Periodic points on T-fiber bundles over the circle

Weslem Liberato Silva Rafael Moreira de Souza

Introduction

Let f : M — M be a map and x € M, where M a compact manifold. The point
x is called a periodic point of f if there exists n € IN such that f*(x) = x, in this
case x a periodic point of f of period n. The set of all {x € M| x is periodic} is
called the set of periodic points of f and is denoted by P(f).

If M is a compact manifold then the Nielsen theory can be generalized to
periodic points. Boju Jiang introduced (Chapter 3 in [1] ) a Nielsen-type homo-
topy invariant NF,(f) being a lower bound of the number of n-periodic points,
for each ¢ homotopic to f; Fix(g¢") > NF,(f). In case dim(M) > 3, M compact
PL- manifold, then any map f : M — M is homotopic to a map g satisfying
Fix(g") = NF,(f), this was proved in [2].

Consider a fiber bundle F — M - B where F, M, B are closed manifolds and
f + M — M a fiber-preserving map over B. In natural way is to study periodic
points of f on M, that is, given n € IN we want to study the set {x € M |
f"(x) = x}. The our main question is; when f can be deformed by a fiberwise
homotopy to a map g : M — M such that Fix(¢") =@ ?

This paper is organized into three sections besides one. In Section 1 we de-
scribe our problem in the general context of fiber bundle with base and fiber
closed manifolds.

In section 2, given a positive integer n and a fiber-preserving map
f M — M, in a fiber bundle with base circle and fiber torus, we present neces-
sary and sufficient conditions to deform f" : M — M to a fixed point free map
over S!, see Theorem 2.3. In the Theorem 2.4 we described linear models of maps,
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on the universal covering of the torus, which induces fiber-preserving maps on
the fiber bundle.

In section 3, in the Theorem 3.1, we used the models of maps of the section 2
to find a map g : M — M, fiberwise homotopic to a given map f : M — M such
that ¢" : M — M is a fixed point free map over S'.

1 General problem

Let F — M -5 B be a fibration and f : M — M a fiber-preserving map over
B, where F, M, B are closed manifolds. Given n € N, from relation po f = p,
we obtain po f* = p, thus f" : M — M is also a fiber-preserving map for each
n € IN. We want to know when f can be deformed by a fiberwise homotopy to
amap g : M — M such that Fix(g") = @. The the following lemma give us a
necessary condition to a positive answer the question above.

Lemma 1.1. Let f : M — M be a fiber-preserving map and n a positive integer. If the
map f*: M — M can not be deformed to a fixed point free map by a fiberwise homotopy,
where k is a positive divisor of n, then there is not map g : M — M fiberwise homotopic
to f such that g" : M — M is a fixed point free map.

Proof. Suppose that exists ¢ ~p f such that Fix(g") = @. Since Fix(g*) C Fix(g")
and Fix(g*) # @ then we have a contradiction. u
Therefore, a necessary condition to deform f : M -+ Mtoamapg: M — M
by a fiberwise homotopy, such that Fix(g") = O, is that for all positive integer
k, where k divides n, the map f¥ : M — M must be deformed by a fiberwise
homotopy to a fixed point free map.
Note that for each n the square of the following diagram is commutative;

iy

. ———m(F, xo) (M, x) — 2~ 711(B, p(x0)) —=0

J/(f"hf)# J{fé’ lld

= my(F, f*(x0)) —"> 1 (M, f*(x0)) 2= m1(B, p(x0)) —=0

In our case, all topological spaces are path-connected then we will represent
the generators of the groups 711 (M, f"(xg)) for each n, with the same letters. The
same thing we will do with 7r1 (T, f(0)).

Let M xgM be the pullbackof p: M — Bbyp: M — Band p; : MxpM —
M, i = 1,2, the projections to the first and the second coordinates, respectively.

The inclusion M xp M — A — M xpg M, where A is the diagonal in M xp M,
is replaced by the fiber bundle q : Eg(M) — M xp M, whose fiber is denoted
by F. We have 7, (Eg(M)) ~ 7mu(M xp M — A) where Eg(M) = {(x,w) €
B x Alli(x) = w(0)}, with A = M xg M, B = M xg M — A and g is given by
9(x,w) = w(1).

E. Fadell and S. Husseini in [4] studied the problem to deform the map f", for
each n € NN, to a fixed point free map. They supposed that dim(F) > 3 and that
F, M, B are closed manifolds. The necessary and sufficient condition to deform f"
is given by the following theorem that the proof can be find in [4].
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Theorem 1.1. Given a positive integer n, the map " : M — M is deformable to a fixed
point free map if and only if there exists a lift o(n) in the following diagram;

|,
Es(f") ="~ Es(M)

where Eg(f") — M is the fiber bundle induced from q by (1, f™).

In the Theorem 1.1 we have 7;_(F) = mj(M xg M,M xg M — A) =
7i(F, F — x) where x is a point in F. In this situation, that is, dim(F) > 3 the
classical obstruction was used to find a cross section.

When F is a surface with Euler characteristic < 0 then by Proposition 1.6 from
[5] we have necessary e sufficient conditions to deform f" to a fixed point free
map over B. The next proposition gives a relation between a geometric diagram
and our problem.

Proposition 1.1. Let f : M — M be a fiber-preserving map over B. Then there is a map
9, § ~p f,such that Fix(g") = @ if and only if there isa map hy, : M — M xp M — A
of the form h, = (Id,s"), where s : M — M, is fiberwise homotopic to f and makes the
diagram below commutative up to homotopy.

MxgM—A )
hy ,
// l

-
-

M ~MxzM
(L") B

Proof. (=) Suppose that exists g : M — M, ¢ ~p f, with Fix(g") = @. Is enough
to define h, = (Id, "), thatis, s = g.

(«) If there is hy, : M — M xp M — A such that h,, = (Id,s"), where s ~5 f,
then s"(x) # x for all x € M. Thus, takes ¢ = s. u

2 Torus fiber-preserving maps

Let T be, the torus, defined as the quotient space R x R/Z x Z. We denote by
(x,y) the elements of R x R and by [(x, y)] the elements in T.

_ Tx[0,1] . , ]
Let MA I~ (AG)D be the quotient space, where A is a homeomor

phism of T induced by an operator in IR? that preserves Z x Z. The space M A is
a fiber bundle over the circle S! where the fiber is the torus. For more details on
these bundles see [5].
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Given a fiber-preserving map f : MA — MA, i.e. po f = p, we want to study
the set Fix(g") for each map g fiberwise homotopic to f.

Consider the loops in MA given by; a(t) =< [(t,0)],0 >, b(t) = < [(0,1)],0 >
and c(t) =< [(0,0)],t > for t € [0,1]. We denote by B the matrix of the homo-
morphism induced on the fundamental group by the restriction of f to the fiber
T. From [5] we have the following theorem that provides a relationship between
the matrices A and B, where

A ( ap az ) ‘
az g

From [5] the induced homomorphism fy : m(MA) — m(MA) is given by;
fa(a) = aPb2, fu(b) = a®b%, fy(c) = a“1b*2c. Thus

by b3
b= (40 1)
Theorem 2.1. (1) 71;(MA,0) = (a,b,c|[a,b] = 1,cac™! = a®b®,cbc! = a®b™)

(2) B commutes with A.

(3) If f restricted to the fiber is deformable to a fixed point free map then the determi-
nant of B — I is zero, where 1 is the identity matrix.

(4) If v is an eigenvector of B associated to 1 (for B # Id) then A(v) is also an
eigenvector of B associated to 1.

(5) Consider w = A(v) if the pair v, w generators Z. x Z, otherwise let w be another
vector so that v, w span Z x Z. Define the linear operator P : R x R — R x R by
P(v) = (}) and P(w) = (%). Consider an isomorphism of fiber bundles, also denoted by
P,P: MA — M(A') where AL = P- A - P~1. Then MA is homeomorphic to M(A%)
over S'. Moreover we have one of the cases of the table below with B = P- A - P~! and
B! + Id, except in case I:

Case I Al= (@ 93 B! = 10
ar dg ! 01

613750
1 a 10
1 _ 3 1 _ 3
Case 11 A_<0 1>’B_<0b4>
a3(b4—1):0

1 a 1 b
1 3 1 3
Case III | A <0 >’B_<Ob4>

613(174 — 1) = —2b3

-1 a 1 b
1 3 1 3
Case 1V A_<0 1>’B_<0b4>

613(174 — 1) =0

-1 a 10
C 1% Al 3 Bl 3
ase < 0 1 > ! < 0 b4 >

613(174 — 1) = 2b3

From Theorem 4.1 in [5], we have necessary and sufficient conditions to
deform f to a fixed point free map over S'. The next theorem is equivalent to
Theorem 4.1 in [5], this equivalence was made in [6].
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Theorem 2.2. A fiber-preserving map f : MA — MA can be deformed to a fixed point
free map by a homotopy over S if and only if one of the cases below holds:

(1) MA is as in case I and f is arbitrary
(2) M A is as in one of the cases II or 111 and c1(by — 1) — b3 =0

(3) MA is as in case IV and by(bs +1) — 1 — c1(bg — 1) 4 bscy = 0 mod 2 except
when:

az is odd and [(c1,¢2)] = [(0,0)] € Wﬁ% or
as is even and [(c1,c2)] = [(0,0)], with [(0,0)] € “2%)6"%.

(4) M A is as in case V and either
az is even and (by — 1)(c1 — ey — 1) = 0 mod 2, except when ¢; — Fco — 1 and b‘lT_l
are odd, or
as is odd and b42_1 (1+ cp)
L:= gcd(by —1,¢7).
Givenn € N we denote the induced homomorphism f} : 71 (MA) — m1(MA)
by fy(a) = alwbb, fu(b) = a*»bPw and fy(c) = a‘nbc, where by = bj,j =
1,...,4 and cp=c¢j,j=12 Thus the matrix of the homomorphism induced on
the fundamental group by the restriction of f" to the fiber T is given by:

_ bln b3n
Bn = ( boy  bay )'

where B; = B is the matrix of (f|T)# and B;, = B". From [8] we have

0 mod 2 except when 1 4 c and b4L_ L are odd, where

N(#") = [L(h")| = |det([hy]" = T)],

for eachmap h : T — T on torus, where [h] is the matrix of induced homomor-
phism and I is the identity.

Since (B" — 1) = (B—-1)(B"!+ ..+ B+ 1) then det(B" — 1) =
det(B — I)det(B"~! + ...+ B+ I). Therefore, if f|r is deformable to a fixed point
free map then f‘”T is deformable to a fixed point free map.

Remark 2.1. C.Y.You in [10] proved that if h : X — X is a map, where X is a torus,
then there exist g homotopic to h such that NF,(h) = #Fix(g"). Note that we do not
have yet the Nielsen Jiang number defined for a map f : M — M in a fiber bundle over
B. This work investigates when there exist a such map g, fiberwise homotopic to f, with
Fix(g") = @, withn > 1.

In the Theorems 2.1 and 2.2, putting f" in the place of f we will get conditions
to f"*. The conditions in Theorem 2.1 to f" is the same of f but the conditions to
f" in the Theorem 2.2 are different of f and are in the Theorem 2.3.

Given a fiber-preserving map f : MA — MA, if f ~q g then f" ~g g".
Therefore, if Fix(g") = @ then the homomorphism f} : 71 (M) — 71(M) satisfies
the condition of deformability gives in [5].

Proposition 2.1. Let f : MA — MA be a fiber-preserving map, where MA is a
T-bundle over S. Suppose that f restricted to the fiber can be deformed to a fixed point
free map. This implies L(f|r) = 0. From Theorem 2.1 we can suppose that the induced
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homomorphism fy : 1 (MA) — 111(MA) is given by; fs(a) = a, fu(b) = a’b",
fu(c) = a“1b%c. Given n € IN then from relation (f4)" = fi we obtain;

fi(a) =
F1(b) = absTi%o bapth,
f#l(c) _ anc1+b3czz? Hn—1- z)bﬁlbczz” 1bl

Proof. In fact, f2(b) = fu(ab%) = ab3(absbba)bs = gbatbsbaphi and f2(c) =
fu(a9b2c) = a1 (a%BbP)2(ab2c) = aPatbapetabic Suppose fF(b) =
abs Tio bipbi and flii(c) = amrtbse Yiso (n=1=Dbipe2 N5y by Then,

ﬁ“(b) = fu(a S Wi 1b'bb”) — Y b i(a b3bb4)bg
ab3 YL bl ( bsby bb"H) — b3 Zi:obibbzﬂ;
n—1 i n—1 i
§l+1() _ f#( nc1+b3c22 o (n=1—i)b} b2 Zio b} )
— TlC1+b3CZZn 1(71 1— l)bl( b3bb4)C2):1 0 ( CleZC)
_ gnertbacy Ty (n=1-i)by)+(bca Ty by)+(c1) pylea Ty by)+(e2)
— a(n—i—l)cl—i-bg,czzlzo(n—z) 4bC22i:0 4C.
We will denote; f(b) = a3 b%n and fll(c) = a“inb2nc. u

Theorem 2.3. Let f : MA — MA be a fiber-preserving map, where M A is a T-bundle
over S'. Suppose that f restricted to the fiber can be deformed to a fixed point free map
and that the induced homomorphism fy : 11 (MA) — 71(MA) is given by; fy(a) = a,
fu(b) = ab3bh, fu(c) = a“b®c as in cases of the Theorem 2.2. If n is a positive integer,
then f" : MA — MA can be deformed to a fixed point free map over S if and only if the
following conditions are satisfies;

1) MA is as in case I and f is arbitrary.
2) M A is as in cases I1, I11 and (cq(by — 1) — cob3) <Zb4> =

3) MA is as in case IV and n(bg(bs +1) —1 —c1(bg — 1) + bzcp) — (n — 1)
(by — 1) = 0 mod 2 except when:

az is odd and [(ncy + ngcz,ncz)] =1[(0,0)] € <(1% (% )>

a3 is even and [(ncy + " )b3b4Cz, c2 + (n—1)bsca)] = [(0,0)] € 7«2%)6%,2»-

4) M A is as in case V and either
as is even and n(by — 1)(c1 — 702 — 1)+ (n—1)(by — 1) = 0 mod 2, except when
n(ep— 3 —-1)+(n-1) and ® T are odd, or
as is odd and Y- 1((1 —|— c2)(1+ (n — 1)b4)) = 0 mod 2 except when (1 + cp)

(14 (n—1)by) (by —1,¢cp).
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Proof. By Proposition 2.1 we know fl(a) = a, ff(b) = a% " and f}(c) =
aflnpCenc,

(1) From Theorem 2.2 each map f : MA — MA is fiberwise homotopic to a
fixed point free map over S! in particular that happens with f* : MA — MA for
eachn € IN.

(2) If by = 1 then the assumption of the Theorem means c;b3 = 0. Moreover
by, = nbs, by, = 1, ¢1,, = neq + bacy 22 ( U and Con, = ncp. In this sense, follow-
ing Theorem 2.2, in cases II and III, f it can be deformed, by a fiberwise homo-
topy, to a fixed point free map if and only if c1(bgy, — 1) — copbs, = 0. However,

Cin (b4n — 1) anbgn = —n C2b3, and —n C2b3 = 0if and only if C2b3 =0.
n—
For by # 1 we have b3, = b32b4 — b3§; 1, by = B, c1y = ney + bacy
0
n—1 = b1
Z(n -1 —z)b4 and ¢, = c22b4 = C2b4 -
i=0 i=
n—1 ) n _1_b1b_12
Note that; Y _ (n—1—1i)by = Z( i) 4(24 ) _
i=0 i=0 (bs —1)
n—1

Y (n—1-i)b? - 2211—1 Doy + Y (n—1—i)b]
i=0

i=0
(by—1)2

n+1 —1
Y (n+1-i)by — ZZn—zb4—|—2 (n—1—i)bj
_ i=2 i=1 i=0 _
_71 (by=1)2 o
Y [(n4+1—i)—2(n—i)+ (n—1—0)|by + b} + (—2(n—1) +n—2)bg+n—1
B (Bi—1)?
_ bj—nby+n—-1
T (bg-1)2
Therefore, ¢1,,(byy, — 1) — copbs, = n(bj _1)'(01714(341_1)_%173). In fact,

Cin(bgy —1) = (Tlcl + Czb:%%) (bf — 1)

A by—1

= ner (B — 1)+ cabs (BT ) () - 1)
n_1\ 2 n_

= ncy(b] —1) 4+ cob3 (Z‘*—_i) — ncobs (%) ;

b1 by -1 by —1\2
Conbzy = (Czb4 1) <b3b ) Czb3(b4 1) :
Therefore,

bl —
Cln(b4n — 1) — Cznbgn = na (bz — 1) — 1’1C2b3 (bi—i)
= (b —1) (e - 2%)
b —
= (1) (e1(bs = 1) = cabs)

= (C1 (b4 — 1 — C2b3 (Zb4>

(3) Following Theorem 2.2, in cases IV, f" can be deformed, by a fiberwise
homotopy, to a fixed point free map iff by, (s, +1) — 1 — c15(bayy — 1) + conbzy =
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0 mod 2 except when a3 even and [(c1y, c2,)] = [(0,0)] € «2%)@%, or a3 odd and
[(c1n,c20)] = [(0,0)] € «1%)?%'

As in (2), we have —cy,(bsy — 1) + conbzn = —n(c1(bs — 1) — c2b3) <Z b4>

n—1

. 1 .
ban(bsy +1) =1 = b <1+b32b§1>—1 — (bg—1)+bgb3<2bg> —
0 i=0
(by — 1) (Z b4> +bl'bs (Z b4>.Thus,

ban(bzn +1) =1 —c1(ban — 1) + conbzn =
n—1
(b4—1)<2b3>+b3bz<2b4>—n (by — 1) — cab3) (Zb4> -

(c1
i=0
(b4—1—|—b3bz—1’l( (b4—1 —C2b3 (Z = mod 2
=0
)1+ (n—

(b4 — 1+ b3by — n(c1 (b4 — 1 — Czbg,
n(bsby — c1(by — 1) + bca) + by—1 =
n(by(bs +1) —1—c1(bs — 1) + bac2) — (n —1)(bs — 1).
The exceptions holds for a3 even and [(c1,, c2,)] = [(0,0)] € %, or as
odd and [(c1y, c2)] = [(0,0)] € %.

n—1 ) n—1
In this sense, we have (cy,, ¢2,) = (nq + bsco Z (n—1—1i)by,c Z bﬁ) CIf

= mod?2

i=0 i=0
n—=1 n—1 .
a3 is odd then by = 1, ;) 1" = ncy and ney + byer ) (n—1—-10)1' =
= i=0
nn—1) n-l
ncy + bscy I If a5 is even then ¢, Y " by = ca(1+ (n — 1)by) mod 2 and
i=0
n—1 ) Tl( . 1)
ncy + bzeo Z (n—1—1i)by =nc; + bsbycy mod 2.

i=0 2
(4) From Theorem 2.2 the map f" can be deformed, over S!, to a fixed point
free map if and only if the following condition holds:
a3 is even and (by, — 1)(c1, — Bc2n — 1) = 0 mod 2, except when ¢1, — Fc2, — 1
and %T_l are odd, or

a3 is odd and %T_l(l + cpn) = 0 mod 2 except when 1 + ¢, and b“”L_l are odd,
where L := gcd (b, — 1, cop).
Note that if by = 1 then from Theorem 2.1 we must have b3 = 0 and this

situation return in the case I. Therefore let us suppose by # 1.

. . br—1 br—1
From previous calculation we have; by, = b}, b3, = b3 b4—1, Cop = Co b4 7 and

C1p = ney + b3c2% From Theorem 2.1 we have a3(by — 1) = 2b3.

(174—1)(01(54—1)—62%)‘ Then

Suppose a3 even. Since ¢1,,(byy, — 1) — conb3y, = e
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(ban —1)(c1n — Beon —1) = n(b] —1)(c1 — B2 — 1) + (n — 1)(b] — 1). In fact,

i —nby+n—1 a . by—1

Cln — 5Con = ﬂ01+b3czw— 2025, 1
= nc — ziczili
= n(cp — 762)

We have defined L := gcd(by — 1,¢3). Therefore, kL = gcd(k(by — 1), kcp).
We also define L' := gcd(b4n —1,¢2,). Now L = (Z4 )L since by, —1 =

bi-1 b — bau—1 _ by—1 by=1 _ by—1 yrs
(b4 ) (by — 1) and ¢y, _C2(b ) Furthermore, 4L - (b% n = i—. With

these calculations we obtain the cond1t19n§ statemg’p’? on the theorem.
A= (14 cogi=) = 0 mod 2 except when

(by —1,c2).

Note that p 1 is even if and only if 1 + (n — 1)by is even, and b} — 1 is even if

and only if by — 1 is even, for all n € IN. With this we obtain the enunciate of the
theorem. -

bi—1
1+c¢o b4 7 an

Corollary 2.1. From Theorem 2.3, if f : MA — MA can be deformed to a fixed point
free map over S and n is a odd positive integer, then f" : MA — MA can be deformed
to a fixed point free map over S'.

Proof. If f : MA — MA is deformed to a fixed point free map over S! then the
conditions of the Theorem 2.2 are satisfied. Suppose n odd then the conditions of
the Theorem 2.3 also are satisfied. Thus f" : MA — MA can be deformed to a
fixed point free map over S. |

In the corollary above if n is even the above statement may not holds, for
example in the case V of the Theorem 2.3 if 11, by, a3 and c¢1 — %cz — 1 are even
then f : MA — MA is deformed to a fixed point free map over S! but f" is not.

Proposition 2.2. Let f : MA — MA be a fiber-preserving map. Suppose that for some
n, odd positive integer, f"* : MA — MA can be deformed to a fixed point free map over
S', as in Theorem 2.3. If k is a positive divisor of n then the map f*: MA — MA can
be deformed, by a fiberwise homotopy, to a fixed point free map over S'.

Proof. It is enough to verify that if the conditions of the Theorem 2.3 are satisfied
for some n > 1 odd then those conditions are also satisfied for n = 1. The validity
of the conditions for any k which divides n follows of the Corollary 2.1. We will
analyze each case of the Theorem 2.3.

Case I. In this case for each n € IN the fiber-preserving map can be deformed
over S! to a fixed point free map.

Cases II and III. In these cases if for some n odd the fiber-preserving map
f*: MA — MA is deformed to a fixed point free map over S! then we must
have; ¢1(by — 1) — cobs = 0. Thus, for all k < n, fk can be deformed to a fixed
point free map over S, in particular when k divides n.
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Case IV. Suppose that for some odd positive integer n the fiber-preserving
map " : MA — MA is deformed to a fixed point free map over S!, then
n(by(bs+1) —1—c1(by—1) 4+ bscp) — (n—1)(by — 1) = 0 mod 2 and
if a3 is odd then [(ncy + @bgcz,ncz)] #1(0,0)] € «Zi or

1,2),(0,4))
if a3 is even then [(nc; + " bsbycy, cp + (1 — 1)baca)] # [(0,0)] € T
Suppose a3 is odd. If f : MA — MA can not be deformed to a fixed point
free map over S!, then we must have [(c1,c2)] = [(0,0)] € % or (by(bs +

1) =1 —cq(bgy — 1) + b3cp) odd, that is, c; —2¢; = 0 mod 4 or (by(bs +1) — 1 —
c1(by — 1) + bzcp) odd. Note that (by(bs +1) — 1 — c1(bg — 1) + bzcp) odd iff
n(ba(bs +1) —1 —c1(bs — 1) + bzcp) — (n —1)(bs — 1) odd for any n odd. Now,
if ¢ — 2c1 = 0 mod 4 then we have c; even and therefore ¢, — 2c1 — (1 — 1)bzcp =
0 mod 4. Thus, we have ¢y —2c; — (n — 1)bscy; = 0 mod 4 or n(by(bs +1) — 1 —
c1(by — 1) +bzcz) — (n —1)(bs — 1) odd. These two conditions guarantee that f”
can not be deformed to a fixed point free map over S!, which is a contradiction
by hypothesis.
If a3 is even then
[(e1+ 5 b3bycr, ¢2)]

[(C1/C2)] =
£ [(0,0)] € 525

Then, f : MA — MA can be deformed to a fixed point free map over S*.

Case V. Suppose that for some n odd, n € IN the fiber-preserving map
f*: MA — MA can be deformed to a fixed point free map over S?.

If a3 is even then f" can be deformed if n(by —1)(c; — Fcp —1) + (n — 1)
(by —1) = 0 mod 2, except when n(c; — Bcp —1) + (1 — 1) and ZMT_l are odd,
where L := gcd(by —1,c). But n(by —1)(c1 — Bc; — 1) + (n — 1)(by — 1) even
implies (by —1)(c1 — Fca — 1) even, and n(c; — Fc; — 1) + (n — 1) odd implies
(c1 — Fca — 1) odd. Therefore, f : MA — MA can be deformed to a fixed point
free map over S!. The case a3 odd is analogous. n

Proposition 2.3. Let f : MA — MA be a fiber-preserving map. If m, n are odd positive
integers, then f™ is deformable to a fixed point free map over S' if and only if f" is
deformable to a fixed point free map over S*.

Proof. If m,n are odd and f™ is deformable to a fixed point free map over S!

then by Proposition 2.2 f is deformable to a fixed point free map over S'. From

Corollary 2.1 " is deformable to a fixed point free map over S'. n
We have a analogous result for even numbers;

Proposition 2.4. Let f : MA — MA be a fiber-preserving map, where MA is a
T-bundle over S'. Suppose that the induced homomorphism fu : 7T (MA) — m11(MA)
is given by; fy(a) = a, fu(b) = ab%, fu(c) = a“1b%c as in cases of the Theorem 2.2.
Given an even positive integer n such that f" is deformable to a fixed point free map over
S', as in Theorem 2.3, then f¥ is deformable to a fixed point free map over S', for all even
positive integer k divisor of n.
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Proof. Is enough to verify that if the conditions of the Theorem 2.3 are satisfied
for some n even then those conditions are also satisfied by every even k. We will
analyze each case of the Theorem 2.3.

Case I. In this case for each n € IN the fiber-preserving map can be deformed
over S! to a fixed point free map.

Cases II and III. In these cases if for some 1 even the fiber-preserving map
f*: MA — MA is deformed to a fixed point free map over S! then we must
have; ¢;(by — 1) — cob3 = 0 or by = —1. Thus, for all even k, f* can be deformed
to a fixed point free map over S'.

Case IV. If n is an even positive integer and " : MA — MA is deformed
to a fixed point free map over S!, then n(by(bs +1) — 1 —c1(by — 1) + b3co) —
(n—1)(by —1) = 0 mod 2 and

if a3 is odd then [(nc; + "= )b362,ﬂ62)] #[(0,0)] € %

if 15 is even then [(nc1 + e T bsbucy, ¢ + (1 — 1)bacy)] # [(0,0)] € 2L .
Note that by is odd when n is even. If a3 is odd then by = 1 and

(0,ncy —2(ncy + = ( nn1)y, 3¢2))]

(0,n(cy —2¢; — (n— 1)17302)))] € %’.

[(ncy + 2= )b362,7’lC2)] =

[
[(
n
{ cp —2¢1 — (n—1)bsen

= n(cy—2c1 — (n —1)bscp) # 0 mod 4
N = 1mod?2;
n = 2mod4.

If a3 is even we have

[( P10 e a4 (1 - 1>b4c2)] ~[(Bsea0)] € 2l

= 5b3co =1mod 2 = n =2mod 4 and b3c, = 1 mod 2.
Note that, if f" can be deformed to a fixed point free map over S! then
n = 2 mod 4. Let k be an even positive integer, then

k(b4(b3 + 1) —1- C1(b4 — 1) +b3C2) — (k— 1)(b4 — 1) = 0 mod 2.

Hence, f*: MA — MA can be deformed to a fixed point free map over S! except
when k = 0 mod 4 since;
if a3 is odd then

[(ker + 5 psco, k)] = (0, k(ca — 2¢1 — (k — 1)bscy))]
= [O0] € 13,67

because ¢, — 2¢1 — (k — 1)bscy; = 1 mod 2
if a3 is even then

Case V. If n is an even positive integer and " : MA — MA is deformed to a
tixed point free map over S! then
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if a3 is odd then b42_1((1 +¢)(1+ (n—1)by)) = 0 mod 2 and at least one of

(1+c2)(14 (n—1)by) and b4L_1 is even, where L := gcd(by — 1,¢3), or

if a3 is even then n(by — 1)(c1 — 32 —bl) 1—|— (n—1)(by — 1) = 0mod 2 and at least
—

one of n(c; — Gcp — 1)+ (n—1) and is even, where L := gcd(by — 1, ¢3).
Let a3 odd and k an even positive integer then

(14 (k—1)by)) (14 (n—1)by) mod 2
= Bl ((1+e)(1+ (k—1)b)) BL(1+¢)(1+ (n—1)bs)) mod 2
0 mod 2;
(14 c2)(1+ (n—1)bs) mod 2.

I~

(1+c2)(1+ (k—1)bs)

Then, f*: MA — MA can be deformed to a fixed point free map over S! for a3
odd. Let a3 even and k an even positive integer then

by —1)(c1 —%Bc2—1)+(n—1)(ba—1) = bsy—1mod?2;
n(eg—%c0-1)+m—-1) = 1mod?2;
= k(by—1)(c1 —Fcr—1)+ (k=1)(by —1) = 0mod 2.

Then, f¥ : MA — MA can be deformed to a fixed point free map over S for a3
even. m

Givenn € N and f : MA — MA a fiber-preserving. If f" : MA — MA can
be deformed to a fixed point free map over S!, then from Propositions 2.3 and 2.4
the conditions to deform f and f" to a fixed point free map over S! are enough to
deform f* to a fixed point free map over S! for all k divisor of 7.

Theorem 2.4. Let f : T x I — T x I be the map defined by;
f(x,y,t) = (x + b3y + c1t + € byy + cat + 6, t).
Denoting f" : T x I — T x I by f*(x,y,t) = (xXn, Yn, t), then x,, and y,, are given by

n—1 n—1 ) n—1 )
Xy = x+bsy ) by+ (ncy+baca Y b )+ b38 Y bl + ne
=0 =0 =0
l n—1 n—1 l l
Yn = bjy+ot) by+6) by
i=0 i=0

If for each positive integer n and €, 6 satisfying the following conditions, in each case of
the Theorem 2.1,

CaseI) a1€ + a3d = € + k and are 4+ a4é = 6 + | where k,| € Z
Casell) a3z6 €Z

Caselll) azd € Zandd=5keZ

Case V) €= %"t gnd 5 = 1 where m,k € Z

CaseV) €= “352—+k where k € Z

then the map f : T x 1 — T x I induces a fiber-preserving map in the fiber bundle
MA, as in Theorem 2.1, such that the induce homomorphism fy is given by; fy(a) = a,
fa(b) = a3bb4, fy(c) = a1b2c. Moreover, the map f" : T x I — T x I induces a fiber-
preserving map in the fiber bundle MA, which we will represent by
U< x,y,t >) =< Xp,Yn, t >, such that the induces homomorphism (f")y4 is as in
the Proposition 2.1.
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Proof. Denote f"(x,y,t) = (xu,yn t) for each positive integer n. We have
Xy =x1+bsys +eit+e= (x+bsy+crt+e) +b3(bayy+cot+9) it +e=x+
bsy(by + 1) + (2¢1 + baco)t + b3d + 2e. Also, vy = by + ot + 6

= by(bsy + cat +0) + cat + 6 = b2y + ca(ba + 1)t + (by + 1)6.
Suppose that f*(x,y,t) = (xn,yn, t) as in hypothesis, then

" (x,y,t) = (x5 + b3y + c1t + & bayy + cot +6,t) = (Xpi1, Ynir ),
where; x,.1 = x, + b3y, +c1t +¢

n—=1 n—1 , n—1 .
= (x+bsy Y by+ (ncy +bacy Y ib] )t 4+ b3s Y b
=0 =0 =0
l n—1 l n—-1 l
+ne) + b3(bjy +cot ) by +08 Y by) +oit+e
n1 i=0 i=0 1 |
= x+(by )_ by +bayby) + ((ncy +bscz ) in‘l_l)t +ct+
n—1 Z,ZO n—1 ) n—1 Z,ZO
bacot Y by)+(bsd Y b} 1+ 036 Y by) + (ne+e)
i=0 i=0 =0

1

n . n . .
= x-+ b3y2 bfl —+ ((Vl + 1)C1 + b3C2 Z in_l)t + b35 Z in_l
i=0 i=0 1=0
+(n+1)g

n

Ynt1 = bayn+cat+94
n—1 n—1

= by(Dfy+cat) by +6 Y by) + oot +6
i=0 i=0

n . n i
= byl + (et Y_by+oot) + (6 )by +6)

i=1 i=1
n n

— bZHy + cztz bi +6 Z bf},
i=0 i=0

as we wish. Now, we will verify that f(< x,y,0 >) = f(< A (;) ,1>).
Wehave, <ux,y,0>=<A (’;) 1 >=<ax+azy,axx +agy,1 >,

f(< xy,0 >) =< x+by+ebyy+9,0 > and f(< A(;‘),l >) =
< (a1 + agbs)x + (a3 + bzag)y + ¢1 + €, baapx + bgagy +c2 + 6,1 > .

Now, we will analyze each case of the Theorem 2.1.

Casel. In this case we need consider b3 = 0 and by = 1. Thus, in M A we have
f(<x,y,0>)=<x+¢€y+60>=<ax+azy+aje+azd,arx + asy + are +
a40,1 > and f(< A (;) 1 >)=<mx+ay+ci+emx—+ayy+c+9,1>.
Therefore, f(< x,y,0>) = f(< A <’y‘> ,1>)ifaje +a30 = e+ kand axe +a4d =
0+ [ wherek,| € Z.

Case II. In this case we have sy = a4 = 1, ap = 0 and a3(by — 1) = 0.
Therefore, f(< x,y,0 >) =< x+ b3y +¢€,byy + 6,0 >=< x+ (a3 + b3)y + € +
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038,bsy + 5,1 >= < x+ (a3 + b3)y + €+ a3d, byy + 5,1 >,and f(< A (;) 1) =
< x4+ (a3 +b3)y+c+ebyy+cp+95,1 > . Thus, f(< xy,0 >) =
fl< A (;) ,1>)ifaso € Z.

Case III.  In this case we have ay = 1,a4 = —1,ap = 0O and a3(by — 1) =

—2b3. Therefore, f(< x,y,0 >) =< x+ b3y +€,byy + 96,0 > =< x + (azby +
b3)y + € +azd, —byy — 9,1 > =< x+ (a3 — b3)y + € +azd, —byy — 6,1 >, and

f(< A(;‘),l >) =< x+ (a3 —b3)y +c1+€ —byy +cp +9,1 > . Then,
fl<x,y,0>)=f(< A (y)1 >)ifazd € Zand 6 = £,k € Z.
Case IV. In this case we have ¢y = -1, a4 = -1, ao = 0 and

a3(by —1) = 0.Thus, f(< x,y,0 >) =< x+bsy+€,byy+9,0 > =< —x+ (azby —
b3)y —e€+azd, —bsy — 6,1 > =< —x+ (a3 — b3)y — € +a3d, —bsy — 6,1 >, and

f(< A (;),1 >) =< —x+ (a3 —b3)y +c1 +€, —byy +c» + 9,1 > . Therefore,
fl<xy0>)=f(< A (;) ,1>)ife = %ﬂk and 6 = % where m, k € Z.
Case V. In this case we havea; = —1,a4 = 1,4, = 0 and a3(by — 1) = 2bs.
Therefore, f(< x,y,0 >) =< x+bsy+€,bay+ 9,0 > =< —x + (azby — b3)y —
€+a30,byy+9,1 >=<x+(ag+bz)y—e+azd,byy+96,1 >and f(< A (;) ,1>
=< —x + (a3 + b3)y + c1 + €byy + c» + 6,1 > . Thus,
Fl<x,y,0>)=f(< A (y) ,1>) ife = 28K where k € Z.

In an analogous way we obtain the following conditions for f”, in each case
of the Theorem 2.1.

Case I) naie + nazd = ne + k, and nare + nagd = nd +1
n—-1
CaseIl) ébaz) by cZ
i=0
nil ) n—1 n—1 )
Case 111) 252 by € Zand | a3 Z by + 2b32 in‘l_’ seZ
i=0 i=0 i=0

n—1 n—1
CaseIV) 26 by € Zand 2ne = a3d)_ b +k,
i=0 i=0

n—1
CaseV) 2ne=uazé)_by+k
i=0
where k,| € Z. Thus for each n € IN and ¢, J satistying the conditions above the
map f" : T x 1 — T x I induces a fiber-preserving map on MA which will be
represent by the same symbol. m
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Proposition 2.5. Let n, b3, by, c1, co € Z, n > 1. If c1(by — 1) — cabs # 0 then for
alle, 6 € R there are ky, l,, € Z such that x, = x + ky, and y, = y + 1, has solution
(x,y,t) € R? x I, where:

n—1 n—1 ) n—1 )
Xn=x+bsy )y by+ (ncy +bsca Y by U+ b38 Y iby T 4 ng;
=0 =0 =0

l n—1 n—1 l l
Yn =bly+cot) by+3) by
i=0 i=0

Proof. Suppose by # 1 and by # —1 with n even (by = —1 with n odd is allowed)
and c1(by — 1) — bscp # 0 then given ¢, 6 € R we have the solutions x € R and:

t _ nb35—n(b4—1)s—(b4—1)kn—b3ln .

”(Cé(b]?—l)—bzﬁz) ! ,
_ ncpe—nc1d—kycr 1 3C2
y = n(c1(by—1)—bscr) +1n (bg_l T ”(174—1)(C1(b4—1)—b3cz)> €R.

Thus, we need to find k,, I, € Z such that 0 < t < 1. Let Ag = n(c1(bgy — 1) —
bscs) € Z, Ag # 0, and Ay = nbsd —n(by — 1)e € R, t = Sl Uluboh
0< A <AporAg <A, <O0letk, =1, =0,thent = ﬁ—é. If0 < Ag < Ajor
A1 <0 < Ap then there are d, g € Z such that A} = dAg + g with 0 < g < Ay. Let
k, = ncid and I, = ncyd, then
_ dAg+ g — (by — 1)ncyd — bancod —d—i—i—@ _q

B Ao N AN A
If Ay < Ap < 0or Ay <0 < Ay then there are d, g € Z such that A; = dAg+¢q
with 0 < g < |Ag|. Let k € Z the least integer greater than Z—g, ky = ney(d — k)
and I, = ncy(d — k), then

dAo+q — (by — D)nci(d — k) —bancp(d —k) g
_ =~ +k
Ap Ap
Then, 0 <t < 1. If by = 1and c1(by — 1) — bzcy # 0 then bzcy # 0. Thus, given
¢, 6 € R we have the solutions x € R and:

t

t

_ 1 J.
T Y
_ —ncpetncidtkucy c1 n—1
y = nbscy ln (l’lbgCZ + 2n > € R.

We need to find I, € Zsuch that 0 < t < 1. If ¢ > 0 take né < I, < n(cy + 9)
and if ¢; < 0 take né > 1, > n(cy +9).

Remark 2.2. Note that the hypothesis f, f" : MA — MA can be deformed to a fixed
point free map over S', is equivalent to require that the induced homomorphisms fu and
fi satisfy the conditions of the Theorem 2.3 in each case of the fiber bundle MLA. But if
fu and f;' satisfy the conditions of the Theorem 2.3 then, by Propositions 2.2, 2.3 and
2.4, the induced homomorphism f§ satisfies the conditions of the Theorem 2.3 for each k
positive divisor of n. Thus, the hypothesis f, f* : MA — MA can be deformed to a fixed
point free map over S' implies that f* : MA — MA can be deformed to a fixed point free
map over S1, for each k positive divisor of n.
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3 Fixed points of f”

In this section we will give the proof of the main result.

Theorem 3.1 (Main Theorem). Let f : MA — MA be a fiber-preserving map, where
MA is a T-bundle over S! as in the Theorem 2.1, and n > 1 a positive integer. Suppose
fa(a) = a, fu(b) = aPb" and fy(c) = a“b%c, and f,f" : MA — MA can be
deformed to a fixed point free map over S'. If the following conditions are satisfied in each
case bellow then f is fiberwise homotopic to a g so that " is fixed point free.

Case |

i) (a7 —1)(ag —1) —agas # 0and gcd((ag +a, — 1), (a3 +a; — 1)) > 1.
ii) (a1 —1)(ag—1) —apa3 =0,cp #0and a; = 1.

Case I1

i)c1(by —1) —cobs =0, |b3| + |bg — 1| # 0and by # 1

ii) c1(by — 1) — cobs = 0, |bs| + |bgy — 1| # 0, by = 1 and a3 not divides n.
iii) C1(b4 — 1) — by =0, |b3’ + ’b4 — 1’ # 0,by = 1and a3 = 0.

Case 111

c1(bs — 1) — c2b3 =0, |bs| + [bg — 1] # 0.

Case IV

C1(b4 — 1) — b3 =0, |b3| + |b4 — 1’ # 0.

Case V

Cl(b4 - 1) — b3 =0, |b3| + |b4 - 1| # 0.

Remark 3.1. Note that in the Case 111, the condition c¢1(by — 1) — cpbz = 0 is necessary
and sufficient to deform f and f" to a fixed point free map. Thus, if c1(by — 1) — cpbs #
0 can not exist g fiberwise homotopic to f such g" is fixed point free. The condition
|bs| + |by — 1| # 0 in the cases I1,I111,1V and V is only to quarantee that the matrix
B = [(f|r)#] is not the identity matrix is these cases.

Proof (of the main theorem). The technique used to proof the main theorem
consists to show that for appropriated e and d themap g: T x I — T x I defined
by; g((x,y,t)) = (x4 bzy + c1t + &, bay + cot + 6,t) induces a fiber-preserving
map on M A, which we will represent by the same symbol, such that f ~¢1 g and
¢" is a fixed point free map. Note that if ¢ (by — 1) — c2b3 # 0, then by Proposition
2.5 that map g does not works, that is, g" will have fixed points. Thus, will use
g in the situation ¢1(by — 1) — cpb3 = 0. From Theorem 2.4, the map ¢" induces
a fiber-preserving map if ¢, § satisfy the following conditions, in each case of the
Theorem 2.1,

CaseI) naie + nazd = ne + k, and nare + nagd = nd +1

n—1
CaseIl) ébaz) by c€Z
nl—lo ) n—1 n—1 )
Case IIT) 26)_ by € Z and <a3 Y by+2b3) in—l—z> 57
i=0 i=0 i=0
n—1 n—1
CaseIV) 26) by € Z and 2ne = azdy_ by +k,
i=0 i=0

n—1
CaseV) 2ne=azé)_ by+k
i=0
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where k,| € Z. Is important to observe that our interest is in the case n > 1. Let
us suppose that each map f, /" : MA — MA can be deformed to a fixed point
free map over S!.

(Case I) For each map f such that (f|r)s = Id consider the map ¢ fiberwise

homotopic to f given by: g/(< X, y,t>)=<x+cit+e€y+ct+6,t >, withe,d
satisfying the conditions;

(1 nai€ +nazd = ne—+ky
nare +nagd = né+1,

for some ky, I, € Z.If det = (a7 — 1)(ay — 1) — apaz # 0, we obtain

ndet ndet

Note that ¢’ is fiberwise homotopic to the map g defined by:

<x+2ct+ey+o,t> if 0<t<i
t>) = : 2
g(<xyt>) {<x-|—c1-|—e,y+c2(2t—1)+5,t> if %gtﬁl
In fact, H : MA x I — MA defined by:
<x+cit+ey+ct+o,t> if 0<t<s
H(<x,y,t>,s)—{ <x+c(2t—s)+ey+cs+6,t> if s<t< sl

2
<xtotey+o@-1)+5t> if H <<l

is a homotopy between g/ and g. Note that,

< x+n2cit+ne,y+nd, t > i

gi<xyt>)= s
o < x+ncy+ney+nc(2t—1)+nd,t> if 3

i) Suppose det # 0 and d = gcd((as +4a, — 1), (a3 +a; — 1)) > 1. Choose

€=0= vt This values satisfy the system (I) and ne = nd = 7 € Q-Z.1f

g" has a fixed point for 0 < t < % then we must have né € Z. Also, if g" has a
tixed point for % < t < 1 then we must have ne € Z, which is a contradiction,
that is, Fix(g") = @.

ii) Suppose 0 = det = (a7 —1)(ag — 1) —azas, c; # 0 and a; = 1. Thus, we
must have a, = 0. From system (I) we obtain the equations; nazé = k, and
n(ag —1)6 = I, for some ky, I,, € Z. This equations do not depend of €, therefore
we can choose € an irrational number. Thus, we choose € an irrational number
and § = %

We observe that both g and g are fiberwise homotopic to the given map f,
and (g')”(< x,y,t >) =< x+ncit + ne,y + nept + nd, t >, with €, 0 satisfying
the conditions of the system (I). If (¢')" has a fixed point then we must have
ncit + ne = p, and ncpt +nd = g, for some py,q, € Z.1f c; = 0 we have
a contradiction because € is an irrational number. If ¢; # 0 and ¢, # 0 then we
have ncye — nc1d = copy — c19,, which is a contradiction because € is an irrational
number and § = 1. Therefore, ( ¢’ )" can not have a fixed point.
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(Case II) Let g : MA — MA be the map fiberwise homotopy to f given
by (< x,yt >) =< x4+ b3y +cit + ¢ bgy + cat + 6, >, where azé € Z. If
by = 1 then cob3 = 0, but if b3 = 0 then the matrix B of (f|)# is the identity,
contradicting a hypothesis. Suppose by = 1, b3 # 0 and c; = 0, by Theorem 2.4,
(< x,y,t >) =< xXp,Yn, t > for each n € IN where,

X, = x—i—nb3y—|—nc1t—|—(( )>b35—|—n€
Yn = Yy-+nod.

If " : MA — MA has a fixed point < x,y,t > thenx, = x +k,and y, = y + I,
for some ky, I, € Z. By the second equation of the system above we must have
né = I, for some I, € Z. Therefore, g" : MA — MA is fixed point free if a3 = 0
and 6 € R — Q or if a3 not divides n and § = %

Now we suppose by # 1 and we choose 6 = 0 then ¢"(< x,y,t >) =
< Xpn,Yn,t >, where

—1 —1
Xy = x+b3y2b4+ i’lCl—l-bngZ iby~ =)t 4 ne
i=0 =0

= x+ (g by + (ney + 1)362(1711(;41_+1n>g11 b4)))t+”€
— x+ (¢ bsy + b‘*j) c1t + ng;
n—1 _

: by —1
Yn = bzy + oot Z bﬁl = be + <b4 1) Cot.
i=0 47

If by = —1 and n is even then ¢"" : MA — MA is fixed point free fore € R — Q,
otherwise we had ne = k, € Z. Suppose by # 1 or by = —1 withn odd. If c; # 0
we have:

(bs =1) | 1- by,

b=
co(bf — 1) o

=x, = x+gb” 1)b3y+( 1)c1t—|—ne
— o (W=D ((bg=1)er— Czb3) ciln
o (by—T1)c2 ) y+ne+ Z‘z
= x+ne+ Cll”
l I
=x+k, = in !
C2 ¢

Hence, then g"" : MA — MA is fixed point free for ¢ € R — Q. On the other hand,
if co = 0 then ¢; = 0 because by # 1. Therefore,

Xp = X+ l;i—j b3y—|—< )clt—l—ne

= X —|—
n bn_]‘ n
Yn = b4y—|— (Czéf_l )> t = b4y.

b3y + ne;

So, " : MA — MA is fixed point free for ¢ € R — Q, otherwise y =
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Xp =X+ ne+y b3l” and
kn b3ln
ky = — - —
x+ns+b4_1 X+ n= & n n(bs—1)
ER-Q - ”
€Q

(Case III) The proof in this case is similar to the case (2), but here we consider
a3(by — 1) = —2b3,6 = § with azé € Z and k € Z. If by = 1 then b3 = 0, and this
situation we will have |b3| + |by — 1| = 0 contradicting a hypothesis. If by # 1
then ¢g" : MA — MA is fixed point free for ¢ € R — Q and the proof is the same
of the case II.

(CaseIV) Suppose g(< x,y,t >) =< x+ b3y +cit+¢bgy +cot + 0, > such
that by(nbs +1) = 1 mod2, az(bg — 1) = 0,6 = " and e = D" 4, r € Z. Thus,
givenn > 1and ¢"(< x,y,t >) =< Xp, Yn, t > we want to know when g¢" has a
tixed point, i.e., there are k,, [, € Z such thatx, = x+k, andy, =y +I,.

Note that the expression by (nbs +1) = 1 mod 2 follows from item 3 of Theorem
2.3 as below

n(by(bs+1) —1—c1(by —1) +bscp) — (n —1)(by — 1) = 0 mod2
=0
= nbybs+nby—n— (n—1)bg+ (n — 1) = 0 mod2
= nbgbs+ by — 1 = 0 mod2.

If by = 1 and n is odd then we must have ¢, = 0 because if b3 = 0 then
we would have |b3| + |bs — 1] = 0. So, §" : MA — MA has not a fixed point
<x,y,t>ford = %, otherwise wehad y + 1, = y + 5 and [, = § € Z. Note that
we have a exception if by = 1 and n even, because c; = 0. Hence, g" is fixed point
freeif by =1and 6 = %

Suppose by # 1. From expression by(nbs +1) = 1 mod 2, proved above,
we must have by odd. Thus, we have a3 = 0 and [(nc; + ( )b3b4c2,cz +
(n — 1)bycp)] = [(ncq,ncp)] # [(0,0)] € %. If ¢" : MA — MA has a
tixed point < x,y,t > then

Y+ 1y —b4y+c2<bn 1)t+< 1)(5

by—
ln(by —1) — (6 + cot) (b} — 1)
(by = 1)(by = 1)

=y =

— +ne = k = —— = 4 ne.
(by—1) ! (by —1)

So, kn & Z for appropriates 6 and ¢, n € IN. Therefore, g" : MA — MA is fixed
point free.

(Case V) Suppose g(< x,y,t >) =< x+ b3y + c1t + €, bay + cat + 9, > such
that ag(by — 1) = 2bs3, € = ”3‘52“, m € Z. We must consider by # 1, otherwise we

=x, =x+
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will obtain by = 0 since a3(by — 1) = 2b3, therefore |bs| + |by — 1| = 0 contradict-
ing our hypothesis. Suppose by # 1. From Theorem 2.4 we have two equations;

n—-1 n—1 ) n—1 )
(I) xa = x+bsy) by+(nc; +bsco Y ibi )t +b30 Y b1

i=0 i=0 =0
+ne
n—-1 n—1 n—1 .
— x4+ bgyz by, +cit Z by +b3d Y b} 4 ne
=0
= —1 n 1 l
(II) yn = be—i—cth by+6 Y b
=0 i=0

If by = —1 and n is even then g" : MA — MA has not a fixed point < x,y,t > for
JeER—-Qande = “3‘52“, otherwise

x+ky —x—@Jrne k, € Z

=k, = nd(ay—bs) 1 )il g 7.

Now suppose n > 1 any natural number with by 75 1, (except by = —1 and n
even, which was already made). In this situation ¢" : MA — MA has not a
fixed point < x,y,t > ford € R—Qand ¢ = “3§+1 otherwise we will obtain
Xy =X +ky and y, = y + I, with k,,, [,, € Z. From equation (II) we obtain

v+ 1y —by—l—cz(bn )t—l—( 1)5

La(ba — 1) — (8 + cat) (b - 1)
(by —1) (b} — 1)

=y =

Replacing the value of y of the last equation into equation (I), and using

£ = “3§+1 we will obtain;

bbb~ 1) bs(n—1) 1

(bs—1) bi—1 2

Xy = X

Replacing this value into the equation x;, = x + k,, we obtain;

bolu(bf =1)  bs(n—1) , 1

kn = —
! (by —1)2 by—1 2

When b3 # 0 we have a contradiction because 6 € R — Q. When b3 = 0 we have
a contradiction because k, € Z. Therefore, g" : MA — MA is a fixed point free
map. ]
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