiv$ $0 \bmod 4$. Thus, we have $c_{2}-2 c_{1}-(n-1) b_{3} c_{2} \equiv 0 \bmod 4$ or $n\left(b_{4}\left(b_{3}+1\right)-1-\right.$ $\left.c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-(n-1)\left(b_{4}-1\right)$ odd. These two conditions guarantee that f^{n} can not be deformed to a fixed point free map over S^{1}, which is a contradiction by hypothesis.

If a_{3} is even then

$$
\begin{aligned}
{\left[\left(c_{1}, c_{2}\right)\right] } & =\left[\left(c_{1}+\frac{(n-1)}{2} b_{3} b_{4} c_{2}, c_{2}\right)\right] \\
& \neq[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle} .
\end{aligned}
$$

Then, $f: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}.
Case V. Suppose that for some n odd, $n \in \mathbb{N}$ the fiber-preserving map $f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}.

If a_{3} is even then f^{n} can be deformed if $n\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)$ $\left(b_{4}-1\right) \equiv 0 \bmod 2$, except when $n\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)$ and $\frac{b_{4}-1}{L}$ are odd, where $L:=\operatorname{gcd}\left(b_{4}-1, c_{2}\right)$. But $n\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)\left(b_{4}-1\right)$ even implies $\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)$ even, and $n\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)$ odd implies $\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)$ odd. Therefore, $f: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}. The case a_{3} odd is analogous.

Proposition 2.3. Let $f: M A \rightarrow M A$ be a fiber-preserving map. If m, n are odd positive integers, then f^{m} is deformable to a fixed point free map over S^{1} if and only if f^{n} is deformable to a fixed point free map over S^{1}.

Proof. If m, n are odd and f^{m} is deformable to a fixed point free map over S^{1} then by Proposition $2.2 f$ is deformable to a fixed point free map over S^{1}. From Corollary $2.1 f^{n}$ is deformable to a fixed point free map over S^{1}.

We have a analogous result for even numbers;
Proposition 2.4. Let $f: M A \rightarrow M A$ be a fiber-preserving map, where $M A$ is a T-bundle over S^{1}. Suppose that the induced homomorphism $f_{\#}: \pi_{1}(M A) \rightarrow \pi_{1}(M A)$ is given by; $f_{\#}(a)=a, f_{\#}(b)=a^{b_{3}} b^{b_{4}}, f_{\#}(c)=a^{c_{1}} b^{c_{2}} c$ as in cases of the Theorem 2.2. Given an even positive integer n such that f^{n} is deformable to a fixed point free map over S^{1}, as in Theorem 2.3, then f^{k} is deformable to a fixed point free map over S^{1}, for all even positive integer k divisor of n.

Proof. Is enough to verify that if the conditions of the Theorem 2.3 are satisfied for some n even then those conditions are also satisfied by every even k. We will analyze each case of the Theorem 2.3.

Case I. In this case for each $n \in \mathbb{N}$ the fiber-preserving map can be deformed over S^{1} to a fixed point free map.

Cases II and III. In these cases if for some n even the fiber-preserving map $f^{n}: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1} then we must have; $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0$ or $b_{4}=-1$. Thus, for all even k, f^{k} can be deformed to a fixed point free map over S^{1}.

Case IV. If n is an even positive integer and $f^{n}: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1}, then $n\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-$ $(n-1)\left(b_{4}-1\right) \equiv 0 \bmod 2$ and
if a_{3} is odd then $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} c_{2}, n c_{2}\right)\right] \neq[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\{(1,2),(0,4)\rangle}$ or if a_{3} is even then $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} b_{4} c_{2}, c_{2}+(n-1) b_{4} c_{2}\right)\right] \neq[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$.

Note that b_{4} is odd when n is even. If a_{3} is odd then $b_{4}=1$ and

$$
\begin{aligned}
{\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} c_{2}, n c_{2}\right)\right] } & =\left[\left(0, n c_{2}-2\left(n c_{1}+\frac{n(n-1)}{2} b_{3} c_{2}\right)\right)\right] \\
& \left.=\left[\left(0, n\left(c_{2}-2 c_{1}-(n-1) b_{3} c_{2}\right)\right)\right)\right] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{(1,2),(0,4)\rangle} ; \\
& \Rightarrow n\left(c_{2}-2 c_{1}-(n-1) b_{3} c_{2}\right) \not \equiv 0 \bmod 4 \\
& \Rightarrow\left\{\begin{array}{r}
c_{2}-2 c_{1}-(n-1) b_{3} c_{2} \equiv 1 \bmod 2 ; \\
n \equiv 2 \bmod 4 .
\end{array}\right.
\end{aligned}
$$

If a_{3} is even we have

$$
\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} b_{4} c_{2}, c_{2}+(n-1) b_{4} c_{2}\right)\right]=\left[\left(\frac{n}{2} b_{3} c_{2}, 0\right)\right] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}
$$

$\Rightarrow \frac{n}{2} b_{3} c_{2} \equiv 1 \bmod 2 \Rightarrow n \equiv 2 \bmod 4$ and $b_{3} c_{2} \equiv 1 \bmod 2$.
Note that, if f^{n} can be deformed to a fixed point free map over S^{1} then $n \equiv 2 \bmod 4$. Let k be an even positive integer, then

$$
k\left(b_{4}\left(b_{3}+1\right)-1-c_{1}\left(b_{4}-1\right)+b_{3} c_{2}\right)-(k-1)\left(b_{4}-1\right) \equiv 0 \bmod 2 .
$$

Hence, $f^{k}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1} except when $k \equiv 0 \bmod 4$ since;
if a_{3} is odd then

$$
\begin{aligned}
{\left[\left(k c_{1}+\frac{k(k-1)}{2} b_{3} c_{2}, k c_{2}\right)\right] } & =\left[\left(0, k\left(c_{2}-2 c_{1}-(k-1) b_{3} c_{2}\right)\right)\right] \\
& =[(0, k)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\{(1,2),(0,4)\rangle}
\end{aligned}
$$

because $c_{2}-2 c_{1}-(k-1) b_{3} c_{2} \equiv 1 \bmod 2$
if a_{3} is even then

$$
\left[\left(k c_{1}+\frac{k(k-1)}{2} b_{3} b_{4} c_{2}, c_{2}+(k-1) b_{4} c_{2}\right)\right]=\left[\left(\frac{k}{2}, 0\right)\right] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle} .
$$

Case V. If n is an even positive integer and $f^{n}: M A \rightarrow M A$ is deformed to a fixed point free map over S^{1}, then
if a_{3} is odd then $\frac{b_{4}-1}{2}\left(\left(1+c_{2}\right)\left(1+(n-1) b_{4}\right)\right) \equiv 0 \bmod 2$ and at least one of $\left(1+c_{2}\right)\left(1+(n-1) b_{4}\right)$ and $\frac{b_{4}-1}{L}$ is even, where $L:=g c d\left(b_{4}-1, c_{2}\right)$, or if a_{3} is even then $n\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)\left(b_{4}-1\right) \equiv 0 \bmod 2$ and at least one of $n\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)$ and $\frac{b_{4}-1}{L}$ is even, where $L:=\operatorname{gcd}\left(b_{4}-1, c_{2}\right)$.

Let a_{3} odd and k an even positive integer then

$$
\begin{aligned}
\left.\left(1+(k-1) b_{4}\right)\right) & \equiv\left(1+(n-1) b_{4}\right) \bmod 2 \\
\Rightarrow \quad \frac{b_{4}-1}{2}\left(\left(1+c_{2}\right)\left(1+(k-1) b_{4}\right)\right) & \equiv \frac{b_{4}-1}{2}\left(\left(1+c_{2}\right)\left(1+(n-1) b_{4}\right)\right) \bmod 2 \\
& \equiv 0 \bmod 2 ; \\
\left(1+c_{2}\right)\left(1+(k-1) b_{4}\right) & \equiv\left(1+c_{2}\right)\left(1+(n-1) b_{4}\right) \bmod 2 .
\end{aligned}
$$

Then, $f^{k}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1} for a_{3} odd. Let a_{3} even and k an even positive integer then

$$
\begin{aligned}
n\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1)\left(b_{4}-1\right) & \equiv b_{4}-1 \bmod 2 ; \\
n\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(n-1) & \equiv 1 \bmod 2 ; \\
\Rightarrow \quad k\left(b_{4}-1\right)\left(c_{1}-\frac{a_{3}}{2} c_{2}-1\right)+(k-1)\left(b_{4}-1\right) & \equiv 0 \bmod 2 .
\end{aligned}
$$

Then, $f^{k}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1} for a_{3} even.

Given $n \in \mathbb{N}$ and $f: M A \rightarrow M A$ a fiber-preserving. If $f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}, then from Propositions 2.3 and 2.4 the conditions to deform f and f^{n} to a fixed point free map over S^{1} are enough to deform f^{k} to a fixed point free map over S^{1} for all k divisor of n.
Theorem 2.4. Let $f: T \times I \rightarrow T \times I$ be the map defined by;

$$
f(x, y, t)=\left(x+b_{3} y+c_{1} t+\varepsilon, b_{4} y+c_{2} t+\delta, t\right) .
$$

Denoting $f^{n}: T \times I \rightarrow T \times I$ by $f^{n}(x, y, t)=\left(x_{n}, y_{n}, t\right)$, then x_{n} and y_{n} are given by

$$
\begin{aligned}
& x_{n}=x+b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) t+b_{3} \delta \sum_{i=0}^{n-1} i b_{4}^{n-1-i}+n \varepsilon \\
& y_{n}=b_{4}^{n} y+c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}+\delta \sum_{i=0}^{n-1} b_{4}^{i} .
\end{aligned}
$$

If for each positive integer n and ε, δ satisfying the following conditions, in each case of the Theorem 2.1,

Case I) $\quad a_{1} \epsilon+a_{3} \delta=\epsilon+k$ and $a_{2} \epsilon+a_{4} \delta=\delta+l$ where $k, l \in \mathbb{Z}$
Case II) $\quad a_{3} \delta \in \mathbb{Z}$
Case III) $a_{3} \delta \in \mathbb{Z}$ and $\delta=\frac{k}{2}, k \in \mathbb{Z}$
Case IV) $\epsilon=\frac{a_{3} m+2 k}{4}$ and $\delta=\frac{m}{2}$ where $m, k \in \mathbb{Z}$
Case V) $\quad \epsilon=\frac{a_{3} \delta+k}{2}$ where $k \in \mathbb{Z}$
then the map $f: T \times I \rightarrow T \times I$ induces a fiber-preserving map in the fiber bundle $M A$, as in Theorem 2.1, such that the induce homomorphism $f_{\#}$ is given by; $f_{\#}(a)=a$, $f_{\#}(b)=a^{b_{3}} b^{b_{4}}, f_{\#}(c)=a^{c_{1}} b^{c_{2}} c$. Moreover, the map $f^{n}: T \times I \rightarrow T \times I$ induces a fiberpreserving map in the fiber bundle $M A$, which we will represent by $f^{n}(<x, y, t>)=<x_{n}, y_{n}, t>$, such that the induces homomorphism $\left(f^{n}\right)_{\#}$ is as in the Proposition 2.1.

Proof. Denote $f^{n}(x, y, t)=\left(x_{n}, y_{n}, t\right)$ for each positive integer n. We have $x_{2}=x_{1}+b_{3} y_{1}+c_{1} t+\varepsilon=\left(x+b_{3} y+c_{1} t+\varepsilon\right)+b_{3}\left(b_{4} y+c_{2} t+\delta\right)+c_{1} t+\varepsilon=x+$ $b_{3} y\left(b_{4}+1\right)+\left(2 c_{1}+b_{3} c_{2}\right) t+b_{3} \delta+2 \varepsilon$. Also, $y_{2}=b_{4} y_{1}+c_{2} t+\delta$ $=b_{4}\left(b_{4} y+c_{2} t+\delta\right)+c_{2} t+\delta=b_{4}^{2} y+c_{2}\left(b_{4}+1\right) t+\left(b_{4}+1\right) \delta$.

Suppose that $f^{n}(x, y, t)=\left(x_{n}, y_{n}, t\right)$ as in hypothesis, then

$$
f^{n+1}(x, y, t)=\left(x_{n}+b_{3} y_{n}+c_{1} t+\varepsilon, b_{4} y_{n}+c_{2} t+\delta, t\right)=\left(x_{n+1}, y_{n+1}, t\right)
$$

where; $x_{n+1}=x_{n}+b_{3} y_{n}+c_{1} t+\varepsilon$

$$
\begin{aligned}
= & \left(x+b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) t+b_{3} \delta \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right. \\
& +n \varepsilon)+b_{3}\left(b_{4}^{n} y+c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}+\delta \sum_{i=0}^{n-1} b_{4}^{i}\right)+c_{1} t+\varepsilon \\
= & x+\left(b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+b_{3} y b_{4}^{n}\right)+\left(\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) t+c_{1} t+\right. \\
& \left.b_{3} c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}\right)+\left(b_{3} \delta \sum_{i=0}^{n-1} i b_{4}^{n-1-i}+b_{3} \delta \sum_{i=0}^{n-1} b_{4}^{i}\right)+(n \varepsilon+\varepsilon) \\
= & x+b_{3} y \sum_{i=0}^{n} b_{4}^{i}+\left((n+1) c_{1}+b_{3} c_{2} \sum_{i=0}^{n} i b_{4}^{n-i}\right) t+b_{3} \delta \sum_{i=0}^{n} i b_{4}^{n-i} \\
& +(n+1) \varepsilon ;
\end{aligned}
$$

$$
\begin{aligned}
y_{n+1} & =b_{4} y_{n}+c_{2} t+\delta \\
& =b_{4}\left(b_{4}^{n} y+c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}+\delta \sum_{i=0}^{n-1} b_{4}^{i}\right)+c_{2} t+\delta \\
& =b_{4}^{n+1} y+\left(c_{2} t \sum_{i=1}^{n} b_{4}^{i}+c_{2} t\right)+\left(\delta \sum_{i=1}^{n} b_{4}^{i}+\delta\right) \\
& =b_{4}^{n+1} y+c_{2} t \sum_{i=0}^{n} b_{4}^{i}+\delta \sum_{i=0}^{n} b_{4}^{i}
\end{aligned}
$$

as we wish. Now, we will verify that $f(<x, y, 0>)=f\left(<A\binom{x}{y}, 1>\right)$.
We have; $\left.\left.\langle x, y, 0\rangle=<A\binom{x}{y}, 1\right\rangle=<a_{1} x+a_{3} y, a_{2} x+a_{4} y, 1\right\rangle$,
$f(<x, y, 0>)=<x+b_{3} y+\varepsilon, b_{4} y+\delta, 0>$ and $f\left(<A\binom{x}{y}, 1>\right)=$ $<\left(a_{1}+a_{2} b_{3}\right) x+\left(a_{3}+b_{3} a_{4}\right) y+c_{1}+\varepsilon, b_{4} a_{2} x+b_{4} a_{4} y+c_{2}+\delta, 1>$.

Now, we will analyze each case of the Theorem 2.1.
Case I. In this case we need consider $b_{3}=0$ and $b_{4}=1$. Thus, in $M A$ we have $f(<x, y, 0>)=<x+\epsilon, y+\delta, 0>=<a_{1} x+a_{3} y+a_{1} \epsilon+a_{3} \delta, a_{2} x+a_{4} y+a_{2} \epsilon+$ $a_{4} \delta, 1>$ and $f\left(<A\binom{x}{y}, 1>\right)=<a_{1} x+a_{3} y+c_{1}+\epsilon, a_{2} x+a_{4} y+c_{2}+\delta, 1>$. Therefore, $f(<x, y, 0>)=f\left(<A\binom{x}{y}, 1>\right)$ if $a_{1} \epsilon+a_{3} \delta=\epsilon+k$ and $a_{2} \epsilon+a_{4} \delta=$ $\delta+l$ where $k, l \in \mathbb{Z}$.

Case II. In this case we have $a_{1}=a_{4}=1, a_{2}=0$ and $a_{3}\left(b_{4}-1\right)=0$. Therefore, $f(<x, y, 0>)=<x+b_{3} y+\epsilon, b_{4} y+\delta, 0>=<x+\left(a_{3}+b_{3}\right) y+\epsilon+$
$a_{3} \delta, b_{4} y+\delta, 1>=<x+\left(a_{3}+b_{3}\right) y+\epsilon+a_{3} \delta, b_{4} y+\delta, 1>$, and $f\left(<A\binom{x}{y}, 1>\right)=$ $<x+\left(a_{3}+b_{3}\right) y+c_{1}+\epsilon, b_{4} y+c_{2}+\delta, 1>$. Thus, $f(<x, y, 0>)=$ $f\left(<A\binom{x}{y}, 1>\right)$ if $a_{3} \delta \in \mathbb{Z}$.

Case III. In this case we have $a_{1}=1, a_{4}=-1, a_{2}=0$ and $a_{3}\left(b_{4}-1\right)=$ $-2 b_{3}$. Therefore, $f(<x, y, 0>)=<x+b_{3} y+\epsilon, b_{4} y+\delta, 0>=<x+\left(a_{3} b_{4}+\right.$ $\left.b_{3}\right) y+\epsilon+a_{3} \delta,-b_{4} y-\delta, 1>=<x+\left(a_{3}-b_{3}\right) y+\epsilon+a_{3} \delta,-b_{4} y-\delta, 1>$, and $f\left(<A\binom{x}{y}, 1>\right)=<x+\left(a_{3}-b_{3}\right) y+c_{1}+\epsilon,-b_{4} y+c_{2}+\delta, 1>$. Then, $f(<x, y, 0>)=f\left(<A\binom{x}{y}, 1>\right)$ if $a_{3} \delta \in \mathbb{Z}$ and $\delta=\frac{k}{2}, k \in \mathbb{Z}$.

Case IV. In this case we have $a_{1}=-1, a_{4}=-1, a_{2}=0$ and $a_{3}\left(b_{4}-1\right)=0$. Thus, $f(<x, y, 0>)=<x+b_{3} y+\epsilon, b_{4} y+\delta, 0>=<-x+\left(a_{3} b_{4}-\right.$ $\left.b_{3}\right) y-\epsilon+a_{3} \delta,-b_{4} y-\delta, 1>=<-x+\left(a_{3}-b_{3}\right) y-\epsilon+a_{3} \delta,-b_{4} y-\delta, 1>$, and $f\left(<A\binom{x}{y}, 1>\right)=<-x+\left(a_{3}-b_{3}\right) y+c_{1}+\epsilon,-b_{4} y+c_{2}+\delta, 1>$. Therefore, $f(<x, y, 0>)=f\left(<A\binom{x}{y}, 1>\right)$ if $\epsilon=\frac{a_{3} m+2 k}{4}$ and $\delta=\frac{m}{2}$ where $m, k \in \mathbb{Z}$.

Case V. In this case we have $a_{1}=-1, a_{4}=1, a_{2}=0$ and $a_{3}\left(b_{4}-1\right)=2 b_{3}$. Therefore, $f(<x, y, 0>)=<x+b_{3} y+\epsilon, b_{4} y+\delta, 0>=<-x+\left(a_{3} b_{4}-b_{3}\right) y-$ $\epsilon+a_{3} \delta, b_{4} y+\delta, 1>=<x+\left(a_{3}+b_{3}\right) y-\epsilon+a_{3} \delta, b_{4} y+\delta, 1>$ and $f\left(<A\binom{x}{y}, 1>\right.$ $)=<-x+\left(a_{3}+b_{3}\right) y+c_{1}+\epsilon, b_{4} y+c_{2}+\delta, 1>$. Thus, $f(<x, y, 0>)=f\left(<A\binom{x}{y}, 1>\right)$ if $\epsilon=\frac{a_{3} \delta+k}{2}$ where $k \in \mathbb{Z}$.

In an analogous way we obtain the following conditions for f^{n}, in each case of the Theorem 2.1.

Case I) $n a_{1} \varepsilon+n a_{3} \delta=n \varepsilon+k$, and $n a_{2} \varepsilon+n a_{4} \delta=n \delta+l$
Case II) $\delta a_{3} \sum_{i=0}^{n-1} b_{4}^{i} \in \mathbb{Z}$
Case III) $\quad 2 \delta \sum_{i=0}^{n-1} b_{4}^{i} \in \mathbb{Z}$ and $\left(a_{3} \sum_{i=0}^{n-1} b_{4}^{i}+2 b_{3} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) \delta \in \mathbb{Z}$
Case IV) $2 \delta \sum_{i=0}^{n-1} b_{4}^{i} \in \mathbb{Z}$ and $2 n \varepsilon=a_{3} \delta \sum_{i=0}^{n-1} b_{4}^{i}+k$,
Case $V) \quad 2 n \varepsilon=a_{3} \delta \sum_{i=0}^{n-1} b_{4}^{i}+k$
where $k, l \in \mathbb{Z}$. Thus for each $n \in \mathbb{N}$ and ϵ, δ satisfying the conditions above the map $f^{n}: T \times I \rightarrow T \times I$ induces a fiber-preserving map on $M A$ which will be represent by the same symbol.

Proposition 2.5. Let $n, b_{3}, b_{4}, c_{1}, c_{2} \in \mathbb{Z}, n \geq 1$. If $c_{1}\left(b_{4}-1\right)-c_{2} b_{3} \neq 0$ then for all $\varepsilon, \delta \in \mathbb{R}$ there are $k_{n}, l_{n} \in \mathbb{Z}$ such that $x_{n}=x+k_{n}$ and $y_{n}=y+l_{n}$ has solution $(x, y, t) \in \mathbb{R}^{2} \times I$, where:

$$
\begin{aligned}
& x_{n}=x+b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) t+b_{3} \delta \sum_{i=0}^{n-1} i b_{4}^{n-1-i}+n \varepsilon \\
& y_{n}=b_{4}^{n} y+c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}+\delta \sum_{i=0}^{n-1} b_{4}^{i} .
\end{aligned}
$$

Proof. Suppose $b_{4} \neq 1$ and $b_{4} \neq-1$ with n even ($b_{4}=-1$ with n odd is allowed) and $c_{1}\left(b_{4}-1\right)-b_{3} c_{2} \neq 0$ then given $\varepsilon, \delta \in \mathbb{R}$ we have the solutions $x \in \mathbb{R}$ and:

$$
\begin{aligned}
t & =\frac{n b_{3} \delta-n\left(b_{4}-1\right) \varepsilon-\left(b_{4}-1\right) k_{n}-b_{3} l_{n}}{n\left(c_{1}\left(b_{4}-1\right)-b_{3} c_{2}\right)} \\
y & =\frac{n\left(c_{2} \varepsilon-c_{1} \delta-k_{n} c_{2}\right.}{n\left(c_{1}\left(b_{4}-1\right)-b_{3} c_{2}\right)}+l_{n}\left(\frac{1}{b_{4}^{n}-1}+\frac{b_{3} c_{2}}{n\left(b_{4}-1\right)\left(c_{1}\left(b_{4}-1\right)-b_{3} c_{2}\right)}\right) \in \mathbb{R} .
\end{aligned}
$$

Thus, we need to find $k_{n}, l_{n} \in \mathbb{Z}$ such that $0 \leq t \leq 1$. Let $\Delta_{0}=n\left(c_{1}\left(b_{4}-1\right)-\right.$ $\left.b_{3} c_{2}\right) \in \mathbb{Z}, \Delta_{0} \neq 0$, and $\Delta_{1}=n b_{3} \delta-n\left(b_{4}-1\right) \varepsilon \in \mathbb{R}, t=\frac{\Delta_{1}-\left(b_{4}-1\right) k_{n}-b_{3} l_{n}}{\Delta_{0}}$. If $0 \leq \Delta_{1} \leq \Delta_{0}$ or $\Delta_{0} \leq \Delta_{1} \leq 0$ let $k_{n}=l_{n}=0$, then $t=\frac{\Delta_{1}}{\Delta_{0}}$. If $0<\Delta_{0} \leq \Delta_{1}$ or $\Delta_{1} \leq 0<\Delta_{0}$ then there are $d, q \in \mathbb{Z}$ such that $\Delta_{1}=d \Delta_{0}+q$ with $0 \leq q<\Delta_{0}$. Let $k_{n}=n c_{1} d$ and $l_{n}=n c_{2} d$, then

$$
t=\frac{d \Delta_{0}+q-\left(b_{4}-1\right) n c_{1} d-b_{3} n c_{2} d}{\Delta_{0}}=d+\frac{q}{\Delta_{0}}-\frac{d \Delta_{0}}{\Delta_{0}}=\frac{q}{\Delta_{0}} .
$$

If $\Delta_{1} \leq \Delta_{0}<0$ or $\Delta_{0}<0 \leq \Delta_{1}$ then there are $d, q \in \mathbb{Z}$ such that $\Delta_{1}=d \Delta_{0}+q$ with $0 \leq q<\left|\Delta_{0}\right|$. Let $k \in \mathbb{Z}$ the least integer greater than $\frac{-q}{\Delta_{0}}, k_{n}=n c_{1}(d-k)$ and $l_{n}=n c_{2}(d-k)$, then

$$
t=\frac{d \Delta_{0}+q-\left(b_{4}-1\right) n c_{1}(d-k)-b_{3} n c_{2}(d-k)}{\Delta_{0}}=\frac{q}{\Delta_{0}}+k .
$$

Then, $0 \leq t \leq 1$. If $b_{4}=1$ and $c_{1}\left(b_{4}-1\right)-b_{3} c_{2} \neq 0$ then $b_{3} c_{2} \neq 0$. Thus, given $\varepsilon, \delta \in \mathbb{R}$ we have the solutions $x \in \mathbb{R}$ and:

$$
\begin{aligned}
t & =\frac{l_{n}}{n c_{2}}-\frac{\delta}{c_{2}} \\
y & =\frac{-n c_{2} \varepsilon n c_{1} \delta+k_{n} c_{2}}{n b_{3} c_{2}}-l_{n}\left(\frac{c_{1}}{n b_{3} c_{2}}+\frac{n-1}{2 n}\right) \in \mathbb{R}
\end{aligned}
$$

We need to find $l_{n} \in \mathbb{Z}$ such that $0 \leq t \leq 1$. If $c_{2}>0$ take $n \delta \leq l_{n} \leq n\left(c_{2}+\delta\right)$ and if $c_{2}<0$ take $n \delta \geq l_{n} \geq n\left(c_{2}+\delta\right)$.

Remark 2.2. Note that the hypothesis $f, f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}, is equivalent to require that the induced homomorphisms $f_{\#}$ and $f_{\#}^{n}$ satisfy the conditions of the Theorem 2.3 in each case of the fiber bundle MA. But if $f_{\#}$ and $f_{\#}^{n}$ satisfy the conditions of the Theorem 2.3 then, by Propositions 2.2, 2.3 and 2.4, the induced homomorphism $f_{\#}^{k}$ satisfies the conditions of the Theorem 2.3 for each k positive divisor of n. Thus, the hypothesis $f, f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1} implies that $f^{k}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}, for each k positive divisor of n.

3 Fixed points of f^{n}

In this section we will give the proof of the main result.
Theorem 3.1 (Main Theorem). Let $f: M A \rightarrow M A$ be a fiber-preserving map, where $M A$ is a T-bundle over S^{1} as in the Theorem 2.1, and $n>1$ a positive integer. Suppose $f_{\#}(a)=a, f_{\#}(b)=a^{b_{3}} b^{b_{4}}$ and $f_{\#}(c)=a^{c_{1}} b^{c_{2}} c$, and $f, f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}. If the following conditions are satisfied in each case bellow then f is fiberwise homotopic to a g so that g^{n} is fixed point free.

Case I

i) $\left(a_{1}-1\right)\left(a_{4}-1\right)-a_{2} a_{3} \neq 0$ and $\operatorname{gcd}\left(\left(a_{4}+a_{2}-1\right),\left(a_{3}+a_{1}-1\right)\right)>1$.
ii) $\left(a_{1}-1\right)\left(a_{4}-1\right)-a_{2} a_{3}=0, c_{2} \neq 0$ and $a_{1}=1$.

Case II

i) $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0,\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0$ and $b_{4} \neq 1$
ii) $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0,\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0, b_{4}=1$ and a_{3} not divides n.
iii) $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0,\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0, b_{4}=1$ and $a_{3}=0$.

Case III
$c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0,\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0$.
Case IV
$c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0,\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0$.
Case V
$c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0,\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0$.
Remark 3.1. Note that in the Case III, the condition $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0$ is necessary and sufficient to deform f and f^{n} to a fixed point free map. Thus, if $c_{1}\left(b_{4}-1\right)-c_{2} b_{3} \neq$ 0 can not exist g fiberwise homotopic to f such g^{n} is fixed point free. The condition $\left|b_{3}\right|+\left|b_{4}-1\right| \neq 0$ in the cases II,III, IV and V is only to guarantee that the matrix $B=\left[\left(f_{\mid T}\right)_{\#}\right]$ is not the identity matrix is these cases.

Proof (of the main theorem). The technique used to proof the main theorem consists to show that for appropriated ε and δ the map $g: T \times I \rightarrow T \times I$ defined by; $g((x, y, t))=\left(x+b_{3} y+c_{1} t+\varepsilon, b_{4} y+c_{2} t+\delta, t\right)$ induces a fiber-preserving map on $M A$, which we will represent by the same symbol, such that $f \sim_{S^{1}} g$ and g^{n} is a fixed point free map. Note that if $c_{1}\left(b_{4}-1\right)-c_{2} b_{3} \neq 0$, then by Proposition 2.5 that map g does not works, that is, g^{n} will have fixed points. Thus, will use g in the situation $c_{1}\left(b_{4}-1\right)-c_{2} b_{3}=0$. From Theorem 2.4, the map g^{n} induces a fiber-preserving map if ε, δ satisfy the following conditions, in each case of the Theorem 2.1,

Case I) $n a_{1} \varepsilon+n a_{3} \delta=n \varepsilon+k$, and $n a_{2} \varepsilon+n a_{4} \delta=n \delta+l$
Case II) $\delta a_{3} \sum_{i=0}^{n-1} b_{4}^{i} \in \mathbb{Z}$
Case III) $\quad 2 \delta \sum_{i=0}^{n-1} b_{4}^{i} \in \mathbb{Z}$ and $\left(a_{3} \sum_{i=0}^{n-1} b_{4}^{i}+2 b_{3} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) \delta \in \mathbb{Z}$
Case IV) $2 \delta \sum_{i=0}^{n-1} b_{4}^{i} \in \mathbb{Z}$ and $2 n \varepsilon=a_{3} \delta \sum_{i=0}^{n-1} b_{4}^{i}+k$,
Case V) $\quad 2 n \varepsilon=a_{3} \delta \sum_{i=0}^{n-1} b_{4}^{i}+k$
where $k, l \in \mathbb{Z}$. Is important to observe that our interest is in the case $n>1$. Let us suppose that each map $f, f^{n}: M A \rightarrow M A$ can be deformed to a fixed point free map over S^{1}.
(Case I) For each map f such that $\left(f_{\mid T}\right)_{\#}=I d$ consider the map g^{\prime} fiberwise homotopic to f given by: $g^{\prime}(<x, y, t>)=<x+c_{1} t+\epsilon, y+c_{2} t+\delta, t>$, with ϵ, δ satisfying the conditions;

$$
\text { (I) }\left\{\begin{array}{l}
n a_{1} \epsilon+n a_{3} \delta=n \epsilon+k_{n} \\
n a_{2} \epsilon+n a_{4} \delta=n \delta+l_{n}
\end{array}\right.
$$

for some $k_{n}, l_{n} \in \mathbb{Z}$. If det $=\left(a_{1}-1\right)\left(a_{4}-1\right)-a_{2} a_{3} \neq 0$, we obtain

$$
\text { (II) } \epsilon=\frac{k_{n}\left(a_{4}-1\right)-a_{3} l_{n}}{n d e t} \text { and } \delta=\frac{l_{n}\left(a_{1}-1\right)-a_{2} k_{n}}{n \operatorname{det}}
$$

Note that g^{\prime} is fiberwise homotopic to the map g defined by:

$$
g(<x, y, t>)= \begin{cases}<x+2 c_{1} t+\epsilon, y+\delta, t> & \text { if } 0 \leq t \leq \frac{1}{2} \\ <x+c_{1}+\epsilon, y+c_{2}(2 t-1)+\delta, t> & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

In fact, $H: M A \times I \rightarrow M A$ defined by:

$$
H(\langle x, y, t\rangle, s)=\left\{\begin{array}{lll}
\left\langle x+c_{1} t+\epsilon, y+c_{2} t+\delta, t\right\rangle & \text { if } & 0 \leq t \leq s \\
\left\langle x+c_{1}(2 t-s)+\epsilon, y+c_{2} s+\delta, t\right\rangle & \text { if } & s \leq t \leq \frac{s+1}{2} \\
\left\langle x+c_{1}+\epsilon, y+c_{2}(2 t-1)+\delta, t\right\rangle & \text { if } & \frac{s+1}{2} \leq t \leq 1
\end{array}\right.
$$

is a homotopy between g^{\prime} and g. Note that,

$$
\left.g^{n}(<x, y, t\rangle\right)=\left\{\begin{array}{lll}
\left.<x+n 2 c_{1} t+n \epsilon, y+n \delta, t\right\rangle & \text { if } 0 \leq t \leq \frac{1}{2} \\
<x+n c_{1}+n \epsilon, y+n c_{2}(2 t-1)+n \delta, t> & \text { if } & \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

i) Suppose $\operatorname{det} \neq 0$ and $d=\operatorname{gcd}\left(\left(a_{4}+a_{2}-1\right),\left(a_{3}+a_{1}-1\right)\right)>1$. Choose $\epsilon=\delta=\frac{1}{n d}$. This values satisfy the system (I) and $n \epsilon=n \delta=\frac{1}{d} \in \mathbb{Q}-\mathbb{Z}$. If g^{n} has a fixed point for $0 \leq t \leq \frac{1}{2}$ then we must have $n \delta \in \mathbb{Z}$. Also, if g^{n} has a fixed point for $\frac{1}{2} \leq t \leq 1$ then we must have $n \in \in \mathbb{Z}$, which is a contradiction, that is, $\operatorname{Fix}\left(g^{n}\right)=\varnothing$.
ii) Suppose $0=\operatorname{det}=\left(a_{1}-1\right)\left(a_{4}-1\right)-a_{2} a_{3}, c_{2} \neq 0$ and $a_{1}=1$. Thus, we must have $a_{2}=0$. From system (I) we obtain the equations; $n a_{3} \delta=k_{n}$ and $n\left(a_{4}-1\right) \delta=l_{n}$, for some $k_{n}, l_{n} \in \mathbb{Z}$. This equations do not depend of ϵ, therefore we can choose ϵ an irrational number. Thus, we choose ϵ an irrational number and $\delta=\frac{1}{n}$.

We observe that both g and g^{\prime} are fiberwise homotopic to the given map f, and $\left(g^{\prime}\right)^{n}(<x, y, t>)=<x+n c_{1} t+n \epsilon, y+n c_{2} t+n \delta, t>$, with ϵ, δ satisfying the conditions of the system (I). If $\left(g^{\prime}\right)^{n}$ has a fixed point then we must have $n c_{1} t+n \epsilon=p_{n}$ and $n c_{2} t+n \delta=q_{n}$ for some $p_{n}, q_{n} \in \mathbb{Z}$. If $c_{1}=0$ we have a contradiction because ϵ is an irrational number. If $c_{1} \neq 0$ and $c_{2} \neq 0$ then we have $n c_{2} \epsilon-n c_{1} \delta=c_{2} p_{n}-c_{1} q_{n}$, which is a contradiction because ϵ is an irrational number and $\delta=\frac{1}{n}$. Therefore, $\left(g^{\prime}\right)^{n}$ can not have a fixed point.
(Case II) Let $g: M A \rightarrow M A$ be the map fiberwise homotopy to f given by $g(<x, y, t>)=<x+b_{3} y+c_{1} t+\varepsilon, b_{4} y+c_{2} t+\delta, t>$, where $a_{3} \delta \in \mathbb{Z}$. If $b_{4}=1$ then $c_{2} b_{3}=0$, but if $b_{3}=0$ then the matrix B of $\left(f_{\mid T}\right)_{\#}$ is the identity, contradicting a hypothesis. Suppose $b_{4}=1, b_{3} \neq 0$ and $c_{2}=0$, by Theorem 2.4, $g^{n}(\langle x, y, t\rangle)=<x_{n}, y_{n}, t>$ for each $n \in \mathbb{N}$ where,

$$
\left\{\begin{array}{l}
x_{n}=x+n b_{3} y+n c_{1} t+\left(\frac{n(n-1)}{2}\right) b_{3} \delta+n \varepsilon \\
y_{n}=y+n \delta
\end{array}\right.
$$

If $g^{n}: M A \rightarrow M A$ has a fixed point $\left\langle x, y, t>\right.$ then $x_{n}=x+k_{n}$ and $y_{n}=y+l_{n}$ for some $k_{n}, l_{n} \in \mathbb{Z}$. By the second equation of the system above we must have $n \delta=l_{n}$ for some $l_{n} \in \mathbb{Z}$. Therefore, $g^{n}: M A \rightarrow M A$ is fixed point free if $a_{3}=0$ and $\delta \in \mathbb{R}-\mathbf{Q}$ or if a_{3} not divides n and $\delta=\frac{1}{a_{3}}$.

Now we suppose $b_{4} \neq 1$ and we choose $\delta=0$ then $g^{n}(\langle x, y, t\rangle)=$ $<x_{n}, y_{n}, t>$, where

$$
\begin{aligned}
x_{n} & =x+b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) t+n \varepsilon \\
& =x+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) b_{3} y+\left(n c_{1}+\frac{b_{3} c_{2}\left(b_{4}^{n}-1+n\left(1-b_{4}\right)\right)}{\left(b_{4}-1\right)^{2}}\right) t+n \varepsilon \\
& =x+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) b_{3} y+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) c_{1} t+n \varepsilon ; \\
y_{n} & =b_{4}^{n} y+c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}=b_{4}^{n} y+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) c_{2} t .
\end{aligned}
$$

If $b_{4}=-1$ and n is even then $g^{n}: M A \rightarrow M A$ is fixed point free for $\varepsilon \in \mathbb{R}-\mathbb{Q}$, otherwise we had $n \varepsilon=k_{n} \in \mathbb{Z}$. Suppose $b_{4} \neq 1$ or $b_{4}=-1$ with n odd. If $c_{2} \neq 0$ we have:

$$
\begin{aligned}
& t=\frac{l_{n}\left(b_{4}-1\right)}{c_{2}\left(b_{4}^{n}-1\right)}+\frac{1-b_{4}}{c_{2}} y . \\
\Rightarrow x_{n} & =x+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) b_{3} y+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) c_{1} t+n \varepsilon \\
= & x-\left(\frac{\left(b_{4}^{n}-1\right)\left(\left(b_{4}-1\right) c_{1}-c_{2} b_{3}\right)}{\left(b_{4}-1\right) c_{2}}\right) y+n \varepsilon+\frac{c_{1} l_{n}}{c_{2}} \\
= & x+n \varepsilon+\frac{c_{1} l_{n}}{c_{2}} \\
\Rightarrow x+k_{n}= & x+n \varepsilon+\frac{c_{1} l_{n}}{c_{2}} \Rightarrow k_{n}=n \varepsilon+\frac{c_{1} l_{n}}{c_{2}} .
\end{aligned}
$$

Hence, then $g^{n}: M A \rightarrow M A$ is fixed point free for $\varepsilon \in \mathbb{R}-\mathbb{Q}$. On the other hand, if $c_{2}=0$ then $c_{1}=0$ because $b_{4} \neq 1$. Therefore,

$$
\begin{aligned}
x_{n} & =x+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) b_{3} y+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) c_{1} t+n \varepsilon \\
& =x+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) b_{3} y+n \varepsilon ; \\
y_{n} & =b_{4}^{n} y+\left(\frac{c_{2}\left(b_{4}^{n}-1\right)}{b_{4}-1}\right) t=b_{4}^{n} y .
\end{aligned}
$$

So, $g^{n}: M A \rightarrow M A$ is fixed point free for $\varepsilon \in \mathbb{R}-\mathbb{Q}$, otherwise $y=\frac{l_{n}}{b_{4}^{n}-1}$,
$x_{n}=x+n \varepsilon+\frac{b_{3} l_{n}}{b_{4}-1}$ and

$$
x+n \varepsilon+\frac{b_{3} l_{n}}{b_{4}-1}=x+k_{n} \Rightarrow \underbrace{\varepsilon}_{\in \mathbb{R}-\mathrm{Q}}=\underbrace{\frac{k_{n}}{n}-\frac{b_{3} l_{n}}{n\left(b_{4}-1\right)}}_{\in \mathbb{Q}} .
$$

(Case III) The proof in this case is similar to the case (2), but here we consider $a_{3}\left(b_{4}-1\right)=-2 b_{3}, \delta=\frac{k}{2}$ with $a_{3} \delta \in \mathbb{Z}$ and $k \in \mathbb{Z}$. If $b_{4}=1$ then $b_{3}=0$, and this situation we will have $\left|b_{3}\right|+\left|b_{4}-1\right|=0$ contradicting a hypothesis. If $b_{4} \neq 1$ then $g^{n}: M A \rightarrow M A$ is fixed point free for $\varepsilon \in \mathbb{R}-\mathbb{Q}$ and the proof is the same of the case II.
(Case IV) Suppose $g(<x, y, t>)=<x+b_{3} y+c_{1} t+\varepsilon, b_{4} y+c_{2} t+\delta, t>$ such that $b_{4}\left(n b_{3}+1\right) \equiv 1 \bmod 2, a_{3}\left(b_{4}-1\right)=0, \delta=\frac{m}{2}$ and $\varepsilon=\frac{a_{3} m+2 r}{4}, m, r \in \mathbb{Z}$. Thus, given $n \geq 1$ and $g^{n}(<x, y, t>)=<x_{n}, y_{n}, t>$ we want to know when g^{n} has a fixed point, i.e., there are $k_{n}, l_{n} \in \mathbb{Z}$ such that $x_{n}=x+k_{n}$ and $y_{n}=y+l_{n}$.

Note that the expression $b_{4}\left(n b_{3}+1\right) \equiv 1 \bmod 2$ follows from item 3 of Theorem 2.3 as below

$$
\begin{aligned}
& n(b_{4}\left(b_{3}+1\right)-1-\underbrace{c_{1}\left(b_{4}-1\right)+b_{3} c_{2}}_{=0})-(n-1)\left(b_{4}-1\right) \equiv 0 \bmod 2 \\
\Rightarrow & n b_{4} b_{3}+n b_{4}-n-(n-1) b_{4}+(n-1) \equiv 0 \bmod 2 \\
\Rightarrow & n b_{4} b_{3}+b_{4}-1 \equiv 0 \bmod 2 .
\end{aligned}
$$

If $b_{4}=1$ and n is odd then we must have $c_{2}=0$ because if $b_{3}=0$ then we would have $\left|b_{3}\right|+\left|b_{4}-1\right|=0$. So, $g^{n}: M A \rightarrow M A$ has not a fixed point $<x, y, t>$ for $\delta=\frac{1}{2}$, otherwise we had $y+l_{n}=y+\frac{n}{2}$ and $l_{n}=\frac{n}{2} \in \mathbb{Z}$. Note that we have a exception if $b_{4}=1$ and n even, because $c_{2}=0$. Hence, g^{n} is fixed point free if $b_{4}=1$ and $\delta=\frac{1}{2}$.

Suppose $b_{4} \neq 1$. From expression $b_{4}\left(n b_{3}+1\right) \equiv 1 \bmod 2$, proved above, we must have b_{4} odd. Thus, we have $a_{3}=0$ and $\left[\left(n c_{1}+\frac{n(n-1)}{2} b_{3} b_{4} c_{2}, c_{2}+\right.\right.$ $\left.\left.(n-1) b_{4} c_{2}\right)\right]=\left[\left(n c_{1}, n c_{2}\right)\right] \neq[(0,0)] \in \frac{\mathbb{Z} \oplus \mathbb{Z}}{\langle(2,0),(0,2)\rangle}$. If $g^{n}: M A \rightarrow M A$ has a fixed point $\langle x, y, t\rangle$ then

$$
\begin{gathered}
y+l_{n}=b_{4}^{n} y+c_{2}\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) t+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) \delta \\
\Rightarrow y=\frac{l_{n}\left(b_{4}-1\right)-\left(\delta+c_{2} t\right)\left(b_{4}^{n}-1\right)}{\left(b_{4}-1\right)\left(b_{4}^{n}-1\right)} \\
\Rightarrow x_{n}=x+\frac{b_{3}\left(l_{n}-n \delta\right)}{\left(b_{4}-1\right)}+n \varepsilon \Rightarrow k_{n}=\frac{b_{3}\left(l_{n}-n \delta\right)}{\left(b_{4}-1\right)}+n \varepsilon .
\end{gathered}
$$

So, $k_{n} \notin \mathbb{Z}$ for appropriates δ and $\varepsilon, n \in \mathbb{N}$. Therefore, $g^{n}: M A \rightarrow M A$ is fixed point free.
(Case V) Suppose $g(<x, y, t>)=<x+b_{3} y+c_{1} t+\varepsilon, b_{4} y+c_{2} t+\delta, t>$ such that $a_{3}\left(b_{4}-1\right)=2 b_{3}, \varepsilon=\frac{a_{3} \delta+1}{2}, m \in \mathbb{Z}$. We must consider $b_{4} \neq 1$, otherwise we
will obtain $b_{3}=0$ since $a_{3}\left(b_{4}-1\right)=2 b_{3}$, therefore $\left|b_{3}\right|+\left|b_{4}-1\right|=0$ contradicting our hypothesis. Suppose $b_{4} \neq 1$. From Theorem 2.4 we have two equations;

$$
\begin{aligned}
\text { (I) } x_{n}= & x+b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+\left(n c_{1}+b_{3} c_{2} \sum_{i=0}^{n-1} i b_{4}^{n-1-i}\right) t+b_{3} \delta \sum_{i=0}^{n-1} i b_{4}^{n-1-i} \\
& +n \varepsilon \\
= & x+b_{3} y \sum_{i=0}^{n-1} b_{4}^{i}+c_{1} t \sum_{i=0}^{n-1} b_{4}^{i}+b_{3} \delta \sum_{i=0}^{n-1} i b_{4}^{n-1-i}+n \varepsilon \\
\text { (II) } y_{n}= & b_{4}^{n} y+c_{2} t \sum_{i=0}^{n-1} b_{4}^{i}+\delta \sum_{i=0}^{n-1} b_{4}^{i} .
\end{aligned}
$$

If $b_{4}=-1$ and n is even then $g^{n}: M A \rightarrow M A$ has not a fixed point $<x, y, t>$ for $\delta \in \mathbb{R}-\mathbb{Q}$ and $\varepsilon=\frac{a_{3} \delta+1}{2}$, otherwise

$$
\begin{aligned}
x+k_{n} & =x-\frac{n b_{3} \delta}{2}+n \varepsilon, k_{n} \in \mathbb{Z} \\
\Rightarrow k_{n} & =\frac{n \delta\left(a_{3}-b_{3}\right)+1}{2} \notin \mathbb{Z}
\end{aligned}
$$

Now suppose $n>1$ any natural number with $b_{4} \neq 1$, (except $b_{4}=-1$ and n even, which was already made). In this situation $g^{n}: M A \rightarrow M A$ has not a fixed point $<x, y, t>$ for $\delta \in \mathbb{R}-\mathbb{Q}$ and $\varepsilon=\frac{a_{3} \delta+1}{2 n}$, otherwise we will obtain $x_{n}=x+k_{n}$ and $y_{n}=y+l_{n}$ with $k_{n}, l_{n} \in \mathbb{Z}$. From equation (II) we obtain

$$
\begin{aligned}
y+l_{n} & =b_{4}^{n} y+c_{2}\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) t+\left(\frac{b_{4}^{n}-1}{b_{4}-1}\right) \delta \\
\Rightarrow y & =\frac{l_{n}\left(b_{4}-1\right)-\left(\delta+c_{2} t\right)\left(b_{4}^{n}-1\right)}{\left(b_{4}-1\right)\left(b_{4}^{n}-1\right)}
\end{aligned}
$$

Replacing the value of y of the last equation into equation (I), and using $\varepsilon=\frac{a_{3} \delta+1}{2 n}$, we will obtain;

$$
x_{n}=x+\frac{b_{3} l_{n}\left(b_{4}^{n}-1\right)}{\left(b_{4}-1\right)}-\delta \frac{b_{3}(n-1)}{b_{4}-1}+\frac{1}{2}
$$

Replacing this value into the equation $x_{n}=x+k_{n}$ we obtain;

$$
k_{n}=\frac{b_{3} l_{n}\left(b_{4}^{n}-1\right)}{\left(b_{4}-1\right)^{2}}-\delta \frac{b_{3}(n-1)}{b_{4}-1}+\frac{1}{2}
$$

When $b_{3} \neq 0$ we have a contradiction because $\delta \in \mathbb{R}-\mathbb{Q}$. When $b_{3}=0$ we have a contradiction because $k_{n} \in \mathbb{Z}$. Therefore, $g^{n}: M A \rightarrow M A$ is a fixed point free map.

Acknowledgments. We would like to thank the referee by your comments and suggestions, which helped to improve the manuscript.

References

[1] B.J. Jiang; Lectures on the Nielsen Fixed Point Theory, Contemp. Math., vol. 14, Amer. Math. Soc., Providence, 1983.
[2] J. Jezierski; Weckens theorem for periodic points in dimension at least 3, Topology and its Applications 153 (2006) 18251837.
[3] J. Jezierski and W. Marzantowicz; Homotopy Methods in Topological Fixed and Periodic Point Theory, vol. 3, Topological Fixed Point Theory and Its Applications, Springer, 2006.
[4] E. Fadell and S. Hussein; A fixed point theory for fibre-preserving maps Lectures Notes in Mathematics, vol.886, Springer Verlag, 1981, 49-72.
[5] D. L. Gonçalves, D.Penteado and J.P Vieira; Fixed Points on Torus Fiber Bundles over the Circle, Fundamenta Mathematicae, vol. 183 (1), 2004, 1-38.
[6] G. L. Prado; Deformabilidade sobre S^{1} a livre de ponto fixo para auto-aplicações de T-fibrados e Reidemeister sobre S ${ }^{1}$, Master dissertation, USP, 2010.
[7] B. Halpern, Periodic points on tori, Pacific J. Math. 83 (1979), no. 1, 117133.
[8] Edward Keppelmann, Periodics points on nilmanifolds and solvmanifolds, Pacific Journal of Mathematics, vol. 164 (1) (1994), 105-128.
[9] G. W. Whitehead; Elements of Homotopy Theory, Springer-Verlag, 1918.
[10] C.Y. You; The least number of periodic points on tori, Adv. Math. (China) 24 (2) (1995) 155-160.

Dept. de Ciêcias Exatas e Tecnológicas
Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade Rodovia Jorge Amado, Km 16, Bairro Salobrinho CEP 45662-900
Ilhéus-Bahia, Brazil
email: wlsilva@uesc.br
Universidade Estadual de Mato Grosso do Sul,
Cidade Universitária de Dourados
Caixa postal 351
CEP: 79804-970, Dourados-MS, Brazil
email: moreira@uems.br

[^0]: Received by the editors in October 2016 - In revised form in September 2017.
 Communicated by Dekimpe, Gonçalves, Wong.
 2010 Mathematics Subject Classification : Primary 55M20; Secondary 37C25.
 Key words and phrases : Periodic points, fiber bundle, fiberwise homotopy.

